1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * wm8978.c -- WM8978 ALSA SoC Audio Codec driver 4 * 5 * Copyright (C) 2009-2010 Guennadi Liakhovetski <g.liakhovetski@gmx.de> 6 * Copyright (C) 2007 Carlos Munoz <carlos@kenati.com> 7 * Copyright 2006-2009 Wolfson Microelectronics PLC. 8 * Based on wm8974 and wm8990 by Liam Girdwood <lrg@slimlogic.co.uk> 9 */ 10 11 #include <linux/module.h> 12 #include <linux/moduleparam.h> 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/delay.h> 16 #include <linux/pm.h> 17 #include <linux/i2c.h> 18 #include <linux/regmap.h> 19 #include <linux/slab.h> 20 #include <sound/core.h> 21 #include <sound/pcm.h> 22 #include <sound/pcm_params.h> 23 #include <sound/soc.h> 24 #include <sound/initval.h> 25 #include <sound/tlv.h> 26 #include <asm/div64.h> 27 28 #include "wm8978.h" 29 30 static const struct reg_default wm8978_reg_defaults[] = { 31 { 1, 0x0000 }, 32 { 2, 0x0000 }, 33 { 3, 0x0000 }, 34 { 4, 0x0050 }, 35 { 5, 0x0000 }, 36 { 6, 0x0140 }, 37 { 7, 0x0000 }, 38 { 8, 0x0000 }, 39 { 9, 0x0000 }, 40 { 10, 0x0000 }, 41 { 11, 0x00ff }, 42 { 12, 0x00ff }, 43 { 13, 0x0000 }, 44 { 14, 0x0100 }, 45 { 15, 0x00ff }, 46 { 16, 0x00ff }, 47 { 17, 0x0000 }, 48 { 18, 0x012c }, 49 { 19, 0x002c }, 50 { 20, 0x002c }, 51 { 21, 0x002c }, 52 { 22, 0x002c }, 53 { 23, 0x0000 }, 54 { 24, 0x0032 }, 55 { 25, 0x0000 }, 56 { 26, 0x0000 }, 57 { 27, 0x0000 }, 58 { 28, 0x0000 }, 59 { 29, 0x0000 }, 60 { 30, 0x0000 }, 61 { 31, 0x0000 }, 62 { 32, 0x0038 }, 63 { 33, 0x000b }, 64 { 34, 0x0032 }, 65 { 35, 0x0000 }, 66 { 36, 0x0008 }, 67 { 37, 0x000c }, 68 { 38, 0x0093 }, 69 { 39, 0x00e9 }, 70 { 40, 0x0000 }, 71 { 41, 0x0000 }, 72 { 42, 0x0000 }, 73 { 43, 0x0000 }, 74 { 44, 0x0033 }, 75 { 45, 0x0010 }, 76 { 46, 0x0010 }, 77 { 47, 0x0100 }, 78 { 48, 0x0100 }, 79 { 49, 0x0002 }, 80 { 50, 0x0001 }, 81 { 51, 0x0001 }, 82 { 52, 0x0039 }, 83 { 53, 0x0039 }, 84 { 54, 0x0039 }, 85 { 55, 0x0039 }, 86 { 56, 0x0001 }, 87 { 57, 0x0001 }, 88 }; 89 90 static bool wm8978_volatile(struct device *dev, unsigned int reg) 91 { 92 return reg == WM8978_RESET; 93 } 94 95 /* codec private data */ 96 struct wm8978_priv { 97 struct regmap *regmap; 98 unsigned int f_pllout; 99 unsigned int f_mclk; 100 unsigned int f_256fs; 101 unsigned int f_opclk; 102 int mclk_idx; 103 enum wm8978_sysclk_src sysclk; 104 }; 105 106 static const char *wm8978_companding[] = {"Off", "NC", "u-law", "A-law"}; 107 static const char *wm8978_eqmode[] = {"Capture", "Playback"}; 108 static const char *wm8978_bw[] = {"Narrow", "Wide"}; 109 static const char *wm8978_eq1[] = {"80Hz", "105Hz", "135Hz", "175Hz"}; 110 static const char *wm8978_eq2[] = {"230Hz", "300Hz", "385Hz", "500Hz"}; 111 static const char *wm8978_eq3[] = {"650Hz", "850Hz", "1.1kHz", "1.4kHz"}; 112 static const char *wm8978_eq4[] = {"1.8kHz", "2.4kHz", "3.2kHz", "4.1kHz"}; 113 static const char *wm8978_eq5[] = {"5.3kHz", "6.9kHz", "9kHz", "11.7kHz"}; 114 static const char *wm8978_alc3[] = {"ALC", "Limiter"}; 115 static const char *wm8978_alc1[] = {"Off", "Right", "Left", "Both"}; 116 117 static SOC_ENUM_SINGLE_DECL(adc_compand, WM8978_COMPANDING_CONTROL, 1, 118 wm8978_companding); 119 static SOC_ENUM_SINGLE_DECL(dac_compand, WM8978_COMPANDING_CONTROL, 3, 120 wm8978_companding); 121 static SOC_ENUM_SINGLE_DECL(eqmode, WM8978_EQ1, 8, wm8978_eqmode); 122 static SOC_ENUM_SINGLE_DECL(eq1, WM8978_EQ1, 5, wm8978_eq1); 123 static SOC_ENUM_SINGLE_DECL(eq2bw, WM8978_EQ2, 8, wm8978_bw); 124 static SOC_ENUM_SINGLE_DECL(eq2, WM8978_EQ2, 5, wm8978_eq2); 125 static SOC_ENUM_SINGLE_DECL(eq3bw, WM8978_EQ3, 8, wm8978_bw); 126 static SOC_ENUM_SINGLE_DECL(eq3, WM8978_EQ3, 5, wm8978_eq3); 127 static SOC_ENUM_SINGLE_DECL(eq4bw, WM8978_EQ4, 8, wm8978_bw); 128 static SOC_ENUM_SINGLE_DECL(eq4, WM8978_EQ4, 5, wm8978_eq4); 129 static SOC_ENUM_SINGLE_DECL(eq5, WM8978_EQ5, 5, wm8978_eq5); 130 static SOC_ENUM_SINGLE_DECL(alc3, WM8978_ALC_CONTROL_3, 8, wm8978_alc3); 131 static SOC_ENUM_SINGLE_DECL(alc1, WM8978_ALC_CONTROL_1, 7, wm8978_alc1); 132 133 static const DECLARE_TLV_DB_SCALE(digital_tlv, -12750, 50, 1); 134 static const DECLARE_TLV_DB_SCALE(eq_tlv, -1200, 100, 0); 135 static const DECLARE_TLV_DB_SCALE(inpga_tlv, -1200, 75, 0); 136 static const DECLARE_TLV_DB_SCALE(spk_tlv, -5700, 100, 0); 137 static const DECLARE_TLV_DB_SCALE(boost_tlv, -1500, 300, 1); 138 