xref: /openbmc/linux/sound/soc/codecs/tlv320aic32x4.c (revision 8f0ec409)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * linux/sound/soc/codecs/tlv320aic32x4.c
4  *
5  * Copyright 2011 Vista Silicon S.L.
6  *
7  * Author: Javier Martin <javier.martin@vista-silicon.com>
8  *
9  * Based on sound/soc/codecs/wm8974 and TI driver for kernel 2.6.27.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/init.h>
15 #include <linux/delay.h>
16 #include <linux/pm.h>
17 #include <linux/gpio.h>
18 #include <linux/of_gpio.h>
19 #include <linux/cdev.h>
20 #include <linux/slab.h>
21 #include <linux/clk.h>
22 #include <linux/of_clk.h>
23 #include <linux/regulator/consumer.h>
24 
25 #include <sound/tlv320aic32x4.h>
26 #include <sound/core.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/soc.h>
30 #include <sound/soc-dapm.h>
31 #include <sound/initval.h>
32 #include <sound/tlv.h>
33 
34 #include "tlv320aic32x4.h"
35 
36 struct aic32x4_priv {
37 	struct regmap *regmap;
38 	u32 power_cfg;
39 	u32 micpga_routing;
40 	bool swapdacs;
41 	int rstn_gpio;
42 	const char *mclk_name;
43 
44 	struct regulator *supply_ldo;
45 	struct regulator *supply_iov;
46 	struct regulator *supply_dv;
47 	struct regulator *supply_av;
48 
49 	struct aic32x4_setup_data *setup;
50 	struct device *dev;
51 	enum aic32x4_type type;
52 };
53 
54 static int aic32x4_reset_adc(struct snd_soc_dapm_widget *w,
55 			     struct snd_kcontrol *kcontrol, int event)
56 {
57 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
58 	u32 adc_reg;
59 
60 	/*
61 	 * Workaround: the datasheet does not mention a required programming
62 	 * sequence but experiments show the ADC needs to be reset after each
63 	 * capture to avoid audible artifacts.
64 	 */
65 	switch (event) {
66 	case SND_SOC_DAPM_POST_PMD:
67 		adc_reg = snd_soc_component_read(component, AIC32X4_ADCSETUP);
68 		snd_soc_component_write(component, AIC32X4_ADCSETUP, adc_reg |
69 					AIC32X4_LADC_EN | AIC32X4_RADC_EN);
70 		snd_soc_component_write(component, AIC32X4_ADCSETUP, adc_reg);
71 		break;
72 	}
73 	return 0;
74 };
75 
76 static int mic_bias_event(struct snd_soc_dapm_widget *w,
77 	struct snd_kcontrol *kcontrol, int event)
78 {
79 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
80 
81 	switch (event) {
82 	case SND_SOC_DAPM_POST_PMU:
83 		/* Change Mic Bias Registor */
84 		snd_soc_component_update_bits(component, AIC32X4_MICBIAS,
85 				AIC32x4_MICBIAS_MASK,
86 				AIC32X4_MICBIAS_LDOIN |
87 				AIC32X4_MICBIAS_2075V);
88 		printk(KERN_DEBUG "%s: Mic Bias will be turned ON\n", __func__);
89 		break;
90 	case SND_SOC_DAPM_PRE_PMD:
91 		snd_soc_component_update_bits(component, AIC32X4_MICBIAS,
92 				AIC32x4_MICBIAS_MASK, 0);
93 		printk(KERN_DEBUG "%s: Mic Bias will be turned OFF\n",
94 				__func__);
95 		break;
96 	}
97 
98 	return 0;
99 }
100 
101 
102 static int aic32x4_get_mfp1_gpio(struct snd_kcontrol *kcontrol,
103 	struct snd_ctl_elem_value *ucontrol)
104 {
105 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
106 	u8 val;
107 
108 	val = snd_soc_component_read(component, AIC32X4_DINCTL);
109 
110 	ucontrol->value.integer.value[0] = (val & 0x01);
111 
112 	return 0;
113 };
114 
115 static int aic32x4_set_mfp2_gpio(struct snd_kcontrol *kcontrol,
116 	struct snd_ctl_elem_value *ucontrol)
117 {
118 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
119 	u8 val;
120 	u8 gpio_check;
121 
122 	val = snd_soc_component_read(component, AIC32X4_DOUTCTL);
123 	gpio_check = (val & AIC32X4_MFP_GPIO_ENABLED);
124 	if (gpio_check != AIC32X4_MFP_GPIO_ENABLED) {
125 		printk(KERN_ERR "%s: MFP2 is not configure as a GPIO output\n",
126 			__func__);
127 		return -EINVAL;
128 	}
129 
130 	if (ucontrol->value.integer.value[0] == (val & AIC32X4_MFP2_GPIO_OUT_HIGH))
131 		return 0;
132 
133 	if (ucontrol->value.integer.value[0])
134 		val |= ucontrol->value.integer.value[0];
135 	else
136 		val &= ~AIC32X4_MFP2_GPIO_OUT_HIGH;
137 
138 	snd_soc_component_write(component, AIC32X4_DOUTCTL, val);
139 
140 	return 0;
141 };
142 
143 static int aic32x4_get_mfp3_gpio(struct snd_kcontrol *kcontrol,
144 	struct snd_ctl_elem_value *ucontrol)
145 {
146 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
147 	u8 val;
148 
149 	val = snd_soc_component_read(component, AIC32X4_SCLKCTL);
150 
151 	ucontrol->value.integer.value[0] = (val & 0x01);
152 
153 	return 0;
154 };
155 
156 static int aic32x4_set_mfp4_gpio(struct snd_kcontrol *kcontrol,
157 	struct snd_ctl_elem_value *ucontrol)
158 {
159 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
160 	u8 val;
161 	u8 gpio_check;
162 
163 	val = snd_soc_component_read(component, AIC32X4_MISOCTL);
164 	gpio_check = (val & AIC32X4_MFP_GPIO_ENABLED);
165 	if (gpio_check != AIC32X4_MFP_GPIO_ENABLED) {
166 		printk(KERN_ERR "%s: MFP4 is not configure as a GPIO output\n",
167 			__func__);
168 		return -EINVAL;
169 	}
170 
171 	if (ucontrol->value.integer.value[0] == (val & AIC32X4_MFP5_GPIO_OUT_HIGH))
172 		return 0;
173 
174 	if (ucontrol->value.integer.value[0])
175 		val |= ucontrol->value.integer.value[0];
176 	else
177 		val &= ~AIC32X4_MFP5_GPIO_OUT_HIGH;
178 
179 	snd_soc_component_write(component, AIC32X4_MISOCTL, val);
180 
181 	return 0;
182 };
183 
184 static int aic32x4_get_mfp5_gpio(struct snd_kcontrol *kcontrol,
185 	struct snd_ctl_elem_value *ucontrol)
186 {
187 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
188 	u8 val;
189 
190 	val = snd_soc_component_read(component, AIC32X4_GPIOCTL);
191 	ucontrol->value.integer.value[0] = ((val & 0x2) >> 1);
192 
193 	return 0;
194 };
195 
196 static int aic32x4_set_mfp5_gpio(struct snd_kcontrol *kcontrol,
197 	struct snd_ctl_elem_value *ucontrol)
198 {
199 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
200 	u8 val;
201 	u8 gpio_check;
202 
203 	val = snd_soc_component_read(component, AIC32X4_GPIOCTL);
204 	gpio_check = (val & AIC32X4_MFP5_GPIO_OUTPUT);
205 	if (gpio_check != AIC32X4_MFP5_GPIO_OUTPUT) {
206 		printk(KERN_ERR "%s: MFP5 is not configure as a GPIO output\n",
207 			__func__);
208 		return -EINVAL;
209 	}
210 
211 	if (ucontrol->value.integer.value[0] == (val & 0x1))
212 		return 0;
213 
214 	if (ucontrol->value.integer.value[0])
215 		val |= ucontrol->value.integer.value[0];
216 	else
217 		val &= 0xfe;
218 
219 	snd_soc_component_write(component, AIC32X4_GPIOCTL, val);
220 
221 	return 0;
222 };
