xref: /openbmc/linux/sound/soc/codecs/tlv320aic3x.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * ALSA SoC TLV320AIC3X codec driver
3  *
4  * Author:      Vladimir Barinov, <vbarinov@embeddedalley.com>
5  * Copyright:   (C) 2007 MontaVista Software, Inc., <source@mvista.com>
6  *
7  * Based on sound/soc/codecs/wm8753.c by Liam Girdwood
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * Notes:
14  *  The AIC3X is a driver for a low power stereo audio
15  *  codecs aic31, aic32, aic33, aic3007.
16  *
17  *  It supports full aic33 codec functionality.
18  *  The compatibility with aic32, aic31 and aic3007 is as follows:
19  *    aic32/aic3007    |        aic31
20  *  ---------------------------------------
21  *   MONO_LOUT -> N/A  |  MONO_LOUT -> N/A
22  *                     |  IN1L -> LINE1L
23  *                     |  IN1R -> LINE1R
24  *                     |  IN2L -> LINE2L
25  *                     |  IN2R -> LINE2R
26  *                     |  MIC3L/R -> N/A
27  *   truncated internal functionality in
28  *   accordance with documentation
29  *  ---------------------------------------
30  *
31  *  Hence the machine layer should disable unsupported inputs/outputs by
32  *  snd_soc_dapm_disable_pin(codec, "MONO_LOUT"), etc.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/pm.h>
40 #include <linux/i2c.h>
41 #include <linux/gpio.h>
42 #include <linux/regulator/consumer.h>
43 #include <linux/platform_device.h>
44 #include <linux/slab.h>
45 #include <sound/core.h>
46 #include <sound/pcm.h>
47 #include <sound/pcm_params.h>
48 #include <sound/soc.h>
49 #include <sound/soc-dapm.h>
50 #include <sound/initval.h>
51 #include <sound/tlv.h>
52 #include <sound/tlv320aic3x.h>
53 
54 #include "tlv320aic3x.h"
55 
56 #define AIC3X_NUM_SUPPLIES	4
57 static const char *aic3x_supply_names[AIC3X_NUM_SUPPLIES] = {
58 	"IOVDD",	/* I/O Voltage */
59 	"DVDD",		/* Digital Core Voltage */
60 	"AVDD",		/* Analog DAC Voltage */
61 	"DRVDD",	/* ADC Analog and Output Driver Voltage */
62 };
63 
64 struct aic3x_priv;
65 
66 struct aic3x_disable_nb {
67 	struct notifier_block nb;
68 	struct aic3x_priv *aic3x;
69 };
70 
71 /* codec private data */
72 struct aic3x_priv {
73 	struct snd_soc_codec *codec;
74 	struct regulator_bulk_data supplies[AIC3X_NUM_SUPPLIES];
75 	struct aic3x_disable_nb disable_nb[AIC3X_NUM_SUPPLIES];
76 	enum snd_soc_control_type control_type;
77 	struct aic3x_setup_data *setup;
78 	void *control_data;
79 	unsigned int sysclk;
80 	int master;
81 	int gpio_reset;
82 	int power;
83 #define AIC3X_MODEL_3X 0
84 #define AIC3X_MODEL_33 1
85 #define AIC3X_MODEL_3007 2
86 	u16 model;
87 };
88 
89 /*
90  * AIC3X register cache
91  * We can't read the AIC3X register space when we are
92  * using 2 wire for device control, so we cache them instead.
93  * There is no point in caching the reset register
94  */
95 static const u8 aic3x_reg[AIC3X_CACHEREGNUM] = {
96 	0x00, 0x00, 0x00, 0x10,	/* 0 */
97 	0x04, 0x00, 0x00, 0x00,	/* 4 */
98 	0x00, 0x00, 0x00, 0x01,	/* 8 */
99 	0x00, 0x00, 0x00, 0x80,	/* 12 */
100 	0x80, 0xff, 0xff, 0x78,	/* 16 */
101 	0x78, 0x78, 0x78, 0x78,	/* 20 */
102 	0x78, 0x00, 0x00, 0xfe,	/* 24 */
103 	0x00, 0x00, 0xfe, 0x00,	/* 28 */
104 	0x18, 0x18, 0x00, 0x00,	/* 32 */
105 	0x00, 0x00, 0x00, 0x00,	/* 36 */
106 	0x00, 0x00, 0x00, 0x80,	/* 40 */
107 	0x80, 0x00, 0x00, 0x00,	/* 44 */
108 	0x00, 0x00, 0x00, 0x04,	/* 48 */
109 	0x00, 0x00, 0x00, 0x00,	/* 52 */
110 	0x00, 0x00, 0x04, 0x00,	/* 56 */
111 	0x00, 0x00, 0x00, 0x00,	/* 60 */
112 	0x00, 0x04, 0x00, 0x00,	/* 64 */
113 	0x00, 0x00, 0x00, 0x00,	/* 68 */
114 	0x04, 0x00, 0x00, 0x00,	/* 72 */
115 	0x00, 0x00, 0x00, 0x00,	/* 76 */
116 	0x00, 0x00, 0x00, 0x00,	/* 80 */
117 	0x00, 0x00, 0x00, 0x00,	/* 84 */
118 	0x00, 0x00, 0x00, 0x00,	/* 88 */
119 	0x00, 0x00, 0x00, 0x00,	/* 92 */
120 	0x00, 0x00, 0x00, 0x00,	/* 96 */
121 	0x00, 0x00, 0x02,	/* 100 */
122 };
123 
124 /*
125  * read from the aic3x register space. Only use for this function is if
126  * wanting to read volatile bits from those registers that has both read-only
127  * and read/write bits. All other cases should use snd_soc_read.
128  */
129 static int aic3x_read(struct snd_soc_codec *codec, unsigned int reg,
130 		      u8 *value)
131 {
132 	u8 *cache = codec->reg_cache;
133 
134 	if (codec->cache_only)
135 		return -EINVAL;
136 	if (reg >= AIC3X_CACHEREGNUM)
137 		return -1;
138 
139 	*value = codec->hw_read(codec, reg);
140 	cache[reg] = *value;
141 
142 	return 0;
143 }
144 
145 #define SOC_DAPM_SINGLE_AIC3X(xname, reg, shift, mask, invert) \
146 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
147 	.info = snd_soc_info_volsw, \
148 	.get = snd_soc_dapm_get_volsw, .put = snd_soc_dapm_put_volsw_aic3x, \
149 	.private_value =  SOC_SINGLE_VALUE(reg, shift, mask, invert) }
150 
151 /*
152  * All input lines are connected when !0xf and disconnected with 0xf bit field,
153  * so we have to use specific dapm_put call for input mixer
154  */
155 static int snd_soc_dapm_put_volsw_aic3x(struct snd_kcontrol *kcontrol,
156 					struct snd_ctl_elem_value *ucontrol)
157 {
158 	struct snd_soc_dapm_widget *widget = snd_kcontrol_chip(kcontrol);
159 	struct soc_mixer_control *mc =
160 		(struct soc_mixer_control *)kcontrol->private_value;
161 	unsigned int reg = mc->reg;
162 	unsigned int shift = mc->shift;
163 	int max = mc->max;
164 	unsigned int mask = (1 << fls(max)) - 1;
165 	unsigned int invert = mc->invert;
166 	unsigned short val, val_mask;
167 	int ret;
168 	struct snd_soc_dapm_path *path;
169 	int found = 0;
170 
171 	val = (ucontrol->value.integer.value[0] & mask);
172 
173 	mask = 0xf;
174 	if (val)
175 		val = mask;
176 
177 	if (invert)
178 		val = mask - val;
179 	val_mask = mask << shift;
180 	val = val << shift;
181 
182 	mutex_lock(&widget->codec->mutex);
183 
184 	if (snd_soc_test_bits(widget->codec, reg, val_mask, val)) {
185 		/* find dapm widget path assoc with kcontrol */
186 		list_for_each_entry(path, &widget->codec->dapm_paths, list) {
187 			if (path->kcontrol != kcontrol)
188 				continue;
189 
190 			/* found, now check type */
191 			found = 1;
192 			if (val)
193 				/* new connection */
194 				path->connect = invert ? 0 : 1;
195 			else
196 				/* old connection must be powered down */
197 				path->connect = invert ? 1 : 0;
198 			break;
199 		}
200 
201 		if (found)
202 			snd_soc_dapm_sync(widget->codec);
203 	}
204 
205 	ret = snd_soc_update_bits(widget->codec, reg, val_mask, val);
206 
207 	mutex_unlock(&widget->codec->mutex);
208 	return ret;
209 }
210 
211 static const char *aic3x_left_dac_mux[] = { "DAC_L1", "DAC_L3", "DAC_L2" };
212 static const char *aic3x_right_dac_mux[] = { "DAC_R1", "DAC_R3", "DAC_R2" };
213 static const char *aic3x_left_hpcom_mux[] =
214     { "differential of HPLOUT", "constant VCM", "single-ended" };
215 static const char *aic3x_right_hpcom_mux[] =
216     { "differential of HPROUT", "constant VCM", "single-ended",
217       "differential of HPLCOM", "external feedback" };
218 static const char *aic3x_linein_mode_mux[] = { "single-ended", "differential" };
219 static const char *aic3x_adc_hpf[] =
220     { "Disabled", "0.0045xFs", "0.0125xFs", "0.025xFs" };
221 
222 #define LDAC_ENUM	0
223 #define RDAC_ENUM	1
224 #define LHPCOM_ENUM	2
225 #define RHPCOM_ENUM	3
226 #define LINE1L_ENUM	4
227 #define LINE1R_ENUM	5
228 #define LINE2L_ENUM	6
229 #define LINE2R_ENUM	7
230 #define ADC_HPF_ENUM	8
231 
232 static const struct soc_enum aic3x_enum[] = {
233 	SOC_ENUM_SINGLE(DAC_LINE_MUX, 6, 3, aic3x_left_dac_mux),
234 	SOC_ENUM_SINGLE(DAC_LINE_MUX, 4, 3, aic3x_right_dac_mux),
235 	SOC_ENUM_SINGLE(HPLCOM_CFG, 4, 3, aic3x_left_hpcom_mux),
236 	SOC_ENUM_SINGLE(HPRCOM_CFG, 3, 5, aic3x_right_hpcom_mux),
237 	SOC_ENUM_SINGLE(LINE1L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
238 	SOC_ENUM_SINGLE(LINE1R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
239 	SOC_ENUM_SINGLE(LINE2L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
240 	SOC_ENUM_SINGLE(LINE2R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
241 	SOC_ENUM_DOUBLE(AIC3X_CODEC_DFILT_CTRL, 6, 4, 4, aic3x_adc_hpf),
242 };
243 
244 /*
245  * DAC digital volumes. From -63.5 to 0 dB in 0.5 dB steps
246  */
247 static DECLARE_TLV_DB_SCALE(dac_tlv, -6350, 50, 0);
248 /* ADC PGA gain volumes. From 0 to 59.5 dB in 0.5 dB steps */
249 static DECLARE_TLV_DB_SCALE(adc_tlv, 0, 50, 0);
250 /*
251  * Output stage volumes. From -78.3 to 0 dB. Muted below -78.3 dB.
