xref: /openbmc/linux/sound/soc/codecs/tlv320aic32x4.c (revision 43ee1e3f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * linux/sound/soc/codecs/tlv320aic32x4.c
4  *
5  * Copyright 2011 Vista Silicon S.L.
6  *
7  * Author: Javier Martin <javier.martin@vista-silicon.com>
8  *
9  * Based on sound/soc/codecs/wm8974 and TI driver for kernel 2.6.27.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/init.h>
15 #include <linux/delay.h>
16 #include <linux/pm.h>
17 #include <linux/gpio.h>
18 #include <linux/of_gpio.h>
19 #include <linux/cdev.h>
20 #include <linux/slab.h>
21 #include <linux/clk.h>
22 #include <linux/of_clk.h>
23 #include <linux/regulator/consumer.h>
24 
25 #include <sound/tlv320aic32x4.h>
26 #include <sound/core.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/soc.h>
30 #include <sound/soc-dapm.h>
31 #include <sound/initval.h>
32 #include <sound/tlv.h>
33 
34 #include "tlv320aic32x4.h"
35 
36 struct aic32x4_priv {
37 	struct regmap *regmap;
38 	u32 power_cfg;
39 	u32 micpga_routing;
40 	bool swapdacs;
41 	int rstn_gpio;
42 	const char *mclk_name;
43 
44 	struct regulator *supply_ldo;
45 	struct regulator *supply_iov;
46 	struct regulator *supply_dv;
47 	struct regulator *supply_av;
48 
49 	struct aic32x4_setup_data *setup;
50 	struct device *dev;
51 	enum aic32x4_type type;
52 
53 	unsigned int fmt;
54 };
55 
56 static int aic32x4_reset_adc(struct snd_soc_dapm_widget *w,
57 			     struct snd_kcontrol *kcontrol, int event)
58 {
59 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
60 	u32 adc_reg;
61 
62 	/*
63 	 * Workaround: the datasheet does not mention a required programming
64 	 * sequence but experiments show the ADC needs to be reset after each
65 	 * capture to avoid audible artifacts.
66 	 */
67 	switch (event) {
68 	case SND_SOC_DAPM_POST_PMD:
69 		adc_reg = snd_soc_component_read(component, AIC32X4_ADCSETUP);
70 		snd_soc_component_write(component, AIC32X4_ADCSETUP, adc_reg |
71 					AIC32X4_LADC_EN | AIC32X4_RADC_EN);
72 		snd_soc_component_write(component, AIC32X4_ADCSETUP, adc_reg);
73 		break;
74 	}
75 	return 0;
76 };
77 
78 static int mic_bias_event(struct snd_soc_dapm_widget *w,
79 	struct snd_kcontrol *kcontrol, int event)
80 {
81 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
82 
83 	switch (event) {
84 	case SND_SOC_DAPM_POST_PMU:
85 		/* Change Mic Bias Registor */
86 		snd_soc_component_update_bits(component, AIC32X4_MICBIAS,
87 				AIC32x4_MICBIAS_MASK,
88 				AIC32X4_MICBIAS_LDOIN |
89 				AIC32X4_MICBIAS_2075V);
90 		printk(KERN_DEBUG "%s: Mic Bias will be turned ON\n", __func__);
91 		break;
92 	case SND_SOC_DAPM_PRE_PMD:
93 		snd_soc_component_update_bits(component, AIC32X4_MICBIAS,
94 				AIC32x4_MICBIAS_MASK, 0);
95 		printk(KERN_DEBUG "%s: Mic Bias will be turned OFF\n",
96 				__func__);
97 		break;
98 	}
99 
100 	return 0;
101 }
102 
103 
104 static int aic32x4_get_mfp1_gpio(struct snd_kcontrol *kcontrol,
105 	struct snd_ctl_elem_value *ucontrol)
106 {
107 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
108 	u8 val;
109 
110 	val = snd_soc_component_read(component, AIC32X4_DINCTL);
111 
112 	ucontrol->value.integer.value[0] = (val & 0x01);
113 
114 	return 0;
115 };
116 
117 static int aic32x4_set_mfp2_gpio(struct snd_kcontrol *kcontrol,
118 	struct snd_ctl_elem_value *ucontrol)
119 {
120 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
121 	u8 val;
122 	u8 gpio_check;
123 
124 	val = snd_soc_component_read(component, AIC32X4_DOUTCTL);
125 	gpio_check = (val & AIC32X4_MFP_GPIO_ENABLED);
126 	if (gpio_check != AIC32X4_MFP_GPIO_ENABLED) {
127 		printk(KERN_ERR "%s: MFP2 is not configure as a GPIO output\n",
128 			__func__);
129 		return -EINVAL;
130 	}
131 
132 	if (ucontrol->value.integer.value[0] == (val & AIC32X4_MFP2_GPIO_OUT_HIGH))
133 		return 0;
134 
135 	if (ucontrol->value.integer.value[0])
136 		val |= ucontrol->value.integer.value[0];
137 	else
138 		val &= ~AIC32X4_MFP2_GPIO_OUT_HIGH;
139 
140 	snd_soc_component_write(component, AIC32X4_DOUTCTL, val);
141 
142 	return 0;
143 };
144 
145 static int aic32x4_get_mfp3_gpio(struct snd_kcontrol *kcontrol,
146 	struct snd_ctl_elem_value *ucontrol)
147 {
148 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
149 	u8 val;
150 
151 	val = snd_soc_component_read(component, AIC32X4_SCLKCTL);
152 
153 	ucontrol->value.integer.value[0] = (val & 0x01);
154 
155 	return 0;
156 };
157 
158 static int aic32x4_set_mfp4_gpio(struct snd_kcontrol *kcontrol,
159 	struct snd_ctl_elem_value *ucontrol)
160 {
161 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
162 	u8 val;
163 	u8 gpio_check;
164 
165 	val = snd_soc_component_read(component, AIC32X4_MISOCTL);
166 	gpio_check = (val & AIC32X4_MFP_GPIO_ENABLED);
167 	if (gpio_check != AIC32X4_MFP_GPIO_ENABLED) {
168 		printk(KERN_ERR "%s: MFP4 is not configure as a GPIO output\n",
169 			__func__);
170 		return -EINVAL;
171 	}
172 
173 	if (ucontrol->value.integer.value[0] == (val & AIC32X4_MFP5_GPIO_OUT_HIGH))
174 		return 0;
175 
