xref: /openbmc/linux/sound/soc/codecs/tlv320aic3x.c (revision 9ac8d3fb)
1 /*
2  * ALSA SoC TLV320AIC3X codec driver
3  *
4  * Author:      Vladimir Barinov, <vbarinov@embeddedalley.com>
5  * Copyright:   (C) 2007 MontaVista Software, Inc., <source@mvista.com>
6  *
7  * Based on sound/soc/codecs/wm8753.c by Liam Girdwood
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * Notes:
14  *  The AIC3X is a driver for a low power stereo audio
15  *  codecs aic31, aic32, aic33.
16  *
17  *  It supports full aic33 codec functionality.
18  *  The compatibility with aic32, aic31 is as follows:
19  *        aic32        |        aic31
20  *  ---------------------------------------
21  *   MONO_LOUT -> N/A  |  MONO_LOUT -> N/A
22  *                     |  IN1L -> LINE1L
23  *                     |  IN1R -> LINE1R
24  *                     |  IN2L -> LINE2L
25  *                     |  IN2R -> LINE2R
26  *                     |  MIC3L/R -> N/A
27  *   truncated internal functionality in
28  *   accordance with documentation
29  *  ---------------------------------------
30  *
31  *  Hence the machine layer should disable unsupported inputs/outputs by
32  *  snd_soc_dapm_disable_pin(codec, "MONO_LOUT"), etc.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/pm.h>
40 #include <linux/i2c.h>
41 #include <linux/platform_device.h>
42 #include <sound/core.h>
43 #include <sound/pcm.h>
44 #include <sound/pcm_params.h>
45 #include <sound/soc.h>
46 #include <sound/soc-dapm.h>
47 #include <sound/initval.h>
48 
49 #include "tlv320aic3x.h"
50 
51 #define AIC3X_VERSION "0.2"
52 
53 /* codec private data */
54 struct aic3x_priv {
55 	unsigned int sysclk;
56 	int master;
57 };
58 
59 /*
60  * AIC3X register cache
61  * We can't read the AIC3X register space when we are
62  * using 2 wire for device control, so we cache them instead.
63  * There is no point in caching the reset register
64  */
65 static const u8 aic3x_reg[AIC3X_CACHEREGNUM] = {
66 	0x00, 0x00, 0x00, 0x10,	/* 0 */
67 	0x04, 0x00, 0x00, 0x00,	/* 4 */
68 	0x00, 0x00, 0x00, 0x01,	/* 8 */
69 	0x00, 0x00, 0x00, 0x80,	/* 12 */
70 	0x80, 0xff, 0xff, 0x78,	/* 16 */
71 	0x78, 0x78, 0x78, 0x78,	/* 20 */
72 	0x78, 0x00, 0x00, 0xfe,	/* 24 */
73 	0x00, 0x00, 0xfe, 0x00,	/* 28 */
74 	0x18, 0x18, 0x00, 0x00,	/* 32 */
75 	0x00, 0x00, 0x00, 0x00,	/* 36 */
76 	0x00, 0x00, 0x00, 0x80,	/* 40 */
77 	0x80, 0x00, 0x00, 0x00,	/* 44 */
78 	0x00, 0x00, 0x00, 0x04,	/* 48 */
79 	0x00, 0x00, 0x00, 0x00,	/* 52 */
80 	0x00, 0x00, 0x04, 0x00,	/* 56 */
81 	0x00, 0x00, 0x00, 0x00,	/* 60 */
82 	0x00, 0x04, 0x00, 0x00,	/* 64 */
83 	0x00, 0x00, 0x00, 0x00,	/* 68 */
84 	0x04, 0x00, 0x00, 0x00,	/* 72 */
85 	0x00, 0x00, 0x00, 0x00,	/* 76 */
86 	0x00, 0x00, 0x00, 0x00,	/* 80 */
87 	0x00, 0x00, 0x00, 0x00,	/* 84 */
88 	0x00, 0x00, 0x00, 0x00,	/* 88 */
89 	0x00, 0x00, 0x00, 0x00,	/* 92 */
90 	0x00, 0x00, 0x00, 0x00,	/* 96 */
91 	0x00, 0x00, 0x02,	/* 100 */
92 };
93 
94 /*
95  * read aic3x register cache
96  */
97 static inline unsigned int aic3x_read_reg_cache(struct snd_soc_codec *codec,
98 						unsigned int reg)
99 {
100 	u8 *cache = codec->reg_cache;
101 	if (reg >= AIC3X_CACHEREGNUM)
102 		return -1;
103 	return cache[reg];
104 }
105 
106 /*
107  * write aic3x register cache
108  */
109 static inline void aic3x_write_reg_cache(struct snd_soc_codec *codec,
110 					 u8 reg, u8 value)
111 {
112 	u8 *cache = codec->reg_cache;
113 	if (reg >= AIC3X_CACHEREGNUM)
114 		return;
115 	cache[reg] = value;
116 }
117 
118 /*
119  * write to the aic3x register space
120  */
121 static int aic3x_write(struct snd_soc_codec *codec, unsigned int reg,
122 		       unsigned int value)
123 {
124 	u8 data[2];
125 
126 	/* data is
127 	 *   D15..D8 aic3x register offset
128 	 *   D7...D0 register data
129 	 */
130 	data[0] = reg & 0xff;
131 	data[1] = value & 0xff;
132 
133 	aic3x_write_reg_cache(codec, data[0], data[1]);
134 	if (codec->hw_write(codec->control_data, data, 2) == 2)
135 		return 0;
136 	else
137 		return -EIO;
138 }
139 
140 /*
141  * read from the aic3x register space
142  */
143 static int aic3x_read(struct snd_soc_codec *codec, unsigned int reg,
144 		      u8 *value)
145 {
146 	*value = reg & 0xff;
147 	if (codec->hw_read(codec->control_data, value, 1) != 1)
148 		return -EIO;
149 
150 	aic3x_write_reg_cache(codec, reg, *value);
151 	return 0;
152 }
153 
154 #define SOC_DAPM_SINGLE_AIC3X(xname, reg, shift, mask, invert) \
155 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
156 	.info = snd_soc_info_volsw, \
157 	.get = snd_soc_dapm_get_volsw, .put = snd_soc_dapm_put_volsw_aic3x, \
158 	.private_value =  SOC_SINGLE_VALUE(reg, shift, mask, invert) }
159 
160 /*
161  * All input lines are connected when !0xf and disconnected with 0xf bit field,
162  * so we have to use specific dapm_put call for input mixer
163  */
164 static int snd_soc_dapm_put_volsw_aic3x(struct snd_kcontrol *kcontrol,
165 					struct snd_ctl_elem_value *ucontrol)
166 {
167 	struct snd_soc_dapm_widget *widget = snd_kcontrol_chip(kcontrol);
168 	int reg = kcontrol->private_value & 0xff;
169 	int shift = (kcontrol->private_value >> 8) & 0x0f;
170 	int mask = (kcontrol->private_value >> 16) & 0xff;
171 	int invert = (kcontrol->private_value >> 24) & 0x01;
172 	unsigned short val, val_mask;
173 	int ret;
174 	struct snd_soc_dapm_path *path;
175 	int found = 0;
176 
177 	val = (ucontrol->value.integer.value[0] & mask);
178 
179 	mask = 0xf;
180 	if (val)
181 		val = mask;
182 
183 	if (invert)
184 		val = mask - val;
185 	val_mask = mask << shift;
186 	val = val << shift;
187 
188 	mutex_lock(&widget->codec->mutex);
189 
190 	if (snd_soc_test_bits(widget->codec, reg, val_mask, val)) {
191 		/* find dapm widget path assoc with kcontrol */
192 		list_for_each_entry(path, &widget->codec->dapm_paths, list) {
193 			if (path->kcontrol != kcontrol)
194 				continue;
195 
196 			/* found, now check type */
197 			found = 1;