252  * Step size is approximately 0.5 dB over most of the scale but increasing
253  * near the very low levels.
254  * Define dB scale so that it is mostly correct for range about -55 to 0 dB
255  * but having increasing dB difference below that (and where it doesn't count
256  * so much). This setting shows -50 dB (actual is -50.3 dB) for register
257  * value 100 and -58.5 dB (actual is -78.3 dB) for register value 117.
258  */
259 static DECLARE_TLV_DB_SCALE(output_stage_tlv, -5900, 50, 1);
260 
261 static const struct snd_kcontrol_new aic3x_snd_controls[] = {
262 	/* Output */
263 	SOC_DOUBLE_R_TLV("PCM Playback Volume",
264 			 LDAC_VOL, RDAC_VOL, 0, 0x7f, 1, dac_tlv),
265 
266 	/*
267 	 * Output controls that map to output mixer switches. Note these are
268 	 * only for swapped L-to-R and R-to-L routes. See below stereo controls
269 	 * for direct L-to-L and R-to-R routes.
270 	 */
271 	SOC_SINGLE_TLV("Left Line Mixer Line2R Bypass Volume",
272 		       LINE2R_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
273 	SOC_SINGLE_TLV("Left Line Mixer PGAR Bypass Volume",
274 		       PGAR_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
275 	SOC_SINGLE_TLV("Left Line Mixer DACR1 Playback Volume",
276 		       DACR1_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
277 
278 	SOC_SINGLE_TLV("Right Line Mixer Line2L Bypass Volume",
279 		       LINE2L_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
280 	SOC_SINGLE_TLV("Right Line Mixer PGAL Bypass Volume",
281 		       PGAL_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
282 	SOC_SINGLE_TLV("Right Line Mixer DACL1 Playback Volume",
283 		       DACL1_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
284 
285 	SOC_SINGLE_TLV("Left HP Mixer Line2R Bypass Volume",
286 		       LINE2R_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
287 	SOC_SINGLE_TLV("Left HP Mixer PGAR Bypass Volume",
288 		       PGAR_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
289 	SOC_SINGLE_TLV("Left HP Mixer DACR1 Playback Volume",
290 		       DACR1_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
291 
292 	SOC_SINGLE_TLV("Right HP Mixer Line2L Bypass Volume",
293 		       LINE2L_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
294 	SOC_SINGLE_TLV("Right HP Mixer PGAL Bypass Volume",
295 		       PGAL_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
296 	SOC_SINGLE_TLV("Right HP Mixer DACL1 Playback Volume",
297 		       DACL1_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
298 
299 	SOC_SINGLE_TLV("Left HPCOM Mixer Line2R Bypass Volume",
300 		       LINE2R_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
301 	SOC_SINGLE_TLV("Left HPCOM Mixer PGAR Bypass Volume",
302 		       PGAR_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
303 	SOC_SINGLE_TLV("Left HPCOM Mixer DACR1 Playback Volume",
304 		       DACR1_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
305 
306 	SOC_SINGLE_TLV("Right HPCOM Mixer Line2L Bypass Volume",
307 		       LINE2L_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
308 	SOC_SINGLE_TLV("Right HPCOM Mixer PGAL Bypass Volume",
309 		       PGAL_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
310 	SOC_SINGLE_TLV("Right HPCOM Mixer DACL1 Playback Volume",
311 		       DACL1_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
312 
313 	/* Stereo output controls for direct L-to-L and R-to-R routes */
314 	SOC_DOUBLE_R_TLV("Line Line2 Bypass Volume",
315 			 LINE2L_2_LLOPM_VOL, LINE2R_2_RLOPM_VOL,
316 			 0, 118, 1, output_stage_tlv),
317 	SOC_DOUBLE_R_TLV("Line PGA Bypass Volume",
318 			 PGAL_2_LLOPM_VOL, PGAR_2_RLOPM_VOL,
319 			 0, 118, 1, output_stage_tlv),
320 	SOC_DOUBLE_R_TLV("Line DAC Playback Volume",
321 			 DACL1_2_LLOPM_VOL, DACR1_2_RLOPM_VOL,
322 			 0, 118, 1, output_stage_tlv),
323 
324 	SOC_DOUBLE_R_TLV("Mono Line2 Bypass Volume",
325 			 LINE2L_2_MONOLOPM_VOL, LINE2R_2_MONOLOPM_VOL,
326 			 0, 118, 1, output_stage_tlv),
327 	SOC_DOUBLE_R_TLV("Mono PGA Bypass Volume",
328 			 PGAL_2_MONOLOPM_VOL, PGAR_2_MONOLOPM_VOL,
329 			 0, 118, 1, output_stage_tlv),
330 	SOC_DOUBLE_R_TLV("Mono DAC Playback Volume",
331 			 DACL1_2_MONOLOPM_VOL, DACR1_2_MONOLOPM_VOL,
332 			 0, 118, 1, output_stage_tlv),
333 
334 	SOC_DOUBLE_R_TLV("HP Line2 Bypass Volume",
335 			 LINE2L_2_HPLOUT_VOL, LINE2R_2_HPROUT_VOL,
336 			 0, 118, 1, output_stage_tlv),
337 	SOC_DOUBLE_R_TLV("HP PGA Bypass Volume",
338 			 PGAL_2_HPLOUT_VOL, PGAR_2_HPROUT_VOL,
339 			 0, 118, 1, output_stage_tlv),
340 	SOC_DOUBLE_R_TLV("HP DAC Playback Volume",
341 			 DACL1_2_HPLOUT_VOL, DACR1_2_HPROUT_VOL,
342 			 0, 118, 1, output_stage_tlv),
343 
344 	SOC_DOUBLE_R_TLV("HPCOM Line2 Bypass Volume",
345 			 LINE2L_2_HPLCOM_VOL, LINE2R_2_HPRCOM_VOL,
346 			 0, 118, 1, output_stage_tlv),
347 	SOC_DOUBLE_R_TLV("HPCOM PGA Bypass Volume",
348 			 PGAL_2_HPLCOM_VOL, PGAR_2_HPRCOM_VOL,
349 			 0, 118, 1, output_stage_tlv),
350 	SOC_DOUBLE_R_TLV("HPCOM DAC Playback Volume",
351 			 DACL1_2_HPLCOM_VOL, DACR1_2_HPRCOM_VOL,
352 			 0, 118, 1, output_stage_tlv),
353 
354 	/* Output pin mute controls */
355 	SOC_DOUBLE_R("Line Playback Switch", LLOPM_CTRL, RLOPM_CTRL, 3,
356 		     0x01, 0),
357 	SOC_SINGLE("Mono Playback Switch", MONOLOPM_CTRL, 3, 0x01, 0),
358 	SOC_DOUBLE_R("HP Playback Switch", HPLOUT_CTRL, HPROUT_CTRL, 3,
359 		     0x01, 0),
360 	SOC_DOUBLE_R("HPCOM Playback Switch", HPLCOM_CTRL, HPRCOM_CTRL, 3,
361 		     0x01, 0),
362 
363 	/*
364 	 * Note: enable Automatic input Gain Controller with care. It can
365 	 * adjust PGA to max value when ADC is on and will never go back.