static const DECLARE_TLV_DB_SCALE(limiter_tlv, 0, 100, 0); 139 140 static const struct snd_kcontrol_new wm8978_snd_controls[] = { 141 142 SOC_SINGLE("Digital Loopback Switch", 143 WM8978_COMPANDING_CONTROL, 0, 1, 0), 144 145 SOC_ENUM("ADC Companding", adc_compand), 146 SOC_ENUM("DAC Companding", dac_compand), 147 148 SOC_DOUBLE("DAC Inversion Switch", WM8978_DAC_CONTROL, 0, 1, 1, 0), 149 150 SOC_DOUBLE_R_TLV("PCM Volume", 151 WM8978_LEFT_DAC_DIGITAL_VOLUME, WM8978_RIGHT_DAC_DIGITAL_VOLUME, 152 0, 255, 0, digital_tlv), 153 154 SOC_SINGLE("High Pass Filter Switch", WM8978_ADC_CONTROL, 8, 1, 0), 155 SOC_SINGLE("High Pass Cut Off", WM8978_ADC_CONTROL, 4, 7, 0), 156 SOC_DOUBLE("ADC Inversion Switch", WM8978_ADC_CONTROL, 0, 1, 1, 0), 157 158 SOC_DOUBLE_R_TLV("ADC Volume", 159 WM8978_LEFT_ADC_DIGITAL_VOLUME, WM8978_RIGHT_ADC_DIGITAL_VOLUME, 160 0, 255, 0, digital_tlv), 161 162 SOC_ENUM("Equaliser Function", eqmode), 163 SOC_ENUM("EQ1 Cut Off", eq1), 164 SOC_SINGLE_TLV("EQ1 Volume", WM8978_EQ1, 0, 24, 1, eq_tlv), 165 166 SOC_ENUM("Equaliser EQ2 Bandwidth", eq2bw), 167 SOC_ENUM("EQ2 Cut Off", eq2), 168 SOC_SINGLE_TLV("EQ2 Volume", WM8978_EQ2, 0, 24, 1, eq_tlv), 169 170 SOC_ENUM("Equaliser EQ3 Bandwidth", eq3bw), 171 SOC_ENUM("EQ3 Cut Off", eq3), 172 SOC_SINGLE_TLV("EQ3 Volume", WM8978_EQ3, 0, 24, 1, eq_tlv), 173 174 SOC_ENUM("Equaliser EQ4 Bandwidth", eq4bw), 175 SOC_ENUM("EQ4 Cut Off", eq4), 176 SOC_SINGLE_TLV("EQ4 Volume", WM8978_EQ4, 0, 24, 1, eq_tlv), 177 178 SOC_ENUM("EQ5 Cut Off", eq5), 179 SOC_SINGLE_TLV("EQ5 Volume", WM8978_EQ5, 0, 24, 1, eq_tlv), 180 181 SOC_SINGLE("DAC Playback Limiter Switch", 182 WM8978_DAC_LIMITER_1, 8, 1, 0), 183 SOC_SINGLE("DAC Playback Limiter Decay", 184 WM8978_DAC_LIMITER_1, 4, 15, 0), 185 SOC_SINGLE("DAC Playback Limiter Attack", 186 WM8978_DAC_LIMITER_1, 0, 15, 0), 187 188 SOC_SINGLE("DAC Playback Limiter Threshold", 189 WM8978_DAC_LIMITER_2, 4, 7, 0), 190 SOC_SINGLE_TLV("DAC Playback Limiter Volume", 191 WM8978_DAC_LIMITER_2, 0, 12, 0, limiter_tlv), 192 193 SOC_ENUM("ALC Enable Switch", alc1), 194 SOC_SINGLE("ALC Capture Min Gain", WM8978_ALC_CONTROL_1, 0, 7, 0), 195 SOC_SINGLE("ALC Capture Max Gain", WM8978_ALC_CONTROL_1, 3, 7, 0), 196 197 SOC_SINGLE("ALC Capture Hold", WM8978_ALC_CONTROL_2, 4, 10, 0), 198 SOC_SINGLE("ALC Capture Target", WM8978_ALC_CONTROL_2, 0, 15, 0), 199 200 SOC_ENUM("ALC Capture Mode", alc3), 201 SOC_SINGLE("ALC Capture Decay", WM8978_ALC_CONTROL_3, 4, 10, 0), 202 SOC_SINGLE("ALC Capture Attack", WM8978_ALC_CONTROL_3, 0, 10, 0), 203 204 SOC_SINGLE("ALC Capture Noise Gate Switch", WM8978_NOISE_GATE, 3, 1, 0), 205 SOC_SINGLE("ALC Capture Noise Gate Threshold", 206 WM8978_NOISE_GATE, 0, 7, 0), 207 208 SOC_DOUBLE_R("Capture PGA ZC Switch", 209 WM8978_LEFT_INP_PGA_CONTROL, WM8978_RIGHT_INP_PGA_CONTROL, 210 7, 1, 0), 211 212 /* OUT1 - Headphones */ 213 SOC_DOUBLE_R("Headphone Playback ZC Switch", 214 WM8978_LOUT1_HP_CONTROL, WM8978_ROUT1_HP_CONTROL, 7, 1, 0), 215 216 SOC_DOUBLE_R_TLV("Headphone Playback Volume", 217 WM8978_LOUT1_HP_CONTROL, WM8978_ROUT1_HP_CONTROL, 218 0, 63, 0, spk_tlv), 219 220 /* OUT2 - Speakers */ 221 SOC_DOUBLE_R("Speaker Playback ZC Switch", 222 WM8978_LOUT2_SPK_CONTROL, WM8978_ROUT2_SPK_CONTROL, 7, 1, 0), 223 224 SOC_DOUBLE_R_TLV("Speaker Playback Volume", 225 WM8978_LOUT2_SPK_CONTROL, WM8978_ROUT2_SPK_CONTROL, 226 0, 63, 0, spk_tlv), 227 228 /* OUT3/4 - Line Output */ 229 SOC_DOUBLE_R("Line Playback Switch", 230 WM8978_OUT3_MIXER_CONTROL, WM8978_OUT4_MIXER_CONTROL, 6, 1, 1), 231 232 /* Mixer #3: Boost (Input) mixer */ 233 SOC_DOUBLE_R("PGA Boost (+20dB)", 234 WM8978_LEFT_ADC_BOOST_CONTROL, WM8978_RIGHT_ADC_BOOST_CONTROL, 235 8, 1, 0), 236 SOC_DOUBLE_R_TLV("L2/R2 Boost Volume", 237 WM8978_LEFT_ADC_BOOST_CONTROL, WM8978_RIGHT_ADC_BOOST_CONTROL, 238 4, 7, 0, boost_tlv), 239 SOC_DOUBLE_R_TLV("Aux Boost Volume", 240 WM8978_LEFT_ADC_BOOST_CONTROL, WM8978_RIGHT_ADC_BOOST_CONTROL, 241 0, 7, 0, boost_tlv), 242 243 /* Input PGA volume */ 244 SOC_DOUBLE_R_TLV("Input PGA Volume", 245 WM8978_LEFT_INP_PGA_CONTROL, WM8978_RIGHT_INP_PGA_CONTROL, 246 0, 63, 0, inpga_tlv), 247 248 /* Headphone */ 249 SOC_DOUBLE_R("Headphone Switch", 250 WM8978_LOUT1_HP_CONTROL, WM8978_ROUT1_HP_CONTROL, 6, 1, 1), 251 252 /* Speaker */ 253 SOC_DOUBLE_R("Speaker Switch", 254 WM8978_LOUT2_SPK_CONTROL, WM8978_ROUT2_SPK_CONTROL, 