198 			if (val)
199 				/* new connection */
200 				path->connect = invert ? 0 : 1;
201 			else
202 				/* old connection must be powered down */
203 				path->connect = invert ? 1 : 0;
204 			break;
205 		}
206 
207 		if (found)
208 			snd_soc_dapm_sync(widget->codec);
209 	}
210 
211 	ret = snd_soc_update_bits(widget->codec, reg, val_mask, val);
212 
213 	mutex_unlock(&widget->codec->mutex);
214 	return ret;
215 }
216 
217 static const char *aic3x_left_dac_mux[] = { "DAC_L1", "DAC_L3", "DAC_L2" };
218 static const char *aic3x_right_dac_mux[] = { "DAC_R1", "DAC_R3", "DAC_R2" };
219 static const char *aic3x_left_hpcom_mux[] =
220     { "differential of HPLOUT", "constant VCM", "single-ended" };
221 static const char *aic3x_right_hpcom_mux[] =
222     { "differential of HPROUT", "constant VCM", "single-ended",
223       "differential of HPLCOM", "external feedback" };
224 static const char *aic3x_linein_mode_mux[] = { "single-ended", "differential" };
225 static const char *aic3x_adc_hpf[] =
226     { "Disabled", "0.0045xFs", "0.0125xFs", "0.025xFs" };
227 
228 #define LDAC_ENUM	0
229 #define RDAC_ENUM	1
230 #define LHPCOM_ENUM	2
231 #define RHPCOM_ENUM	3
232 #define LINE1L_ENUM	4
233 #define LINE1R_ENUM	5
234 #define LINE2L_ENUM	6
235 #define LINE2R_ENUM	7
236 #define ADC_HPF_ENUM	8
237 
238 static const struct soc_enum aic3x_enum[] = {
239 	SOC_ENUM_SINGLE(DAC_LINE_MUX, 6, 3, aic3x_left_dac_mux),
240 	SOC_ENUM_SINGLE(DAC_LINE_MUX, 4, 3, aic3x_right_dac_mux),
241 	SOC_ENUM_SINGLE(HPLCOM_CFG, 4, 3, aic3x_left_hpcom_mux),
242 	SOC_ENUM_SINGLE(HPRCOM_CFG, 3, 5, aic3x_right_hpcom_mux),
243 	SOC_ENUM_SINGLE(LINE1L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
244 	SOC_ENUM_SINGLE(LINE1R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
245 	SOC_ENUM_SINGLE(LINE2L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
246 	SOC_ENUM_SINGLE(LINE2R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
247 	SOC_ENUM_DOUBLE(AIC3X_CODEC_DFILT_CTRL, 6, 4, 4, aic3x_adc_hpf),
248 };
249 
250 static const struct snd_kcontrol_new aic3x_snd_controls[] = {
251 	/* Output */
252 	SOC_DOUBLE_R("PCM Playback Volume", LDAC_VOL, RDAC_VOL, 0, 0x7f, 1),
253 
254 	SOC_DOUBLE_R("Line DAC Playback Volume", DACL1_2_LLOPM_VOL,
255 		     DACR1_2_RLOPM_VOL, 0, 0x7f, 1),
256 	SOC_DOUBLE_R("Line DAC Playback Switch", LLOPM_CTRL, RLOPM_CTRL, 3,
257 		     0x01, 0),
258 	SOC_DOUBLE_R("Line PGA Bypass Playback Volume", PGAL_2_LLOPM_VOL,
259 		     PGAR_2_RLOPM_VOL, 0, 0x7f, 1),
260 	SOC_DOUBLE_R("Line Line2 Bypass Playback Volume", LINE2L_2_LLOPM_VOL,
261 		     LINE2R_2_RLOPM_VOL, 0, 0x7f, 1),
262 
263 	SOC_DOUBLE_R("Mono DAC Playback Volume", DACL1_2_MONOLOPM_VOL,
264 		     DACR1_2_MONOLOPM_VOL, 0, 0x7f, 1),
265 	SOC_SINGLE("Mono DAC Playback Switch", MONOLOPM_CTRL, 3, 0x01, 0),
266 	SOC_DOUBLE_R("Mono PGA Bypass Playback Volume", PGAL_2_MONOLOPM_VOL,
267 		     PGAR_2_MONOLOPM_VOL, 0, 0x7f, 1),
268 	SOC_DOUBLE_R("Mono Line2 Bypass Playback Volume", LINE2L_2_MONOLOPM_VOL,
269 		     LINE2R_2_MONOLOPM_VOL, 0, 0x7f, 1),
270 
271 	SOC_DOUBLE_R("HP DAC Playback Volume", DACL1_2_HPLOUT_VOL,
272 		     DACR1_2_HPROUT_VOL, 0, 0x7f, 1),
273 	SOC_DOUBLE_R("HP DAC Playback Switch", HPLOUT_CTRL, HPROUT_CTRL, 3,
274 		     0x01, 0),
275 	SOC_DOUBLE_R("HP PGA Bypass Playback Volume", PGAL_2_HPLOUT_VOL,
276 		     PGAR_2_HPROUT_VOL, 0, 0x7f, 1),
277 	SOC_DOUBLE_R("HP Line2 Bypass Playback Volume", LINE2L_2_HPLOUT_VOL,
278 		     LINE2R_2_HPROUT_VOL, 0, 0x7f, 1),
279 
280 	SOC_DOUBLE_R("HPCOM DAC Playback Volume", DACL1_2_HPLCOM_VOL,
281 		     DACR1_2_HPRCOM_VOL, 0, 0x7f, 1),
282 	SOC_DOUBLE_R("HPCOM DAC Playback Switch", HPLCOM_CTRL, HPRCOM_CTRL, 3,
283 		     0x01, 0),
284 	SOC_DOUBLE_R("HPCOM PGA Bypass Playback Volume", PGAL_2_HPLCOM_VOL,
285 		     PGAR_2_HPRCOM_VOL, 0, 0x7f, 1),
286 	SOC_DOUBLE_R("HPCOM Line2 Bypass Playback Volume", LINE2L_2_HPLCOM_VOL,
287 		     LINE2R_2_HPRCOM_VOL, 0, 0x7f, 1),
288 
289 	/*
290 	 * Note: enable Automatic input Gain Controller with care. It can
291 	 * adjust PGA to max value when ADC is on and will never go back.
292 	*/
293 	SOC_DOUBLE_R("AGC Switch", LAGC_CTRL_A, RAGC_CTRL_A, 7, 0x01, 0),
294 
295 	/* Input */
296 	SOC_DOUBLE_R("PGA Capture Volume", LADC_VOL, RADC_VOL, 0, 0x7f, 0),
297 	SOC_DOUBLE_R("PGA Capture Switch", LADC_VOL, RADC_VOL, 7, 0x01, 1),
298 
299 	SOC_ENUM("ADC HPF Cut-off", aic3x_enum[ADC_HPF_ENUM]),
300 };
301 
302 /* add non dapm controls */
303 static int aic3x_add_controls(struct snd_soc_codec *codec)
304 {
305 	int err, i;
306 
307 	for (i = 0; i < ARRAY_SIZE(aic3x_snd_controls); i++) {
308 		err = snd_ctl_add(codec->card,
309 				  snd_soc_cnew(&aic3x_snd_controls[i],
310 					       codec, NULL));
311 		if (err < 0)
312 			return err;
313 	}
314 
315 	return 0;
316 }
317 
318 /* Left DAC Mux */
319 static const struct snd_kcontrol_new aic3x_left_dac_mux_controls =
320 SOC_DAPM_ENUM("Route", aic3x_enum[LDAC_ENUM]);
321 
322 /* Right DAC Mux */
323 static const struct snd_kcontrol_new aic3x_right_dac_mux_controls =
324 SOC_DAPM_ENUM("Route", aic3x_enum[RDAC_ENUM]);
325 
326 /* Left HPCOM Mux */
327 static const struct snd_kcontrol_new aic3x_left_hpcom_mux_controls =
328 SOC_DAPM_ENUM("Route", aic3x_enum[LHPCOM_ENUM]);
329 
330 /* Right HPCOM Mux */
331 static const struct snd_kcontrol_new aic3x_right_hpcom_mux_controls =
332 SOC_DAPM_ENUM("Route", aic3x_enum[RHPCOM_ENUM]);
333 
334 /* Left DAC_L1 Mixer */
335 static const struct snd_kcontrol_new aic3x_left_dac_mixer_controls[] = {
336 	SOC_DAPM_SINGLE("Line Switch", DACL1_2_LLOPM_VOL, 7, 1, 0),
337 	SOC_DAPM_SINGLE("Mono Switch", DACL1_2_MONOLOPM_VOL, 7, 1, 0),
338 	SOC_DAPM_SINGLE("HP Switch", DACL1_2_HPLOUT_VOL, 7, 1, 0),
339 	SOC_DAPM_SINGLE("HPCOM Switch", DACL1_2_HPLCOM_VOL, 7, 1, 0),
340 };
341 
342 /* Right DAC_R1 Mixer */
343 static const struct snd_kcontrol_new aic3x_right_dac_mixer_controls[] = {