366 	*/
367 	SOC_DOUBLE_R("AGC Switch", LAGC_CTRL_A, RAGC_CTRL_A, 7, 0x01, 0),
368 
369 	/* Input */
370 	SOC_DOUBLE_R_TLV("PGA Capture Volume", LADC_VOL, RADC_VOL,
371 			 0, 119, 0, adc_tlv),
372 	SOC_DOUBLE_R("PGA Capture Switch", LADC_VOL, RADC_VOL, 7, 0x01, 1),
373 
374 	SOC_ENUM("ADC HPF Cut-off", aic3x_enum[ADC_HPF_ENUM]),
375 };
376 
377 /*
378  * Class-D amplifier gain. From 0 to 18 dB in 6 dB steps
379  */
380 static DECLARE_TLV_DB_SCALE(classd_amp_tlv, 0, 600, 0);
381 
382 static const struct snd_kcontrol_new aic3x_classd_amp_gain_ctrl =
383 	SOC_DOUBLE_TLV("Class-D Amplifier Gain", CLASSD_CTRL, 6, 4, 3, 0, classd_amp_tlv);
384 
385 /* Left DAC Mux */
386 static const struct snd_kcontrol_new aic3x_left_dac_mux_controls =
387 SOC_DAPM_ENUM("Route", aic3x_enum[LDAC_ENUM]);
388 
389 /* Right DAC Mux */
390 static const struct snd_kcontrol_new aic3x_right_dac_mux_controls =
391 SOC_DAPM_ENUM("Route", aic3x_enum[RDAC_ENUM]);
392 
393 /* Left HPCOM Mux */
394 static const struct snd_kcontrol_new aic3x_left_hpcom_mux_controls =
395 SOC_DAPM_ENUM("Route", aic3x_enum[LHPCOM_ENUM]);
396 
397 /* Right HPCOM Mux */
398 static const struct snd_kcontrol_new aic3x_right_hpcom_mux_controls =
399 SOC_DAPM_ENUM("Route", aic3x_enum[RHPCOM_ENUM]);
400 
401 /* Left Line Mixer */
402 static const struct snd_kcontrol_new aic3x_left_line_mixer_controls[] = {
403 	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_LLOPM_VOL, 7, 1, 0),
404 	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_LLOPM_VOL, 7, 1, 0),
405 	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_LLOPM_VOL, 7, 1, 0),
406 	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_LLOPM_VOL, 7, 1, 0),
407 	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_LLOPM_VOL, 7, 1, 0),
408 	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_LLOPM_VOL, 7, 1, 0),
409 };
410 
411 /* Right Line Mixer */
412 static const struct snd_kcontrol_new aic3x_right_line_mixer_controls[] = {
413 	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_RLOPM_VOL, 7, 1, 0),
414 	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_RLOPM_VOL, 7, 1, 0),
415 	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_RLOPM_VOL, 7, 1, 0),
416 	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_RLOPM_VOL, 7, 1, 0),
417 	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_RLOPM_VOL, 7, 1, 0),
418 	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_RLOPM_VOL, 7, 1, 0),
419 };
420 
421 /* Mono Mixer */
422 static const struct snd_kcontrol_new aic3x_mono_mixer_controls[] = {
423 	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_MONOLOPM_VOL, 7, 1, 0),
424 	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_MONOLOPM_VOL, 7, 1, 0),
425 	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_MONOLOPM_VOL, 7, 1, 0),
426 	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_MONOLOPM_VOL, 7, 1, 0),
427 	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_MONOLOPM_VOL, 7, 1, 0),
428 	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_MONOLOPM_VOL, 7, 1, 0),
429 };
430 
431 /* Left HP Mixer */
432 static const struct snd_kcontrol_new aic3x_left_hp_mixer_controls[] = {
433 	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLOUT_VOL, 7, 1, 0),
434 	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLOUT_VOL, 7, 1, 0),
435 	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLOUT_VOL, 7, 1, 0),
436 	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLOUT_VOL, 7, 1, 0),
437 	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLOUT_VOL, 7, 1, 0),
438 	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLOUT_VOL, 7, 1, 0),
439 };
440 
441 /* Right HP Mixer */
442 static const struct snd_kcontrol_new aic3x_right_hp_mixer_controls[] = {
443 	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPROUT_VOL, 7, 1, 0),
444 	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPROUT_VOL, 7, 1, 0),
445 	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPROUT_VOL, 7, 1, 0),
446 	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPROUT_VOL, 7, 1, 0),
447 	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPROUT_VOL, 7, 1, 0),
448 	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPROUT_VOL, 7, 1, 0),
449 };
450 
451 /* Left HPCOM Mixer */
452 static const struct snd_kcontrol_new aic3x_left_hpcom_mixer_controls[] = {
453 	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLCOM_VOL, 7, 1, 0),
454 	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLCOM_VOL, 7, 1, 0),
455 	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLCOM_VOL, 7, 1, 0),
456 	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLCOM_VOL, 7, 1, 0),
457 	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLCOM_VOL, 7, 1, 0),
458 	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLCOM_VOL, 7, 1, 0),
459 };
460 
461 /* Right HPCOM Mixer */
462 static const struct snd_kcontrol_new aic3x_right_hpcom_mixer_controls[] = {
463 	SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPRCOM_VOL, 7, 1, 0),
464 	SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPRCOM_VOL, 7, 1, 0),
465 	SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPRCOM_VOL, 7, 1, 0),
466 	SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPRCOM_VOL, 7, 1, 0),
467 	SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPRCOM_VOL, 7, 1, 0),
468 	SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPRCOM_VOL, 7, 1, 0),
469 };
470 
471 /* Left PGA Mixer */
472 static const struct snd_kcontrol_new aic3x_left_pga_mixer_controls[] = {
473 	SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_LADC_CTRL, 3, 1, 1),
474 	SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_LADC_CTRL, 3, 1, 1),
475 	SOC_DAPM_SINGLE_AIC3X("Line2L Switch", LINE2L_2_LADC_CTRL, 3, 1, 1),
476 	SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_LADC_CTRL, 4, 1, 1),
477 	SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_LADC_CTRL, 0, 1, 1),
478 };
479 
480 /* Right PGA Mixer */
481 static const struct snd_kcontrol_new aic3x_right_pga_mixer_controls[] = {
482 	SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_RADC_CTRL, 3, 1, 1),
483 	SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_RADC_CTRL, 3, 1, 1),
484 	SOC_DAPM_SINGLE_AIC3X("Line2R Switch", LINE2R_2_RADC_CTRL, 3, 1, 1),
485 	SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_RADC_CTRL, 4, 1, 1),
486 	SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_RADC_CTRL, 0, 1, 1),
487 };
488 
489 /* Left Line1 Mux */
490 static const struct snd_kcontrol_new aic3x_left_line1_mux_controls =
491 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_ENUM]);
492 
493 /* Right Line1 Mux */
494 static const struct snd_kcontrol_new aic3x_right_line1_mux_controls =
495 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_ENUM]);
496 
497 /* Left Line2 Mux */
498 static const struct snd_kcontrol_new aic3x_left_line2_mux_controls =
499 SOC_DAPM_ENUM("Route", aic3x_enum[LINE2L_ENUM]);
500 
501 /* Right Line2 Mux */
502 static const struct snd_kcontrol_new aic3x_right_line2_mux_controls =
503 SOC_DAPM_ENUM("Route", aic3x_enum[LINE2R_ENUM]);
504 
505 static const struct snd_soc_dapm_widget aic3x_dapm_widgets[] = {
506 	/* Left DAC to Left Outputs */
507 	SND_SOC_DAPM_DAC("Left DAC", "Left Playback", DAC_PWR, 7, 0),
508 	SND_SOC_DAPM_MUX("Left DAC Mux", SND_SOC_NOPM, 0, 0,
509 			 &aic3x_left_dac_mux_controls),
510 	SND_SOC_DAPM_MUX("Left HPCOM Mux", SND_SOC_NOPM, 0, 0,
511 			 &aic3x_left_hpcom_mux_controls),
512 	SND_SOC_DAPM_PGA("Left Line Out", LLOPM_CTRL, 0, 0, NULL, 0),
513 	SND_SOC_DAPM_PGA("Left HP Out", HPLOUT_CTRL, 0, 0, NULL, 0),
514 	SND_SOC_DAPM_PGA("Left HP Com", HPLCOM_CTRL, 0, 0, NULL, 0),
515 
516 	/* Right DAC to Right Outputs */
517 	SND_SOC_DAPM_DAC("Right DAC", "Right Playback", DAC_PWR, 6, 0),
518 	SND_SOC_DAPM_MUX("Right DAC Mux", SND_SOC_NOPM, 0, 0,
519 			 &aic3x_right_dac_mux_controls),
520 	SND_SOC_DAPM_MUX("Right HPCOM Mux", SND_SOC_NOPM, 0, 0,
521 			 &aic3x_right_hpcom_mux_controls),
522 	SND_SOC_DAPM_PGA("Right Line Out", RLOPM_CTRL, 0, 0, NULL, 0),
523 	SND_SOC_DAPM_PGA("Right HP Out", HPROUT_CTRL, 0, 0, NULL, 0),
524 	SND_SOC_DAPM_PGA("Right HP Com", HPRCOM_CTRL, 0, 0, NULL, 0),
525 
526 	/* Mono Output */
527 	SND_SOC_DAPM_PGA("Mono Out", MONOLOPM_CTRL, 0, 0, NULL, 0),
528 
529 	/* Inputs to Left ADC */
530 	SND_SOC_DAPM_ADC("Left ADC", "Left Capture", LINE1L_2_LADC_CTRL, 2, 0),
531 	SND_SOC_DAPM_MIXER("Left PGA Mixer", SND_SOC_NOPM, 0, 0,
532 			   &aic3x_left_pga_mixer_controls[0],
533 			   ARRAY_SIZE(aic3x_left_pga_mixer_controls)),
534 	SND_SOC_DAPM_MUX("Left Line1L Mux", SND_SOC_NOPM, 0, 0,
535 			 &aic3x_left_line1_mux_controls),
536 	SND_SOC_DAPM_MUX("Left Line1R Mux", SND_SOC_NOPM, 0, 0,
537 			 &aic3x_left_line1_mux_controls),
538 	SND_SOC_DAPM_MUX("Left Line2L Mux", SND_SOC_NOPM, 0, 0,
539 			 &aic3x_left_line2_mux_controls),
540 
541 	/* Inputs to Right ADC */
542 	SND_SOC_DAPM_ADC("Right ADC", "Right Capture",
543 			 LINE1R_2_RADC_CTRL, 2, 0),
544 	SND_SOC_DAPM_MIXER("Right PGA Mixer", SND_SOC_NOPM, 0, 0,
545 			   &aic3x_right_pga_mixer_controls[0],
546 			   ARRAY_SIZE(aic3x_right_pga_mixer_controls)),
547 	SND_SOC_DAPM_MUX("Right Line1L Mux", SND_SOC_NOPM, 0, 0,
548 			 &aic3x_right_line1_mux_controls),
549 	SND_SOC_DAPM_MUX("Right Line1R Mux", SND_SOC_NOPM, 0, 0,
550 			 &aic3x_right_line1_mux_controls),
551 	SND_SOC_DAPM_MUX("Right Line2R Mux", SND_SOC_NOPM, 0, 0,
552 			 &aic3x_right_line2_mux_controls),
553 
554 	/*
555 	 * Not a real mic bias widget but similar function. This is for dynamic
556 	 * control of GPIO1 digital mic modulator clock output function when
557 	 * using digital mic.