223 
224 static const struct snd_kcontrol_new aic32x4_mfp1[] = {
225 	SOC_SINGLE_BOOL_EXT("MFP1 GPIO", 0, aic32x4_get_mfp1_gpio, NULL),
226 };
227 
228 static const struct snd_kcontrol_new aic32x4_mfp2[] = {
229 	SOC_SINGLE_BOOL_EXT("MFP2 GPIO", 0, NULL, aic32x4_set_mfp2_gpio),
230 };
231 
232 static const struct snd_kcontrol_new aic32x4_mfp3[] = {
233 	SOC_SINGLE_BOOL_EXT("MFP3 GPIO", 0, aic32x4_get_mfp3_gpio, NULL),
234 };
235 
236 static const struct snd_kcontrol_new aic32x4_mfp4[] = {
237 	SOC_SINGLE_BOOL_EXT("MFP4 GPIO", 0, NULL, aic32x4_set_mfp4_gpio),
238 };
239 
240 static const struct snd_kcontrol_new aic32x4_mfp5[] = {
241 	SOC_SINGLE_BOOL_EXT("MFP5 GPIO", 0, aic32x4_get_mfp5_gpio,
242 		aic32x4_set_mfp5_gpio),
243 };
244 
245 /* 0dB min, 0.5dB steps */
246 static DECLARE_TLV_DB_SCALE(tlv_step_0_5, 0, 50, 0);
247 /* -63.5dB min, 0.5dB steps */
248 static DECLARE_TLV_DB_SCALE(tlv_pcm, -6350, 50, 0);
249 /* -6dB min, 1dB steps */
250 static DECLARE_TLV_DB_SCALE(tlv_driver_gain, -600, 100, 0);
251 /* -12dB min, 0.5dB steps */
252 static DECLARE_TLV_DB_SCALE(tlv_adc_vol, -1200, 50, 0);
253 /* -6dB min, 1dB steps */
254 static DECLARE_TLV_DB_SCALE(tlv_tas_driver_gain, -5850, 50, 0);
255 static DECLARE_TLV_DB_SCALE(tlv_amp_vol, 0, 600, 1);
256 
257 static const char * const lo_cm_text[] = {
258 	"Full Chip", "1.65V",
259 };
260 
261 static SOC_ENUM_SINGLE_DECL(lo_cm_enum, AIC32X4_CMMODE, 3, lo_cm_text);
262 
263 static const char * const ptm_text[] = {
264 	"P3", "P2", "P1",
265 };
266 
267 static SOC_ENUM_SINGLE_DECL(l_ptm_enum, AIC32X4_LPLAYBACK, 2, ptm_text);
268 static SOC_ENUM_SINGLE_DECL(r_ptm_enum, AIC32X4_RPLAYBACK, 2, ptm_text);
269 
270 static const struct snd_kcontrol_new aic32x4_snd_controls[] = {
271 	SOC_DOUBLE_R_S_TLV("PCM Playback Volume", AIC32X4_LDACVOL,
272 			AIC32X4_RDACVOL, 0, -0x7f, 0x30, 7, 0, tlv_pcm),
273 	SOC_ENUM("DAC Left Playback PowerTune Switch", l_ptm_enum),
274 	SOC_ENUM("DAC Right Playback PowerTune Switch", r_ptm_enum),
275 	SOC_DOUBLE_R_S_TLV("HP Driver Gain Volume", AIC32X4_HPLGAIN,
276 			AIC32X4_HPRGAIN, 0, -0x6, 0x1d, 5, 0,
277 			tlv_driver_gain),
278 	SOC_DOUBLE_R_S_TLV("LO Driver Gain Volume", AIC32X4_LOLGAIN,
279 			AIC32X4_LORGAIN, 0, -0x6, 0x1d, 5, 0,
280 			tlv_driver_gain),
281 	SOC_DOUBLE_R("HP DAC Playback Switch", AIC32X4_HPLGAIN,
282 			AIC32X4_HPRGAIN, 6, 0x01, 1),
283 	SOC_DOUBLE_R("LO DAC Playback Switch", AIC32X4_LOLGAIN,
284 			AIC32X4_LORGAIN, 6, 0x01, 1),
285 	SOC_ENUM("LO Playback Common Mode Switch", lo_cm_enum),
286 	SOC_DOUBLE_R("Mic PGA Switch", AIC32X4_LMICPGAVOL,
287 			AIC32X4_RMICPGAVOL, 7, 0x01, 1),
288 
289 	SOC_SINGLE("ADCFGA Left Mute Switch", AIC32X4_ADCFGA, 7, 1, 0),
290 	SOC_SINGLE("ADCFGA Right Mute Switch", AIC32X4_ADCFGA, 3, 1, 0),
291 
292 	SOC_DOUBLE_R_S_TLV("ADC Level Volume", AIC32X4_LADCVOL,
293 			AIC32X4_RADCVOL, 0, -0x18, 0x28, 6, 0, tlv_adc_vol),
294 	SOC_DOUBLE_R_TLV("PGA Level Volume", AIC32X4_LMICPGAVOL,
295 			AIC32X4_RMICPGAVOL, 0, 0x5f, 0, tlv_step_0_5),
296 
297 	SOC_SINGLE("Auto-mute Switch", AIC32X4_DACMUTE, 4, 7, 0),
298 
299 	SOC_SINGLE("AGC Left Switch", AIC32X4_LAGC1, 7, 1, 0),
300 	SOC_SINGLE("AGC Right Switch", AIC32X4_RAGC1, 7, 1, 0),
301 	SOC_DOUBLE_R("AGC Target Level", AIC32X4_LAGC1, AIC32X4_RAGC1,
302 			4, 0x07, 0),
303 	SOC_DOUBLE_R("AGC Gain Hysteresis", AIC32X4_LAGC1, AIC32X4_RAGC1,
304 			0, 0x03, 0),
305 	SOC_DOUBLE_R("AGC Hysteresis", AIC32X4_LAGC2, AIC32X4_RAGC2,
306 			6, 0x03, 0),
307 	SOC_DOUBLE_R("AGC Noise Threshold", AIC32X4_LAGC2, AIC32X4_RAGC2,
308 			1, 0x1F, 0),
309 	SOC_DOUBLE_R("AGC Max PGA", AIC32X4_LAGC3, AIC32X4_RAGC3,
310 			0, 0x7F, 0),
311 	SOC_DOUBLE_R("AGC Attack Time", AIC32X4_LAGC4, AIC32X4_RAGC4,
312 			3, 0x1F, 0),
313 	SOC_DOUBLE_R("AGC Decay Time", AIC32X4_LAGC5, AIC32X4_RAGC5,
314 			3, 0x1F, 0),
315 	SOC_DOUBLE_R("AGC Noise Debounce", AIC32X4_LAGC6, AIC32X4_RAGC6,
316 			0, 0x1F, 0),
317 	SOC_DOUBLE_R("AGC Signal Debounce", AIC32X4_LAGC7, AIC32X4_RAGC7,
318 			0, 0x0F, 0),
319 };
320 
321 static const struct snd_kcontrol_new hpl_output_mixer_controls[] = {
322 	SOC_DAPM_SINGLE("L_DAC Switch", AIC32X4_HPLROUTE, 3, 1, 0),
323 	SOC_DAPM_SINGLE("IN1_L Switch", AIC32X4_HPLROUTE, 2, 1, 0),
324 };
325 
326 static const struct snd_kcontrol_new hpr_output_mixer_controls[] = {
327 	SOC_DAPM_SINGLE("R_DAC Switch", AIC32X4_HPRROUTE, 3, 1, 0),
328 	SOC_DAPM_SINGLE("IN1_R Switch", AIC32X4_HPRROUTE, 2, 1, 0),
329 };
330 
331 static const struct snd_kcontrol_new lol_output_mixer_controls[] = {
332 	SOC_DAPM_SINGLE("L_DAC Switch", AIC32X4_LOLROUTE, 3, 1, 0),
333 };
334 
335 static const struct snd_kcontrol_new lor_output_mixer_controls[] = {
336 	SOC_DAPM_SINGLE("R_DAC Switch", AIC32X4_LORROUTE, 3, 1, 0),
337 };
338 
339 static const char * const resistor_text[] = {
340 	"Off", "10 kOhm", "20 kOhm", "40 kOhm",
341 };
342 
343 /* Left mixer pins */
344 static SOC_ENUM_SINGLE_DECL(in1l_lpga_p_enum, AIC32X4_LMICPGAPIN, 6, resistor_text);
345 static SOC_ENUM_SINGLE_DECL(in2l_lpga_p_enum, AIC32X4_LMICPGAPIN, 4, resistor_text);
346 static SOC_ENUM_SINGLE_DECL(in3l_lpga_p_enum, AIC32X4_LMICPGAPIN, 2, resistor_text);
347 static SOC_ENUM_SINGLE_DECL(in1r_lpga_p_enum, AIC32X4_LMICPGAPIN, 0, resistor_text);
348 
349 static SOC_ENUM_SINGLE_DECL(cml_lpga_n_enum, AIC32X4_LMICPGANIN, 6, resistor_text);
350 static SOC_ENUM_SINGLE_DECL(in2r_lpga_n_enum, AIC32X4_LMICPGANIN, 4, resistor_text);
351 static SOC_ENUM_SINGLE_DECL(in3r_lpga_n_enum, AIC32X4_LMICPGANIN, 2, resistor_text);
352 
353 static const struct snd_kcontrol_new in1l_to_lmixer_controls[] = {
354 	SOC_DAPM_ENUM("IN1_L L+ Switch", in1l_lpga_p_enum),
355 };
356 static const struct snd_kcontrol_new in2l_to_lmixer_controls[] = {
357 	SOC_DAPM_ENUM("IN2_L L+ Switch", in2l_lpga_p_enum),
358 };
359 static const struct snd_kcontrol_new in3l_to_lmixer_controls[] = {
360 	SOC_DAPM_ENUM("IN3_L L+ Switch", in3l_lpga_p_enum),
361 };
362 static const struct snd_kcontrol_new in1r_to_lmixer_controls[] = {
363 	SOC_DAPM_ENUM("IN1_R L+ Switch", in1r_lpga_p_enum),
364 };
365 static const struct snd_kcontrol_new cml_to_lmixer_controls[] = {
366 	SOC_DAPM_ENUM("CM_L L- Switch", cml_lpga_n_enum),
367 };
368 static const struct snd_kcontrol_new in2r_to_lmixer_controls[] = {
369 	SOC_DAPM_ENUM("IN2_R L- Switch", in2r_lpga_n_enum),
370 };
371 static const struct snd_kcontrol_new in3r_to_lmixer_controls[] = {