344 	SOC_DAPM_SINGLE("Line Switch", DACR1_2_RLOPM_VOL, 7, 1, 0),
345 	SOC_DAPM_SINGLE("Mono Switch", DACR1_2_MONOLOPM_VOL, 7, 1, 0),
346 	SOC_DAPM_SINGLE("HP Switch", DACR1_2_HPROUT_VOL, 7, 1, 0),
347 	SOC_DAPM_SINGLE("HPCOM Switch", DACR1_2_HPRCOM_VOL, 7, 1, 0),
348 };
349 
350 /* Left PGA Mixer */
351 static const struct snd_kcontrol_new aic3x_left_pga_mixer_controls[] = {
352 	SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_LADC_CTRL, 3, 1, 1),
353 	SOC_DAPM_SINGLE_AIC3X("Line2L Switch", LINE2L_2_LADC_CTRL, 3, 1, 1),
354 	SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_LADC_CTRL, 4, 1, 1),
355 };
356 
357 /* Right PGA Mixer */
358 static const struct snd_kcontrol_new aic3x_right_pga_mixer_controls[] = {
359 	SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_RADC_CTRL, 3, 1, 1),
360 	SOC_DAPM_SINGLE_AIC3X("Line2R Switch", LINE2R_2_RADC_CTRL, 3, 1, 1),
361 	SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_RADC_CTRL, 0, 1, 1),
362 };
363 
364 /* Left Line1 Mux */
365 static const struct snd_kcontrol_new aic3x_left_line1_mux_controls =
366 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_ENUM]);
367 
368 /* Right Line1 Mux */
369 static const struct snd_kcontrol_new aic3x_right_line1_mux_controls =
370 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_ENUM]);
371 
372 /* Left Line2 Mux */
373 static const struct snd_kcontrol_new aic3x_left_line2_mux_controls =
374 SOC_DAPM_ENUM("Route", aic3x_enum[LINE2L_ENUM]);
375 
376 /* Right Line2 Mux */
377 static const struct snd_kcontrol_new aic3x_right_line2_mux_controls =
378 SOC_DAPM_ENUM("Route", aic3x_enum[LINE2R_ENUM]);
379 
380 /* Left PGA Bypass Mixer */
381 static const struct snd_kcontrol_new aic3x_left_pga_bp_mixer_controls[] = {
382 	SOC_DAPM_SINGLE("Line Switch", PGAL_2_LLOPM_VOL, 7, 1, 0),
383 	SOC_DAPM_SINGLE("Mono Switch", PGAL_2_MONOLOPM_VOL, 7, 1, 0),
384 	SOC_DAPM_SINGLE("HP Switch", PGAL_2_HPLOUT_VOL, 7, 1, 0),
385 	SOC_DAPM_SINGLE("HPCOM Switch", PGAL_2_HPLCOM_VOL, 7, 1, 0),
386 };
387 
388 /* Right PGA Bypass Mixer */
389 static const struct snd_kcontrol_new aic3x_right_pga_bp_mixer_controls[] = {
390 	SOC_DAPM_SINGLE("Line Switch", PGAR_2_RLOPM_VOL, 7, 1, 0),
391 	SOC_DAPM_SINGLE("Mono Switch", PGAR_2_MONOLOPM_VOL, 7, 1, 0),
392 	SOC_DAPM_SINGLE("HP Switch", PGAR_2_HPROUT_VOL, 7, 1, 0),
393 	SOC_DAPM_SINGLE("HPCOM Switch", PGAR_2_HPRCOM_VOL, 7, 1, 0),
394 };
395 
396 /* Left Line2 Bypass Mixer */
397 static const struct snd_kcontrol_new aic3x_left_line2_bp_mixer_controls[] = {
398 	SOC_DAPM_SINGLE("Line Switch", LINE2L_2_LLOPM_VOL, 7, 1, 0),
399 	SOC_DAPM_SINGLE("Mono Switch", LINE2L_2_MONOLOPM_VOL, 7, 1, 0),
400 	SOC_DAPM_SINGLE("HP Switch", LINE2L_2_HPLOUT_VOL, 7, 1, 0),
401 	SOC_DAPM_SINGLE("HPCOM Switch", LINE2L_2_HPLCOM_VOL, 7, 1, 0),
402 };
403 
404 /* Right Line2 Bypass Mixer */
405 static const struct snd_kcontrol_new aic3x_right_line2_bp_mixer_controls[] = {
406 	SOC_DAPM_SINGLE("Line Switch", LINE2R_2_RLOPM_VOL, 7, 1, 0),
407 	SOC_DAPM_SINGLE("Mono Switch", LINE2R_2_MONOLOPM_VOL, 7, 1, 0),
408 	SOC_DAPM_SINGLE("HP Switch", LINE2R_2_HPROUT_VOL, 7, 1, 0),
409 	SOC_DAPM_SINGLE("HPCOM Switch", LINE2R_2_HPRCOM_VOL, 7, 1, 0),
410 };
411 
412 static const struct snd_soc_dapm_widget aic3x_dapm_widgets[] = {
413 	/* Left DAC to Left Outputs */
414 	SND_SOC_DAPM_DAC("Left DAC", "Left Playback", DAC_PWR, 7, 0),
415 	SND_SOC_DAPM_MUX("Left DAC Mux", SND_SOC_NOPM, 0, 0,
416 			 &aic3x_left_dac_mux_controls),
417 	SND_SOC_DAPM_MIXER("Left DAC_L1 Mixer", SND_SOC_NOPM, 0, 0,
418 			   &aic3x_left_dac_mixer_controls[0],
419 			   ARRAY_SIZE(aic3x_left_dac_mixer_controls)),
420 	SND_SOC_DAPM_MUX("Left HPCOM Mux", SND_SOC_NOPM, 0, 0,
421 			 &aic3x_left_hpcom_mux_controls),
422 	SND_SOC_DAPM_PGA("Left Line Out", LLOPM_CTRL, 0, 0, NULL, 0),
423 	SND_SOC_DAPM_PGA("Left HP Out", HPLOUT_CTRL, 0, 0, NULL, 0),
424 	SND_SOC_DAPM_PGA("Left HP Com", HPLCOM_CTRL, 0, 0, NULL, 0),
425 
426 	/* Right DAC to Right Outputs */
427 	SND_SOC_DAPM_DAC("Right DAC", "Right Playback", DAC_PWR, 6, 0),
428 	SND_SOC_DAPM_MUX("Right DAC Mux", SND_SOC_NOPM, 0, 0,
429 			 &aic3x_right_dac_mux_controls),
430 	SND_SOC_DAPM_MIXER("Right DAC_R1 Mixer", SND_SOC_NOPM, 0, 0,
431 			   &aic3x_right_dac_mixer_controls[0],
432 			   ARRAY_SIZE(aic3x_right_dac_mixer_controls)),
433 	SND_SOC_DAPM_MUX("Right HPCOM Mux", SND_SOC_NOPM, 0, 0,
434 			 &aic3x_right_hpcom_mux_controls),
435 	SND_SOC_DAPM_PGA("Right Line Out", RLOPM_CTRL, 0, 0, NULL, 0),
436 	SND_SOC_DAPM_PGA("Right HP Out", HPROUT_CTRL, 0, 0, NULL, 0),
437 	SND_SOC_DAPM_PGA("Right HP Com", HPRCOM_CTRL, 0, 0, NULL, 0),
438 
439 	/* Mono Output */
440 	SND_SOC_DAPM_PGA("Mono Out", MONOLOPM_CTRL, 0, 0, NULL, 0),
441 
442 	/* Left Inputs to Left ADC */
443 	SND_SOC_DAPM_ADC("Left ADC", "Left Capture", LINE1L_2_LADC_CTRL, 2, 0),
444 	SND_SOC_DAPM_MIXER("Left PGA Mixer", SND_SOC_NOPM, 0, 0,
445 			   &aic3x_left_pga_mixer_controls[0],
446 			   ARRAY_SIZE(aic3x_left_pga_mixer_controls)),
447 	SND_SOC_DAPM_MUX("Left Line1L Mux", SND_SOC_NOPM, 0, 0,
448 			 &aic3x_left_line1_mux_controls),
449 	SND_SOC_DAPM_MUX("Left Line2L Mux", SND_SOC_NOPM, 0, 0,
450 			 &aic3x_left_line2_mux_controls),
451 
452 	/* Right Inputs to Right ADC */
453 	SND_SOC_DAPM_ADC("Right ADC", "Right Capture",
454 			 LINE1R_2_RADC_CTRL, 2, 0),
455 	SND_SOC_DAPM_MIXER("Right PGA Mixer", SND_SOC_NOPM, 0, 0,
456 			   &aic3x_right_pga_mixer_controls[0],
457 			   ARRAY_SIZE(aic3x_right_pga_mixer_controls)),
458 	SND_SOC_DAPM_MUX("Right Line1R Mux", SND_SOC_NOPM, 0, 0,
459 			 &aic3x_right_line1_mux_controls),
460 	SND_SOC_DAPM_MUX("Right Line2R Mux", SND_SOC_NOPM, 0, 0,
461 			 &aic3x_right_line2_mux_controls),
462 
463 	/*
464 	 * Not a real mic bias widget but similar function. This is for dynamic
465 	 * control of GPIO1 digital mic modulator clock output function when
466 	 * using digital mic.