176 	if (ucontrol->value.integer.value[0])
177 		val |= ucontrol->value.integer.value[0];
178 	else
179 		val &= ~AIC32X4_MFP5_GPIO_OUT_HIGH;
180 
181 	snd_soc_component_write(component, AIC32X4_MISOCTL, val);
182 
183 	return 0;
184 };
185 
186 static int aic32x4_get_mfp5_gpio(struct snd_kcontrol *kcontrol,
187 	struct snd_ctl_elem_value *ucontrol)
188 {
189 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
190 	u8 val;
191 
192 	val = snd_soc_component_read(component, AIC32X4_GPIOCTL);
193 	ucontrol->value.integer.value[0] = ((val & 0x2) >> 1);
194 
195 	return 0;
196 };
197 
198 static int aic32x4_set_mfp5_gpio(struct snd_kcontrol *kcontrol,
199 	struct snd_ctl_elem_value *ucontrol)
200 {
201 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
202 	u8 val;
203 	u8 gpio_check;
204 
205 	val = snd_soc_component_read(component, AIC32X4_GPIOCTL);
206 	gpio_check = (val & AIC32X4_MFP5_GPIO_OUTPUT);
207 	if (gpio_check != AIC32X4_MFP5_GPIO_OUTPUT) {
208 		printk(KERN_ERR "%s: MFP5 is not configure as a GPIO output\n",
209 			__func__);
210 		return -EINVAL;
211 	}
212 
213 	if (ucontrol->value.integer.value[0] == (val & 0x1))
214 		return 0;
215 
216 	if (ucontrol->value.integer.value[0])
217 		val |= ucontrol->value.integer.value[0];
218 	else
219 		val &= 0xfe;
220 
221 	snd_soc_component_write(component, AIC32X4_GPIOCTL, val);
222 
223 	return 0;
224 };
225 
226 static const struct snd_kcontrol_new aic32x4_mfp1[] = {
227 	SOC_SINGLE_BOOL_EXT("MFP1 GPIO", 0, aic32x4_get_mfp1_gpio, NULL),
228 };
229 
230 static const struct snd_kcontrol_new aic32x4_mfp2[] = {
231 	SOC_SINGLE_BOOL_EXT("MFP2 GPIO", 0, NULL, aic32x4_set_mfp2_gpio),
232 };
233 
234 static const struct snd_kcontrol_new aic32x4_mfp3[] = {
235 	SOC_SINGLE_BOOL_EXT("MFP3 GPIO", 0, aic32x4_get_mfp3_gpio, NULL),
236 };
237 
238 static const struct snd_kcontrol_new aic32x4_mfp4[] = {
239 	SOC_SINGLE_BOOL_EXT("MFP4 GPIO", 0, NULL, aic32x4_set_mfp4_gpio),
240 };
241 
242 static const struct snd_kcontrol_new aic32x4_mfp5[] = {
243 	SOC_SINGLE_BOOL_EXT("MFP5 GPIO", 0, aic32x4_get_mfp5_gpio,
244 		aic32x4_set_mfp5_gpio),
245 };
246 
247 /* 0dB min, 0.5dB steps */
248 static DECLARE_TLV_DB_SCALE(tlv_step_0_5, 0, 50, 0);
249 /* -63.5dB min, 0.5dB steps */
250 static DECLARE_TLV_DB_SCALE(tlv_pcm, -6350, 50, 0);
251 /* -6dB min, 1dB steps */
252 static DECLARE_TLV_DB_SCALE(tlv_driver_gain, -600, 100, 0);
253 /* -12dB min, 0.5dB steps */
254 static DECLARE_TLV_DB_SCALE(tlv_adc_vol, -1200, 50, 0);
255 /* -6dB min, 1dB steps */
256 static DECLARE_TLV_DB_SCALE(tlv_tas_driver_gain, -5850, 50, 0);
257 static DECLARE_TLV_DB_SCALE(tlv_amp_vol, 0, 600, 1);
258 
259 static const char * const lo_cm_text[] = {
260 	"Full Chip", "1.65V",
261 };
262 
263 static SOC_ENUM_SINGLE_DECL(lo_cm_enum, AIC32X4_CMMODE, 3, lo_cm_text);
264 
265 static const char * const ptm_text[] = {
266 	"P3", "P2", "P1",
267 };
268 
269 static SOC_ENUM_SINGLE_DECL(l_ptm_enum, AIC32X4_LPLAYBACK, 2, ptm_text);
270 static SOC_ENUM_SINGLE_DECL(r_ptm_enum, AIC32X4_RPLAYBACK, 2, ptm_text);
271 
272 static const struct snd_kcontrol_new aic32x4_snd_controls[] = {
273 	SOC_DOUBLE_R_S_TLV("PCM Playback Volume", AIC32X4_LDACVOL,
274 			AIC32X4_RDACVOL, 0, -0x7f, 0x30, 7, 0, tlv_pcm),
275 	SOC_ENUM("DAC Left Playback PowerTune Switch", l_ptm_enum),
276 	SOC_ENUM("DAC Right Playback PowerTune Switch", r_ptm_enum),
277 	SOC_DOUBLE_R_S_TLV("HP Driver Gain Volume", AIC32X4_HPLGAIN,
278 			AIC32X4_HPRGAIN, 0, -0x6, 0x1d, 5, 0,
279 			tlv_driver_gain),
280 	SOC_DOUBLE_R_S_TLV("LO Driver Gain Volume", AIC32X4_LOLGAIN,
281 			AIC32X4_LORGAIN, 0, -0x6, 0x1d, 5, 0,
282 			tlv_driver_gain),
283 	SOC_DOUBLE_R("HP DAC Playback Switch", AIC32X4_HPLGAIN,
284 			AIC32X4_HPRGAIN, 6, 0x01, 1),
285 	SOC_DOUBLE_R("LO DAC Playback Switch", AIC32X4_LOLGAIN,
286 			AIC32X4_LORGAIN, 6, 0x01, 1),
287 	SOC_ENUM("LO Playback Common Mode Switch", lo_cm_enum),
288 	SOC_DOUBLE_R("Mic PGA Switch", AIC32X4_LMICPGAVOL,
289 			AIC32X4_RMICPGAVOL, 7, 0x01, 1),
290 
291 	SOC_SINGLE("ADCFGA Left Mute Switch", AIC32X4_ADCFGA, 7, 1, 0),
292 	SOC_SINGLE("ADCFGA Right Mute Switch", AIC32X4_ADCFGA, 3, 1, 0),
293 
294 	SOC_DOUBLE_R_S_TLV("ADC Level Volume", AIC32X4_LADCVOL,
295 			AIC32X4_RADCVOL, 0, -0x18, 0x28, 6, 0, tlv_adc_vol),
296 	SOC_DOUBLE_R_TLV("PGA Level Volume", AIC32X4_LMICPGAVOL,
297 			AIC32X4_RMICPGAVOL, 0, 0x5f, 0, tlv_step_0_5),
298 
299 	SOC_SINGLE("Auto-mute Switch", AIC32X4_DACMUTE, 4, 7, 0),
300 
301 	SOC_SINGLE("AGC Left Switch", AIC32X4_LAGC1, 7, 1, 0),
302 	SOC_SINGLE("AGC Right Switch", AIC32X4_RAGC1, 7, 1, 0),
303 	SOC_DOUBLE_R("AGC Target Level", AIC32X4_LAGC1, AIC32X4_RAGC1,
304 			4, 0x07, 0),
305 	SOC_DOUBLE_R("AGC Gain Hysteresis", AIC32X4_LAGC1, AIC32X4_RAGC1,
306 			0, 0x03, 0),
307 	SOC_DOUBLE_R("AGC Hysteresis", AIC32X4_LAGC2, AIC32X4_RAGC2,
308 			6, 0x03, 0),
309 	SOC_DOUBLE_R("AGC Noise Threshold", AIC32X4_LAGC2, AIC32X4_RAGC2,
310 			1, 0x1F, 0),
311 	SOC_DOUBLE_R("AGC Max PGA", AIC32X4_LAGC3, AIC32X4_RAGC3,
312 			0, 0x7F, 0),