6, 1, 1), 255 256 /* DAC / ADC oversampling */ 257 SOC_SINGLE("DAC 128x Oversampling Switch", WM8978_DAC_CONTROL, 258 5, 1, 0), 259 SOC_SINGLE("ADC 128x Oversampling Switch", WM8978_ADC_CONTROL, 260 5, 1, 0), 261 }; 262 263 /* Mixer #1: Output (OUT1, OUT2) Mixer: mix AUX, Input mixer output and DAC */ 264 static const struct snd_kcontrol_new wm8978_left_out_mixer[] = { 265 SOC_DAPM_SINGLE("Line Bypass Switch", WM8978_LEFT_MIXER_CONTROL, 1, 1, 0), 266 SOC_DAPM_SINGLE("Aux Playback Switch", WM8978_LEFT_MIXER_CONTROL, 5, 1, 0), 267 SOC_DAPM_SINGLE("PCM Playback Switch", WM8978_LEFT_MIXER_CONTROL, 0, 1, 0), 268 }; 269 270 static const struct snd_kcontrol_new wm8978_right_out_mixer[] = { 271 SOC_DAPM_SINGLE("Line Bypass Switch", WM8978_RIGHT_MIXER_CONTROL, 1, 1, 0), 272 SOC_DAPM_SINGLE("Aux Playback Switch", WM8978_RIGHT_MIXER_CONTROL, 5, 1, 0), 273 SOC_DAPM_SINGLE("PCM Playback Switch", WM8978_RIGHT_MIXER_CONTROL, 0, 1, 0), 274 }; 275 276 /* OUT3/OUT4 Mixer not implemented */ 277 278 /* Mixer #2: Input PGA Mute */ 279 static const struct snd_kcontrol_new wm8978_left_input_mixer[] = { 280 SOC_DAPM_SINGLE("L2 Switch", WM8978_INPUT_CONTROL, 2, 1, 0), 281 SOC_DAPM_SINGLE("MicN Switch", WM8978_INPUT_CONTROL, 1, 1, 0), 282 SOC_DAPM_SINGLE("MicP Switch", WM8978_INPUT_CONTROL, 0, 1, 0), 283 }; 284 static const struct snd_kcontrol_new wm8978_right_input_mixer[] = { 285 SOC_DAPM_SINGLE("R2 Switch", WM8978_INPUT_CONTROL, 6, 1, 0), 286 SOC_DAPM_SINGLE("MicN Switch", WM8978_INPUT_CONTROL, 5, 1, 0), 287 SOC_DAPM_SINGLE("MicP Switch", WM8978_INPUT_CONTROL, 4, 1, 0), 288 }; 289 290 static const struct snd_soc_dapm_widget wm8978_dapm_widgets[] = { 291 SND_SOC_DAPM_DAC("Left DAC", "Left HiFi Playback", 292 WM8978_POWER_MANAGEMENT_3, 0, 0), 293 SND_SOC_DAPM_DAC("Right DAC", "Right HiFi Playback", 294 WM8978_POWER_MANAGEMENT_3, 1, 0), 295 SND_SOC_DAPM_ADC("Left ADC", "Left HiFi Capture", 296 WM8978_POWER_MANAGEMENT_2, 0, 0), 297 SND_SOC_DAPM_ADC("Right ADC", "Right HiFi Capture", 298 WM8978_POWER_MANAGEMENT_2, 1, 0), 299 300 /* Mixer #1: OUT1,2 */ 301 SOC_MIXER_ARRAY("Left Output Mixer", WM8978_POWER_MANAGEMENT_3, 302 2, 0, wm8978_left_out_mixer), 303 SOC_MIXER_ARRAY("Right Output Mixer", WM8978_POWER_MANAGEMENT_3, 304 3, 0, wm8978_right_out_mixer), 305 306 SOC_MIXER_ARRAY("Left Input Mixer", WM8978_POWER_MANAGEMENT_2, 307 2, 0, wm8978_left_input_mixer), 308 SOC_MIXER_ARRAY("Right Input Mixer", WM8978_POWER_MANAGEMENT_2, 309 3, 0, wm8978_right_input_mixer), 310 311 SND_SOC_DAPM_PGA("Left Boost Mixer", WM8978_POWER_MANAGEMENT_2, 312 4, 0, NULL, 0), 313 SND_SOC_DAPM_PGA("Right Boost Mixer", WM8978_POWER_MANAGEMENT_2, 314 5, 0, NULL, 0), 315 316 SND_SOC_DAPM_PGA("Left Capture PGA", WM8978_LEFT_INP_PGA_CONTROL, 317 6, 1, NULL, 0), 318 SND_SOC_DAPM_PGA("Right Capture PGA", WM8978_RIGHT_INP_PGA_CONTROL, 319 6, 1, NULL, 0), 320 321 SND_SOC_DAPM_PGA("Left Headphone Out", WM8978_POWER_MANAGEMENT_2, 322 7, 0, NULL, 0), 323 SND_SOC_DAPM_PGA("Right Headphone Out", WM8978_POWER_MANAGEMENT_2, 324 8, 0, NULL, 0), 325 326 SND_SOC_DAPM_PGA("Left Speaker Out", WM8978_POWER_MANAGEMENT_3, 327 6, 0, NULL, 0), 328 SND_SOC_DAPM_PGA("Right Speaker Out", WM8978_POWER_MANAGEMENT_3, 329 5, 0, NULL, 0), 330 331 SND_SOC_DAPM_MIXER("OUT4 VMID", WM8978_POWER_MANAGEMENT_3, 332 8, 0, NULL, 0), 333 334 SND_SOC_DAPM_MICBIAS("Mic Bias", WM8978_POWER_MANAGEMENT_1, 4, 0), 335 336 SND_SOC_DAPM_INPUT("LMICN"), 337 SND_SOC_DAPM_INPUT("LMICP"), 338 SND_SOC_DAPM_INPUT("RMICN"), 339 SND_SOC_DAPM_INPUT("RMICP"), 340 SND_SOC_DAPM_INPUT("LAUX"), 341 SND_SOC_DAPM_INPUT("RAUX"), 342 SND_SOC_DAPM_INPUT("L2"), 343 SND_SOC_DAPM_INPUT("R2"), 344 SND_SOC_DAPM_OUTPUT("LHP"), 345 SND_SOC_DAPM_OUTPUT("RHP"), 346 SND_SOC_DAPM_OUTPUT("LSPK"), 347 SND_SOC_DAPM_OUTPUT("RSPK"), 348 }; 349 350 static const struct snd_soc_dapm_route wm8978_dapm_routes[] = { 351 /* Output mixer */ 352 {"Right Output Mixer", "PCM Playback Switch", "Right DAC"}, 353 {"Right Output Mixer", "Aux Playback Switch", "RAUX"}, 354 {"Right Output Mixer", "Line Bypass Switch", "Right Boost Mixer"}, 355 356 {"Left Output Mixer", "PCM Playback Switch", "Left DAC"}, 357 {"Left Output Mixer", "Aux Playback Switch", "LAUX"}, 358 {"Left Output Mixer", "Line Bypass Switch", "Left Boost Mixer"}, 359 360 /* Outputs */ 361 {"Right Headphone Out", NULL, "Right