372 	SOC_DAPM_ENUM("IN3_R L- Switch", in3r_lpga_n_enum),
373 };
374 
375 /*	Right mixer pins */
376 static SOC_ENUM_SINGLE_DECL(in1r_rpga_p_enum, AIC32X4_RMICPGAPIN, 6, resistor_text);
377 static SOC_ENUM_SINGLE_DECL(in2r_rpga_p_enum, AIC32X4_RMICPGAPIN, 4, resistor_text);
378 static SOC_ENUM_SINGLE_DECL(in3r_rpga_p_enum, AIC32X4_RMICPGAPIN, 2, resistor_text);
379 static SOC_ENUM_SINGLE_DECL(in2l_rpga_p_enum, AIC32X4_RMICPGAPIN, 0, resistor_text);
380 static SOC_ENUM_SINGLE_DECL(cmr_rpga_n_enum, AIC32X4_RMICPGANIN, 6, resistor_text);
381 static SOC_ENUM_SINGLE_DECL(in1l_rpga_n_enum, AIC32X4_RMICPGANIN, 4, resistor_text);
382 static SOC_ENUM_SINGLE_DECL(in3l_rpga_n_enum, AIC32X4_RMICPGANIN, 2, resistor_text);
383 
384 static const struct snd_kcontrol_new in1r_to_rmixer_controls[] = {
385 	SOC_DAPM_ENUM("IN1_R R+ Switch", in1r_rpga_p_enum),
386 };
387 static const struct snd_kcontrol_new in2r_to_rmixer_controls[] = {
388 	SOC_DAPM_ENUM("IN2_R R+ Switch", in2r_rpga_p_enum),
389 };
390 static const struct snd_kcontrol_new in3r_to_rmixer_controls[] = {
391 	SOC_DAPM_ENUM("IN3_R R+ Switch", in3r_rpga_p_enum),
392 };
393 static const struct snd_kcontrol_new in2l_to_rmixer_controls[] = {
394 	SOC_DAPM_ENUM("IN2_L R+ Switch", in2l_rpga_p_enum),
395 };
396 static const struct snd_kcontrol_new cmr_to_rmixer_controls[] = {
397 	SOC_DAPM_ENUM("CM_R R- Switch", cmr_rpga_n_enum),
398 };
399 static const struct snd_kcontrol_new in1l_to_rmixer_controls[] = {
400 	SOC_DAPM_ENUM("IN1_L R- Switch", in1l_rpga_n_enum),
401 };
402 static const struct snd_kcontrol_new in3l_to_rmixer_controls[] = {
403 	SOC_DAPM_ENUM("IN3_L R- Switch", in3l_rpga_n_enum),
404 };
405 
406 static const struct snd_soc_dapm_widget aic32x4_dapm_widgets[] = {
407 	SND_SOC_DAPM_DAC("Left DAC", "Left Playback", AIC32X4_DACSETUP, 7, 0),
408 	SND_SOC_DAPM_MIXER("HPL Output Mixer", SND_SOC_NOPM, 0, 0,
409 			   &hpl_output_mixer_controls[0],
410 			   ARRAY_SIZE(hpl_output_mixer_controls)),
411 	SND_SOC_DAPM_PGA("HPL Power", AIC32X4_OUTPWRCTL, 5, 0, NULL, 0),
412 
413 	SND_SOC_DAPM_MIXER("LOL Output Mixer", SND_SOC_NOPM, 0, 0,
414 			   &lol_output_mixer_controls[0],
415 			   ARRAY_SIZE(lol_output_mixer_controls)),
416 	SND_SOC_DAPM_PGA("LOL Power", AIC32X4_OUTPWRCTL, 3, 0, NULL, 0),
417 
418 	SND_SOC_DAPM_DAC("Right DAC", "Right Playback", AIC32X4_DACSETUP, 6, 0),
419 	SND_SOC_DAPM_MIXER("HPR Output Mixer", SND_SOC_NOPM, 0, 0,
420 			   &hpr_output_mixer_controls[0],
421 			   ARRAY_SIZE(hpr_output_mixer_controls)),
422 	SND_SOC_DAPM_PGA("HPR Power", AIC32X4_OUTPWRCTL, 4, 0, NULL, 0),
423 	SND_SOC_DAPM_MIXER("LOR Output Mixer", SND_SOC_NOPM, 0, 0,
424 			   &lor_output_mixer_controls[0],
425 			   ARRAY_SIZE(lor_output_mixer_controls)),
426 	SND_SOC_DAPM_PGA("LOR Power", AIC32X4_OUTPWRCTL, 2, 0, NULL, 0),
427 
428 	SND_SOC_DAPM_ADC("Right ADC", "Right Capture", AIC32X4_ADCSETUP, 6, 0),
429 	SND_SOC_DAPM_MUX("IN1_R to Right Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
430 			in1r_to_rmixer_controls),
431 	SND_SOC_DAPM_MUX("IN2_R to Right Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
432 			in2r_to_rmixer_controls),
433 	SND_SOC_DAPM_MUX("IN3_R to Right Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
434 			in3r_to_rmixer_controls),
435 	SND_SOC_DAPM_MUX("IN2_L to Right Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
436 			in2l_to_rmixer_controls),
437 	SND_SOC_DAPM_MUX("CM_R to Right Mixer Negative Resistor", SND_SOC_NOPM, 0, 0,
438 			cmr_to_rmixer_controls),
439 	SND_SOC_DAPM_MUX("IN1_L to Right Mixer Negative Resistor", SND_SOC_NOPM, 0, 0,
440 			in1l_to_rmixer_controls),
441 	SND_SOC_DAPM_MUX("IN3_L to Right Mixer Negative Resistor", SND_SOC_NOPM, 0, 0,
442 			in3l_to_rmixer_controls),
443 
444 	SND_SOC_DAPM_ADC("Left ADC", "Left Capture", AIC32X4_ADCSETUP, 7, 0),
445 	SND_SOC_DAPM_MUX("IN1_L to Left Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
446 			in1l_to_lmixer_controls),
447 	SND_SOC_DAPM_MUX("IN2_L to Left Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
448 			in2l_to_lmixer_controls),
449 	SND_SOC_DAPM_MUX("IN3_L to Left Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
450 			in3l_to_lmixer_controls),
451 	SND_SOC_DAPM_MUX("IN1_R to Left Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
452 			in1r_to_lmixer_controls),
453 	SND_SOC_DAPM_MUX("CM_L to Left Mixer Negative Resistor", SND_SOC_NOPM, 0, 0,
454 			cml_to_lmixer_controls),
455 	SND_SOC_DAPM_MUX("IN2_R to Left Mixer Negative Resistor", SND_SOC_NOPM, 0, 0,
456 			in2r_to_lmixer_controls),
457 	SND_SOC_DAPM_MUX("IN3_R to Left Mixer Negative Resistor", SND_SOC_NOPM, 0, 0,
458 			in3r_to_lmixer_controls),
459 
460 	SND_SOC_DAPM_SUPPLY("Mic Bias", AIC32X4_MICBIAS, 6, 0, mic_bias_event,
461 			SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
462 
463 	SND_SOC_DAPM_POST("ADC Reset", aic32x4_reset_adc),
464 
465 	SND_SOC_DAPM_OUTPUT("HPL"),
466 	SND_SOC_DAPM_OUTPUT("HPR"),
467 	SND_SOC_DAPM_OUTPUT("LOL"),
468 	SND_SOC_DAPM_OUTPUT("LOR"),
469 	SND_SOC_DAPM_INPUT("IN1_L"),
470 	SND_SOC_DAPM_INPUT("IN1_R"),
471 	SND_SOC_DAPM_INPUT("IN2_L"),
472 	SND_SOC_DAPM_INPUT("IN2_R"),
473 	SND_SOC_DAPM_INPUT("IN3_L"),
474 	SND_SOC_DAPM_INPUT("IN3_R"),
475 	SND_SOC_DAPM_INPUT("CM_L"),
476 	SND_SOC_DAPM_INPUT("CM_R"),
477 };
478 
479 static const struct snd_soc_dapm_route aic32x4_dapm_routes[] = {
480 	/* Left Output */
481 	{"HPL Output Mixer", "L_DAC Switch", "Left DAC"},
482 	{"HPL Output Mixer", "IN1_L Switch", "IN1_L"},
483 
484 	{"HPL Power", NULL, "HPL Output Mixer"},
485 	{"HPL", NULL, "HPL Power"},
486 
487 	{"LOL Output Mixer", "L_DAC Switch", "Left DAC"},
488 
489 	{"LOL Power", NULL, "LOL Output Mixer"},
490 	{"LOL", NULL, "LOL Power"},
491 
492 	/* Right Output */
493 	{"HPR Output Mixer", "R_DAC Switch", "Right DAC"},
494 	{"HPR Output Mixer", "IN1_R Switch", "IN1_R"},
495 
496 	{"HPR Power", NULL, "HPR Output Mixer"},
497 	{"HPR", NULL, "HPR Power"},
498 
499 	{"LOR Output Mixer", "R_DAC Switch", "Right DAC"},
500 
501 	{"LOR Power", NULL, "LOR Output Mixer"},
502 	{"LOR", NULL, "LOR Power"},
503 
504 	/* Right Input */
505 	{"Right ADC", NULL, "IN1_R to Right Mixer Positive Resistor"},
506 	{"IN1_R to Right Mixer Positive Resistor", "10 kOhm", "IN1_R"},
507 	{"IN1_R to Right Mixer Positive Resistor", "20 kOhm", "IN1_R"},