313 	SOC_DOUBLE_R("AGC Attack Time", AIC32X4_LAGC4, AIC32X4_RAGC4,
314 			3, 0x1F, 0),
315 	SOC_DOUBLE_R("AGC Decay Time", AIC32X4_LAGC5, AIC32X4_RAGC5,
316 			3, 0x1F, 0),
317 	SOC_DOUBLE_R("AGC Noise Debounce", AIC32X4_LAGC6, AIC32X4_RAGC6,
318 			0, 0x1F, 0),
319 	SOC_DOUBLE_R("AGC Signal Debounce", AIC32X4_LAGC7, AIC32X4_RAGC7,
320 			0, 0x0F, 0),
321 };
322 
323 static const struct snd_kcontrol_new hpl_output_mixer_controls[] = {
324 	SOC_DAPM_SINGLE("L_DAC Switch", AIC32X4_HPLROUTE, 3, 1, 0),
325 	SOC_DAPM_SINGLE("IN1_L Switch", AIC32X4_HPLROUTE, 2, 1, 0),
326 };
327 
328 static const struct snd_kcontrol_new hpr_output_mixer_controls[] = {
329 	SOC_DAPM_SINGLE("R_DAC Switch", AIC32X4_HPRROUTE, 3, 1, 0),
330 	SOC_DAPM_SINGLE("IN1_R Switch", AIC32X4_HPRROUTE, 2, 1, 0),
331 };
332 
333 static const struct snd_kcontrol_new lol_output_mixer_controls[] = {
334 	SOC_DAPM_SINGLE("L_DAC Switch", AIC32X4_LOLROUTE, 3, 1, 0),
335 };
336 
337 static const struct snd_kcontrol_new lor_output_mixer_controls[] = {
338 	SOC_DAPM_SINGLE("R_DAC Switch", AIC32X4_LORROUTE, 3, 1, 0),
339 };
340 
341 static const char * const resistor_text[] = {
342 	"Off", "10 kOhm", "20 kOhm", "40 kOhm",
343 };
344 
345 /* Left mixer pins */
346 static SOC_ENUM_SINGLE_DECL(in1l_lpga_p_enum, AIC32X4_LMICPGAPIN, 6, resistor_text);
347 static SOC_ENUM_SINGLE_DECL(in2l_lpga_p_enum, AIC32X4_LMICPGAPIN, 4, resistor_text);
348 static SOC_ENUM_SINGLE_DECL(in3l_lpga_p_enum, AIC32X4_LMICPGAPIN, 2, resistor_text);
349 static SOC_ENUM_SINGLE_DECL(in1r_lpga_p_enum, AIC32X4_LMICPGAPIN, 0, resistor_text);
350 
351 static SOC_ENUM_SINGLE_DECL(cml_lpga_n_enum, AIC32X4_LMICPGANIN, 6, resistor_text);
352 static SOC_ENUM_SINGLE_DECL(in2r_lpga_n_enum, AIC32X4_LMICPGANIN, 4, resistor_text);
353 static SOC_ENUM_SINGLE_DECL(in3r_lpga_n_enum, AIC32X4_LMICPGANIN, 2, resistor_text);
354 
355 static const struct snd_kcontrol_new in1l_to_lmixer_controls[] = {
356 	SOC_DAPM_ENUM("IN1_L L+ Switch", in1l_lpga_p_enum),
357 };
358 static const struct snd_kcontrol_new in2l_to_lmixer_controls[] = {
359 	SOC_DAPM_ENUM("IN2_L L+ Switch", in2l_lpga_p_enum),
360 };
361 static const struct snd_kcontrol_new in3l_to_lmixer_controls[] = {
362 	SOC_DAPM_ENUM("IN3_L L+ Switch", in3l_lpga_p_enum),
363 };
364 static const struct snd_kcontrol_new in1r_to_lmixer_controls[] = {
365 	SOC_DAPM_ENUM("IN1_R L+ Switch", in1r_lpga_p_enum),
366 };
367 static const struct snd_kcontrol_new cml_to_lmixer_controls[] = {
368 	SOC_DAPM_ENUM("CM_L L- Switch", cml_lpga_n_enum),
369 };
370 static const struct snd_kcontrol_new in2r_to_lmixer_controls[] = {
371 	SOC_DAPM_ENUM("IN2_R L- Switch", in2r_lpga_n_enum),
372 };
373 static const struct snd_kcontrol_new in3r_to_lmixer_controls[] = {
374 	SOC_DAPM_ENUM("IN3_R L- Switch", in3r_lpga_n_enum),
375 };
376 
377 /*	Right mixer pins */
378 static SOC_ENUM_SINGLE_DECL(in1r_rpga_p_enum, AIC32X4_RMICPGAPIN, 6, resistor_text);
379 static SOC_ENUM_SINGLE_DECL(in2r_rpga_p_enum, AIC32X4_RMICPGAPIN, 4, resistor_text);
380 static SOC_ENUM_SINGLE_DECL(in3r_rpga_p_enum, AIC32X4_RMICPGAPIN, 2, resistor_text);
381 static SOC_ENUM_SINGLE_DECL(in2l_rpga_p_enum, AIC32X4_RMICPGAPIN, 0, resistor_text);
382 static SOC_ENUM_SINGLE_DECL(cmr_rpga_n_enum, AIC32X4_RMICPGANIN, 6, resistor_text);
383 static SOC_ENUM_SINGLE_DECL(in1l_rpga_n_enum, AIC32X4_RMICPGANIN, 4, resistor_text);
384 static SOC_ENUM_SINGLE_DECL(in3l_rpga_n_enum, AIC32X4_RMICPGANIN, 2, resistor_text);
385 
386 static const struct snd_kcontrol_new in1r_to_rmixer_controls[] = {
387 	SOC_DAPM_ENUM("IN1_R R+ Switch", in1r_rpga_p_enum),
388 };
389 static const struct snd_kcontrol_new in2r_to_rmixer_controls[] = {
390 	SOC_DAPM_ENUM("IN2_R R+ Switch", in2r_rpga_p_enum),
391 };
392 static const struct snd_kcontrol_new in3r_to_rmixer_controls[] = {
393 	SOC_DAPM_ENUM("IN3_R R+ Switch", in3r_rpga_p_enum),
394 };
395 static const struct snd_kcontrol_new in2l_to_rmixer_controls[] = {
396 	SOC_DAPM_ENUM("IN2_L R+ Switch", in2l_rpga_p_enum),
397 };
398 static const struct snd_kcontrol_new cmr_to_rmixer_controls[] = {
399 	SOC_DAPM_ENUM("CM_R R- Switch", cmr_rpga_n_enum),
400 };
401 static const struct snd_kcontrol_new in1l_to_rmixer_controls[] = {
402 	SOC_DAPM_ENUM("IN1_L R- Switch", in1l_rpga_n_enum),
403 };
404 static const struct snd_kcontrol_new in3l_to_rmixer_controls[] = {
405 	SOC_DAPM_ENUM("IN3_L R- Switch", in3l_rpga_n_enum),
406 };
407 
408 static const struct snd_soc_dapm_widget aic32x4_dapm_widgets[] = {
409 	SND_SOC_DAPM_DAC("Left DAC", "Left Playback", AIC32X4_DACSETUP, 7, 0),
410 	SND_SOC_DAPM_MIXER("HPL Output Mixer", SND_SOC_NOPM, 0, 0,
411 			   &hpl_output_mixer_controls[0],
412 			   ARRAY_SIZE(hpl_output_mixer_controls)),
413 	SND_SOC_DAPM_PGA("HPL Power", AIC32X4_OUTPWRCTL, 5, 0, NULL, 0),
414 
415 	SND_SOC_DAPM_MIXER("LOL Output Mixer", SND_SOC_NOPM, 0, 0,
416 			   &lol_output_mixer_controls[0],
417 			   ARRAY_SIZE(lol_output_mixer_controls)),
418 	SND_SOC_DAPM_PGA("LOL Power", AIC32X4_OUTPWRCTL, 3, 0, NULL, 0),