Output Mixer"}, 362 {"RHP", NULL, "Right Headphone Out"}, 363 364 {"Left Headphone Out", NULL, "Left Output Mixer"}, 365 {"LHP", NULL, "Left Headphone Out"}, 366 367 {"Right Speaker Out", NULL, "Right Output Mixer"}, 368 {"RSPK", NULL, "Right Speaker Out"}, 369 370 {"Left Speaker Out", NULL, "Left Output Mixer"}, 371 {"LSPK", NULL, "Left Speaker Out"}, 372 373 /* Boost Mixer */ 374 {"Right ADC", NULL, "Right Boost Mixer"}, 375 376 {"Right Boost Mixer", NULL, "RAUX"}, 377 {"Right Boost Mixer", NULL, "Right Capture PGA"}, 378 {"Right Boost Mixer", NULL, "R2"}, 379 380 {"Left ADC", NULL, "Left Boost Mixer"}, 381 382 {"Left Boost Mixer", NULL, "LAUX"}, 383 {"Left Boost Mixer", NULL, "Left Capture PGA"}, 384 {"Left Boost Mixer", NULL, "L2"}, 385 386 /* Input PGA */ 387 {"Right Capture PGA", NULL, "Right Input Mixer"}, 388 {"Left Capture PGA", NULL, "Left Input Mixer"}, 389 390 {"Right Input Mixer", "R2 Switch", "R2"}, 391 {"Right Input Mixer", "MicN Switch", "RMICN"}, 392 {"Right Input Mixer", "MicP Switch", "RMICP"}, 393 394 {"Left Input Mixer", "L2 Switch", "L2"}, 395 {"Left Input Mixer", "MicN Switch", "LMICN"}, 396 {"Left Input Mixer", "MicP Switch", "LMICP"}, 397 }; 398 399 /* PLL divisors */ 400 struct wm8978_pll_div { 401 u32 k; 402 u8 n; 403 u8 div2; 404 }; 405 406 #define FIXED_PLL_SIZE (1 << 24) 407 408 static void pll_factors(struct snd_soc_component *component, 409 struct wm8978_pll_div *pll_div, unsigned int target, unsigned int source) 410 { 411 u64 k_part; 412 unsigned int k, n_div, n_mod; 413 414 n_div = target / source; 415 if (n_div < 6) { 416 source >>= 1; 417 pll_div->div2 = 1; 418 n_div = target / source; 419 } else { 420 pll_div->div2 = 0; 421 } 422 423 if (n_div < 6 || n_div > 12) 424 dev_warn(component->dev, 425 "WM8978 N value exceeds recommended range! N = %u\n", 426 n_div); 427 428 pll_div->n = n_div; 429 n_mod = target - source * n_div; 430 k_part = FIXED_PLL_SIZE * (long long)n_mod + source / 2; 431 432 do_div(k_part, source); 433 434 k = k_part & 0xFFFFFFFF; 435 436 pll_div->k = k; 437 } 438 439 /* MCLK dividers */ 440 static const int mclk_numerator[] = {1, 3, 2, 3, 4, 6, 8, 12}; 441 static const int mclk_denominator[] = {1, 2, 1, 1, 1, 1, 1, 1}; 442 443 /* 444 * find index >= idx, such that, for a given f_out, 445 * 3 * f_mclk / 4 <= f_PLLOUT < 13 * f_mclk / 4 446 * f_out can be f_256fs or f_opclk, currently only used for f_256fs. Can be 447 * generalised for f_opclk with suitable coefficient arrays, but currently 448 * the OPCLK divisor is calculated directly, not iteratively. 449 */ 450 static int wm8978_enum_mclk(unsigned int f_out, unsigned int f_mclk, 451 unsigned int *f_pllout) 452 { 453 int i; 454 455 for (i = 0; i < ARRAY_SIZE(mclk_numerator); i++) { 456 unsigned int f_pllout_x4 = 4 * f_out * mclk_numerator[i] / 457 mclk_denominator[i]; 458 if (3 * f_mclk <= f_pllout_x4 && f_pllout_x4 < 13 * f_mclk) { 459 *f_pllout = f_pllout_x4 / 4; 460 return i; 461 } 462 } 463 464 return -EINVAL; 465 } 466 467 /* 468 * Calculate internal frequencies and dividers, according to Figure 40 469 * "PLL and Clock Select Circuit" in WM8978 datasheet Rev. 2.6 470 */ 471 static int wm8978_configure_pll(struct snd_soc_component *component) 472 { 473 struct wm8978_priv *wm8978 = snd_soc_component_get_drvdata(component); 474 struct wm8978_pll_div pll_div; 475 unsigned int f_opclk = wm8978->f_opclk, f_mclk = wm8978->f_mclk, 476 f_256fs = wm8978->f_256fs; 477 unsigned int f2; 478 479 if (!f_mclk) 480 return -EINVAL; 481 482 if (f_opclk) { 483 unsigned int opclk_div; 484 /* Cannot set up MCLK divider now, do later */ 485 wm8978->mclk_idx = -1; 486 487 /* 488 * The user needs OPCLK. Choose OPCLKDIV to put 489 * 6 <= R = f2 / f1 < 13, 1 <= OPCLKDIV <= 4. 490 * f_opclk = f_mclk * prescale * R / 4 / OPCLKDIV, where 491 * prescale = 1, or prescale = 2. Prescale is calculated inside 492 * pll_factors(). We have to select f_PLLOUT, such that 493 * f_mclk * 3 / 4 <= f_PLLOUT < f_mclk * 13 / 4. Must be 494 * f_mclk * 3 / 16 <= f_opclk < f_mclk * 13 / 4. 