558 	 */
559 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "GPIO1 dmic modclk",
560 			 AIC3X_GPIO1_REG, 4, 0xf,
561 			 AIC3X_GPIO1_FUNC_DIGITAL_MIC_MODCLK,
562 			 AIC3X_GPIO1_FUNC_DISABLED),
563 
564 	/*
565 	 * Also similar function like mic bias. Selects digital mic with
566 	 * configurable oversampling rate instead of ADC converter.
567 	 */
568 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 128",
569 			 AIC3X_ASD_INTF_CTRLA, 0, 3, 1, 0),
570 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 64",
571 			 AIC3X_ASD_INTF_CTRLA, 0, 3, 2, 0),
572 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 32",
573 			 AIC3X_ASD_INTF_CTRLA, 0, 3, 3, 0),
574 
575 	/* Mic Bias */
576 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2V",
577 			 MICBIAS_CTRL, 6, 3, 1, 0),
578 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2.5V",
579 			 MICBIAS_CTRL, 6, 3, 2, 0),
580 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias AVDD",
581 			 MICBIAS_CTRL, 6, 3, 3, 0),
582 
583 	/* Output mixers */
584 	SND_SOC_DAPM_MIXER("Left Line Mixer", SND_SOC_NOPM, 0, 0,
585 			   &aic3x_left_line_mixer_controls[0],
586 			   ARRAY_SIZE(aic3x_left_line_mixer_controls)),
587 	SND_SOC_DAPM_MIXER("Right Line Mixer", SND_SOC_NOPM, 0, 0,
588 			   &aic3x_right_line_mixer_controls[0],
589 			   ARRAY_SIZE(aic3x_right_line_mixer_controls)),
590 	SND_SOC_DAPM_MIXER("Mono Mixer", SND_SOC_NOPM, 0, 0,
591 			   &aic3x_mono_mixer_controls[0],
592 			   ARRAY_SIZE(aic3x_mono_mixer_controls)),
593 	SND_SOC_DAPM_MIXER("Left HP Mixer", SND_SOC_NOPM, 0, 0,
594 			   &aic3x_left_hp_mixer_controls[0],
595 			   ARRAY_SIZE(aic3x_left_hp_mixer_controls)),
596 	SND_SOC_DAPM_MIXER("Right HP Mixer", SND_SOC_NOPM, 0, 0,
597 			   &aic3x_right_hp_mixer_controls[0],
598 			   ARRAY_SIZE(aic3x_right_hp_mixer_controls)),
599 	SND_SOC_DAPM_MIXER("Left HPCOM Mixer", SND_SOC_NOPM, 0, 0,
600 			   &aic3x_left_hpcom_mixer_controls[0],
601 			   ARRAY_SIZE(aic3x_left_hpcom_mixer_controls)),
602 	SND_SOC_DAPM_MIXER("Right HPCOM Mixer", SND_SOC_NOPM, 0, 0,
603 			   &aic3x_right_hpcom_mixer_controls[0],
604 			   ARRAY_SIZE(aic3x_right_hpcom_mixer_controls)),
605 
606 	SND_SOC_DAPM_OUTPUT("LLOUT"),
607 	SND_SOC_DAPM_OUTPUT("RLOUT"),
608 	SND_SOC_DAPM_OUTPUT("MONO_LOUT"),
609 	SND_SOC_DAPM_OUTPUT("HPLOUT"),
610 	SND_SOC_DAPM_OUTPUT("HPROUT"),
611 	SND_SOC_DAPM_OUTPUT("HPLCOM"),
612 	SND_SOC_DAPM_OUTPUT("HPRCOM"),
613 
614 	SND_SOC_DAPM_INPUT("MIC3L"),
615 	SND_SOC_DAPM_INPUT("MIC3R"),
616 	SND_SOC_DAPM_INPUT("LINE1L"),
617 	SND_SOC_DAPM_INPUT("LINE1R"),
618 	SND_SOC_DAPM_INPUT("LINE2L"),
619 	SND_SOC_DAPM_INPUT("LINE2R"),
620 
621 	/*
622 	 * Virtual output pin to detection block inside codec. This can be
623 	 * used to keep codec bias on if gpio or detection features are needed.
624 	 * Force pin on or construct a path with an input jack and mic bias
625 	 * widgets.
626 	 */
627 	SND_SOC_DAPM_OUTPUT("Detection"),
628 };
629 
630 static const struct snd_soc_dapm_widget aic3007_dapm_widgets[] = {
631 	/* Class-D outputs */
632 	SND_SOC_DAPM_PGA("Left Class-D Out", CLASSD_CTRL, 3, 0, NULL, 0),
633 	SND_SOC_DAPM_PGA("Right Class-D Out", CLASSD_CTRL, 2, 0, NULL, 0),
634 
635 	SND_SOC_DAPM_OUTPUT("SPOP"),
636 	SND_SOC_DAPM_OUTPUT("SPOM"),
637 };
638 
639 static const struct snd_soc_dapm_route intercon[] = {
640 	/* Left Input */
641 	{"Left Line1L Mux", "single-ended", "LINE1L"},
642 	{"Left Line1L Mux", "differential", "LINE1L"},
643 
644 	{"Left Line2L Mux", "single-ended", "LINE2L"},
645 	{"Left Line2L Mux", "differential", "LINE2L"},
646 
647 	{"Left PGA Mixer", "Line1L Switch", "Left Line1L Mux"},
648 	{"Left PGA Mixer", "Line1R Switch", "Left Line1R Mux"},
649 	{"Left PGA Mixer", "Line2L Switch", "Left Line2L Mux"},
650 	{"Left PGA Mixer", "Mic3L Switch", "MIC3L"},
651 	{"Left PGA Mixer", "Mic3R Switch", "MIC3R"},
652 
653 	{"Left ADC", NULL, "Left PGA Mixer"},
654 	{"Left ADC", NULL, "GPIO1 dmic modclk"},
655 
656 	/* Right Input */
657 	{"Right Line1R Mux", "single-ended", "LINE1R"},
658 	{"Right Line1R Mux", "differential", "LINE1R"},
659 
660 	{"Right Line2R Mux", "single-ended", "LINE2R"},
661 	{"Right Line2R Mux", "differential", "LINE2R"},
662 
663 	{"Right PGA Mixer", "Line1L Switch", "Right Line1L Mux"},
664 	{"Right PGA Mixer", "Line1R Switch", "Right Line1R Mux"},
665 	{"Right PGA Mixer", "Line2R Switch", "Right Line2R Mux"},
666 	{"Right PGA Mixer", "Mic3L Switch", "MIC3L"},
667 	{"Right PGA Mixer", "Mic3R Switch", "MIC3R"},
668 
669 	{"Right ADC", NULL, "Right PGA Mixer"},
670 	{"Right ADC", NULL, "GPIO1 dmic modclk"},
671 
672 	/*
673 	 * Logical path between digital mic enable and GPIO1 modulator clock
674 	 * output function
675 	 */
676 	{"GPIO1 dmic modclk", NULL, "DMic Rate 128"},
677 	{"GPIO1 dmic modclk", NULL, "DMic Rate 64"},
678 	{"GPIO1 dmic modclk", NULL, "DMic Rate 32"},
679 
680 	/* Left DAC Output */
681 	{"Left DAC Mux", "DAC_L1", "Left DAC"},
682 	{"Left DAC Mux", "DAC_L2", "Left DAC"},
683 	{"Left DAC Mux", "DAC_L3", "Left DAC"},
684 
685 	/* Right DAC Output */
686 	{"Right DAC Mux", "DAC_R1", "Right DAC"},
687 	{"Right DAC Mux", "DAC_R2", "Right DAC"},
688 	{"Right DAC Mux", "DAC_R3", "Right DAC"},
689 
690 	/* Left Line Output */
691 	{"Left Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
692 	{"Left Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
693 	{"Left Line Mixer", "DACL1 Switch", "Left DAC Mux"},
694 	{"Left Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
695 	{"Left Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
696 	{"Left Line Mixer", "DACR1 Switch", "Right DAC Mux"},
697 
698 	{"Left Line Out", NULL, "Left Line Mixer"},
699 	{"Left Line Out", NULL, "Left DAC Mux"},
700 	{"LLOUT", NULL, "Left Line Out"},
701 
702 	/* Right Line Output */
703 	{"Right Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
704 	{"Right Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
705 	{"Right Line Mixer", "DACL1 Switch", "Left DAC Mux"},
706 	{"Right Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
707 	{"Right Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
708 	{"Right Line Mixer", "DACR1 Switch", "Right DAC Mux"},
709 
710 	{"Right Line Out", NULL, "Right Line Mixer"},
711 	{"Right Line Out", NULL, "Right DAC Mux"},
712 	{"RLOUT", NULL, "Right Line Out"},
713 
714 	/* Mono Output */
715 	{"Mono Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
716 	{"Mono Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
717 	{"Mono Mixer", "DACL1 Switch", "Left DAC Mux"},
718 	{"Mono Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
719 	{"Mono Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