419 
420 	SND_SOC_DAPM_DAC("Right DAC", "Right Playback", AIC32X4_DACSETUP, 6, 0),
421 	SND_SOC_DAPM_MIXER("HPR Output Mixer", SND_SOC_NOPM, 0, 0,
422 			   &hpr_output_mixer_controls[0],
423 			   ARRAY_SIZE(hpr_output_mixer_controls)),
424 	SND_SOC_DAPM_PGA("HPR Power", AIC32X4_OUTPWRCTL, 4, 0, NULL, 0),
425 	SND_SOC_DAPM_MIXER("LOR Output Mixer", SND_SOC_NOPM, 0, 0,
426 			   &lor_output_mixer_controls[0],
427 			   ARRAY_SIZE(lor_output_mixer_controls)),
428 	SND_SOC_DAPM_PGA("LOR Power", AIC32X4_OUTPWRCTL, 2, 0, NULL, 0),
429 
430 	SND_SOC_DAPM_ADC("Right ADC", "Right Capture", AIC32X4_ADCSETUP, 6, 0),
431 	SND_SOC_DAPM_MUX("IN1_R to Right Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
432 			in1r_to_rmixer_controls),
433 	SND_SOC_DAPM_MUX("IN2_R to Right Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
434 			in2r_to_rmixer_controls),
435 	SND_SOC_DAPM_MUX("IN3_R to Right Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
436 			in3r_to_rmixer_controls),
437 	SND_SOC_DAPM_MUX("IN2_L to Right Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
438 			in2l_to_rmixer_controls),
439 	SND_SOC_DAPM_MUX("CM_R to Right Mixer Negative Resistor", SND_SOC_NOPM, 0, 0,
440 			cmr_to_rmixer_controls),
441 	SND_SOC_DAPM_MUX("IN1_L to Right Mixer Negative Resistor", SND_SOC_NOPM, 0, 0,
442 			in1l_to_rmixer_controls),
443 	SND_SOC_DAPM_MUX("IN3_L to Right Mixer Negative Resistor", SND_SOC_NOPM, 0, 0,
444 			in3l_to_rmixer_controls),
445 
446 	SND_SOC_DAPM_ADC("Left ADC", "Left Capture", AIC32X4_ADCSETUP, 7, 0),
447 	SND_SOC_DAPM_MUX("IN1_L to Left Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
448 			in1l_to_lmixer_controls),
449 	SND_SOC_DAPM_MUX("IN2_L to Left Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
450 			in2l_to_lmixer_controls),
451 	SND_SOC_DAPM_MUX("IN3_L to Left Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
452 			in3l_to_lmixer_controls),
453 	SND_SOC_DAPM_MUX("IN1_R to Left Mixer Positive Resistor", SND_SOC_NOPM, 0, 0,
454 			in1r_to_lmixer_controls),
455 	SND_SOC_DAPM_MUX("CM_L to Left Mixer Negative Resistor", SND_SOC_NOPM, 0, 0,
456 			cml_to_lmixer_controls),
457 	SND_SOC_DAPM_MUX("IN2_R to Left Mixer Negative Resistor", SND_SOC_NOPM, 0, 0,
458 			in2r_to_lmixer_controls),
459 	SND_SOC_DAPM_MUX("IN3_R to Left Mixer Negative Resistor", SND_SOC_NOPM, 0, 0,
460 			in3r_to_lmixer_controls),
461 
462 	SND_SOC_DAPM_SUPPLY("Mic Bias", AIC32X4_MICBIAS, 6, 0, mic_bias_event,
463 			SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
464 
465 	SND_SOC_DAPM_POST("ADC Reset", aic32x4_reset_adc),
466 
467 	SND_SOC_DAPM_OUTPUT("HPL"),
468 	SND_SOC_DAPM_OUTPUT("HPR"),
469 	SND_SOC_DAPM_OUTPUT("LOL"),
470 	SND_SOC_DAPM_OUTPUT("LOR"),
471 	SND_SOC_DAPM_INPUT("IN1_L"),
472 	SND_SOC_DAPM_INPUT("IN1_R"),
473 	SND_SOC_DAPM_INPUT("IN2_L"),
474 	SND_SOC_DAPM_INPUT("IN2_R"),
475 	SND_SOC_DAPM_INPUT("IN3_L"),
476 	SND_SOC_DAPM_INPUT("IN3_R"),
477 	SND_SOC_DAPM_INPUT("CM_L"),
478 	SND_SOC_DAPM_INPUT("CM_R"),
479 };
480 
481 static const struct snd_soc_dapm_route aic32x4_dapm_routes[] = {
482 	/* Left Output */
483 	{"HPL Output Mixer", "L_DAC Switch", "Left DAC"},
484 	{"HPL Output Mixer", "IN1_L Switch", "IN1_L"},
485 
486 	{"HPL Power", NULL, "HPL Output Mixer"},
487 	{"HPL", NULL, "HPL Power"},
488 
489 	{"LOL Output Mixer", "L_DAC Switch", "Left DAC"},
490 
491 	{"LOL Power", NULL, "LOL Output Mixer"},
492 	{"LOL", NULL, "LOL Power"},
493 
494 	/* Right Output */
495 	{"HPR Output Mixer", "R_DAC Switch", "Right DAC"},
496 	{"HPR Output Mixer", "IN1_R Switch", "IN1_R"},
497 
498 	{"HPR Power", NULL, "HPR Output Mixer"},
499 	{"HPR", NULL, "HPR Power"},
500 
501 	{"LOR Output Mixer", "R_DAC Switch", "Right DAC"},
502 
503 	{"LOR Power", NULL, "LOR Output Mixer"},
504 	{"LOR", NULL, "LOR Power"},
505 
506 	/* Right Input */
507 	{"Right ADC", NULL, "IN1_R to Right Mixer Positive Resistor"},
508 	{"IN1_R to Right Mixer Positive Resistor", "10 kOhm", "IN1_R"},
509 	{"IN1_R to Right Mixer Positive Resistor", "20 kOhm", "IN1_R"},
510 	{"IN1_R to Right Mixer Positive Resistor", "40 kOhm", "IN1_R"},
511 
512 	{"Right ADC", NULL, "IN2_R to Right Mixer Positive Resistor"},
513 	{"IN2_R to Right Mixer Positive Resistor", "10 kOhm", "IN2_R"},
514 	{"IN2_R to Right Mixer Positive Resistor", "20 kOhm", "IN2_R"},
515 	{"IN2_R to Right Mixer Positive Resistor", "40 kOhm", "IN2_R"},
516 
517 	{"Right ADC", NULL, "IN3_R to Right Mixer Positive Resistor"},
518 	{"IN3_R to Right Mixer Positive Resistor", "10 kOhm", "IN3_R"},
519 	{"IN3_R to Right Mixer Positive Resistor", "20 kOhm", "IN3_R"},
520 	{"IN3_R to Right Mixer Positive Resistor", "40 kOhm", "IN3_R"},
521 
522 	{"Right ADC", NULL, "IN2_L to Right Mixer Positive Resistor"},
523 	{"IN2_L to Right Mixer Positive Resistor", "10 kOhm", "IN2_L"},
524 	{"IN2_L to Right Mixer Positive Resistor", "20 kOhm", "IN2_L"},
525 	{"IN2_L to Right Mixer Positive Resistor", "40 kOhm", "IN2_L"},
526 
527 	{"Right ADC", NULL, "CM_R to Right Mixer Negative Resistor"},