495 */ 496 if (16 * f_opclk < 3 * f_mclk || 4 * f_opclk >= 13 * f_mclk) 497 return -EINVAL; 498 499 if (4 * f_opclk < 3 * f_mclk) 500 /* Have to use OPCLKDIV */ 501 opclk_div = (3 * f_mclk / 4 + f_opclk - 1) / f_opclk; 502 else 503 opclk_div = 1; 504 505 dev_dbg(component->dev, "%s: OPCLKDIV=%d\n", __func__, opclk_div); 506 507 snd_soc_component_update_bits(component, WM8978_GPIO_CONTROL, 0x30, 508 (opclk_div - 1) << 4); 509 510 wm8978->f_pllout = f_opclk * opclk_div; 511 } else if (f_256fs) { 512 /* 513 * Not using OPCLK, but PLL is used for the codec, choose R: 514 * 6 <= R = f2 / f1 < 13, to put 1 <= MCLKDIV <= 12. 515 * f_256fs = f_mclk * prescale * R / 4 / MCLKDIV, where 516 * prescale = 1, or prescale = 2. Prescale is calculated inside 517 * pll_factors(). We have to select f_PLLOUT, such that 518 * f_mclk * 3 / 4 <= f_PLLOUT < f_mclk * 13 / 4. Must be 519 * f_mclk * 3 / 48 <= f_256fs < f_mclk * 13 / 4. This means MCLK 520 * must be 3.781MHz <= f_MCLK <= 32.768MHz 521 */ 522 int idx = wm8978_enum_mclk(f_256fs, f_mclk, &wm8978->f_pllout); 523 if (idx < 0) 524 return idx; 525 526 wm8978->mclk_idx = idx; 527 } else { 528 return -EINVAL; 529 } 530 531 f2 = wm8978->f_pllout * 4; 532 533 dev_dbg(component->dev, "%s: f_MCLK=%uHz, f_PLLOUT=%uHz\n", __func__, 534 wm8978->f_mclk, wm8978->f_pllout); 535 536 pll_factors(component, &pll_div, f2, wm8978->f_mclk); 537 538 dev_dbg(component->dev, "%s: calculated PLL N=0x%x, K=0x%x, div2=%d\n", 539 __func__, pll_div.n, pll_div.k, pll_div.div2); 540 541 /* Turn PLL off for configuration... */ 542 snd_soc_component_update_bits(component, WM8978_POWER_MANAGEMENT_1, 0x20, 0); 543 544 snd_soc_component_write(component, WM8978_PLL_N, (pll_div.div2 << 4) | pll_div.n); 545 snd_soc_component_write(component, WM8978_PLL_K1, pll_div.k >> 18); 546 snd_soc_component_write(component, WM8978_PLL_K2, (pll_div.k >> 9) & 0x1ff); 547 snd_soc_component_write(component, WM8978_PLL_K3, pll_div.k & 0x1ff); 548 549 /* ...and on again */ 550 snd_soc_component_update_bits(component, WM8978_POWER_MANAGEMENT_1, 0x20, 0x20); 551 552 if (f_opclk) 553 /* Output PLL (OPCLK) to GPIO1 */ 554 snd_soc_component_update_bits(component, WM8978_GPIO_CONTROL, 7, 4); 555 556 return 0; 557 } 558 559 /* 560 * Configure WM8978 clock dividers. 561 */ 562 static int wm8978_set_dai_clkdiv(struct snd_soc_dai *codec_dai, 563 int div_id, int div) 564 { 565 struct snd_soc_component *component = codec_dai->component; 566 struct wm8978_priv *wm8978 = snd_soc_component_get_drvdata(component); 567 int ret = 0; 568 569 switch (div_id) { 570 case WM8978_OPCLKRATE: 571 wm8978->f_opclk = div; 572 573 if (wm8978->f_mclk) 574 /* 575 * We know the MCLK frequency, the user has requested 576 * OPCLK, configure the PLL based on that and start it 577 * and OPCLK immediately. We will configure PLL to match 578 * user-requested OPCLK frquency as good as possible. 579 * In fact, it is likely, that matching the sampling 580 * rate, when it becomes known, is more important, and 581 * we will not be reconfiguring PLL then, because we 582 * must not interrupt OPCLK. But it should be fine, 583 * because typically the user will request OPCLK to run 584 * at 256fs or 512fs, and for these cases we will also 585 * find an exact MCLK divider configuration - it will 586 * be equal to or double the OPCLK divisor. 587 */ 588 ret = wm8978_configure_pll(component); 589 break; 590 case WM8978_BCLKDIV: 591 if (div & ~0x1c) 592 return -EINVAL; 593 snd_soc_component_update_bits(component, WM8978_CLOCKING, 0x1c, div); 594 break; 595 default: 596 return -EINVAL; 597 } 598 599 dev_dbg(component->dev, "%s: ID %d, value %u\n", __func__, div_id, div); 600 601 return ret; 602 } 603 604 /* 605 * @freq: when .set_pll() us not used, freq is codec MCLK input frequency 606 */ 607 static int wm8978_set_dai_sysclk(struct snd_soc_dai *codec_dai, int clk_id, 608 unsigned int freq, int dir) 609 { 610 struct snd_soc_component *component = codec_dai->component; 611 struct wm8978_priv *wm8978 = snd_soc_component_get_drvdata(component); 612 int ret = 0; 613 614 dev_dbg(component->dev, "%s: ID %d, freq %u\n", __func__, clk_id, freq); 615 616 if (freq) { 617 wm8978->f_mclk = freq; 618 619 /* Even if MCLK is used for system clock, might have to drive OPCLK */ 620 if (wm8978->f_opclk) 621 ret = wm8978_configure_pll(component); 622 623 /* Our sysclk is fixed to 256 * fs, will configure in .hw_params() */ 624 625 if (!ret) 626 wm8978->sysclk = clk_id; 627 } 628 629 if (wm8978->sysclk == WM8978_PLL && (!freq || clk_id == WM8978_MCLK)) { 630 /* Clock CODEC directly from MCLK */ 631 snd_soc_component_update_bits(component, WM8978_CLOCKING, 0x100, 0); 632 633 /* GPIO1 into default mode as input - before configuring PLL */ 634 snd_soc_component_update_bits(component, WM8978_GPIO_CONTROL, 7, 0); 635 636 /* Turn off PLL */ 637 snd_soc_component_update_bits(component, WM8978_POWER_MANAGEMENT_1, 0x20, 0); 638 wm8978->sysclk = WM8978_MCLK; 639 wm8978->f_pllout = 0; 640 wm8978->f_opclk = 0; 641 } 642 643 return ret; 644 } 645 646 /* 647 * Set ADC and Voice DAC format. 