467 	 */
468 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "GPIO1 dmic modclk",
469 			 AIC3X_GPIO1_REG, 4, 0xf,
470 			 AIC3X_GPIO1_FUNC_DIGITAL_MIC_MODCLK,
471 			 AIC3X_GPIO1_FUNC_DISABLED),
472 
473 	/*
474 	 * Also similar function like mic bias. Selects digital mic with
475 	 * configurable oversampling rate instead of ADC converter.
476 	 */
477 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 128",
478 			 AIC3X_ASD_INTF_CTRLA, 0, 3, 1, 0),
479 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 64",
480 			 AIC3X_ASD_INTF_CTRLA, 0, 3, 2, 0),
481 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 32",
482 			 AIC3X_ASD_INTF_CTRLA, 0, 3, 3, 0),
483 
484 	/* Mic Bias */
485 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2V",
486 			 MICBIAS_CTRL, 6, 3, 1, 0),
487 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2.5V",
488 			 MICBIAS_CTRL, 6, 3, 2, 0),
489 	SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias AVDD",
490 			 MICBIAS_CTRL, 6, 3, 3, 0),
491 
492 	/* Left PGA to Left Output bypass */
493 	SND_SOC_DAPM_MIXER("Left PGA Bypass Mixer", SND_SOC_NOPM, 0, 0,
494 			   &aic3x_left_pga_bp_mixer_controls[0],
495 			   ARRAY_SIZE(aic3x_left_pga_bp_mixer_controls)),
496 
497 	/* Right PGA to Right Output bypass */
498 	SND_SOC_DAPM_MIXER("Right PGA Bypass Mixer", SND_SOC_NOPM, 0, 0,
499 			   &aic3x_right_pga_bp_mixer_controls[0],
500 			   ARRAY_SIZE(aic3x_right_pga_bp_mixer_controls)),
501 
502 	/* Left Line2 to Left Output bypass */
503 	SND_SOC_DAPM_MIXER("Left Line2 Bypass Mixer", SND_SOC_NOPM, 0, 0,
504 			   &aic3x_left_line2_bp_mixer_controls[0],
505 			   ARRAY_SIZE(aic3x_left_line2_bp_mixer_controls)),
506 
507 	/* Right Line2 to Right Output bypass */
508 	SND_SOC_DAPM_MIXER("Right Line2 Bypass Mixer", SND_SOC_NOPM, 0, 0,
509 			   &aic3x_right_line2_bp_mixer_controls[0],
510 			   ARRAY_SIZE(aic3x_right_line2_bp_mixer_controls)),
511 
512 	SND_SOC_DAPM_OUTPUT("LLOUT"),
513 	SND_SOC_DAPM_OUTPUT("RLOUT"),
514 	SND_SOC_DAPM_OUTPUT("MONO_LOUT"),
515 	SND_SOC_DAPM_OUTPUT("HPLOUT"),
516 	SND_SOC_DAPM_OUTPUT("HPROUT"),
517 	SND_SOC_DAPM_OUTPUT("HPLCOM"),
518 	SND_SOC_DAPM_OUTPUT("HPRCOM"),
519 
520 	SND_SOC_DAPM_INPUT("MIC3L"),
521 	SND_SOC_DAPM_INPUT("MIC3R"),
522 	SND_SOC_DAPM_INPUT("LINE1L"),
523 	SND_SOC_DAPM_INPUT("LINE1R"),
524 	SND_SOC_DAPM_INPUT("LINE2L"),
525 	SND_SOC_DAPM_INPUT("LINE2R"),
526 };
527 
528 static const struct snd_soc_dapm_route intercon[] = {
529 	/* Left Output */
530 	{"Left DAC Mux", "DAC_L1", "Left DAC"},
531 	{"Left DAC Mux", "DAC_L2", "Left DAC"},
532 	{"Left DAC Mux", "DAC_L3", "Left DAC"},
533 
534 	{"Left DAC_L1 Mixer", "Line Switch", "Left DAC Mux"},
535 	{"Left DAC_L1 Mixer", "Mono Switch", "Left DAC Mux"},
536 	{"Left DAC_L1 Mixer", "HP Switch", "Left DAC Mux"},
537 	{"Left DAC_L1 Mixer", "HPCOM Switch", "Left DAC Mux"},
538 	{"Left Line Out", NULL, "Left DAC Mux"},
539 	{"Left HP Out", NULL, "Left DAC Mux"},
540 
541 	{"Left HPCOM Mux", "differential of HPLOUT", "Left DAC_L1 Mixer"},
542 	{"Left HPCOM Mux", "constant VCM", "Left DAC_L1 Mixer"},
543 	{"Left HPCOM Mux", "single-ended", "Left DAC_L1 Mixer"},
544 
545 	{"Left Line Out", NULL, "Left DAC_L1 Mixer"},
546 	{"Mono Out", NULL, "Left DAC_L1 Mixer"},
547 	{"Left HP Out", NULL, "Left DAC_L1 Mixer"},
548 	{"Left HP Com", NULL, "Left HPCOM Mux"},
549 
550 	{"LLOUT", NULL, "Left Line Out"},
551 	{"LLOUT", NULL, "Left Line Out"},
552 	{"HPLOUT", NULL, "Left HP Out"},
553 	{"HPLCOM", NULL, "Left HP Com"},
554 
555 	/* Right Output */
556 	{"Right DAC Mux", "DAC_R1", "Right DAC"},
557 	{"Right DAC Mux", "DAC_R2", "Right DAC"},
558 	{"Right DAC Mux", "DAC_R3", "Right DAC"},
559 
560 	{"Right DAC_R1 Mixer", "Line Switch", "Right DAC Mux"},
561 	{"Right DAC_R1 Mixer", "Mono Switch", "Right DAC Mux"},
562 	{"Right DAC_R1 Mixer", "HP Switch", "Right DAC Mux"},
563 	{"Right DAC_R1 Mixer", "HPCOM Switch", "Right DAC Mux"},
564 	{"Right Line Out", NULL, "Right DAC Mux"},
565 	{"Right HP Out", NULL, "Right DAC Mux"},
566 
567 	{"Right HPCOM Mux", "differential of HPROUT", "Right DAC_R1 Mixer"},
568 	{"Right HPCOM Mux", "constant VCM", "Right DAC_R1 Mixer"},
569 	{"Right HPCOM Mux", "single-ended", "Right DAC_R1 Mixer"},
570 	{"Right HPCOM Mux", "differential of HPLCOM", "Right DAC_R1 Mixer"},
571 	{"Right HPCOM Mux", "external feedback", "Right DAC_R1 Mixer"},
572 
573 	{"Right Line Out", NULL, "Right DAC_R1 Mixer"},
574 	{"Mono Out", NULL, "Right DAC_R1 Mixer"},
575 	{"Right HP Out", NULL, "Right DAC_R1 Mixer"},
576 	{"Right HP Com", NULL, "Right HPCOM Mux"},
577 
578 	{"RLOUT", NULL, "Right Line Out"},
579 	{"RLOUT", NULL, "Right Line Out"},
580 	{"HPROUT", NULL, "Right HP Out"},
581 	{"HPRCOM", NULL, "Right HP Com"},
582 
583 	/* Mono Output */
584 	{"MONO_LOUT", NULL, "Mono Out"},
585 	{"MONO_LOUT", NULL, "Mono Out"},
586 
587 	/* Left Input */
588 	{"Left Line1L Mux", "single-ended", "LINE1L"},
589 	{"Left Line1L Mux", "differential", "LINE1L"},
590 
591 	{"Left Line2L Mux", "single-ended", "LINE2L"},
592 	{"Left Line2L Mux", "differential", "LINE2L"},
593 
594 	{"Left PGA Mixer", "Line1L Switch", "Left Line1L Mux"},
595 	{"Left PGA Mixer", "Line2L Switch", "Left Line2L Mux"},
596 	{"Left PGA Mixer", "Mic3L Switch", "MIC3L"},
597 
598 	{"Left ADC", NULL, "Left PGA Mixer"},
599 	{"Left ADC", NULL, "GPIO1 dmic modclk"},
600 
601 	/* Right Input */
602 	{"Right Line1R Mux", "single-ended", "LINE1R"},
603 	{"Right Line1R Mux", "differential", "LINE1R"},
604 
605 	{"Right Line2R Mux", "single-ended", "LINE2R"},
606 	{"Right Line2R Mux", "differential", "LINE2R"},
607 
608 	{"Right PGA Mixer", "Line1R Switch", "Right Line1R Mux"},
609 	{"Right PGA Mixer", "Line2R Switch", "Right Line2R Mux"},
610 	{"Right PGA Mixer", "Mic3R Switch", "MIC3R"},
611 
612 	{"Right ADC", NULL, "Right PGA Mixer"},
613 	{"Right ADC", NULL, "GPIO1 dmic modclk"},
614 
615 	/* Left PGA Bypass */
616 	{"Left PGA Bypass Mixer", "Line Switch", "Left PGA Mixer"},
617 	{"Left PGA Bypass Mixer", "Mono Switch", "Left PGA Mixer"},