528 	{"CM_R to Right Mixer Negative Resistor", "10 kOhm", "CM_R"},
529 	{"CM_R to Right Mixer Negative Resistor", "20 kOhm", "CM_R"},
530 	{"CM_R to Right Mixer Negative Resistor", "40 kOhm", "CM_R"},
531 
532 	{"Right ADC", NULL, "IN1_L to Right Mixer Negative Resistor"},
533 	{"IN1_L to Right Mixer Negative Resistor", "10 kOhm", "IN1_L"},
534 	{"IN1_L to Right Mixer Negative Resistor", "20 kOhm", "IN1_L"},
535 	{"IN1_L to Right Mixer Negative Resistor", "40 kOhm", "IN1_L"},
536 
537 	{"Right ADC", NULL, "IN3_L to Right Mixer Negative Resistor"},
538 	{"IN3_L to Right Mixer Negative Resistor", "10 kOhm", "IN3_L"},
539 	{"IN3_L to Right Mixer Negative Resistor", "20 kOhm", "IN3_L"},
540 	{"IN3_L to Right Mixer Negative Resistor", "40 kOhm", "IN3_L"},
541 
542 	/* Left Input */
543 	{"Left ADC", NULL, "IN1_L to Left Mixer Positive Resistor"},
544 	{"IN1_L to Left Mixer Positive Resistor", "10 kOhm", "IN1_L"},
545 	{"IN1_L to Left Mixer Positive Resistor", "20 kOhm", "IN1_L"},
546 	{"IN1_L to Left Mixer Positive Resistor", "40 kOhm", "IN1_L"},
547 
548 	{"Left ADC", NULL, "IN2_L to Left Mixer Positive Resistor"},
549 	{"IN2_L to Left Mixer Positive Resistor", "10 kOhm", "IN2_L"},
550 	{"IN2_L to Left Mixer Positive Resistor", "20 kOhm", "IN2_L"},
551 	{"IN2_L to Left Mixer Positive Resistor", "40 kOhm", "IN2_L"},
552 
553 	{"Left ADC", NULL, "IN3_L to Left Mixer Positive Resistor"},
554 	{"IN3_L to Left Mixer Positive Resistor", "10 kOhm", "IN3_L"},
555 	{"IN3_L to Left Mixer Positive Resistor", "20 kOhm", "IN3_L"},
556 	{"IN3_L to Left Mixer Positive Resistor", "40 kOhm", "IN3_L"},
557 
558 	{"Left ADC", NULL, "IN1_R to Left Mixer Positive Resistor"},
559 	{"IN1_R to Left Mixer Positive Resistor", "10 kOhm", "IN1_R"},
560 	{"IN1_R to Left Mixer Positive Resistor", "20 kOhm", "IN1_R"},
561 	{"IN1_R to Left Mixer Positive Resistor", "40 kOhm", "IN1_R"},
562 
563 	{"Left ADC", NULL, "CM_L to Left Mixer Negative Resistor"},
564 	{"CM_L to Left Mixer Negative Resistor", "10 kOhm", "CM_L"},
565 	{"CM_L to Left Mixer Negative Resistor", "20 kOhm", "CM_L"},
566 	{"CM_L to Left Mixer Negative Resistor", "40 kOhm", "CM_L"},
567 
568 	{"Left ADC", NULL, "IN2_R to Left Mixer Negative Resistor"},
569 	{"IN2_R to Left Mixer Negative Resistor", "10 kOhm", "IN2_R"},
570 	{"IN2_R to Left Mixer Negative Resistor", "20 kOhm", "IN2_R"},
571 	{"IN2_R to Left Mixer Negative Resistor", "40 kOhm", "IN2_R"},
572 
573 	{"Left ADC", NULL, "IN3_R to Left Mixer Negative Resistor"},
574 	{"IN3_R to Left Mixer Negative Resistor", "10 kOhm", "IN3_R"},
575 	{"IN3_R to Left Mixer Negative Resistor", "20 kOhm", "IN3_R"},
576 	{"IN3_R to Left Mixer Negative Resistor", "40 kOhm", "IN3_R"},
577 };
578 
579 static const struct regmap_range_cfg aic32x4_regmap_pages[] = {
580 	{
581 		.selector_reg = 0,
582 		.selector_mask	= 0xff,
583 		.window_start = 0,
584 		.window_len = 128,
585 		.range_min = 0,
586 		.range_max = AIC32X4_REFPOWERUP,
587 	},
588 };
589 
590 const struct regmap_config aic32x4_regmap_config = {
591 	.max_register = AIC32X4_REFPOWERUP,
592 	.ranges = aic32x4_regmap_pages,
593 	.num_ranges = ARRAY_SIZE(aic32x4_regmap_pages),
594 };
595 EXPORT_SYMBOL(aic32x4_regmap_config);
596 
597 static int aic32x4_set_dai_sysclk(struct snd_soc_dai *codec_dai,
598 				  int clk_id, unsigned int freq, int dir)
599 {
600 	struct snd_soc_component *component = codec_dai->component;
601 	struct clk *mclk;
602 	struct clk *pll;
603 
604 	pll = devm_clk_get(component->dev, "pll");
605 	if (IS_ERR(pll))
606 		return PTR_ERR(pll);
607 
608 	mclk = clk_get_parent(pll);
609 
610 	return clk_set_rate(mclk, freq);
611 }
612 
613 static int aic32x4_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
614 {
615 	struct snd_soc_component *component = codec_dai->component;
616 	struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
617 	u8 iface_reg_1 = 0;
618 	u8 iface_reg_2 = 0;
619 	u8 iface_reg_3 = 0;
620 
621 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
622 	case SND_SOC_DAIFMT_CBP_CFP:
623 		iface_reg_1 |= AIC32X4_BCLKMASTER | AIC32X4_WCLKMASTER;
624 		break;
625 	case SND_SOC_DAIFMT_CBC_CFC:
626 		break;
627 	default:
628 		printk(KERN_ERR "aic32x4: invalid clock provider\n");
629 		return -EINVAL;
630 	}
631 
632 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
633 	case SND_SOC_DAIFMT_I2S:
634 		break;
635 	case SND_SOC_DAIFMT_DSP_A:
636 		iface_reg_1 |= (AIC32X4_DSP_MODE <<
637 				AIC32X4_IFACE1_DATATYPE_SHIFT);
638 		iface_reg_3 |= AIC32X4_BCLKINV_MASK; /* invert bit clock */
639 		iface_reg_2 = 0x01; /* add offset 1 */
640 		break;
641 	case SND_SOC_DAIFMT_DSP_B:
642 		iface_reg_1 |= (AIC32X4_DSP_MODE <<
643 				AIC32X4_IFACE1_DATATYPE_SHIFT);
644 		iface_reg_3 |= AIC32X4_BCLKINV_MASK; /* invert bit clock */
645 		break;
646 	case SND_SOC_DAIFMT_RIGHT_J:
647 		iface_reg_1 |= (AIC32X4_RIGHT_JUSTIFIED_MODE <<
648 				AIC32X4_IFACE1_DATATYPE_SHIFT);
649 		break;
650 	case SND_SOC_DAIFMT_LEFT_J:
651 		iface_reg_1 |= (AIC32X4_LEFT_JUSTIFIED_MODE <<