720 	{"Mono Mixer", "DACR1 Switch", "Right DAC Mux"},
721 
722 	{"Mono Out", NULL, "Mono Mixer"},
723 	{"MONO_LOUT", NULL, "Mono Out"},
724 
725 	/* Left HP Output */
726 	{"Left HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
727 	{"Left HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
728 	{"Left HP Mixer", "DACL1 Switch", "Left DAC Mux"},
729 	{"Left HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
730 	{"Left HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
731 	{"Left HP Mixer", "DACR1 Switch", "Right DAC Mux"},
732 
733 	{"Left HP Out", NULL, "Left HP Mixer"},
734 	{"Left HP Out", NULL, "Left DAC Mux"},
735 	{"HPLOUT", NULL, "Left HP Out"},
736 
737 	/* Right HP Output */
738 	{"Right HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
739 	{"Right HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
740 	{"Right HP Mixer", "DACL1 Switch", "Left DAC Mux"},
741 	{"Right HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
742 	{"Right HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
743 	{"Right HP Mixer", "DACR1 Switch", "Right DAC Mux"},
744 
745 	{"Right HP Out", NULL, "Right HP Mixer"},
746 	{"Right HP Out", NULL, "Right DAC Mux"},
747 	{"HPROUT", NULL, "Right HP Out"},
748 
749 	/* Left HPCOM Output */
750 	{"Left HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
751 	{"Left HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
752 	{"Left HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"},
753 	{"Left HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
754 	{"Left HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
755 	{"Left HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"},
756 
757 	{"Left HPCOM Mux", "differential of HPLOUT", "Left HP Mixer"},
758 	{"Left HPCOM Mux", "constant VCM", "Left HPCOM Mixer"},
759 	{"Left HPCOM Mux", "single-ended", "Left HPCOM Mixer"},
760 	{"Left HP Com", NULL, "Left HPCOM Mux"},
761 	{"HPLCOM", NULL, "Left HP Com"},
762 
763 	/* Right HPCOM Output */
764 	{"Right HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
765 	{"Right HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
766 	{"Right HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"},
767 	{"Right HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
768 	{"Right HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
769 	{"Right HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"},
770 
771 	{"Right HPCOM Mux", "differential of HPROUT", "Right HP Mixer"},
772 	{"Right HPCOM Mux", "constant VCM", "Right HPCOM Mixer"},
773 	{"Right HPCOM Mux", "single-ended", "Right HPCOM Mixer"},
774 	{"Right HPCOM Mux", "differential of HPLCOM", "Left HPCOM Mixer"},
775 	{"Right HPCOM Mux", "external feedback", "Right HPCOM Mixer"},
776 	{"Right HP Com", NULL, "Right HPCOM Mux"},
777 	{"HPRCOM", NULL, "Right HP Com"},
778 };
779 
780 static const struct snd_soc_dapm_route intercon_3007[] = {
781 	/* Class-D outputs */
782 	{"Left Class-D Out", NULL, "Left Line Out"},
783 	{"Right Class-D Out", NULL, "Left Line Out"},
784 	{"SPOP", NULL, "Left Class-D Out"},
785 	{"SPOM", NULL, "Right Class-D Out"},
786 };
787 
788 static int aic3x_add_widgets(struct snd_soc_codec *codec)
789 {
790 	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
791 
792 	snd_soc_dapm_new_controls(codec, aic3x_dapm_widgets,
793 				  ARRAY_SIZE(aic3x_dapm_widgets));
794 
795 	/* set up audio path interconnects */
796 	snd_soc_dapm_add_routes(codec, intercon, ARRAY_SIZE(intercon));
797 
798 	if (aic3x->model == AIC3X_MODEL_3007) {
799 		snd_soc_dapm_new_controls(codec, aic3007_dapm_widgets,
800 			ARRAY_SIZE(aic3007_dapm_widgets));
801 		snd_soc_dapm_add_routes(codec, intercon_3007, ARRAY_SIZE(intercon_3007));
802 	}
803 
804 	return 0;
805 }
806 
807 static int aic3x_hw_params(struct snd_pcm_substream *substream,
808 			   struct snd_pcm_hw_params *params,
809 			   struct snd_soc_dai *dai)
810 {
811 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
812 	struct snd_soc_codec *codec =rtd->codec;
813 	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
814 	int codec_clk = 0, bypass_pll = 0, fsref, last_clk = 0;
815 	u8 data, j, r, p, pll_q, pll_p = 1, pll_r = 1, pll_j = 1;
816 	u16 d, pll_d = 1;
817 	u8 reg;
818 	int clk;
819 
820 	/* select data word length */
821 	data = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLB) & (~(0x3 << 4));
822 	switch (params_format(params)) {
823 	case SNDRV_PCM_FORMAT_S16_LE:
824 		break;
825 	case SNDRV_PCM_FORMAT_S20_3LE:
826 		data |= (0x01 << 4);
827 		break;
828 	case SNDRV_PCM_FORMAT_S24_LE:
829 		data |= (0x02 << 4);
830 		break;
831 	case SNDRV_PCM_FORMAT_S32_LE:
832 		data |= (0x03 << 4);
833 		break;
834 	}
835 	snd_soc_write(codec, AIC3X_ASD_INTF_CTRLB, data);
836 
837 	/* Fsref can be 44100 or 48000 */
838 	fsref = (params_rate(params) % 11025 == 0) ? 44100 : 48000;
839 
840 	/* Try to find a value for Q which allows us to bypass the PLL and
841 	 * generate CODEC_CLK directly. */
842 	for (pll_q = 2; pll_q < 18; pll_q++)
843 		if (aic3x->sysclk / (128 * pll_q) == fsref) {
844 			bypass_pll = 1;
845 			break;
846 		}
847 
848 	if (bypass_pll) {
849 		pll_q &= 0xf;
850 		snd_soc_write(codec, AIC3X_PLL_PROGA_REG, pll_q << PLLQ_SHIFT);
851 		snd_soc_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_CLKDIV);
852 		/* disable PLL if it is bypassed */
853 		reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
854 		snd_soc_write(codec, AIC3X_PLL_PROGA_REG, reg & ~PLL_ENABLE);
855 
856 	} else {
857 		snd_soc_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_PLLDIV);
858 		/* enable PLL when it is used */
859 		reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
860 		snd_soc_write(codec, AIC3X_PLL_PROGA_REG, reg | PLL_ENABLE);
861 	}
862 
863 	/* Route Left DAC to left channel input and
864 	 * right DAC to right channel input */
865 	data = (LDAC2LCH | RDAC2RCH);
866 	data |= (fsref == 44100) ? FSREF_44100 : FSREF_48000;
867 	if (params_rate(params) >= 64000)
868 		data |= DUAL_RATE_MODE;
869 	snd_soc_write(codec, AIC3X_CODEC_DATAPATH_REG, data);
870 
871 	/* codec sample rate select */
872 	data = (fsref * 20) / params_rate(params);
873 	if (params_rate(params) < 64000)
874 		data /= 2;
875 	data /= 5;
876 	data -= 2;
877 	data |= (data << 4);
878 	snd_soc_write(codec, AIC3X_SAMPLE_RATE_SEL_REG, data);
879 
880 	if (bypass_pll)
881 		return 0;
882 
883 	/* Use PLL, compute apropriate setup for j, d, r and p, the closest
884 	 * one wins the game. Try with d==0 first, next with d!=0.
885 	 * Constraints for j are according to the datasheet.
886 	 * The sysclk is divided by 1000 to prevent integer overflows.