618 	{"Left PGA Bypass Mixer", "HP Switch", "Left PGA Mixer"},
619 	{"Left PGA Bypass Mixer", "HPCOM Switch", "Left PGA Mixer"},
620 
621 	{"Left HPCOM Mux", "differential of HPLOUT", "Left PGA Bypass Mixer"},
622 	{"Left HPCOM Mux", "constant VCM", "Left PGA Bypass Mixer"},
623 	{"Left HPCOM Mux", "single-ended", "Left PGA Bypass Mixer"},
624 
625 	{"Left Line Out", NULL, "Left PGA Bypass Mixer"},
626 	{"Mono Out", NULL, "Left PGA Bypass Mixer"},
627 	{"Left HP Out", NULL, "Left PGA Bypass Mixer"},
628 
629 	/* Right PGA Bypass */
630 	{"Right PGA Bypass Mixer", "Line Switch", "Right PGA Mixer"},
631 	{"Right PGA Bypass Mixer", "Mono Switch", "Right PGA Mixer"},
632 	{"Right PGA Bypass Mixer", "HP Switch", "Right PGA Mixer"},
633 	{"Right PGA Bypass Mixer", "HPCOM Switch", "Right PGA Mixer"},
634 
635 	{"Right HPCOM Mux", "differential of HPROUT", "Right PGA Bypass Mixer"},
636 	{"Right HPCOM Mux", "constant VCM", "Right PGA Bypass Mixer"},
637 	{"Right HPCOM Mux", "single-ended", "Right PGA Bypass Mixer"},
638 	{"Right HPCOM Mux", "differential of HPLCOM", "Right PGA Bypass Mixer"},
639 	{"Right HPCOM Mux", "external feedback", "Right PGA Bypass Mixer"},
640 
641 	{"Right Line Out", NULL, "Right PGA Bypass Mixer"},
642 	{"Mono Out", NULL, "Right PGA Bypass Mixer"},
643 	{"Right HP Out", NULL, "Right PGA Bypass Mixer"},
644 
645 	/* Left Line2 Bypass */
646 	{"Left Line2 Bypass Mixer", "Line Switch", "Left Line2L Mux"},
647 	{"Left Line2 Bypass Mixer", "Mono Switch", "Left Line2L Mux"},
648 	{"Left Line2 Bypass Mixer", "HP Switch", "Left Line2L Mux"},
649 	{"Left Line2 Bypass Mixer", "HPCOM Switch", "Left Line2L Mux"},
650 
651 	{"Left HPCOM Mux", "differential of HPLOUT", "Left Line2 Bypass Mixer"},
652 	{"Left HPCOM Mux", "constant VCM", "Left Line2 Bypass Mixer"},
653 	{"Left HPCOM Mux", "single-ended", "Left Line2 Bypass Mixer"},
654 
655 	{"Left Line Out", NULL, "Left Line2 Bypass Mixer"},
656 	{"Mono Out", NULL, "Left Line2 Bypass Mixer"},
657 	{"Left HP Out", NULL, "Left Line2 Bypass Mixer"},
658 
659 	/* Right Line2 Bypass */
660 	{"Right Line2 Bypass Mixer", "Line Switch", "Right Line2R Mux"},
661 	{"Right Line2 Bypass Mixer", "Mono Switch", "Right Line2R Mux"},
662 	{"Right Line2 Bypass Mixer", "HP Switch", "Right Line2R Mux"},
663 	{"Right Line2 Bypass Mixer", "HPCOM Switch", "Right Line2R Mux"},
664 
665 	{"Right HPCOM Mux", "differential of HPROUT", "Right Line2 Bypass Mixer"},
666 	{"Right HPCOM Mux", "constant VCM", "Right Line2 Bypass Mixer"},
667 	{"Right HPCOM Mux", "single-ended", "Right Line2 Bypass Mixer"},
668 	{"Right HPCOM Mux", "differential of HPLCOM", "Right Line2 Bypass Mixer"},
669 	{"Right HPCOM Mux", "external feedback", "Right Line2 Bypass Mixer"},
670 
671 	{"Right Line Out", NULL, "Right Line2 Bypass Mixer"},
672 	{"Mono Out", NULL, "Right Line2 Bypass Mixer"},
673 	{"Right HP Out", NULL, "Right Line2 Bypass Mixer"},
674 
675 	/*
676 	 * Logical path between digital mic enable and GPIO1 modulator clock
677 	 * output function
678 	 */
679 	{"GPIO1 dmic modclk", NULL, "DMic Rate 128"},
680 	{"GPIO1 dmic modclk", NULL, "DMic Rate 64"},
681 	{"GPIO1 dmic modclk", NULL, "DMic Rate 32"},
682 };
683 
684 static int aic3x_add_widgets(struct snd_soc_codec *codec)
685 {
686 	snd_soc_dapm_new_controls(codec, aic3x_dapm_widgets,
687 				  ARRAY_SIZE(aic3x_dapm_widgets));
688 
689 	/* set up audio path interconnects */
690 	snd_soc_dapm_add_routes(codec, intercon, ARRAY_SIZE(intercon));
691 
692 	snd_soc_dapm_new_widgets(codec);
693 	return 0;
694 }
695 
696 static int aic3x_hw_params(struct snd_pcm_substream *substream,
697 			   struct snd_pcm_hw_params *params)
698 {
699 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
700 	struct snd_soc_device *socdev = rtd->socdev;
701 	struct snd_soc_codec *codec = socdev->codec;
702 	struct aic3x_priv *aic3x = codec->private_data;
703 	int codec_clk = 0, bypass_pll = 0, fsref, last_clk = 0;
704 	u8 data, r, p, pll_q, pll_p = 1, pll_r = 1, pll_j = 1;
705 	u16 pll_d = 1;
706 
707 	/* select data word length */
708 	data =
709 	    aic3x_read_reg_cache(codec, AIC3X_ASD_INTF_CTRLB) & (~(0x3 << 4));
710 	switch (params_format(params)) {
711 	case SNDRV_PCM_FORMAT_S16_LE:
712 		break;
713 	case SNDRV_PCM_FORMAT_S20_3LE:
714 		data |= (0x01 << 4);
715 		break;
716 	case SNDRV_PCM_FORMAT_S24_LE:
717 		data |= (0x02 << 4);
718 		break;
719 	case SNDRV_PCM_FORMAT_S32_LE:
720 		data |= (0x03 << 4);
721 		break;
722 	}
723 	aic3x_write(codec, AIC3X_ASD_INTF_CTRLB, data);
724 
725 	/* Fsref can be 44100 or 48000 */
726 	fsref = (params_rate(params) % 11025 == 0) ? 44100 : 48000;
727 
728 	/* Try to find a value for Q which allows us to bypass the PLL and
729 	 * generate CODEC_CLK directly. */
730 	for (pll_q = 2; pll_q < 18; pll_q++)
731 		if (aic3x->sysclk / (128 * pll_q) == fsref) {
732 			bypass_pll = 1;
733 			break;
734 		}
735 
736 	if (bypass_pll) {
737 		pll_q &= 0xf;
738 		aic3x_write(codec, AIC3X_PLL_PROGA_REG, pll_q << PLLQ_SHIFT);
739 		aic3x_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_CLKDIV);
740 	} else
741 		aic3x_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_PLLDIV);
742 
743 	/* Route Left DAC to left channel input and
744 	 * right DAC to right channel input */
745 	data = (LDAC2LCH | RDAC2RCH);
746 	data |= (fsref == 44100) ? FSREF_44100 : FSREF_48000;
747 	if (params_rate(params) >= 64000)
748 		data |= DUAL_RATE_MODE;
749 	aic3x_write(codec, AIC3X_CODEC_DATAPATH_REG, data);
750 
751 	/* codec sample rate select */
752 	data = (fsref * 20) / params_rate(params);
753 	if (params_rate(params) < 64000)
754 		data /= 2;
755 	data /= 5;
756 	data -= 2;
757 	data |= (data << 4);
758 	aic3x_write(codec, AIC3X_SAMPLE_RATE_SEL_REG, data);
759 
760 	if (bypass_pll)
761 		return 0;
762 
763 	/* Use PLL
764 	 * find an apropriate setup for j, d, r and p by iterating over
765 	 * p and r - j and d are calculated for each fraction.
766 	 * Up to 128 values are probed, the closest one wins the game.
767 	 * The sysclk is divided by 1000 to prevent integer overflows.