652 				AIC32X4_IFACE1_DATATYPE_SHIFT);
653 		break;
654 	default:
655 		printk(KERN_ERR "aic32x4: invalid DAI interface format\n");
656 		return -EINVAL;
657 	}
658 
659 	aic32x4->fmt = fmt;
660 
661 	snd_soc_component_update_bits(component, AIC32X4_IFACE1,
662 				AIC32X4_IFACE1_DATATYPE_MASK |
663 				AIC32X4_IFACE1_MASTER_MASK, iface_reg_1);
664 	snd_soc_component_update_bits(component, AIC32X4_IFACE2,
665 				AIC32X4_DATA_OFFSET_MASK, iface_reg_2);
666 	snd_soc_component_update_bits(component, AIC32X4_IFACE3,
667 				AIC32X4_BCLKINV_MASK, iface_reg_3);
668 
669 	return 0;
670 }
671 
672 static int aic32x4_set_aosr(struct snd_soc_component *component, u8 aosr)
673 {
674 	return snd_soc_component_write(component, AIC32X4_AOSR, aosr);
675 }
676 
677 static int aic32x4_set_dosr(struct snd_soc_component *component, u16 dosr)
678 {
679 	snd_soc_component_write(component, AIC32X4_DOSRMSB, dosr >> 8);
680 	snd_soc_component_write(component, AIC32X4_DOSRLSB,
681 		      (dosr & 0xff));
682 
683 	return 0;
684 }
685 
686 static int aic32x4_set_processing_blocks(struct snd_soc_component *component,
687 						u8 r_block, u8 p_block)
688 {
689 	struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
690 
691 	if (aic32x4->type == AIC32X4_TYPE_TAS2505) {
692 		if (r_block || p_block > 3)
693 			return -EINVAL;
694 
695 		snd_soc_component_write(component, AIC32X4_DACSPB, p_block);
696 	} else { /* AIC32x4 */
697 		if (r_block > 18 || p_block > 25)
698 			return -EINVAL;
699 
700 		snd_soc_component_write(component, AIC32X4_ADCSPB, r_block);
701 		snd_soc_component_write(component, AIC32X4_DACSPB, p_block);
702 	}
703 
704 	return 0;
705 }
706 
707 static int aic32x4_setup_clocks(struct snd_soc_component *component,
708 				unsigned int sample_rate, unsigned int channels,
709 				unsigned int bit_depth)
710 {
711 	struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
712 	u8 aosr;
713 	u16 dosr;
714 	u8 adc_resource_class, dac_resource_class;
715 	u8 madc, nadc, mdac, ndac, max_nadc, min_mdac, max_ndac;
716 	u8 dosr_increment;
717 	u16 max_dosr, min_dosr;
718 	unsigned long adc_clock_rate, dac_clock_rate;
719 	int ret;
720 
721 	static struct clk_bulk_data clocks[] = {
722 		{ .id = "pll" },
723 		{ .id = "nadc" },
724 		{ .id = "madc" },
725 		{ .id = "ndac" },
726 		{ .id = "mdac" },
727 		{ .id = "bdiv" },
728 	};
729 	ret = devm_clk_bulk_get(component->dev, ARRAY_SIZE(clocks), clocks);
730 	if (ret)
731 		return ret;
732 
733 	if (sample_rate <= 48000) {
734 		aosr = 128;
735 		adc_resource_class = 6;
736 		dac_resource_class = 8;
737 		dosr_increment = 8;
738 		if (aic32x4->type == AIC32X4_TYPE_TAS2505)
739 			aic32x4_set_processing_blocks(component, 0, 1);
740 		else
741 			aic32x4_set_processing_blocks(component, 1, 1);
742 	} else if (sample_rate <= 96000) {
743 		aosr = 64;
744 		adc_resource_class = 6;
745 		dac_resource_class = 8;
746 		dosr_increment = 4;
747 		if (aic32x4->type == AIC32X4_TYPE_TAS2505)
748 			aic32x4_set_processing_blocks(component, 0, 1);
749 		else
750 			aic32x4_set_processing_blocks(component, 1, 9);
751 	} else if (sample_rate == 192000) {
752 		aosr = 32;
753 		adc_resource_class = 3;
754 		dac_resource_class = 4;
755 		dosr_increment = 2;
756 		if (aic32x4->type == AIC32X4_TYPE_TAS2505)
757 			aic32x4_set_processing_blocks(component, 0, 1);
758 		else
759 			aic32x4_set_processing_blocks(component, 13, 19);
760 	} else {
761 		dev_err(component->dev, "Sampling rate not supported\n");
762 		return -EINVAL;
763 	}
764 
765 	/* PCM over I2S is always 2-channel */
766 	if ((aic32x4->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_I2S)
767 		channels = 2;
768 
769 	madc = DIV_ROUND_UP((32 * adc_resource_class), aosr);
770 	max_dosr = (AIC32X4_MAX_DOSR_FREQ / sample_rate / dosr_increment) *
771 			dosr_increment;
772 	min_dosr = (AIC32X4_MIN_DOSR_FREQ / sample_rate / dosr_increment) *
773 			dosr_increment;
774 	max_nadc = AIC32X4_MAX_CODEC_CLKIN_FREQ / (madc * aosr * sample_rate);
775 
776 	for (nadc = max_nadc; nadc > 0; --nadc) {
777 		adc_clock_rate = nadc * madc * aosr * sample_rate;
778 		for (dosr = max_dosr; dosr >= min_dosr;
779 				dosr -= dosr_increment) {
780 			min_mdac = DIV_ROUND_UP((32 * dac_resource_class), dosr);
781 			max_ndac = AIC32X4_MAX_CODEC_CLKIN_FREQ /
782 					(min_mdac * dosr * sample_rate);
783 			for (mdac = min_mdac; mdac <= 128; ++mdac) {
784 				for (ndac = max_ndac; ndac > 0; --ndac) {
785 					dac_clock_rate = ndac * mdac * dosr *
786 							sample_rate;
787 					if (dac_clock_rate == adc_clock_rate) {
788 						if (clk_round_rate(clocks[0].clk, dac_clock_rate) == 0)
789 							continue;
790 
791 						clk_set_rate(clocks[0].clk,
792 							dac_clock_rate);
793 
794 						clk_set_rate(clocks[1].clk,
795 							sample_rate * aosr *
796 							madc);
797 						clk_set_rate(clocks[2].clk,
798 							sample_rate * aosr);
799 						aic32x4_set_aosr(component,
800 							aosr);
801 
802 						clk_set_rate(clocks[3].clk,