648 */ 649 static int wm8978_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) 650 { 651 struct snd_soc_component *component = codec_dai->component; 652 /* 653 * BCLK polarity mask = 0x100, LRC clock polarity mask = 0x80, 654 * Data Format mask = 0x18: all will be calculated anew 655 */ 656 u16 iface = snd_soc_component_read(component, WM8978_AUDIO_INTERFACE) & ~0x198; 657 u16 clk = snd_soc_component_read(component, WM8978_CLOCKING); 658 659 dev_dbg(component->dev, "%s\n", __func__); 660 661 /* set master/slave audio interface */ 662 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { 663 case SND_SOC_DAIFMT_CBM_CFM: 664 clk |= 1; 665 break; 666 case SND_SOC_DAIFMT_CBS_CFS: 667 clk &= ~1; 668 break; 669 default: 670 return -EINVAL; 671 } 672 673 /* interface format */ 674 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 675 case SND_SOC_DAIFMT_I2S: 676 iface |= 0x10; 677 break; 678 case SND_SOC_DAIFMT_RIGHT_J: 679 break; 680 case SND_SOC_DAIFMT_LEFT_J: 681 iface |= 0x8; 682 break; 683 case SND_SOC_DAIFMT_DSP_A: 684 iface |= 0x18; 685 break; 686 default: 687 return -EINVAL; 688 } 689 690 /* clock inversion */ 691 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 692 case SND_SOC_DAIFMT_NB_NF: 693 break; 694 case SND_SOC_DAIFMT_IB_IF: 695 iface |= 0x180; 696 break; 697 case SND_SOC_DAIFMT_IB_NF: 698 iface |= 0x100; 699 break; 700 case SND_SOC_DAIFMT_NB_IF: 701 iface |= 0x80; 702 break; 703 default: 704 return -EINVAL; 705 } 706 707 snd_soc_component_write(component, WM8978_AUDIO_INTERFACE, iface); 708 snd_soc_component_write(component, WM8978_CLOCKING, clk); 709 710 return 0; 711 } 712 713 /* 714 * Set PCM DAI bit size and sample rate. 715 */ 716 static int wm8978_hw_params(struct snd_pcm_substream *substream, 717 struct snd_pcm_hw_params *params, 718 struct snd_soc_dai *dai) 719 { 720 struct snd_soc_component *component = dai->component; 721 struct wm8978_priv *wm8978 = snd_soc_component_get_drvdata(component); 722 /* Word length mask = 0x60 */ 723 u16 iface_ctl = snd_soc_component_read(component, WM8978_AUDIO_INTERFACE) & ~0x60; 724 /* Sampling rate mask = 0xe (for filters) */ 725 u16 add_ctl = snd_soc_component_read(component, WM8978_ADDITIONAL_CONTROL) & ~0xe; 726 u16 clking = snd_soc_component_read(component, WM8978_CLOCKING); 727 enum wm8978_sysclk_src current_clk_id = (clking & 0x100) ? 728 WM8978_PLL : WM8978_MCLK; 729 unsigned int f_sel, diff, diff_best = INT_MAX; 730 int i, best = 0; 731 732 if (!wm8978->f_mclk) 733 return -EINVAL; 734 735 /* bit size */ 736 switch (params_width(params)) { 737 case 16: 738 break; 739 case 20: 740 iface_ctl |= 0x20; 741 break; 742 case 24: 743 iface_ctl |= 0x40; 744 break; 745 case 32: 746 iface_ctl |= 0x60; 747 break; 748 } 749 750 /* filter coefficient */ 751 switch (params_rate(params)) { 752 case 8000: 753 add_ctl |= 0x5 << 1; 754 break; 755 case 11025: 756 add_ctl |= 0x4 << 1; 757 break; 758 case 16000: 759 add_ctl |= 0x3 << 1; 760 break; 761 case 22050: 762 add_ctl |= 0x2 << 1; 763 break; 764 case 32000: 765 add_ctl |= 0x1 << 1; 766 break; 767 case 44100: 768 case 48000: 769 break; 770 } 771 772 /* Sampling rate is known now, can configure the MCLK divider */ 773 wm8978->f_256fs = params_rate(params) * 256; 774 775 if (wm8978->sysclk == WM8978_MCLK) { 776 wm8978->mclk_idx = -1; 777 f_sel = wm8978->f_mclk; 778 } else { 779 if (!wm8978->f_opclk) { 780 /* We only enter here, if OPCLK is not used */ 781 int ret = wm8978_configure_pll(component); 782 if (ret < 0) 783 return ret; 784 } 785 f_sel = wm8978->f_pllout; 786 } 787 788 if (wm8978->mclk_idx < 0) { 789 /* Either MCLK is used directly, or OPCLK is used */ 790 if (f_sel < wm8978->f_256fs || f_sel > 12 * wm8978->f_256fs) 791 return -EINVAL; 792 793 for (i = 0; i < ARRAY_SIZE(mclk_numerator); i++) { 794 diff = abs(wm8978->f_256fs * 3 - 795 f_sel * 3 * mclk_denominator[i] / mclk_numerator[i]); 796 797 if (diff < diff_best) { 798 diff_best = diff; 799 best = i; 800 } 801 802 if (!diff) 803 break; 804 } 805 } else { 806 /* OPCLK not used, codec driven by PLL */ 807 best = wm8978->mclk_idx; 808 diff = 0; 809 } 810 811 if (diff) 812 dev_warn(component->dev, "Imprecise sampling rate: %uHz%s\n", 813 f_sel * mclk_denominator[best] / mclk_numerator[best] / 256, 814 wm8978->sysclk == WM8978_MCLK ? 