768 	 */
769 	codec_clk = (2048 * fsref) / (aic3x->sysclk / 1000);
770 
771 	for (r = 1; r <= 16; r++)
772 		for (p = 1; p <= 8; p++) {
773 			int clk, tmp = (codec_clk * pll_r * 10) / pll_p;
774 			u8 j = tmp / 10000;
775 			u16 d = tmp % 10000;
776 
777 			if (j > 63)
778 				continue;
779 
780 			if (d != 0 && aic3x->sysclk < 10000000)
781 				continue;
782 
783 			/* This is actually 1000 * ((j + (d/10000)) * r) / p
784 			 * The term had to be converted to get rid of the
785 			 * division by 10000 */
786 			clk = ((10000 * j * r) + (d * r)) / (10 * p);
787 
788 			/* check whether this values get closer than the best
789 			 * ones we had before */
790 			if (abs(codec_clk - clk) < abs(codec_clk - last_clk)) {
791 				pll_j = j; pll_d = d; pll_r = r; pll_p = p;
792 				last_clk = clk;
793 			}
794 
795 			/* Early exit for exact matches */
796 			if (clk == codec_clk)
797 				break;
798 		}
799 
800 	if (last_clk == 0) {
801 		printk(KERN_ERR "%s(): unable to setup PLL\n", __func__);
802 		return -EINVAL;
803 	}
804 
805 	data = aic3x_read_reg_cache(codec, AIC3X_PLL_PROGA_REG);
806 	aic3x_write(codec, AIC3X_PLL_PROGA_REG, data | (pll_p << PLLP_SHIFT));
807 	aic3x_write(codec, AIC3X_OVRF_STATUS_AND_PLLR_REG, pll_r << PLLR_SHIFT);
808 	aic3x_write(codec, AIC3X_PLL_PROGB_REG, pll_j << PLLJ_SHIFT);
809 	aic3x_write(codec, AIC3X_PLL_PROGC_REG, (pll_d >> 6) << PLLD_MSB_SHIFT);
810 	aic3x_write(codec, AIC3X_PLL_PROGD_REG,
811 		    (pll_d & 0x3F) << PLLD_LSB_SHIFT);
812 
813 	return 0;
814 }
815 
816 static int aic3x_mute(struct snd_soc_dai *dai, int mute)
817 {
818 	struct snd_soc_codec *codec = dai->codec;
819 	u8 ldac_reg = aic3x_read_reg_cache(codec, LDAC_VOL) & ~MUTE_ON;
820 	u8 rdac_reg = aic3x_read_reg_cache(codec, RDAC_VOL) & ~MUTE_ON;
821 
822 	if (mute) {
823 		aic3x_write(codec, LDAC_VOL, ldac_reg | MUTE_ON);
824 		aic3x_write(codec, RDAC_VOL, rdac_reg | MUTE_ON);
825 	} else {
826 		aic3x_write(codec, LDAC_VOL, ldac_reg);
827 		aic3x_write(codec, RDAC_VOL, rdac_reg);
828 	}
829 
830 	return 0;
831 }
832 
833 static int aic3x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
834 				int clk_id, unsigned int freq, int dir)
835 {
836 	struct snd_soc_codec *codec = codec_dai->codec;
837 	struct aic3x_priv *aic3x = codec->private_data;
838 
839 	aic3x->sysclk = freq;
840 	return 0;
841 }
842 
843 static int aic3x_set_dai_fmt(struct snd_soc_dai *codec_dai,
844 			     unsigned int fmt)
845 {
846 	struct snd_soc_codec *codec = codec_dai->codec;
847 	struct aic3x_priv *aic3x = codec->private_data;
848 	u8 iface_areg, iface_breg;
849 
850 	iface_areg = aic3x_read_reg_cache(codec, AIC3X_ASD_INTF_CTRLA) & 0x3f;
851 	iface_breg = aic3x_read_reg_cache(codec, AIC3X_ASD_INTF_CTRLB) & 0x3f;
852 
853 	/* set master/slave audio interface */
854 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
855 	case SND_SOC_DAIFMT_CBM_CFM:
856 		aic3x->master = 1;
857 		iface_areg |= BIT_CLK_MASTER | WORD_CLK_MASTER;
858 		break;
859 	case SND_SOC_DAIFMT_CBS_CFS:
860 		aic3x->master = 0;
861 		break;
862 	default:
863 		return -EINVAL;
864 	}
865 
866 	/*
867 	 * match both interface format and signal polarities since they
868 	 * are fixed
869 	 */
870 	switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK |
871 		       SND_SOC_DAIFMT_INV_MASK)) {
872 	case (SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF):
873 		break;
874 	case (SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_IB_NF):
875 		iface_breg |= (0x01 << 6);
876 		break;
877 	case (SND_SOC_DAIFMT_RIGHT_J | SND_SOC_DAIFMT_NB_NF):
878 		iface_breg |= (0x02 << 6);
879 		break;
880 	case (SND_SOC_DAIFMT_LEFT_J | SND_SOC_DAIFMT_NB_NF):
881 		iface_breg |= (0x03 << 6);
882 		break;
883 	default:
884 		return -EINVAL;
885 	}
886 
887 	/* set iface */
888 	aic3x_write(codec, AIC3X_ASD_INTF_CTRLA, iface_areg);
889 	aic3x_write(codec, AIC3X_ASD_INTF_CTRLB, iface_breg);
890 
891 	return 0;
892 }
893 
894 static int aic3x_set_bias_level(struct snd_soc_codec *codec,
895 				enum snd_soc_bias_level level)
896 {
897 	struct aic3x_priv *aic3x = codec->private_data;
898 	u8 reg;
899 
900 	switch (level) {
901 	case SND_SOC_BIAS_ON:
902 		/* all power is driven by DAPM system */
903 		if (aic3x->master) {
904 			/* enable pll */
905 			reg = aic3x_read_reg_cache(codec, AIC3X_PLL_PROGA_REG);
906 			aic3x_write(codec, AIC3X_PLL_PROGA_REG,
907 				    reg | PLL_ENABLE);
908 		}
909 		break;
910 	case SND_SOC_BIAS_PREPARE:
911 		break;
912 	case SND_SOC_BIAS_STANDBY:
913 		/*
914 		 * all power is driven by DAPM system,
915 		 * so output power is safe if bypass was set
916 		 */
917 		if (aic3x->master) {
918 			/* disable pll */
919 			reg = aic3x_read_reg_cache(codec, AIC3X_PLL_PROGA_REG);
920 			aic3x_write(codec, AIC3X_PLL_PROGA_REG,
921 				    reg & ~PLL_ENABLE);
922 		}
923 		break;
924 	case SND_SOC_BIAS_OFF:
925 		/* force all power off */
926 		reg = aic3x_read_reg_cache(codec, LINE1L_2_LADC_CTRL);
927 		aic3x_write(codec, LINE1L_2_LADC_CTRL, reg & ~LADC_PWR_ON);
928 		reg = aic3x_read_reg_cache(codec, LINE1R_2_RADC_CTRL);
929 		aic3x_write(codec, LINE1R_2_RADC_CTRL, reg & ~RADC_PWR_ON);
930 
931 		reg = aic3x_read_reg_cache(codec, DAC_PWR);
932 		aic3x_write(codec, DAC_PWR, reg & ~(LDAC_PWR_ON | RDAC_PWR_ON));
933 
934 		reg = aic3x_read_reg_cache(codec, HPLOUT_CTRL);
935 		aic3x_write(codec, HPLOUT_CTRL, reg & ~HPLOUT_PWR_ON);
936 		reg = aic3x_read_reg_cache(codec, HPROUT_CTRL);
937 		aic3x_write(codec, HPROUT_CTRL, reg & ~HPROUT_PWR_ON);
938 
939 		reg = aic3x_read_reg_cache(codec, HPLCOM_CTRL);
940 		aic3x_write(codec, HPLCOM_CTRL, reg & ~HPLCOM_PWR_ON);
941 		reg = aic3x_read_reg_cache(codec, HPRCOM_CTRL);
942 		aic3x_write(codec, HPRCOM_CTRL, reg & ~HPRCOM_PWR_ON);
943 
944 		reg = aic3x_read_reg_cache(codec, MONOLOPM_CTRL);
945 		aic3x_write(codec, MONOLOPM_CTRL, reg & ~MONOLOPM_PWR_ON);
946 
947 		reg = aic3x_read_reg_cache(codec, LLOPM_CTRL);
948 		aic3x_write(codec, LLOPM_CTRL, reg & ~LLOPM_PWR_ON);
949 		reg = aic3x_read_reg_cache(codec, RLOPM_CTRL);
950 		aic3x_write(codec, RLOPM_CTRL, reg & ~RLOPM_PWR_ON);
951 
952 		if (aic3x->master) {
953 			/* disable pll */
954 			reg = aic3x_read_reg_cache(codec, AIC3X_PLL_PROGA_REG);
955 			aic3x_write(codec, AIC3X_PLL_PROGA_REG,
956 				    reg & ~PLL_ENABLE);
957 		}
958 		break;
959 	}
960 	codec->bias_level = level;
961 
962 	return 0;
963 }
964 