508 	{"IN1_R to Right Mixer Positive Resistor", "40 kOhm", "IN1_R"},
509 
510 	{"Right ADC", NULL, "IN2_R to Right Mixer Positive Resistor"},
511 	{"IN2_R to Right Mixer Positive Resistor", "10 kOhm", "IN2_R"},
512 	{"IN2_R to Right Mixer Positive Resistor", "20 kOhm", "IN2_R"},
513 	{"IN2_R to Right Mixer Positive Resistor", "40 kOhm", "IN2_R"},
514 
515 	{"Right ADC", NULL, "IN3_R to Right Mixer Positive Resistor"},
516 	{"IN3_R to Right Mixer Positive Resistor", "10 kOhm", "IN3_R"},
517 	{"IN3_R to Right Mixer Positive Resistor", "20 kOhm", "IN3_R"},
518 	{"IN3_R to Right Mixer Positive Resistor", "40 kOhm", "IN3_R"},
519 
520 	{"Right ADC", NULL, "IN2_L to Right Mixer Positive Resistor"},
521 	{"IN2_L to Right Mixer Positive Resistor", "10 kOhm", "IN2_L"},
522 	{"IN2_L to Right Mixer Positive Resistor", "20 kOhm", "IN2_L"},
523 	{"IN2_L to Right Mixer Positive Resistor", "40 kOhm", "IN2_L"},
524 
525 	{"Right ADC", NULL, "CM_R to Right Mixer Negative Resistor"},
526 	{"CM_R to Right Mixer Negative Resistor", "10 kOhm", "CM_R"},
527 	{"CM_R to Right Mixer Negative Resistor", "20 kOhm", "CM_R"},
528 	{"CM_R to Right Mixer Negative Resistor", "40 kOhm", "CM_R"},
529 
530 	{"Right ADC", NULL, "IN1_L to Right Mixer Negative Resistor"},
531 	{"IN1_L to Right Mixer Negative Resistor", "10 kOhm", "IN1_L"},
532 	{"IN1_L to Right Mixer Negative Resistor", "20 kOhm", "IN1_L"},
533 	{"IN1_L to Right Mixer Negative Resistor", "40 kOhm", "IN1_L"},
534 
535 	{"Right ADC", NULL, "IN3_L to Right Mixer Negative Resistor"},
536 	{"IN3_L to Right Mixer Negative Resistor", "10 kOhm", "IN3_L"},
537 	{"IN3_L to Right Mixer Negative Resistor", "20 kOhm", "IN3_L"},
538 	{"IN3_L to Right Mixer Negative Resistor", "40 kOhm", "IN3_L"},
539 
540 	/* Left Input */
541 	{"Left ADC", NULL, "IN1_L to Left Mixer Positive Resistor"},
542 	{"IN1_L to Left Mixer Positive Resistor", "10 kOhm", "IN1_L"},
543 	{"IN1_L to Left Mixer Positive Resistor", "20 kOhm", "IN1_L"},
544 	{"IN1_L to Left Mixer Positive Resistor", "40 kOhm", "IN1_L"},
545 
546 	{"Left ADC", NULL, "IN2_L to Left Mixer Positive Resistor"},
547 	{"IN2_L to Left Mixer Positive Resistor", "10 kOhm", "IN2_L"},
548 	{"IN2_L to Left Mixer Positive Resistor", "20 kOhm", "IN2_L"},
549 	{"IN2_L to Left Mixer Positive Resistor", "40 kOhm", "IN2_L"},
550 
551 	{"Left ADC", NULL, "IN3_L to Left Mixer Positive Resistor"},
552 	{"IN3_L to Left Mixer Positive Resistor", "10 kOhm", "IN3_L"},
553 	{"IN3_L to Left Mixer Positive Resistor", "20 kOhm", "IN3_L"},
554 	{"IN3_L to Left Mixer Positive Resistor", "40 kOhm", "IN3_L"},
555 
556 	{"Left ADC", NULL, "IN1_R to Left Mixer Positive Resistor"},
557 	{"IN1_R to Left Mixer Positive Resistor", "10 kOhm", "IN1_R"},
558 	{"IN1_R to Left Mixer Positive Resistor", "20 kOhm", "IN1_R"},
559 	{"IN1_R to Left Mixer Positive Resistor", "40 kOhm", "IN1_R"},
560 
561 	{"Left ADC", NULL, "CM_L to Left Mixer Negative Resistor"},
562 	{"CM_L to Left Mixer Negative Resistor", "10 kOhm", "CM_L"},
563 	{"CM_L to Left Mixer Negative Resistor", "20 kOhm", "CM_L"},
564 	{"CM_L to Left Mixer Negative Resistor", "40 kOhm", "CM_L"},
565 
566 	{"Left ADC", NULL, "IN2_R to Left Mixer Negative Resistor"},
567 	{"IN2_R to Left Mixer Negative Resistor", "10 kOhm", "IN2_R"},
568 	{"IN2_R to Left Mixer Negative Resistor", "20 kOhm", "IN2_R"},
569 	{"IN2_R to Left Mixer Negative Resistor", "40 kOhm", "IN2_R"},
570 
571 	{"Left ADC", NULL, "IN3_R to Left Mixer Negative Resistor"},
572 	{"IN3_R to Left Mixer Negative Resistor", "10 kOhm", "IN3_R"},
573 	{"IN3_R to Left Mixer Negative Resistor", "20 kOhm", "IN3_R"},
574 	{"IN3_R to Left Mixer Negative Resistor", "40 kOhm", "IN3_R"},
575 };
576 
577 static const struct regmap_range_cfg aic32x4_regmap_pages[] = {
578 	{
579 		.selector_reg = 0,
580 		.selector_mask	= 0xff,
581 		.window_start = 0,
582 		.window_len = 128,
583 		.range_min = 0,
584 		.range_max = AIC32X4_REFPOWERUP,
585 	},
586 };
587 
588 const struct regmap_config aic32x4_regmap_config = {
589 	.max_register = AIC32X4_REFPOWERUP,
590 	.ranges = aic32x4_regmap_pages,
591 	.num_ranges = ARRAY_SIZE(aic32x4_regmap_pages),
592 };
593 EXPORT_SYMBOL(aic32x4_regmap_config);
594 
595 static int aic32x4_set_dai_sysclk(struct snd_soc_dai *codec_dai,
596 				  int clk_id, unsigned int freq, int dir)
597 {
598 	struct snd_soc_component *component = codec_dai->component;
599 	struct clk *mclk;
600 	struct clk *pll;
601 
602 	pll = devm_clk_get(component->dev, "pll");
603 	if (IS_ERR(pll))
604 		return PTR_ERR(pll);
605 
606 	mclk = clk_get_parent(pll);
607 
608 	return clk_set_rate(mclk, freq);
609 }
610 
611 static int aic32x4_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
612 {
613 	struct snd_soc_component *component = codec_dai->component;
614 	u8 iface_reg_1 = 0;
615 	u8 iface_reg_2 = 0;
616 	u8 iface_reg_3 = 0;
617 
618 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
619 	case SND_SOC_DAIFMT_CBP_CFP:
620 		iface_reg_1 |= AIC32X4_BCLKMASTER | AIC32X4_WCLKMASTER;
621 		break;
622 	case SND_SOC_DAIFMT_CBC_CFC:
623 		break;
624 	default:
625 		printk(KERN_ERR "aic32x4: invalid clock provider\n");
626 		return -EINVAL;
627 	}
628 
629 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
630 	case SND_SOC_DAIFMT_I2S:
631 		break;
632 	case SND_SOC_DAIFMT_DSP_A:
633 		iface_reg_1 |= (AIC32X4_DSP_MODE <<
634 				AIC32X4_IFACE1_DATATYPE_SHIFT);
635 		iface_reg_3 |= AIC32X4_BCLKINV_MASK; /* invert bit clock */
636 		iface_reg_2 = 0x01; /* add offset 1 */
637 		break;
638 	case SND_SOC_DAIFMT_DSP_B:
639 		iface_reg_1 |= (AIC32X4_DSP_MODE <<
640 				AIC32X4_IFACE1_DATATYPE_SHIFT);
641 		iface_reg_3 |= AIC32X4_BCLKINV_MASK; /* invert bit clock */
642 		break;
643 	case SND_SOC_DAIFMT_RIGHT_J:
644 		iface_reg_1 |= (AIC32X4_RIGHT_JUSTIFIED_MODE <<
645 				AIC32X4_IFACE1_DATATYPE_SHIFT);
646 		break;
647 	case SND_SOC_DAIFMT_LEFT_J:
648 		iface_reg_1 |= (AIC32X4_LEFT_JUSTIFIED_MODE <<
649 				AIC32X4_IFACE1_DATATYPE_SHIFT);
650 		break;
651 	default:
652 		printk(KERN_ERR "aic32x4: invalid DAI interface format\n");
653 		return -EINVAL;
654 	}
655 
656 	snd_soc_component_update_bits(component, AIC32X4_IFACE1,
657 				AIC32X4_IFACE1_DATATYPE_MASK |
658 				AIC32X4_IFACE1_MASTER_MASK, iface_reg_1);
659 	snd_soc_component_update_bits(component, AIC32X4_IFACE2,
660 				AIC32X4_DATA_OFFSET_MASK, iface_reg_2);