815 ", consider using PLL" : ""); 816 817 dev_dbg(component->dev, "%s: width %d, rate %u, MCLK divisor #%d\n", __func__, 818 params_width(params), params_rate(params), best); 819 820 /* MCLK divisor mask = 0xe0 */ 821 snd_soc_component_update_bits(component, WM8978_CLOCKING, 0xe0, best << 5); 822 823 snd_soc_component_write(component, WM8978_AUDIO_INTERFACE, iface_ctl); 824 snd_soc_component_write(component, WM8978_ADDITIONAL_CONTROL, add_ctl); 825 826 if (wm8978->sysclk != current_clk_id) { 827 if (wm8978->sysclk == WM8978_PLL) 828 /* Run CODEC from PLL instead of MCLK */ 829 snd_soc_component_update_bits(component, WM8978_CLOCKING, 830 0x100, 0x100); 831 else 832 /* Clock CODEC directly from MCLK */ 833 snd_soc_component_update_bits(component, WM8978_CLOCKING, 0x100, 0); 834 } 835 836 return 0; 837 } 838 839 static int wm8978_mute(struct snd_soc_dai *dai, int mute, int direction) 840 { 841 struct snd_soc_component *component = dai->component; 842 843 dev_dbg(component->dev, "%s: %d\n", __func__, mute); 844 845 if (mute) 846 snd_soc_component_update_bits(component, WM8978_DAC_CONTROL, 0x40, 0x40); 847 else 848 snd_soc_component_update_bits(component, WM8978_DAC_CONTROL, 0x40, 0); 849 850 return 0; 851 } 852 853 static int wm8978_set_bias_level(struct snd_soc_component *component, 854 enum snd_soc_bias_level level) 855 { 856 u16 power1 = snd_soc_component_read(component, WM8978_POWER_MANAGEMENT_1) & ~3; 857 858 switch (level) { 859 case SND_SOC_BIAS_ON: 860 case SND_SOC_BIAS_PREPARE: 861 power1 |= 1; /* VMID 75k */ 862 snd_soc_component_write(component, WM8978_POWER_MANAGEMENT_1, power1); 863 break; 864 case SND_SOC_BIAS_STANDBY: 865 /* bit 3: enable bias, bit 2: enable I/O tie off buffer */ 866 power1 |= 0xc; 867 868 if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) { 869 /* Initial cap charge at VMID 5k */ 870 snd_soc_component_write(component, WM8978_POWER_MANAGEMENT_1, 871 power1 | 0x3); 872 mdelay(100); 873 } 874 875 power1 |= 0x2; /* VMID 500k */ 876 snd_soc_component_write(component, WM8978_POWER_MANAGEMENT_1, power1); 877 break; 878 case SND_SOC_BIAS_OFF: 879 /* Preserve PLL - OPCLK may be used by someone */ 880 snd_soc_component_update_bits(component, WM8978_POWER_MANAGEMENT_1, ~0x20, 0); 881 snd_soc_component_write(component, WM8978_POWER_MANAGEMENT_2, 0); 882 snd_soc_component_write(component, WM8978_POWER_MANAGEMENT_3, 0); 883 break; 884 } 885 886 dev_dbg(component->dev, "%s: %d, %x\n", __func__, level, power1); 887 888 return 0; 889 } 890 891 #define WM8978_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \ 892 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE) 893 894 static const struct snd_soc_dai_ops wm8978_dai_ops = { 895 .hw_params = wm8978_hw_params, 896 .mute_stream = wm8978_mute, 897 .set_fmt = wm8978_set_dai_fmt, 898 .set_clkdiv = wm8978_set_dai_clkdiv, 899 .set_sysclk = wm8978_set_dai_sysclk, 900 .no_capture_mute = 1, 901 }; 902 903 /* Also supports 12kHz */ 904 static struct snd_soc_dai_driver wm8978_dai = { 905 .name = "wm8978-hifi", 906 .playback = { 907 .stream_name = "Playback", 908 .channels_min = 1, 909 .channels_max = 2, 910 .rates = SNDRV_PCM_RATE_8000_48000, 911 .formats = WM8978_FORMATS, 912 }, 913 .capture = { 914 .stream_name = "Capture", 915 .channels_min = 1, 916 .channels_max = 2, 917 .rates = SNDRV_PCM_RATE_8000_48000, 918 .formats = WM8978_FORMATS, 919 }, 920 .ops = &wm8978_dai_ops, 921 .symmetric_rate = 1, 922 }; 923 924 static int wm8978_suspend(struct snd_soc_component *component) 925 { 926 struct wm8978_priv *wm8978 = snd_soc_component_get_drvdata(component); 927 928 snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF); 929 /* Also switch PLL off */ 930 snd_soc_component_write(component, WM8978_POWER_MANAGEMENT_1, 0); 931 932 regcache_mark_dirty(wm8978->regmap); 933 934 return 0; 935 } 936 937 static int wm8978_resume(struct snd_soc_component *component) 938 { 939 struct wm8978_priv *wm8978 = snd_soc_component_get_drvdata(component); 940 941 /* Sync reg_cache with the hardware */ 942 regcache_sync(wm8978->regmap); 943 944 snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY); 945 946 if (wm8978->f_pllout) 947 /* Switch PLL on */ 948 snd_soc_component_update_bits(component, WM8978_POWER_MANAGEMENT_1, 0x20, 0x20); 949 950 return 0; 951 } 952 953 /* 954 * These registers contain an "update" bit - bit 8. This means, for example, 955 * that one can write new DAC digital volume for both channels, but only when 956 * the update bit is set, will also the volume be updated - simultaneously for 957 * both channels. 