965 void aic3x_set_gpio(struct snd_soc_codec *codec, int gpio, int state)
966 {
967 	u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
968 	u8 bit = gpio ? 3: 0;
969 	u8 val = aic3x_read_reg_cache(codec, reg) & ~(1 << bit);
970 	aic3x_write(codec, reg, val | (!!state << bit));
971 }
972 EXPORT_SYMBOL_GPL(aic3x_set_gpio);
973 
974 int aic3x_get_gpio(struct snd_soc_codec *codec, int gpio)
975 {
976 	u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
977 	u8 val, bit = gpio ? 2: 1;
978 
979 	aic3x_read(codec, reg, &val);
980 	return (val >> bit) & 1;
981 }
982 EXPORT_SYMBOL_GPL(aic3x_get_gpio);
983 
984 int aic3x_headset_detected(struct snd_soc_codec *codec)
985 {
986 	u8 val;
987 	aic3x_read(codec, AIC3X_RT_IRQ_FLAGS_REG, &val);
988 	return (val >> 2) & 1;
989 }
990 EXPORT_SYMBOL_GPL(aic3x_headset_detected);
991 
992 #define AIC3X_RATES	SNDRV_PCM_RATE_8000_96000
993 #define AIC3X_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \
994 			 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
995 
996 struct snd_soc_dai aic3x_dai = {
997 	.name = "tlv320aic3x",
998 	.playback = {
999 		.stream_name = "Playback",
1000 		.channels_min = 1,
1001 		.channels_max = 2,
1002 		.rates = AIC3X_RATES,
1003 		.formats = AIC3X_FORMATS,},
1004 	.capture = {
1005 		.stream_name = "Capture",
1006 		.channels_min = 1,
1007 		.channels_max = 2,
1008 		.rates = AIC3X_RATES,
1009 		.formats = AIC3X_FORMATS,},
1010 	.ops = {
1011 		.hw_params = aic3x_hw_params,
1012 	},
1013 	.dai_ops = {
1014 		.digital_mute = aic3x_mute,
1015 		.set_sysclk = aic3x_set_dai_sysclk,
1016 		.set_fmt = aic3x_set_dai_fmt,
1017 	}
1018 };
1019 EXPORT_SYMBOL_GPL(aic3x_dai);
1020 
1021 static int aic3x_suspend(struct platform_device *pdev, pm_message_t state)
1022 {
1023 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1024 	struct snd_soc_codec *codec = socdev->codec;
1025 
1026 	aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1027 
1028 	return 0;
1029 }
1030 
1031 static int aic3x_resume(struct platform_device *pdev)
1032 {
1033 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1034 	struct snd_soc_codec *codec = socdev->codec;
1035 	int i;
1036 	u8 data[2];
1037 	u8 *cache = codec->reg_cache;
1038 
1039 	/* Sync reg_cache with the hardware */
1040 	for (i = 0; i < ARRAY_SIZE(aic3x_reg); i++) {
1041 		data[0] = i;
1042 		data[1] = cache[i];
1043 		codec->hw_write(codec->control_data, data, 2);
1044 	}
1045 
1046 	aic3x_set_bias_level(codec, codec->suspend_bias_level);
1047 
1048 	return 0;
1049 }
1050 
1051 /*
1052  * initialise the AIC3X driver
1053  * register the mixer and dsp interfaces with the kernel
1054  */
1055 static int aic3x_init(struct snd_soc_device *socdev)
1056 {
1057 	struct snd_soc_codec *codec = socdev->codec;
1058 	struct aic3x_setup_data *setup = socdev->codec_data;
1059 	int reg, ret = 0;
1060 
1061 	codec->name = "tlv320aic3x";
1062 	codec->owner = THIS_MODULE;
1063 	codec->read = aic3x_read_reg_cache;
1064 	codec->write = aic3x_write;
1065 	codec->set_bias_level = aic3x_set_bias_level;
1066 	codec->dai = &aic3x_dai;
1067 	codec->num_dai = 1;
1068 	codec->reg_cache_size = ARRAY_SIZE(aic3x_reg);
1069 	codec->reg_cache = kmemdup(aic3x_reg, sizeof(aic3x_reg), GFP_KERNEL);
1070 	if (codec->reg_cache == NULL)
1071 		return -ENOMEM;
1072 
1073 	aic3x_write(codec, AIC3X_PAGE_SELECT, PAGE0_SELECT);
1074 	aic3x_write(codec, AIC3X_RESET, SOFT_RESET);
1075 
1076 	/* register pcms */
1077 	ret = snd_soc_new_pcms(socdev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1);
1078 	if (ret < 0) {
1079 		printk(KERN_ERR "aic3x: failed to create pcms\n");
1080 		goto pcm_err;
1081 	}
1082 
1083 	/* DAC default volume and mute */
1084 	aic3x_write(codec, LDAC_VOL, DEFAULT_VOL | MUTE_ON);
1085 	aic3x_write(codec, RDAC_VOL, DEFAULT_VOL | MUTE_ON);
1086 
1087 	/* DAC to HP default volume and route to Output mixer */
1088 	aic3x_write(codec, DACL1_2_HPLOUT_VOL, DEFAULT_VOL | ROUTE_ON);
1089 	aic3x_write(codec, DACR1_2_HPROUT_VOL, DEFAULT_VOL | ROUTE_ON);
1090 	aic3x_write(codec, DACL1_2_HPLCOM_VOL, DEFAULT_VOL | ROUTE_ON);
1091 	aic3x_write(codec, DACR1_2_HPRCOM_VOL, DEFAULT_VOL | ROUTE_ON);
1092 	/* DAC to Line Out default volume and route to Output mixer */
1093 	aic3x_write(codec, DACL1_2_LLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1094 	aic3x_write(codec, DACR1_2_RLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1095 	/* DAC to Mono Line Out default volume and route to Output mixer */
1096 	aic3x_write(codec, DACL1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1097 	aic3x_write(codec, DACR1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1098 
1099 	/* unmute all outputs */
1100 	reg = aic3x_read_reg_cache(codec, LLOPM_CTRL);
1101 	aic3x_write(codec, LLOPM_CTRL, reg | UNMUTE);
1102 	reg = aic3x_read_reg_cache(codec, RLOPM_CTRL);
1103 	aic3x_write(codec, RLOPM_CTRL, reg | UNMUTE);
1104 	reg = aic3x_read_reg_cache(codec, MONOLOPM_CTRL);
1105 	aic3x_write(codec, MONOLOPM_CTRL, reg | UNMUTE);
1106 	reg = aic3x_read_reg_cache(codec, HPLOUT_CTRL);
1107 	aic3x_write(codec, HPLOUT_CTRL, reg | UNMUTE);
1108 	reg = aic3x_read_reg_cache(codec, HPROUT_CTRL);
1109 	aic3x_write(codec, HPROUT_CTRL, reg | UNMUTE);
1110 	reg = aic3x_read_reg_cache(codec, HPLCOM_CTRL);
1111 	aic3x_write(codec, HPLCOM_CTRL, reg | UNMUTE);
1112 	reg = aic3x_read_reg_cache(codec, HPRCOM_CTRL);
1113 	aic3x_write(codec, HPRCOM_CTRL, reg | UNMUTE);
1114 
1115 	/* ADC default volume and unmute */
1116 	aic3x_write(codec, LADC_VOL, DEFAULT_GAIN);
1117 	aic3x_write(codec, RADC_VOL, DEFAULT_GAIN);
1118 	/* By default route Line1 to ADC PGA mixer */
1119 	aic3x_write(codec, LINE1L_2_LADC_CTRL, 0x0);
1120 	aic3x_write(codec, LINE1R_2_RADC_CTRL, 0x0);
1121 
1122 	/* PGA to HP Bypass default volume, disconnect from Output Mixer */
1123 	aic3x_write(codec, PGAL_2_HPLOUT_VOL, DEFAULT_VOL);
1124 	aic3x_write(codec, PGAR_2_HPROUT_VOL, DEFAULT_VOL);
1125 	aic3x_write(codec, PGAL_2_HPLCOM_VOL, DEFAULT_VOL);
1126 	aic3x_write(codec, PGAR_2_HPRCOM_VOL, DEFAULT_VOL);
1127 	/* PGA to Line Out default volume, disconnect from Output Mixer */
1128 	aic3x_write(codec, PGAL_2_LLOPM_VOL, DEFAULT_VOL);
1129 	aic3x_write(codec, PGAR_2_RLOPM_VOL, DEFAULT_VOL);
1130 	/* PGA to Mono Line Out default volume, disconnect from Output Mixer */
1131 	aic3x_write(codec, PGAL_2_MONOLOPM_VOL, DEFAULT_VOL);
1132 	aic3x_write(codec, PGAR_2_MONOLOPM_VOL, DEFAULT_VOL);
1133 