661 	snd_soc_component_update_bits(component, AIC32X4_IFACE3,
662 				AIC32X4_BCLKINV_MASK, iface_reg_3);
663 
664 	return 0;
665 }
666 
667 static int aic32x4_set_aosr(struct snd_soc_component *component, u8 aosr)
668 {
669 	return snd_soc_component_write(component, AIC32X4_AOSR, aosr);
670 }
671 
672 static int aic32x4_set_dosr(struct snd_soc_component *component, u16 dosr)
673 {
674 	snd_soc_component_write(component, AIC32X4_DOSRMSB, dosr >> 8);
675 	snd_soc_component_write(component, AIC32X4_DOSRLSB,
676 		      (dosr & 0xff));
677 
678 	return 0;
679 }
680 
681 static int aic32x4_set_processing_blocks(struct snd_soc_component *component,
682 						u8 r_block, u8 p_block)
683 {
684 	struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
685 
686 	if (aic32x4->type == AIC32X4_TYPE_TAS2505) {
687 		if (r_block || p_block > 3)
688 			return -EINVAL;
689 
690 		snd_soc_component_write(component, AIC32X4_DACSPB, p_block);
691 	} else { /* AIC32x4 */
692 		if (r_block > 18 || p_block > 25)
693 			return -EINVAL;
694 
695 		snd_soc_component_write(component, AIC32X4_ADCSPB, r_block);
696 		snd_soc_component_write(component, AIC32X4_DACSPB, p_block);
697 	}
698 
699 	return 0;
700 }
701 
702 static int aic32x4_setup_clocks(struct snd_soc_component *component,
703 				unsigned int sample_rate, unsigned int channels,
704 				unsigned int bit_depth)
705 {
706 	struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
707 	u8 aosr;
708 	u16 dosr;
709 	u8 adc_resource_class, dac_resource_class;
710 	u8 madc, nadc, mdac, ndac, max_nadc, min_mdac, max_ndac;
711 	u8 dosr_increment;
712 	u16 max_dosr, min_dosr;
713 	unsigned long adc_clock_rate, dac_clock_rate;
714 	int ret;
715 
716 	static struct clk_bulk_data clocks[] = {
717 		{ .id = "pll" },
718 		{ .id = "nadc" },
719 		{ .id = "madc" },
720 		{ .id = "ndac" },
721 		{ .id = "mdac" },
722 		{ .id = "bdiv" },
723 	};
724 	ret = devm_clk_bulk_get(component->dev, ARRAY_SIZE(clocks), clocks);
725 	if (ret)
726 		return ret;
727 
728 	if (sample_rate <= 48000) {
729 		aosr = 128;
730 		adc_resource_class = 6;
731 		dac_resource_class = 8;
732 		dosr_increment = 8;
733 		if (aic32x4->type == AIC32X4_TYPE_TAS2505)
734 			aic32x4_set_processing_blocks(component, 0, 1);
735 		else
736 			aic32x4_set_processing_blocks(component, 1, 1);
737 	} else if (sample_rate <= 96000) {
738 		aosr = 64;
739 		adc_resource_class = 6;
740 		dac_resource_class = 8;
741 		dosr_increment = 4;
742 		if (aic32x4->type == AIC32X4_TYPE_TAS2505)
743 			aic32x4_set_processing_blocks(component, 0, 1);
744 		else
745 			aic32x4_set_processing_blocks(component, 1, 9);
746 	} else if (sample_rate == 192000) {
747 		aosr = 32;
748 		adc_resource_class = 3;
749 		dac_resource_class = 4;
750 		dosr_increment = 2;
751 		if (aic32x4->type == AIC32X4_TYPE_TAS2505)
752 			aic32x4_set_processing_blocks(component, 0, 1);
753 		else
754 			aic32x4_set_processing_blocks(component, 13, 19);
755 	} else {
756 		dev_err(component->dev, "Sampling rate not supported\n");
757 		return -EINVAL;
758 	}
759 
760 	madc = DIV_ROUND_UP((32 * adc_resource_class), aosr);
761 	max_dosr = (AIC32X4_MAX_DOSR_FREQ / sample_rate / dosr_increment) *
762 			dosr_increment;
763 	min_dosr = (AIC32X4_MIN_DOSR_FREQ / sample_rate / dosr_increment) *
764 			dosr_increment;
765 	max_nadc = AIC32X4_MAX_CODEC_CLKIN_FREQ / (madc * aosr * sample_rate);
766 
767 	for (nadc = max_nadc; nadc > 0; --nadc) {
768 		adc_clock_rate = nadc * madc * aosr * sample_rate;
769 		for (dosr = max_dosr; dosr >= min_dosr;
770 				dosr -= dosr_increment) {
771 			min_mdac = DIV_ROUND_UP((32 * dac_resource_class), dosr);
772 			max_ndac = AIC32X4_MAX_CODEC_CLKIN_FREQ /
773 					(min_mdac * dosr * sample_rate);
774 			for (mdac = min_mdac; mdac <= 128; ++mdac) {
775 				for (ndac = max_ndac; ndac > 0; --ndac) {
776 					dac_clock_rate = ndac * mdac * dosr *
777 							sample_rate;
778 					if (dac_clock_rate == adc_clock_rate) {
779 						if (clk_round_rate(clocks[0].clk, dac_clock_rate) == 0)
780 							continue;
781 
782 						clk_set_rate(clocks[0].clk,
783 							dac_clock_rate);
784 
785 						clk_set_rate(clocks[1].clk,
786 							sample_rate * aosr *
787 							madc);
788 						clk_set_rate(clocks[2].clk,
789 							sample_rate * aosr);
790 						aic32x4_set_aosr(component,
791 							aosr);
792 
793 						clk_set_rate(clocks[3].clk,
794 							sample_rate * dosr *
795 							mdac);
796 						clk_set_rate(clocks[4].clk,
797 							sample_rate * dosr);
798 						aic32x4_set_dosr(component,
799 							dosr);
800 
801 						clk_set_rate(clocks[5].clk,
802 							sample_rate * channels *
803 							bit_depth);
804 
805 						return 0;
806 					}
807 				}
808 			}
809 		}
810 	}
811 
812 	dev_err(component->dev,
813 		"Could not set clocks to support sample rate.\n");
814 	return -EINVAL;
815 }
816 
817 static int aic32x4_hw_params(struct snd_pcm_substream *substream,
818 				 struct snd_pcm_hw_params *params,
819 				 struct snd_soc_dai *dai)
820 {
821 	struct snd_soc_component *component = dai->component;
822 	struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
823 	u8 iface1_reg = 0;
824 	u8 dacsetup_reg = 0;
825 
826 	aic32x4_setup_clocks(component, params_rate(params),
827 			     params_channels(params),
828 			     params_physical_width(params));
829 
830 	switch (params_physical_width(params)) {
831 	case 16:
832 		iface1_reg |= (AIC32X4_WORD_LEN_16BITS <<
833 				   AIC32X4_IFACE1_DATALEN_SHIFT);
834 		break;
835 	case 20:
836 		iface1_reg |= (AIC32X4_WORD_LEN_20BITS <<
837 				   AIC32X4_IFACE1_DATALEN_SHIFT);
838 		break;
839 	case 24:
840 		iface1_reg |= (AIC32X4_WORD_LEN_24BITS <<
841 				   AIC32X4_IFACE1_DATALEN_SHIFT);
842 		break;
843 	case 32:
844 		iface1_reg |= (AIC32X4_WORD_LEN_32BITS <<
845 				   AIC32X4_IFACE1_DATALEN_SHIFT);
846 		break;
847 	}
848 	snd_soc_component_update_bits(component, AIC32X4_IFACE1,
849 				AIC32X4_IFACE1_DATALEN_MASK, iface1_reg);
850 
851 	if (params_channels(params) == 1) {
852 		dacsetup_reg = AIC32X4_RDAC2LCHN | AIC32X4_LDAC2LCHN;
853 	} else {
854 		if (aic32x4->swapdacs)
855 			dacsetup_reg = AIC32X4_RDAC2LCHN | AIC32X4_LDAC2RCHN;
856 		else
857 			dacsetup_reg = AIC32X4_LDAC2LCHN | AIC32X4_RDAC2RCHN;
858 	}
859 	snd_soc_component_update_bits(component, AIC32X4_DACSETUP,
860 				AIC32X4_DAC_CHAN_MASK, dacsetup_reg);