887 	 */
888 
889 	codec_clk = (2048 * fsref) / (aic3x->sysclk / 1000);
890 
891 	for (r = 1; r <= 16; r++)
892 		for (p = 1; p <= 8; p++) {
893 			for (j = 4; j <= 55; j++) {
894 				/* This is actually 1000*((j+(d/10000))*r)/p
895 				 * The term had to be converted to get
896 				 * rid of the division by 10000; d = 0 here
897 				 */
898 				int tmp_clk = (1000 * j * r) / p;
899 
900 				/* Check whether this values get closer than
901 				 * the best ones we had before
902 				 */
903 				if (abs(codec_clk - tmp_clk) <
904 					abs(codec_clk - last_clk)) {
905 					pll_j = j; pll_d = 0;
906 					pll_r = r; pll_p = p;
907 					last_clk = tmp_clk;
908 				}
909 
910 				/* Early exit for exact matches */
911 				if (tmp_clk == codec_clk)
912 					goto found;
913 			}
914 		}
915 
916 	/* try with d != 0 */
917 	for (p = 1; p <= 8; p++) {
918 		j = codec_clk * p / 1000;
919 
920 		if (j < 4 || j > 11)
921 			continue;
922 
923 		/* do not use codec_clk here since we'd loose precision */
924 		d = ((2048 * p * fsref) - j * aic3x->sysclk)
925 			* 100 / (aic3x->sysclk/100);
926 
927 		clk = (10000 * j + d) / (10 * p);
928 
929 		/* check whether this values get closer than the best
930 		 * ones we had before */
931 		if (abs(codec_clk - clk) < abs(codec_clk - last_clk)) {
932 			pll_j = j; pll_d = d; pll_r = 1; pll_p = p;
933 			last_clk = clk;
934 		}
935 
936 		/* Early exit for exact matches */
937 		if (clk == codec_clk)
938 			goto found;
939 	}
940 
941 	if (last_clk == 0) {
942 		printk(KERN_ERR "%s(): unable to setup PLL\n", __func__);
943 		return -EINVAL;
944 	}
945 
946 found:
947 	data = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
948 	snd_soc_write(codec, AIC3X_PLL_PROGA_REG,
949 		      data | (pll_p << PLLP_SHIFT));
950 	snd_soc_write(codec, AIC3X_OVRF_STATUS_AND_PLLR_REG,
951 		      pll_r << PLLR_SHIFT);
952 	snd_soc_write(codec, AIC3X_PLL_PROGB_REG, pll_j << PLLJ_SHIFT);
953 	snd_soc_write(codec, AIC3X_PLL_PROGC_REG,
954 		      (pll_d >> 6) << PLLD_MSB_SHIFT);
955 	snd_soc_write(codec, AIC3X_PLL_PROGD_REG,
956 		      (pll_d & 0x3F) << PLLD_LSB_SHIFT);
957 
958 	return 0;
959 }
960 
961 static int aic3x_mute(struct snd_soc_dai *dai, int mute)
962 {
963 	struct snd_soc_codec *codec = dai->codec;
964 	u8 ldac_reg = snd_soc_read(codec, LDAC_VOL) & ~MUTE_ON;
965 	u8 rdac_reg = snd_soc_read(codec, RDAC_VOL) & ~MUTE_ON;
966 
967 	if (mute) {
968 		snd_soc_write(codec, LDAC_VOL, ldac_reg | MUTE_ON);
969 		snd_soc_write(codec, RDAC_VOL, rdac_reg | MUTE_ON);
970 	} else {
971 		snd_soc_write(codec, LDAC_VOL, ldac_reg);
972 		snd_soc_write(codec, RDAC_VOL, rdac_reg);
973 	}
974 
975 	return 0;
976 }
977 
978 static int aic3x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
979 				int clk_id, unsigned int freq, int dir)
980 {
981 	struct snd_soc_codec *codec = codec_dai->codec;
982 	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
983 
984 	aic3x->sysclk = freq;
985 	return 0;
986 }
987 
988 static int aic3x_set_dai_fmt(struct snd_soc_dai *codec_dai,
989 			     unsigned int fmt)
990 {
991 	struct snd_soc_codec *codec = codec_dai->codec;
992 	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
993 	u8 iface_areg, iface_breg;
994 	int delay = 0;
995 
996 	iface_areg = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLA) & 0x3f;
997 	iface_breg = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLB) & 0x3f;
998 
999 	/* set master/slave audio interface */
1000 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1001 	case SND_SOC_DAIFMT_CBM_CFM:
1002 		aic3x->master = 1;
1003 		iface_areg |= BIT_CLK_MASTER | WORD_CLK_MASTER;
1004 		break;
1005 	case SND_SOC_DAIFMT_CBS_CFS:
1006 		aic3x->master = 0;
1007 		break;
1008 	default:
1009 		return -EINVAL;
1010 	}
1011 
1012 	/*
1013 	 * match both interface format and signal polarities since they
1014 	 * are fixed
1015 	 */
1016 	switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK |
1017 		       SND_SOC_DAIFMT_INV_MASK)) {
1018 	case (SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF):
1019 		break;
1020 	case (SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_IB_NF):
1021 		delay = 1;
1022 	case (SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_IB_NF):
1023 		iface_breg |= (0x01 << 6);
1024 		break;
1025 	case (SND_SOC_DAIFMT_RIGHT_J | SND_SOC_DAIFMT_NB_NF):
1026 		iface_breg |= (0x02 << 6);
1027 		break;
1028 	case (SND_SOC_DAIFMT_LEFT_J | SND_SOC_DAIFMT_NB_NF):
1029 		iface_breg |= (0x03 << 6);
1030 		break;
1031 	default:
1032 		return -EINVAL;
1033 	}
1034 
1035 	/* set iface */
1036 	snd_soc_write(codec, AIC3X_ASD_INTF_CTRLA, iface_areg);
1037 	snd_soc_write(codec, AIC3X_ASD_INTF_CTRLB, iface_breg);
1038 	snd_soc_write(codec, AIC3X_ASD_INTF_CTRLC, delay);
1039 
1040 	return 0;
1041 }
1042 
1043 static int aic3x_init_3007(struct snd_soc_codec *codec)
1044 {
1045 	u8 tmp1, tmp2, *cache = codec->reg_cache;
1046 
1047 	/*
1048 	 * There is no need to cache writes to undocumented page 0xD but
1049 	 * respective page 0 register cache entries must be preserved
1050 	 */
1051 	tmp1 = cache[0xD];
1052 	tmp2 = cache[0x8];
1053 	/* Class-D speaker driver init; datasheet p. 46 */
1054 	snd_soc_write(codec, AIC3X_PAGE_SELECT, 0x0D);
1055 	snd_soc_write(codec, 0xD, 0x0D);
1056 	snd_soc_write(codec, 0x8, 0x5C);
1057 	snd_soc_write(codec, 0x8, 0x5D);
1058 	snd_soc_write(codec, 0x8, 0x5C);
1059 	snd_soc_write(codec, AIC3X_PAGE_SELECT, 0x00);
1060 	cache[0xD] = tmp1;
1061 	cache[0x8] = tmp2;
1062 
1063 	return 0;
1064 }
1065 
1066 static int aic3x_regulator_event(struct notifier_block *nb,
1067 				 unsigned long event, void *data)
1068 {
1069 	struct aic3x_disable_nb *disable_nb =
1070 		container_of(nb, struct aic3x_disable_nb, nb);
1071 	struct aic3x_priv *aic3x = disable_nb->aic3x;
1072 
1073 	if (event & REGULATOR_EVENT_DISABLE) {
1074 		/*
1075 		 * Put codec to reset and require cache sync as at least one
1076 		 * of the supplies was disabled
1077 		 */
1078 		if (aic3x->gpio_reset >= 0)
1079 			gpio_set_value(aic3x->gpio_reset, 0);
1080 		aic3x->codec->cache_sync = 1;
1081 	}
1082 
1083 	return 0;
1084 }
1085 
1086 static int aic3x_set_power(struct snd_soc_codec *codec, int power)
1087 {
1088 	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1089 	int i, ret;
1090 	u8 *cache = codec->reg_cache;
1091 
1092 	if (power) {
1093 		ret = regulator_bulk_enable(ARRAY_SIZE(aic3x->supplies),
1094 					    aic3x->supplies);
1095 		if (ret)
1096 			goto out;
1097 		aic3x->power = 1;
1098 		/*
1099 		 * Reset release and cache sync is necessary only if some
1100 		 * supply was off or if there were cached writes
1101 		 */
1102 		if (!codec->cache_sync)
1103 			goto out;
1104 
1105 		if (aic3x->gpio_reset >= 0) {
1106 			udelay(1);
1107 			gpio_set_value(aic3x->gpio_reset, 1);
1108 		}
1109 
1110 		/* Sync reg_cache with the hardware */
1111 		codec->cache_only = 0;
1112 		for (i = 0; i < ARRAY_SIZE(aic3x_reg); i++)
1113 			snd_soc_write(codec, i, cache[i]);
1114 		if (aic3x->model == AIC3X_MODEL_3007)
1115 			aic3x_init_3007(codec);
1116 		codec->cache_sync = 0;
1117 	} else {
1118 		aic3x->power = 0;
1119 		/* HW writes are needless when bias is off */
1120 		codec->cache_only = 1;
1121 		ret = regulator_bulk_disable(ARRAY_SIZE(aic3x->supplies),
1122 					     aic3x->supplies);
1123 	}
1124 out:
1125 	return ret;
1126 }
1127 