803 							sample_rate * dosr *
804 							mdac);
805 						clk_set_rate(clocks[4].clk,
806 							sample_rate * dosr);
807 						aic32x4_set_dosr(component,
808 							dosr);
809 
810 						clk_set_rate(clocks[5].clk,
811 							sample_rate * channels *
812 							bit_depth);
813 
814 						return 0;
815 					}
816 				}
817 			}
818 		}
819 	}
820 
821 	dev_err(component->dev,
822 		"Could not set clocks to support sample rate.\n");
823 	return -EINVAL;
824 }
825 
826 static int aic32x4_hw_params(struct snd_pcm_substream *substream,
827 				 struct snd_pcm_hw_params *params,
828 				 struct snd_soc_dai *dai)
829 {
830 	struct snd_soc_component *component = dai->component;
831 	struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
832 	u8 iface1_reg = 0;
833 	u8 dacsetup_reg = 0;
834 
835 	aic32x4_setup_clocks(component, params_rate(params),
836 			     params_channels(params),
837 			     params_physical_width(params));
838 
839 	switch (params_physical_width(params)) {
840 	case 16:
841 		iface1_reg |= (AIC32X4_WORD_LEN_16BITS <<
842 				   AIC32X4_IFACE1_DATALEN_SHIFT);
843 		break;
844 	case 20:
845 		iface1_reg |= (AIC32X4_WORD_LEN_20BITS <<
846 				   AIC32X4_IFACE1_DATALEN_SHIFT);
847 		break;
848 	case 24:
849 		iface1_reg |= (AIC32X4_WORD_LEN_24BITS <<
850 				   AIC32X4_IFACE1_DATALEN_SHIFT);
851 		break;
852 	case 32:
853 		iface1_reg |= (AIC32X4_WORD_LEN_32BITS <<
854 				   AIC32X4_IFACE1_DATALEN_SHIFT);
855 		break;
856 	}
857 	snd_soc_component_update_bits(component, AIC32X4_IFACE1,
858 				AIC32X4_IFACE1_DATALEN_MASK, iface1_reg);
859 
860 	if (params_channels(params) == 1) {
861 		dacsetup_reg = AIC32X4_RDAC2LCHN | AIC32X4_LDAC2LCHN;
862 	} else {
863 		if (aic32x4->swapdacs)
864 			dacsetup_reg = AIC32X4_RDAC2LCHN | AIC32X4_LDAC2RCHN;
865 		else
866 			dacsetup_reg = AIC32X4_LDAC2LCHN | AIC32X4_RDAC2RCHN;
867 	}
868 	snd_soc_component_update_bits(component, AIC32X4_DACSETUP,
869 				AIC32X4_DAC_CHAN_MASK, dacsetup_reg);
870 
871 	return 0;
872 }
873 
874 static int aic32x4_mute(struct snd_soc_dai *dai, int mute, int direction)
875 {
876 	struct snd_soc_component *component = dai->component;
877 
878 	snd_soc_component_update_bits(component, AIC32X4_DACMUTE,
879 				AIC32X4_MUTEON, mute ? AIC32X4_MUTEON : 0);
880 
881 	return 0;
882 }
883 
884 static int aic32x4_set_bias_level(struct snd_soc_component *component,
885 				  enum snd_soc_bias_level level)
886 {
887 	int ret;
888 
889 	static struct clk_bulk_data clocks[] = {
890 		{ .id = "madc" },
891 		{ .id = "mdac" },
892 		{ .id = "bdiv" },
893 	};
894 
895 	ret = devm_clk_bulk_get(component->dev, ARRAY_SIZE(clocks), clocks);
896 	if (ret)
897 		return ret;
898 
899 	switch (level) {
900 	case SND_SOC_BIAS_ON:
901 		ret = clk_bulk_prepare_enable(ARRAY_SIZE(clocks), clocks);
902 		if (ret) {
903 			dev_err(component->dev, "Failed to enable clocks\n");
904 			return ret;
905 		}
906 		break;
907 	case SND_SOC_BIAS_PREPARE:
908 		break;
909 	case SND_SOC_BIAS_STANDBY:
910 		/* Initial cold start */
911 		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF)
912 			break;
913 
914 		clk_bulk_disable_unprepare(ARRAY_SIZE(clocks), clocks);
915 		break;
916 	case SND_SOC_BIAS_OFF:
917 		break;
918 	}
919 	return 0;
920 }
921 
922 #define AIC32X4_RATES	SNDRV_PCM_RATE_8000_192000
923 #define AIC32X4_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
924 			 | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_3LE \
925 			 | SNDRV_PCM_FMTBIT_S32_LE)
926 
927 static const struct snd_soc_dai_ops aic32x4_ops = {
928 	.hw_params = aic32x4_hw_params,
929 	.mute_stream = aic32x4_mute,
930 	.set_fmt = aic32x4_set_dai_fmt,
931 	.set_sysclk = aic32x4_set_dai_sysclk,
932 	.no_capture_mute = 1,
933 };
934 
935 static struct snd_soc_dai_driver aic32x4_dai = {
936 	.name = "tlv320aic32x4-hifi",
937 	.playback = {
938 			 .stream_name = "Playback",
939 			 .channels_min = 1,
940 			 .channels_max = 2,
941 			 .rates = AIC32X4_RATES,
942 			 .formats = AIC32X4_FORMATS,},
943 	.capture = {
944 			.stream_name = "Capture",
945 			.channels_min = 1,
946 			.channels_max = 8,
947 			.rates = AIC32X4_RATES,
948 			.formats = AIC32X4_FORMATS,},
949 	.ops = &aic32x4_ops,
950 	.symmetric_rate = 1,
951 };
952 
953 static void aic32x4_setup_gpios(struct snd_soc_component *component)
954 {
955 	struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
956 
957 	/* setup GPIO functions */
958 	/* MFP1 */
959 	if (aic32x4->setup->gpio_func[0] != AIC32X4_MFPX_DEFAULT_VALUE) {
960 		snd_soc_component_write(component, AIC32X4_DINCTL,
961 			  aic32x4->setup->gpio_func[0]);
962 		snd_soc_add_component_controls(component, aic32x4_mfp1,
963 			ARRAY_SIZE(aic32x4_mfp1));
964 	}
965 
966 	/* MFP2 */
967 	if (aic32x4->setup->gpio_func[1] != AIC32X4_MFPX_DEFAULT_VALUE) {
968 		snd_soc_component_write(component, AIC32X4_DOUTCTL,
969 			  aic32x4->setup->gpio_func[1]);
970 		snd_soc_add_component_controls(component, aic32x4_mfp2,
971 			ARRAY_SIZE(aic32x4_mfp2));
972 	}
973 