861 
862 	return 0;
863 }
864 
865 static int aic32x4_mute(struct snd_soc_dai *dai, int mute, int direction)
866 {
867 	struct snd_soc_component *component = dai->component;
868 
869 	snd_soc_component_update_bits(component, AIC32X4_DACMUTE,
870 				AIC32X4_MUTEON, mute ? AIC32X4_MUTEON : 0);
871 
872 	return 0;
873 }
874 
875 static int aic32x4_set_bias_level(struct snd_soc_component *component,
876 				  enum snd_soc_bias_level level)
877 {
878 	int ret;
879 
880 	static struct clk_bulk_data clocks[] = {
881 		{ .id = "madc" },
882 		{ .id = "mdac" },
883 		{ .id = "bdiv" },
884 	};
885 
886 	ret = devm_clk_bulk_get(component->dev, ARRAY_SIZE(clocks), clocks);
887 	if (ret)
888 		return ret;
889 
890 	switch (level) {
891 	case SND_SOC_BIAS_ON:
892 		ret = clk_bulk_prepare_enable(ARRAY_SIZE(clocks), clocks);
893 		if (ret) {
894 			dev_err(component->dev, "Failed to enable clocks\n");
895 			return ret;
896 		}
897 		break;
898 	case SND_SOC_BIAS_PREPARE:
899 		break;
900 	case SND_SOC_BIAS_STANDBY:
901 		/* Initial cold start */
902 		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF)
903 			break;
904 
905 		clk_bulk_disable_unprepare(ARRAY_SIZE(clocks), clocks);
906 		break;
907 	case SND_SOC_BIAS_OFF:
908 		break;
909 	}
910 	return 0;
911 }
912 
913 #define AIC32X4_RATES	SNDRV_PCM_RATE_8000_192000
914 #define AIC32X4_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
915 			 | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_3LE \
916 			 | SNDRV_PCM_FMTBIT_S32_LE)
917 
918 static const struct snd_soc_dai_ops aic32x4_ops = {
919 	.hw_params = aic32x4_hw_params,
920 	.mute_stream = aic32x4_mute,
921 	.set_fmt = aic32x4_set_dai_fmt,
922 	.set_sysclk = aic32x4_set_dai_sysclk,
923 	.no_capture_mute = 1,
924 };
925 
926 static struct snd_soc_dai_driver aic32x4_dai = {
927 	.name = "tlv320aic32x4-hifi",
928 	.playback = {
929 			 .stream_name = "Playback",
930 			 .channels_min = 1,
931 			 .channels_max = 2,
932 			 .rates = AIC32X4_RATES,
933 			 .formats = AIC32X4_FORMATS,},
934 	.capture = {
935 			.stream_name = "Capture",
936 			.channels_min = 1,
937 			.channels_max = 8,
938 			.rates = AIC32X4_RATES,
939 			.formats = AIC32X4_FORMATS,},
940 	.ops = &aic32x4_ops,
941 	.symmetric_rate = 1,
942 };
943 
944 static void aic32x4_setup_gpios(struct snd_soc_component *component)
945 {
946 	struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
947 
948 	/* setup GPIO functions */
949 	/* MFP1 */
950 	if (aic32x4->setup->gpio_func[0] != AIC32X4_MFPX_DEFAULT_VALUE) {
951 		snd_soc_component_write(component, AIC32X4_DINCTL,
952 			  aic32x4->setup->gpio_func[0]);
953 		snd_soc_add_component_controls(component, aic32x4_mfp1,
954 			ARRAY_SIZE(aic32x4_mfp1));
955 	}
956 
957 	/* MFP2 */
958 	if (aic32x4->setup->gpio_func[1] != AIC32X4_MFPX_DEFAULT_VALUE) {
959 		snd_soc_component_write(component, AIC32X4_DOUTCTL,
960 			  aic32x4->setup->gpio_func[1]);
961 		snd_soc_add_component_controls(component, aic32x4_mfp2,
962 			ARRAY_SIZE(aic32x4_mfp2));
963 	}
964 
965 	/* MFP3 */
966 	if (aic32x4->setup->gpio_func[2] != AIC32X4_MFPX_DEFAULT_VALUE) {
967 		snd_soc_component_write(component, AIC32X4_SCLKCTL,
968 			  aic32x4->setup->gpio_func[2]);
969 		snd_soc_add_component_controls(component, aic32x4_mfp3,
970 			ARRAY_SIZE(aic32x4_mfp3));
971 	}
972 
973 	/* MFP4 */
974 	if (aic32x4->setup->gpio_func[3] != AIC32X4_MFPX_DEFAULT_VALUE) {
975 		snd_soc_component_write(component, AIC32X4_MISOCTL,
976 			  aic32x4->setup->gpio_func[3]);
977 		snd_soc_add_component_controls(component, aic32x4_mfp4,
978 			ARRAY_SIZE(aic32x4_mfp4));
979 	}
980 
981 	/* MFP5 */
982 	if (aic32x4->setup->gpio_func[4] != AIC32X4_MFPX_DEFAULT_VALUE) {
983 		snd_soc_component_write(component, AIC32X4_GPIOCTL,
984 			  aic32x4->setup->gpio_func[4]);
985 		snd_soc_add_component_controls(component, aic32x4_mfp5,
986 			ARRAY_SIZE(aic32x4_mfp5));
987 	}
988 }
989 
990 static int aic32x4_component_probe(struct snd_soc_component *component)
991 {
992 	struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
993 	u32 tmp_reg;
994 	int ret;
995 
996 	static struct clk_bulk_data clocks[] = {
997 		{ .id = "codec_clkin" },
998 		{ .id = "pll" },
999 		{ .id = "bdiv" },
1000 		{ .id = "mdac" },
1001 	};
1002 
1003 	ret = devm_clk_bulk_get(component->dev, ARRAY_SIZE(clocks), clocks);
1004 	if (ret)
1005 		return ret;
1006 
1007 	if (aic32x4->setup)
1008 		aic32x4_setup_gpios(component);
1009 
1010 	clk_set_parent(clocks[0].clk, clocks[1].clk);
1011 	clk_set_parent(clocks[2].clk, clocks[3].clk);
1012 
1013 	/* Power platform configuration */
1014 	if (aic32x4->power_cfg & AIC32X4_PWR_MICBIAS_2075_LDOIN) {
1015 		snd_soc_component_write(component, AIC32X4_MICBIAS,
1016 				AIC32X4_MICBIAS_LDOIN | AIC32X4_MICBIAS_2075V);
1017 	}
1018 	if (aic32x4->power_cfg & AIC32X4_PWR_AVDD_DVDD_WEAK_DISABLE)
1019 		snd_soc_component_write(component, AIC32X4_PWRCFG, AIC32X4_AVDDWEAKDISABLE);
1020 
1021 	tmp_reg = (aic32x4->power_cfg & AIC32X4_PWR_AIC32X4_LDO_ENABLE) ?
1022 			AIC32X4_LDOCTLEN : 0;
1023 	snd_soc_component_write(component, AIC32X4_LDOCTL, tmp_reg);
1024 
1025 	tmp_reg = snd_soc_component_read(component, AIC32X4_CMMODE);
1026 	if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_LDOIN_RANGE_18_36)
1027 		tmp_reg |= AIC32X4_LDOIN_18_36;
1028 	if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_HP_LDOIN_POWERED)
1029 		tmp_reg |= AIC32X4_LDOIN2HP;
1030 	snd_soc_component_write(component, AIC32X4_CMMODE, tmp_reg);
1031 
1032 	/* Mic PGA routing */
1033 	if (aic32x4->micpga_routing & AIC32X4_MICPGA_ROUTE_LMIC_IN2R_10K)
1034 		snd_soc_component_write(component, AIC32X4_LMICPGANIN,
1035 				AIC32X4_LMICPGANIN_IN2R_10K);
1036 	else
1037 		snd_soc_component_write(component, AIC32X4_LMICPGANIN,
1038 				AIC32X4_LMICPGANIN_CM1L_10K);
1039 	if (aic32x4->micpga_routing & AIC32X4_MICPGA_ROUTE_RMIC_IN1L_10K)
1040 		snd_soc_component_write(component, AIC32X4_RMICPGANIN,
1041 				AIC32X4_RMICPGANIN_IN1L_10K);
1042 	else
1043 		snd_soc_component_write(component, AIC32X4_RMICPGANIN,
1044 				AIC32X4_RMICPGANIN_CM1R_10K);
1045 
1046 	/*
1047 	 * Workaround: for an unknown reason, the ADC needs to be powered up
1048 	 * and down for the first capture to work properly. It seems related to
1049 	 * a HW BUG or some kind of behavior not documented in the datasheet.