1128 static int aic3x_set_bias_level(struct snd_soc_codec *codec,
1129 				enum snd_soc_bias_level level)
1130 {
1131 	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1132 	u8 reg;
1133 
1134 	switch (level) {
1135 	case SND_SOC_BIAS_ON:
1136 		break;
1137 	case SND_SOC_BIAS_PREPARE:
1138 		if (codec->bias_level == SND_SOC_BIAS_STANDBY &&
1139 		    aic3x->master) {
1140 			/* enable pll */
1141 			reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
1142 			snd_soc_write(codec, AIC3X_PLL_PROGA_REG,
1143 				      reg | PLL_ENABLE);
1144 		}
1145 		break;
1146 	case SND_SOC_BIAS_STANDBY:
1147 		if (!aic3x->power)
1148 			aic3x_set_power(codec, 1);
1149 		if (codec->bias_level == SND_SOC_BIAS_PREPARE &&
1150 		    aic3x->master) {
1151 			/* disable pll */
1152 			reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
1153 			snd_soc_write(codec, AIC3X_PLL_PROGA_REG,
1154 				      reg & ~PLL_ENABLE);
1155 		}
1156 		break;
1157 	case SND_SOC_BIAS_OFF:
1158 		if (aic3x->power)
1159 			aic3x_set_power(codec, 0);
1160 		break;
1161 	}
1162 	codec->bias_level = level;
1163 
1164 	return 0;
1165 }
1166 
1167 void aic3x_set_gpio(struct snd_soc_codec *codec, int gpio, int state)
1168 {
1169 	u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
1170 	u8 bit = gpio ? 3: 0;
1171 	u8 val = snd_soc_read(codec, reg) & ~(1 << bit);
1172 	snd_soc_write(codec, reg, val | (!!state << bit));
1173 }
1174 EXPORT_SYMBOL_GPL(aic3x_set_gpio);
1175 
1176 int aic3x_get_gpio(struct snd_soc_codec *codec, int gpio)
1177 {
1178 	u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
1179 	u8 val = 0, bit = gpio ? 2 : 1;
1180 
1181 	aic3x_read(codec, reg, &val);
1182 	return (val >> bit) & 1;
1183 }
1184 EXPORT_SYMBOL_GPL(aic3x_get_gpio);
1185 
1186 void aic3x_set_headset_detection(struct snd_soc_codec *codec, int detect,
1187 				 int headset_debounce, int button_debounce)
1188 {
1189 	u8 val;
1190 
1191 	val = ((detect & AIC3X_HEADSET_DETECT_MASK)
1192 		<< AIC3X_HEADSET_DETECT_SHIFT) |
1193 	      ((headset_debounce & AIC3X_HEADSET_DEBOUNCE_MASK)
1194 		<< AIC3X_HEADSET_DEBOUNCE_SHIFT) |
1195 	      ((button_debounce & AIC3X_BUTTON_DEBOUNCE_MASK)
1196 		<< AIC3X_BUTTON_DEBOUNCE_SHIFT);
1197 
1198 	if (detect & AIC3X_HEADSET_DETECT_MASK)
1199 		val |= AIC3X_HEADSET_DETECT_ENABLED;
1200 
1201 	snd_soc_write(codec, AIC3X_HEADSET_DETECT_CTRL_A, val);
1202 }
1203 EXPORT_SYMBOL_GPL(aic3x_set_headset_detection);
1204 
1205 int aic3x_headset_detected(struct snd_soc_codec *codec)
1206 {
1207 	u8 val = 0;
1208 	aic3x_read(codec, AIC3X_HEADSET_DETECT_CTRL_B, &val);
1209 	return (val >> 4) & 1;
1210 }
1211 EXPORT_SYMBOL_GPL(aic3x_headset_detected);
1212 
1213 int aic3x_button_pressed(struct snd_soc_codec *codec)
1214 {
1215 	u8 val = 0;
1216 	aic3x_read(codec, AIC3X_HEADSET_DETECT_CTRL_B, &val);
1217 	return (val >> 5) & 1;
1218 }
1219 EXPORT_SYMBOL_GPL(aic3x_button_pressed);
1220 
1221 #define AIC3X_RATES	SNDRV_PCM_RATE_8000_96000
1222 #define AIC3X_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \
1223 			 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1224 
1225 static struct snd_soc_dai_ops aic3x_dai_ops = {
1226 	.hw_params	= aic3x_hw_params,
1227 	.digital_mute	= aic3x_mute,
1228 	.set_sysclk	= aic3x_set_dai_sysclk,
1229 	.set_fmt	= aic3x_set_dai_fmt,
1230 };
1231 
1232 static struct snd_soc_dai_driver aic3x_dai = {
1233 	.name = "tlv320aic3x-hifi",
1234 	.playback = {
1235 		.stream_name = "Playback",
1236 		.channels_min = 1,
1237 		.channels_max = 2,
1238 		.rates = AIC3X_RATES,
1239 		.formats = AIC3X_FORMATS,},
1240 	.capture = {
1241 		.stream_name = "Capture",
1242 		.channels_min = 1,
1243 		.channels_max = 2,
1244 		.rates = AIC3X_RATES,
1245 		.formats = AIC3X_FORMATS,},
1246 	.ops = &aic3x_dai_ops,
1247 	.symmetric_rates = 1,
1248 };
1249 
1250 static int aic3x_suspend(struct snd_soc_codec *codec, pm_message_t state)
1251 {
1252 	aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1253 
1254 	return 0;
1255 }
1256 
1257 static int aic3x_resume(struct snd_soc_codec *codec)
1258 {
1259 	aic3x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1260 
1261 	return 0;
1262 }
1263 
1264 /*
1265  * initialise the AIC3X driver
1266  * register the mixer and dsp interfaces with the kernel
1267  */
1268 static int aic3x_init(struct snd_soc_codec *codec)
1269 {
1270 	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1271 	int reg;
1272 
1273 	snd_soc_write(codec, AIC3X_PAGE_SELECT, PAGE0_SELECT);
1274 	snd_soc_write(codec, AIC3X_RESET, SOFT_RESET);
1275 
1276 	/* DAC default volume and mute */
1277 	snd_soc_write(codec, LDAC_VOL, DEFAULT_VOL | MUTE_ON);
1278 	snd_soc_write(codec, RDAC_VOL, DEFAULT_VOL | MUTE_ON);
1279 
1280 	/* DAC to HP default volume and route to Output mixer */
1281 	snd_soc_write(codec, DACL1_2_HPLOUT_VOL, DEFAULT_VOL | ROUTE_ON);
1282 	snd_soc_write(codec, DACR1_2_HPROUT_VOL, DEFAULT_VOL | ROUTE_ON);
1283 	snd_soc_write(codec, DACL1_2_HPLCOM_VOL, DEFAULT_VOL | ROUTE_ON);
1284 	snd_soc_write(codec, DACR1_2_HPRCOM_VOL, DEFAULT_VOL | ROUTE_ON);
1285 	/* DAC to Line Out default volume and route to Output mixer */
1286 	snd_soc_write(codec, DACL1_2_LLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1287 	snd_soc_write(codec, DACR1_2_RLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1288 	/* DAC to Mono Line Out default volume and route to Output mixer */
1289 	snd_soc_write(codec, DACL1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1290 	snd_soc_write(codec, DACR1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1291 
1292 	/* unmute all outputs */
1293 	reg = snd_soc_read(codec, LLOPM_CTRL);
1294 	snd_soc_write(codec, LLOPM_CTRL, reg | UNMUTE);
1295 	reg = snd_soc_read(codec, RLOPM_CTRL);
1296 	snd_soc_write(codec, RLOPM_CTRL, reg | UNMUTE);
1297 	reg = snd_soc_read(codec, MONOLOPM_CTRL);
1298 	snd_soc_write(codec, MONOLOPM_CTRL, reg | UNMUTE);
1299 	reg = snd_soc_read(codec, HPLOUT_CTRL);
1300 	snd_soc_write(codec, HPLOUT_CTRL, reg | UNMUTE);
1301 	reg = snd_soc_read(codec, HPROUT_CTRL);
1302 	snd_soc_write(codec, HPROUT_CTRL, reg | UNMUTE);
1303 	reg = snd_soc_read(codec, HPLCOM_CTRL);
1304 	snd_soc_write(codec, HPLCOM_CTRL, reg | UNMUTE);
1305 	reg = snd_soc_read(codec, HPRCOM_CTRL);
1306 	snd_soc_write(codec, HPRCOM_CTRL, reg | UNMUTE);
1307 
1308 	/* ADC default volume and unmute */
1309 	snd_soc_write(codec, LADC_VOL, DEFAULT_GAIN);
1310 	snd_soc_write(codec, RADC_VOL, DEFAULT_GAIN);
1311 	/* By default route Line1 to ADC PGA mixer */
1312 	snd_soc_write(codec, LINE1L_2_LADC_CTRL, 0x0);
1313 	snd_soc_write(codec, LINE1R_2_RADC_CTRL, 0x0);
1314 
1315 	/* PGA to HP Bypass default volume, disconnect from Output Mixer */
1316 	snd_soc_write(codec, PGAL_2_HPLOUT_VOL, DEFAULT_VOL);
1317 	snd_soc_write(codec, PGAR_2_HPROUT_VOL, DEFAULT_VOL);
1318 	snd_soc_write(codec, PGAL_2_HPLCOM_VOL, DEFAULT_VOL);
1319 	snd_soc_write(codec, PGAR_2_HPRCOM_VOL, DEFAULT_VOL);
1320 	/* PGA to Line Out default volume, disconnect from Output Mixer */
1321 	snd_soc_write(codec, PGAL_2_LLOPM_VOL, DEFAULT_VOL);
1322 	snd_soc_write(codec, PGAR_2_RLOPM_VOL, DEFAULT_VOL);
1323 	/* PGA to Mono Line Out default volume, disconnect from Output Mixer */
1324 	snd_soc_write(codec, PGAL_2_MONOLOPM_VOL, DEFAULT_VOL);
1325 	snd_soc_write(codec, PGAR_2_MONOLOPM_VOL, DEFAULT_VOL);
1326 
1327 	/* Line2 to HP Bypass default volume, disconnect from Output Mixer */