1134 	/* Line2 to HP Bypass default volume, disconnect from Output Mixer */
1135 	aic3x_write(codec, LINE2L_2_HPLOUT_VOL, DEFAULT_VOL);
1136 	aic3x_write(codec, LINE2R_2_HPROUT_VOL, DEFAULT_VOL);
1137 	aic3x_write(codec, LINE2L_2_HPLCOM_VOL, DEFAULT_VOL);
1138 	aic3x_write(codec, LINE2R_2_HPRCOM_VOL, DEFAULT_VOL);
1139 	/* Line2 Line Out default volume, disconnect from Output Mixer */
1140 	aic3x_write(codec, LINE2L_2_LLOPM_VOL, DEFAULT_VOL);
1141 	aic3x_write(codec, LINE2R_2_RLOPM_VOL, DEFAULT_VOL);
1142 	/* Line2 to Mono Out default volume, disconnect from Output Mixer */
1143 	aic3x_write(codec, LINE2L_2_MONOLOPM_VOL, DEFAULT_VOL);
1144 	aic3x_write(codec, LINE2R_2_MONOLOPM_VOL, DEFAULT_VOL);
1145 
1146 	/* off, with power on */
1147 	aic3x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1148 
1149 	/* setup GPIO functions */
1150 	aic3x_write(codec, AIC3X_GPIO1_REG, (setup->gpio_func[0] & 0xf) << 4);
1151 	aic3x_write(codec, AIC3X_GPIO2_REG, (setup->gpio_func[1] & 0xf) << 4);
1152 
1153 	aic3x_add_controls(codec);
1154 	aic3x_add_widgets(codec);
1155 	ret = snd_soc_register_card(socdev);
1156 	if (ret < 0) {
1157 		printk(KERN_ERR "aic3x: failed to register card\n");
1158 		goto card_err;
1159 	}
1160 
1161 	return ret;
1162 
1163 card_err:
1164 	snd_soc_free_pcms(socdev);
1165 	snd_soc_dapm_free(socdev);
1166 pcm_err:
1167 	kfree(codec->reg_cache);
1168 	return ret;
1169 }
1170 
1171 static struct snd_soc_device *aic3x_socdev;
1172 
1173 #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
1174 /*
1175  * AIC3X 2 wire address can be up to 4 devices with device addresses
1176  * 0x18, 0x19, 0x1A, 0x1B
1177  */
1178 
1179 /*
1180  * If the i2c layer weren't so broken, we could pass this kind of data
1181  * around
1182  */
1183 static int aic3x_i2c_probe(struct i2c_client *i2c,
1184 			   const struct i2c_device_id *id)
1185 {
1186 	struct snd_soc_device *socdev = aic3x_socdev;
1187 	struct snd_soc_codec *codec = socdev->codec;
1188 	int ret;
1189 
1190 	i2c_set_clientdata(i2c, codec);
1191 	codec->control_data = i2c;
1192 
1193 	ret = aic3x_init(socdev);
1194 	if (ret < 0)
1195 		printk(KERN_ERR "aic3x: failed to initialise AIC3X\n");
1196 	return ret;
1197 }
1198 
1199 static int aic3x_i2c_remove(struct i2c_client *client)
1200 {
1201 	struct snd_soc_codec *codec = i2c_get_clientdata(client);
1202 	kfree(codec->reg_cache);
1203 	return 0;
1204 }
1205 
1206 static const struct i2c_device_id aic3x_i2c_id[] = {
1207 	{ "tlv320aic3x", 0 },
1208 	{ }
1209 };
1210 MODULE_DEVICE_TABLE(i2c, aic3x_i2c_id);
1211 
1212 /* machine i2c codec control layer */
1213 static struct i2c_driver aic3x_i2c_driver = {
1214 	.driver = {
1215 		.name = "aic3x I2C Codec",
1216 		.owner = THIS_MODULE,
1217 	},
1218 	.probe = aic3x_i2c_probe,
1219 	.remove = aic3x_i2c_remove,
1220 	.id_table = aic3x_i2c_id,
1221 };
1222 
1223 static int aic3x_i2c_read(struct i2c_client *client, u8 *value, int len)
1224 {
1225 	value[0] = i2c_smbus_read_byte_data(client, value[0]);
1226 	return (len == 1);
1227 }
1228 
1229 static int aic3x_add_i2c_device(struct platform_device *pdev,
1230 				 const struct aic3x_setup_data *setup)
1231 {
1232 	struct i2c_board_info info;
1233 	struct i2c_adapter *adapter;
1234 	struct i2c_client *client;
1235 	int ret;
1236 
1237 	ret = i2c_add_driver(&aic3x_i2c_driver);
1238 	if (ret != 0) {
1239 		dev_err(&pdev->dev, "can't add i2c driver\n");
1240 		return ret;
1241 	}
1242 
1243 	memset(&info, 0, sizeof(struct i2c_board_info));
1244 	info.addr = setup->i2c_address;
1245 	strlcpy(info.type, "tlv320aic3x", I2C_NAME_SIZE);
1246 
1247 	adapter = i2c_get_adapter(setup->i2c_bus);
1248 	if (!adapter) {
1249 		dev_err(&pdev->dev, "can't get i2c adapter %d\n",
1250 			setup->i2c_bus);
1251 		goto err_driver;
1252 	}
1253 
1254 	client = i2c_new_device(adapter, &info);
1255 	i2c_put_adapter(adapter);
1256 	if (!client) {
1257 		dev_err(&pdev->dev, "can't add i2c device at 0x%x\n",
1258 			(unsigned int)info.addr);
1259 		goto err_driver;
1260 	}
1261 
1262 	return 0;
1263 
1264 err_driver:
1265 	i2c_del_driver(&aic3x_i2c_driver);
1266 	return -ENODEV;
1267 }
1268 #endif
1269 
1270 static int aic3x_probe(struct platform_device *pdev)
1271 {
1272 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1273 	struct aic3x_setup_data *setup;
1274 	struct snd_soc_codec *codec;
1275 	struct aic3x_priv *aic3x;
1276 	int ret = 0;
1277 
1278 	printk(KERN_INFO "AIC3X Audio Codec %s\n", AIC3X_VERSION);
1279 
1280 	setup = socdev->codec_data;
1281 	codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
1282 	if (codec == NULL)
1283 		return -ENOMEM;
1284 
1285 	aic3x = kzalloc(sizeof(struct aic3x_priv), GFP_KERNEL);
1286 	if (aic3x == NULL) {
1287 		kfree(codec);
1288 		return -ENOMEM;
1289 	}
1290 
1291 	codec->private_data = aic3x;
1292 	socdev->codec = codec;
1293 	mutex_init(&codec->mutex);
1294 	INIT_LIST_HEAD(&codec->dapm_widgets);
1295 	INIT_LIST_HEAD(&codec->dapm_paths);
1296 
1297 	aic3x_socdev = socdev;
1298 #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
1299 	if (setup->i2c_address) {
1300 		codec->hw_write = (hw_write_t) i2c_master_send;
1301 		codec->hw_read = (hw_read_t) aic3x_i2c_read;
1302 		ret = aic3x_add_i2c_device(pdev, setup);
1303 	}
1304 #else
1305 	/* Add other interfaces here */
1306 #endif
1307 
1308 	if (ret != 0) {
1309 		kfree(codec->private_data);
1310 		kfree(codec);
1311 	}
1312 	return ret;
1313 }
1314 
1315 static int aic3x_remove(struct platform_device *pdev)
1316 {
1317 	struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1318 	struct snd_soc_codec *codec = socdev->codec;
1319 
1320 	/* power down chip */
1321 	if (codec->control_data)
1322 		aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1323 
1324 	snd_soc_free_pcms(socdev);
1325 	snd_soc_dapm_free(socdev);
1326 #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
1327 	i2c_unregister_device(codec->control_data);
1328 	i2c_del_driver(&aic3x_i2c_driver);
1329 #endif
1330 	kfree(codec->private_data);
1331 	kfree(codec);
1332 
1333 	return 0;
1334 }
1335 
1336 struct snd_soc_codec_device soc_codec_dev_aic3x = {
1337 	.probe = aic3x_probe,
1338 	.remove = aic3x_remove,
1339 	.suspend = aic3x_suspend,
1340 	.resume = aic3x_resume,
1341 };
1342 EXPORT_SYMBOL_GPL(soc_codec_dev_aic3x);
1343 
1344 MODULE_DESCRIPTION("ASoC TLV320AIC3X codec driver");
1345 MODULE_AUTHOR("Vladimir Barinov");
1346 MODULE_LICENSE("GPL");
1347