1050 	 */
1051 	tmp_reg = snd_soc_component_read(component, AIC32X4_ADCSETUP);
1052 	snd_soc_component_write(component, AIC32X4_ADCSETUP, tmp_reg |
1053 				AIC32X4_LADC_EN | AIC32X4_RADC_EN);
1054 	snd_soc_component_write(component, AIC32X4_ADCSETUP, tmp_reg);
1055 
1056 	/*
1057 	 * Enable the fast charging feature and ensure the needed 40ms ellapsed
1058 	 * before using the analog circuits.
1059 	 */
1060 	snd_soc_component_write(component, AIC32X4_REFPOWERUP,
1061 				AIC32X4_REFPOWERUP_40MS);
1062 	msleep(40);
1063 
1064 	return 0;
1065 }
1066 
1067 static const struct snd_soc_component_driver soc_component_dev_aic32x4 = {
1068 	.probe			= aic32x4_component_probe,
1069 	.set_bias_level		= aic32x4_set_bias_level,
1070 	.controls		= aic32x4_snd_controls,
1071 	.num_controls		= ARRAY_SIZE(aic32x4_snd_controls),
1072 	.dapm_widgets		= aic32x4_dapm_widgets,
1073 	.num_dapm_widgets	= ARRAY_SIZE(aic32x4_dapm_widgets),
1074 	.dapm_routes		= aic32x4_dapm_routes,
1075 	.num_dapm_routes	= ARRAY_SIZE(aic32x4_dapm_routes),
1076 	.suspend_bias_off	= 1,
1077 	.idle_bias_on		= 1,
1078 	.use_pmdown_time	= 1,
1079 	.endianness		= 1,
1080 };
1081 
1082 static const struct snd_kcontrol_new aic32x4_tas2505_snd_controls[] = {
1083 	SOC_SINGLE_S8_TLV("PCM Playback Volume",
1084 			  AIC32X4_LDACVOL, -0x7f, 0x30, tlv_pcm),
1085 	SOC_ENUM("DAC Playback PowerTune Switch", l_ptm_enum),
1086 
1087 	SOC_SINGLE_TLV("HP Driver Gain Volume",
1088 			AIC32X4_HPLGAIN, 0, 0x74, 1, tlv_tas_driver_gain),
1089 	SOC_SINGLE("HP DAC Playback Switch", AIC32X4_HPLGAIN, 6, 1, 1),
1090 
1091 	SOC_SINGLE_TLV("Speaker Driver Playback Volume",
1092 			TAS2505_SPKVOL1, 0, 0x74, 1, tlv_tas_driver_gain),
1093 	SOC_SINGLE_TLV("Speaker Amplifier Playback Volume",
1094 			TAS2505_SPKVOL2, 4, 5, 0, tlv_amp_vol),
1095 
1096 	SOC_SINGLE("Auto-mute Switch", AIC32X4_DACMUTE, 4, 7, 0),
1097 };
1098 
1099 static const struct snd_kcontrol_new hp_output_mixer_controls[] = {
1100 	SOC_DAPM_SINGLE("DAC Switch", AIC32X4_HPLROUTE, 3, 1, 0),
1101 };
1102 
1103 static const struct snd_soc_dapm_widget aic32x4_tas2505_dapm_widgets[] = {
1104 	SND_SOC_DAPM_DAC("DAC", "Playback", AIC32X4_DACSETUP, 7, 0),
1105 	SND_SOC_DAPM_MIXER("HP Output Mixer", SND_SOC_NOPM, 0, 0,
1106 			   &hp_output_mixer_controls[0],
1107 			   ARRAY_SIZE(hp_output_mixer_controls)),
1108 	SND_SOC_DAPM_PGA("HP Power", AIC32X4_OUTPWRCTL, 5, 0, NULL, 0),
1109 
1110 	SND_SOC_DAPM_PGA("Speaker Driver", TAS2505_SPK, 1, 0, NULL, 0),
1111 
1112 	SND_SOC_DAPM_OUTPUT("HP"),
1113 	SND_SOC_DAPM_OUTPUT("Speaker"),
1114 };
1115 
1116 static const struct snd_soc_dapm_route aic32x4_tas2505_dapm_routes[] = {
1117 	/* Left Output */
1118 	{"HP Output Mixer", "DAC Switch", "DAC"},
1119 
1120 	{"HP Power", NULL, "HP Output Mixer"},
1121 	{"HP", NULL, "HP Power"},
1122 
1123 	{"Speaker Driver", NULL, "DAC"},
1124 	{"Speaker", NULL, "Speaker Driver"},
1125 };
1126 
1127 static struct snd_soc_dai_driver aic32x4_tas2505_dai = {
1128 	.name = "tas2505-hifi",
1129 	.playback = {
1130 			 .stream_name = "Playback",
1131 			 .channels_min = 1,
1132 			 .channels_max = 2,
1133 			 .rates = SNDRV_PCM_RATE_8000_96000,
1134 			 .formats = AIC32X4_FORMATS,},
1135 	.ops = &aic32x4_ops,
1136 	.symmetric_rate = 1,
1137 };
1138 
1139 static int aic32x4_tas2505_component_probe(struct snd_soc_component *component)
1140 {
1141 	struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
1142 	u32 tmp_reg;
1143 	int ret;
1144 
1145 	static struct clk_bulk_data clocks[] = {
1146 		{ .id = "codec_clkin" },
1147 		{ .id = "pll" },
1148 		{ .id = "bdiv" },
1149 		{ .id = "mdac" },
1150 	};
1151 
1152 	ret = devm_clk_bulk_get(component->dev, ARRAY_SIZE(clocks), clocks);
1153 	if (ret)
1154 		return ret;
1155 
1156 	if (aic32x4->setup)
1157 		aic32x4_setup_gpios(component);
1158 
1159 	clk_set_parent(clocks[0].clk, clocks[1].clk);
1160 	clk_set_parent(clocks[2].clk, clocks[3].clk);
1161 
1162 	/* Power platform configuration */
1163 	if (aic32x4->power_cfg & AIC32X4_PWR_AVDD_DVDD_WEAK_DISABLE)
1164 		snd_soc_component_write(component, AIC32X4_PWRCFG, AIC32X4_AVDDWEAKDISABLE);
1165 
1166 	tmp_reg = (aic32x4->power_cfg & AIC32X4_PWR_AIC32X4_LDO_ENABLE) ?
1167 			AIC32X4_LDOCTLEN : 0;
1168 	snd_soc_component_write(component, AIC32X4_LDOCTL, tmp_reg);
1169 
1170 	tmp_reg = snd_soc_component_read(component, AIC32X4_CMMODE);
1171 	if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_LDOIN_RANGE_18_36)
1172 		tmp_reg |= AIC32X4_LDOIN_18_36;
1173 	if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_HP_LDOIN_POWERED)
1174 		tmp_reg |= AIC32X4_LDOIN2HP;
1175 	snd_soc_component_write(component, AIC32X4_CMMODE, tmp_reg);
1176 
1177 	/*
1178 	 * Enable the fast charging feature and ensure the needed 40ms ellapsed
1179 	 * before using the analog circuits.