1328 	snd_soc_write(codec, LINE2L_2_HPLOUT_VOL, DEFAULT_VOL);
1329 	snd_soc_write(codec, LINE2R_2_HPROUT_VOL, DEFAULT_VOL);
1330 	snd_soc_write(codec, LINE2L_2_HPLCOM_VOL, DEFAULT_VOL);
1331 	snd_soc_write(codec, LINE2R_2_HPRCOM_VOL, DEFAULT_VOL);
1332 	/* Line2 Line Out default volume, disconnect from Output Mixer */
1333 	snd_soc_write(codec, LINE2L_2_LLOPM_VOL, DEFAULT_VOL);
1334 	snd_soc_write(codec, LINE2R_2_RLOPM_VOL, DEFAULT_VOL);
1335 	/* Line2 to Mono Out default volume, disconnect from Output Mixer */
1336 	snd_soc_write(codec, LINE2L_2_MONOLOPM_VOL, DEFAULT_VOL);
1337 	snd_soc_write(codec, LINE2R_2_MONOLOPM_VOL, DEFAULT_VOL);
1338 
1339 	if (aic3x->model == AIC3X_MODEL_3007) {
1340 		aic3x_init_3007(codec);
1341 		snd_soc_write(codec, CLASSD_CTRL, 0);
1342 	}
1343 
1344 	return 0;
1345 }
1346 
1347 static int aic3x_probe(struct snd_soc_codec *codec)
1348 {
1349 	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1350 	int ret, i;
1351 
1352 	codec->control_data = aic3x->control_data;
1353 	aic3x->codec = codec;
1354 	codec->idle_bias_off = 1;
1355 
1356 	ret = snd_soc_codec_set_cache_io(codec, 8, 8, aic3x->control_type);
1357 	if (ret != 0) {
1358 		dev_err(codec->dev, "Failed to set cache I/O: %d\n", ret);
1359 		return ret;
1360 	}
1361 
1362 	if (aic3x->gpio_reset >= 0) {
1363 		ret = gpio_request(aic3x->gpio_reset, "tlv320aic3x reset");
1364 		if (ret != 0)
1365 			goto err_gpio;
1366 		gpio_direction_output(aic3x->gpio_reset, 0);
1367 	}
1368 
1369 	for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
1370 		aic3x->supplies[i].supply = aic3x_supply_names[i];
1371 
1372 	ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(aic3x->supplies),
1373 				 aic3x->supplies);
1374 	if (ret != 0) {
1375 		dev_err(codec->dev, "Failed to request supplies: %d\n", ret);
1376 		goto err_get;
1377 	}
1378 	for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++) {
1379 		aic3x->disable_nb[i].nb.notifier_call = aic3x_regulator_event;
1380 		aic3x->disable_nb[i].aic3x = aic3x;
1381 		ret = regulator_register_notifier(aic3x->supplies[i].consumer,
1382 						  &aic3x->disable_nb[i].nb);
1383 		if (ret) {
1384 			dev_err(codec->dev,
1385 				"Failed to request regulator notifier: %d\n",
1386 				 ret);
1387 			goto err_notif;
1388 		}
1389 	}
1390 
1391 	codec->cache_only = 1;
1392 	aic3x_init(codec);
1393 
1394 	if (aic3x->setup) {
1395 		/* setup GPIO functions */
1396 		snd_soc_write(codec, AIC3X_GPIO1_REG,
1397 			      (aic3x->setup->gpio_func[0] & 0xf) << 4);
1398 		snd_soc_write(codec, AIC3X_GPIO2_REG,
1399 			      (aic3x->setup->gpio_func[1] & 0xf) << 4);
1400 	}
1401 
1402 	snd_soc_add_controls(codec, aic3x_snd_controls,
1403 			     ARRAY_SIZE(aic3x_snd_controls));
1404 	if (aic3x->model == AIC3X_MODEL_3007)
1405 		snd_soc_add_controls(codec, &aic3x_classd_amp_gain_ctrl, 1);
1406 
1407 	aic3x_add_widgets(codec);
1408 
1409 	return 0;
1410 
1411 err_notif:
1412 	while (i--)
1413 		regulator_unregister_notifier(aic3x->supplies[i].consumer,
1414 					      &aic3x->disable_nb[i].nb);
1415 	regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);
1416 err_get:
1417 	if (aic3x->gpio_reset >= 0)
1418 		gpio_free(aic3x->gpio_reset);
1419 err_gpio:
1420 	kfree(aic3x);
1421 	return ret;
1422 }
1423 
1424 static int aic3x_remove(struct snd_soc_codec *codec)
1425 {
1426 	struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1427 	int i;
1428 
1429 	aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1430 	if (aic3x->gpio_reset >= 0) {
1431 		gpio_set_value(aic3x->gpio_reset, 0);
1432 		gpio_free(aic3x->gpio_reset);
1433 	}
1434 	for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
1435 		regulator_unregister_notifier(aic3x->supplies[i].consumer,
1436 					      &aic3x->disable_nb[i].nb);
1437 	regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);
1438 
1439 	return 0;
1440 }
1441 
1442 static struct snd_soc_codec_driver soc_codec_dev_aic3x = {
1443 	.set_bias_level = aic3x_set_bias_level,
1444 	.reg_cache_size = ARRAY_SIZE(aic3x_reg),
1445 	.reg_word_size = sizeof(u8),
1446 	.reg_cache_default = aic3x_reg,
1447 	.probe = aic3x_probe,
1448 	.remove = aic3x_remove,
1449 	.suspend = aic3x_suspend,
1450 	.resume = aic3x_resume,
1451 };
1452 
1453 #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
1454 /*
1455  * AIC3X 2 wire address can be up to 4 devices with device addresses
1456  * 0x18, 0x19, 0x1A, 0x1B
1457  */
1458 
1459 static const struct i2c_device_id aic3x_i2c_id[] = {
1460 	[AIC3X_MODEL_3X] = { "tlv320aic3x", 0 },
1461 	[AIC3X_MODEL_33] = { "tlv320aic33", 0 },
1462 	[AIC3X_MODEL_3007] = { "tlv320aic3007", 0 },
1463 	{ }
1464 };
1465 MODULE_DEVICE_TABLE(i2c, aic3x_i2c_id);
1466 
1467 /*
1468  * If the i2c layer weren't so broken, we could pass this kind of data
1469  * around
1470  */
1471 static int aic3x_i2c_probe(struct i2c_client *i2c,
1472 			   const struct i2c_device_id *id)
1473 {
1474 	struct aic3x_pdata *pdata = i2c->dev.platform_data;
1475 	struct aic3x_priv *aic3x;
1476 	int ret;
1477 	const struct i2c_device_id *tbl;
1478 
1479 	aic3x = kzalloc(sizeof(struct aic3x_priv), GFP_KERNEL);
1480 	if (aic3x == NULL) {
1481 		dev_err(&i2c->dev, "failed to create private data\n");
1482 		return -ENOMEM;
1483 	}
1484 
1485 	aic3x->control_data = i2c;
1486 	aic3x->control_type = SND_SOC_I2C;
1487 
1488 	i2c_set_clientdata(i2c, aic3x);
1489 	if (pdata) {
1490 		aic3x->gpio_reset = pdata->gpio_reset;
1491 		aic3x->setup = pdata->setup;
1492 	} else {
1493 		aic3x->gpio_reset = -1;
1494 	}
1495 
1496 	for (tbl = aic3x_i2c_id; tbl->name[0]; tbl++) {
1497 		if (!strcmp(tbl->name, id->name))
1498 			break;
1499 	}
1500 	aic3x->model = tbl - aic3x_i2c_id;
1501 
1502 	ret = snd_soc_register_codec(&i2c->dev,
1503 			&soc_codec_dev_aic3x, &aic3x_dai, 1);
1504 	if (ret < 0)
1505 		kfree(aic3x);
1506 	return ret;
1507 }
1508 
1509 static int aic3x_i2c_remove(struct i2c_client *client)
1510 {
1511 	snd_soc_unregister_codec(&client->dev);
1512 	kfree(i2c_get_clientdata(client));
1513 	return 0;
1514 }
1515 
1516 /* machine i2c codec control layer */
1517 static struct i2c_driver aic3x_i2c_driver = {
1518 	.driver = {
1519 		.name = "tlv320aic3x-codec",
1520 		.owner = THIS_MODULE,
1521 	},
1522 	.probe	= aic3x_i2c_probe,
1523 	.remove = aic3x_i2c_remove,
1524 	.id_table = aic3x_i2c_id,
1525 };
1526 
1527 static inline void aic3x_i2c_init(void)
1528 {
1529 	int ret;
1530 
1531 	ret = i2c_add_driver(&aic3x_i2c_driver);
1532 	if (ret)
1533 		printk(KERN_ERR "%s: error regsitering i2c driver, %d\n",
1534 		       __func__, ret);
1535 }
1536 
1537 static inline void aic3x_i2c_exit(void)
1538 {
1539 	i2c_del_driver(&aic3x_i2c_driver);
1540 }
1541 #endif
1542 
1543 static int __init aic3x_modinit(void)
1544 {
1545 	int ret = 0;
1546 #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
1547 	ret = i2c_add_driver(&aic3x_i2c_driver);
1548 	if (ret != 0) {
1549 		printk(KERN_ERR "Failed to register TLV320AIC3x I2C driver: %d\n",
1550 		       ret);
1551 	}
1552 #endif
1553 	return ret;
1554 }
1555 module_init(aic3x_modinit);
1556 
1557 static void __exit aic3x_exit(void)
1558 {
1559 #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
1560 	i2c_del_driver(&aic3x_i2c_driver);
1561 #endif
1562 }
1563 module_exit(aic3x_exit);
1564 
1565 MODULE_DESCRIPTION("ASoC TLV320AIC3X codec driver");
1566 MODULE_AUTHOR("Vladimir Barinov");
1567 MODULE_LICENSE("GPL");
1568