958 */ 959 static const int update_reg[] = { 960 WM8978_LEFT_DAC_DIGITAL_VOLUME, 961 WM8978_RIGHT_DAC_DIGITAL_VOLUME, 962 WM8978_LEFT_ADC_DIGITAL_VOLUME, 963 WM8978_RIGHT_ADC_DIGITAL_VOLUME, 964 WM8978_LEFT_INP_PGA_CONTROL, 965 WM8978_RIGHT_INP_PGA_CONTROL, 966 WM8978_LOUT1_HP_CONTROL, 967 WM8978_ROUT1_HP_CONTROL, 968 WM8978_LOUT2_SPK_CONTROL, 969 WM8978_ROUT2_SPK_CONTROL, 970 }; 971 972 static int wm8978_probe(struct snd_soc_component *component) 973 { 974 struct wm8978_priv *wm8978 = snd_soc_component_get_drvdata(component); 975 int i; 976 977 /* 978 * Set default system clock to PLL, it is more precise, this is also the 979 * default hardware setting 980 */ 981 wm8978->sysclk = WM8978_PLL; 982 983 /* 984 * Set the update bit in all registers, that have one. This way all 985 * writes to those registers will also cause the update bit to be 986 * written. 987 */ 988 for (i = 0; i < ARRAY_SIZE(update_reg); i++) 989 snd_soc_component_update_bits(component, update_reg[i], 0x100, 0x100); 990 991 return 0; 992 } 993 994 static const struct snd_soc_component_driver soc_component_dev_wm8978 = { 995 .probe = wm8978_probe, 996 .suspend = wm8978_suspend, 997 .resume = wm8978_resume, 998 .set_bias_level = wm8978_set_bias_level, 999 .controls = wm8978_snd_controls, 1000 .num_controls = ARRAY_SIZE(wm8978_snd_controls), 1001 .dapm_widgets = wm8978_dapm_widgets, 1002 .num_dapm_widgets = ARRAY_SIZE(wm8978_dapm_widgets), 1003 .dapm_routes = wm8978_dapm_routes, 1004 .num_dapm_routes = ARRAY_SIZE(wm8978_dapm_routes), 1005 .idle_bias_on = 1, 1006 .use_pmdown_time = 1, 1007 .endianness = 1, 1008 .non_legacy_dai_naming = 1, 1009 }; 1010 1011 static const struct regmap_config wm8978_regmap_config = { 1012 .reg_bits = 7, 1013 .val_bits = 9, 1014 1015 .max_register = WM8978_MAX_REGISTER, 1016 .volatile_reg = wm8978_volatile, 1017 1018 .cache_type = REGCACHE_RBTREE, 1019 .reg_defaults = wm8978_reg_defaults, 1020 .num_reg_defaults = ARRAY_SIZE(wm8978_reg_defaults), 1021 }; 1022 1023 static int wm8978_i2c_probe(struct i2c_client *i2c) 1024 { 1025 struct wm8978_priv *wm8978; 1026 int ret; 1027 1028 wm8978 = devm_kzalloc(&i2c->dev, sizeof(struct wm8978_priv), 1029 GFP_KERNEL); 1030 if (wm8978 == NULL) 1031 return -ENOMEM; 1032 1033 wm8978->regmap = devm_regmap_init_i2c(i2c, &wm8978_regmap_config); 1034 if (IS_ERR(wm8978->regmap)) { 1035 ret = PTR_ERR(wm8978->regmap); 1036 dev_err(&i2c->dev, "Failed to allocate regmap: %d\n", ret); 1037 return ret; 1038 } 1039 1040 i2c_set_clientdata(i2c, wm8978); 1041 1042 /* Reset the codec */ 1043 ret = regmap_write(wm8978->regmap, WM8978_RESET, 0); 1044 if (ret != 0) { 1045 dev_err(&i2c->dev, "Failed to issue reset: %d\n", ret); 1046 return ret; 1047 } 1048 1049 ret = devm_snd_soc_register_component(&i2c->dev, 1050 &soc_component_dev_wm8978, &wm8978_dai, 1); 1051 if (ret != 0) { 1052 dev_err(&i2c->dev, "Failed to register CODEC: %d\n", ret); 1053 return ret; 1054 } 1055 1056 return 0; 1057 } 1058 1059 static const struct i2c_device_id wm8978_i2c_id[] = { 1060 { "wm8978", 0 }, 1061 { } 1062 }; 1063 MODULE_DEVICE_TABLE(i2c, wm8978_i2c_id); 1064 1065 static const struct of_device_id wm8978_of_match[] = { 1066 { .compatible = "wlf,wm8978", }, 1067 { } 1068 }; 1069 MODULE_DEVICE_TABLE(of, wm8978_of_match); 1070 1071 static struct i2c_driver wm8978_i2c_driver = { 1072 .driver = { 1073 .name = "wm8978", 1074 .of_match_table = wm8978_of_match, 1075 }, 1076 .probe_new = wm8978_i2c_probe, 1077 .id_table = wm8978_i2c_id, 1078 }; 1079 1080 module_i2c_driver(wm8978_i2c_driver); 1081 1082 MODULE_DESCRIPTION("ASoC WM8978 codec driver"); 1083 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>"); 1084 MODULE_LICENSE("GPL"); 1085