1180 	 */
1181 	snd_soc_component_write(component, TAS2505_REFPOWERUP,
1182 				AIC32X4_REFPOWERUP_40MS);
1183 	msleep(40);
1184 
1185 	return 0;
1186 }
1187 
1188 static const struct snd_soc_component_driver soc_component_dev_aic32x4_tas2505 = {
1189 	.probe			= aic32x4_tas2505_component_probe,
1190 	.set_bias_level		= aic32x4_set_bias_level,
1191 	.controls		= aic32x4_tas2505_snd_controls,
1192 	.num_controls		= ARRAY_SIZE(aic32x4_tas2505_snd_controls),
1193 	.dapm_widgets		= aic32x4_tas2505_dapm_widgets,
1194 	.num_dapm_widgets	= ARRAY_SIZE(aic32x4_tas2505_dapm_widgets),
1195 	.dapm_routes		= aic32x4_tas2505_dapm_routes,
1196 	.num_dapm_routes	= ARRAY_SIZE(aic32x4_tas2505_dapm_routes),
1197 	.suspend_bias_off	= 1,
1198 	.idle_bias_on		= 1,
1199 	.use_pmdown_time	= 1,
1200 	.endianness		= 1,
1201 };
1202 
1203 static int aic32x4_parse_dt(struct aic32x4_priv *aic32x4,
1204 		struct device_node *np)
1205 {
1206 	struct aic32x4_setup_data *aic32x4_setup;
1207 	int ret;
1208 
1209 	aic32x4_setup = devm_kzalloc(aic32x4->dev, sizeof(*aic32x4_setup),
1210 							GFP_KERNEL);
1211 	if (!aic32x4_setup)
1212 		return -ENOMEM;
1213 
1214 	ret = of_property_match_string(np, "clock-names", "mclk");
1215 	if (ret < 0)
1216 		return -EINVAL;
1217 	aic32x4->mclk_name = of_clk_get_parent_name(np, ret);
1218 
1219 	aic32x4->swapdacs = false;
1220 	aic32x4->micpga_routing = 0;
1221 	aic32x4->rstn_gpio = of_get_named_gpio(np, "reset-gpios", 0);
1222 
1223 	if (of_property_read_u32_array(np, "aic32x4-gpio-func",
1224 				aic32x4_setup->gpio_func, 5) >= 0)
1225 		aic32x4->setup = aic32x4_setup;
1226 	return 0;
1227 }
1228 
1229 static void aic32x4_disable_regulators(struct aic32x4_priv *aic32x4)
1230 {
1231 	regulator_disable(aic32x4->supply_iov);
1232 
1233 	if (!IS_ERR(aic32x4->supply_ldo))
1234 		regulator_disable(aic32x4->supply_ldo);
1235 
1236 	if (!IS_ERR(aic32x4->supply_dv))
1237 		regulator_disable(aic32x4->supply_dv);
1238 
1239 	if (!IS_ERR(aic32x4->supply_av))
1240 		regulator_disable(aic32x4->supply_av);
1241 }
1242 
1243 static int aic32x4_setup_regulators(struct device *dev,
1244 		struct aic32x4_priv *aic32x4)
1245 {
1246 	int ret = 0;
1247 
1248 	aic32x4->supply_ldo = devm_regulator_get_optional(dev, "ldoin");
1249 	aic32x4->supply_iov = devm_regulator_get(dev, "iov");
1250 	aic32x4->supply_dv = devm_regulator_get_optional(dev, "dv");
1251 	aic32x4->supply_av = devm_regulator_get_optional(dev, "av");
1252 
1253 	/* Check if the regulator requirements are fulfilled */
1254 
1255 	if (IS_ERR(aic32x4->supply_iov)) {
1256 		dev_err(dev, "Missing supply 'iov'\n");
1257 		return PTR_ERR(aic32x4->supply_iov);
1258 	}
1259 
1260 	if (IS_ERR(aic32x4->supply_ldo)) {
1261 		if (PTR_ERR(aic32x4->supply_ldo) == -EPROBE_DEFER)
1262 			return -EPROBE_DEFER;
1263 
1264 		if (IS_ERR(aic32x4->supply_dv)) {
1265 			dev_err(dev, "Missing supply 'dv' or 'ldoin'\n");
1266 			return PTR_ERR(aic32x4->supply_dv);
1267 		}
1268 		if (IS_ERR(aic32x4->supply_av)) {
1269 			dev_err(dev, "Missing supply 'av' or 'ldoin'\n");
1270 			return PTR_ERR(aic32x4->supply_av);
1271 		}
1272 	} else {
1273 		if (PTR_ERR(aic32x4->supply_dv) == -EPROBE_DEFER)
1274 			return -EPROBE_DEFER;
1275 		if (PTR_ERR(aic32x4->supply_av) == -EPROBE_DEFER)
1276 			return -EPROBE_DEFER;
1277 	}
1278 
1279 	ret = regulator_enable(aic32x4->supply_iov);
1280 	if (ret) {
1281 		dev_err(dev, "Failed to enable regulator iov\n");
1282 		return ret;
1283 	}
1284 
1285 	if (!IS_ERR(aic32x4->supply_ldo)) {
1286 		ret = regulator_enable(aic32x4->supply_ldo);
1287 		if (ret) {
1288 			dev_err(dev, "Failed to enable regulator ldo\n");
1289 			goto error_ldo;
1290 		}
1291 	}
1292 
1293 	if (!IS_ERR(aic32x4->supply_dv)) {
1294 		ret = regulator_enable(aic32x4->supply_dv);
1295 		if (ret) {
1296 			dev_err(dev, "Failed to enable regulator dv\n");
1297 			goto error_dv;
1298 		}
1299 	}
1300 
1301 	if (!IS_ERR(aic32x4->supply_av)) {
1302 		ret = regulator_enable(aic32x4->supply_av);
1303 		if (ret) {
1304 			dev_err(dev, "Failed to enable regulator av\n");
1305 			goto error_av;
1306 		}
1307 	}
1308 
1309 	if (!IS_ERR(aic32x4->supply_ldo) && IS_ERR(aic32x4->supply_av))
1310 		aic32x4->power_cfg |= AIC32X4_PWR_AIC32X4_LDO_ENABLE;
1311 
1312 	return 0;
1313 
1314 error_av:
1315 	if (!IS_ERR(aic32x4->supply_dv))
1316 		regulator_disable(aic32x4->supply_dv);
1317 
1318 error_dv:
1319 	if (!IS_ERR(aic32x4->supply_ldo))
1320 		regulator_disable(aic32x4->supply_ldo);
1321 
1322 error_ldo:
1323 	regulator_disable(aic32x4->supply_iov);
1324 	return ret;
1325 }
1326 
1327 int aic32x4_probe(struct device *dev, struct regmap *regmap)
1328 {
1329 	struct aic32x4_priv *aic32x4;
1330 	struct aic32x4_pdata *pdata = dev->platform_data;
1331 	struct device_node *np = dev->of_node;
1332 	int ret;
1333 
1334 	if (IS_ERR(regmap))
1335 		return PTR_ERR(regmap);
1336 
1337 	aic32x4 = devm_kzalloc(dev, sizeof(struct aic32x4_priv),
1338 				   GFP_KERNEL);
1339 	if (aic32x4 == NULL)
1340 		return -ENOMEM;
1341 
1342 	aic32x4->dev = dev;
1343 	aic32x4->type = (enum aic32x4_type)dev_get_drvdata(dev);
1344 
1345 	dev_set_drvdata(dev, aic32x4);
1346 
1347 	if (pdata) {
1348 		aic32x4->power_cfg = pdata->power_cfg;
1349 		aic32x4->swapdacs = pdata->swapdacs;
1350 		aic32x4->micpga_routing = pdata->micpga_routing;
1351 		aic32x4->rstn_gpio = pdata->rstn_gpio;
1352 		aic32x4->mclk_name = "mclk";
1353 	} else if (np) {
1354 		ret = aic32x4_parse_dt(aic32x4, np);
1355 		if (ret) {
1356 			dev_err(dev, "Failed to parse DT node\n");
1357 			return ret;
1358 		}
1359 	} else {
1360 		aic32x4->power_cfg = 0;
1361 		aic32x4->swapdacs = false;
1362 		aic32x4->micpga_routing = 0;
1363 		aic32x4->rstn_gpio = -1;
1364 		aic32x4->mclk_name = "mclk";
1365 	}
1366 
1367 	if (gpio_is_valid(aic32x4->rstn_gpio)) {
1368 		ret = devm_gpio_request_one(dev, aic32x4->rstn_gpio,
1369 				GPIOF_OUT_INIT_LOW, "tlv320aic32x4 rstn");
1370 		if (ret != 0)
1371 			return ret;
1372 	}
1373 
1374 	ret = aic32x4_setup_regulators(dev, aic32x4);
1375 	if (ret) {
1376 		dev_err(dev, "Failed to setup regulators\n");
1377 		return ret;
1378 	}
1379 
1380 	if (gpio_is_valid(aic32x4->rstn_gpio)) {
1381 		ndelay(10);
1382 		gpio_set_value_cansleep(aic32x4->rstn_gpio, 1);
1383 		mdelay(1);
1384 	}
1385 
1386 	ret = regmap_write(regmap, AIC32X4_RESET, 0x01);
1387 	if (ret)
1388 		goto err_disable_regulators;
1389 
1390 	ret = aic32x4_register_clocks(dev, aic32x4->mclk_name);
1391 	if (ret)
1392 		goto err_disable_regulators;
1393 
1394 	switch (aic32x4->type) {
1395 	case AIC32X4_TYPE_TAS2505:
1396 		ret = devm_snd_soc_register_component(dev,
1397 			&soc_component_dev_aic32x4_tas2505, &aic32x4_tas2505_dai, 1);
1398 		break;
1399 	default:
1400 		ret = devm_snd_soc_register_component(dev,
1401 			&soc_component_dev_aic32x4, &aic32x4_dai, 1);
1402 	}
1403 
1404 	if (ret) {
1405 		dev_err(dev, "Failed to register component\n");
1406 		goto err_disable_regulators;
1407 	}
1408 
1409 	return 0;
1410 
1411 err_disable_regulators:
1412 	aic32x4_disable_regulators(aic32x4);
1413 
1414 	return ret;
1415 }
1416 EXPORT_SYMBOL(aic32x4_probe);
1417 
1418 void aic32x4_remove(struct device *dev)
1419 {
1420 	struct aic32x4_priv *aic32x4 = dev_get_drvdata(dev);
1421 
1422 	aic32x4_disable_regulators(aic32x4);
1423 }
1424 EXPORT_SYMBOL(aic32x4_remove);
1425 
1426 MODULE_DESCRIPTION("ASoC tlv320aic32x4 codec driver");
1427 MODULE_AUTHOR("Javier Martin <javier.martin@vista-silicon.com>");
1428 MODULE_LICENSE("GPL");
1429