974 	/* MFP3 */
975 	if (aic32x4->setup->gpio_func[2] != AIC32X4_MFPX_DEFAULT_VALUE) {
976 		snd_soc_component_write(component, AIC32X4_SCLKCTL,
977 			  aic32x4->setup->gpio_func[2]);
978 		snd_soc_add_component_controls(component, aic32x4_mfp3,
979 			ARRAY_SIZE(aic32x4_mfp3));
980 	}
981 
982 	/* MFP4 */
983 	if (aic32x4->setup->gpio_func[3] != AIC32X4_MFPX_DEFAULT_VALUE) {
984 		snd_soc_component_write(component, AIC32X4_MISOCTL,
985 			  aic32x4->setup->gpio_func[3]);
986 		snd_soc_add_component_controls(component, aic32x4_mfp4,
987 			ARRAY_SIZE(aic32x4_mfp4));
988 	}
989 
990 	/* MFP5 */
991 	if (aic32x4->setup->gpio_func[4] != AIC32X4_MFPX_DEFAULT_VALUE) {
992 		snd_soc_component_write(component, AIC32X4_GPIOCTL,
993 			  aic32x4->setup->gpio_func[4]);
994 		snd_soc_add_component_controls(component, aic32x4_mfp5,
995 			ARRAY_SIZE(aic32x4_mfp5));
996 	}
997 }
998 
999 static int aic32x4_component_probe(struct snd_soc_component *component)
1000 {
1001 	struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
1002 	u32 tmp_reg;
1003 	int ret;
1004 
1005 	static struct clk_bulk_data clocks[] = {
1006 		{ .id = "codec_clkin" },
1007 		{ .id = "pll" },
1008 		{ .id = "bdiv" },
1009 		{ .id = "mdac" },
1010 	};
1011 
1012 	ret = devm_clk_bulk_get(component->dev, ARRAY_SIZE(clocks), clocks);
1013 	if (ret)
1014 		return ret;
1015 
1016 	if (aic32x4->setup)
1017 		aic32x4_setup_gpios(component);
1018 
1019 	clk_set_parent(clocks[0].clk, clocks[1].clk);
1020 	clk_set_parent(clocks[2].clk, clocks[3].clk);
1021 
1022 	/* Power platform configuration */
1023 	if (aic32x4->power_cfg & AIC32X4_PWR_MICBIAS_2075_LDOIN) {
1024 		snd_soc_component_write(component, AIC32X4_MICBIAS,
1025 				AIC32X4_MICBIAS_LDOIN | AIC32X4_MICBIAS_2075V);
1026 	}
1027 	if (aic32x4->power_cfg & AIC32X4_PWR_AVDD_DVDD_WEAK_DISABLE)
1028 		snd_soc_component_write(component, AIC32X4_PWRCFG, AIC32X4_AVDDWEAKDISABLE);
1029 
1030 	tmp_reg = (aic32x4->power_cfg & AIC32X4_PWR_AIC32X4_LDO_ENABLE) ?
1031 			AIC32X4_LDOCTLEN : 0;
1032 	snd_soc_component_write(component, AIC32X4_LDOCTL, tmp_reg);
1033 
1034 	tmp_reg = snd_soc_component_read(component, AIC32X4_CMMODE);
1035 	if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_LDOIN_RANGE_18_36)
1036 		tmp_reg |= AIC32X4_LDOIN_18_36;
1037 	if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_HP_LDOIN_POWERED)
1038 		tmp_reg |= AIC32X4_LDOIN2HP;
1039 	snd_soc_component_write(component, AIC32X4_CMMODE, tmp_reg);
1040 
1041 	/* Mic PGA routing */
1042 	if (aic32x4->micpga_routing & AIC32X4_MICPGA_ROUTE_LMIC_IN2R_10K)
1043 		snd_soc_component_write(component, AIC32X4_LMICPGANIN,
1044 				AIC32X4_LMICPGANIN_IN2R_10K);
1045 	else
1046 		snd_soc_component_write(component, AIC32X4_LMICPGANIN,
1047 				AIC32X4_LMICPGANIN_CM1L_10K);
1048 	if (aic32x4->micpga_routing & AIC32X4_MICPGA_ROUTE_RMIC_IN1L_10K)
1049 		snd_soc_component_write(component, AIC32X4_RMICPGANIN,
1050 				AIC32X4_RMICPGANIN_IN1L_10K);
1051 	else
1052 		snd_soc_component_write(component, AIC32X4_RMICPGANIN,
1053 				AIC32X4_RMICPGANIN_CM1R_10K);
1054 
1055 	/*
1056 	 * Workaround: for an unknown reason, the ADC needs to be powered up
1057 	 * and down for the first capture to work properly. It seems related to
1058 	 * a HW BUG or some kind of behavior not documented in the datasheet.
1059 	 */
1060 	tmp_reg = snd_soc_component_read(component, AIC32X4_ADCSETUP);
1061 	snd_soc_component_write(component, AIC32X4_ADCSETUP, tmp_reg |
1062 				AIC32X4_LADC_EN | AIC32X4_RADC_EN);
1063 	snd_soc_component_write(component, AIC32X4_ADCSETUP, tmp_reg);
1064 
1065 	/*
1066 	 * Enable the fast charging feature and ensure the needed 40ms ellapsed
1067 	 * before using the analog circuits.
1068 	 */
1069 	snd_soc_component_write(component, AIC32X4_REFPOWERUP,
1070 				AIC32X4_REFPOWERUP_40MS);
1071 	msleep(40);
1072 
1073 	return 0;
1074 }
1075 
1076 static const struct snd_soc_component_driver soc_component_dev_aic32x4 = {
1077 	.probe			= aic32x4_component_probe,
1078 	.set_bias_level		= aic32x4_set_bias_level,
1079 	.controls		= aic32x4_snd_controls,
1080 	.num_controls		= ARRAY_SIZE(aic32x4_snd_controls),
1081 	.dapm_widgets		= aic32x4_dapm_widgets,
1082 	.num_dapm_widgets	= ARRAY_SIZE(aic32x4_dapm_widgets),
1083 	.dapm_routes		= aic32x4_dapm_routes,
1084 	.num_dapm_routes	= ARRAY_SIZE(aic32x4_dapm_routes),
1085 	.suspend_bias_off	= 1,
1086 	.idle_bias_on		= 1,
1087 	.use_pmdown_time	= 1,
1088 	.endianness		= 1,
1089 };
1090 
1091 static const struct snd_kcontrol_new aic32x4_tas2505_snd_controls[] = {
1092 	SOC_SINGLE_S8_TLV("PCM Playback Volume",
1093 			  AIC32X4_LDACVOL, -0x7f, 0x30, tlv_pcm),
1094 	SOC_ENUM("DAC Playback PowerTune Switch", l_ptm_enum),
1095 
1096 	SOC_SINGLE_TLV("HP Driver Gain Volume",
1097 			AIC32X4_HPLGAIN, 0, 0x74, 1, tlv_tas_driver_gain),
1098 	SOC_SINGLE("HP DAC Playback Switch", AIC32X4_HPLGAIN, 6, 1, 1),
1099 
1100 	SOC_SINGLE_TLV("Speaker Driver Playback Volume",
1101 			TAS2505_SPKVOL1, 0, 0x74, 1, tlv_tas_driver_gain),
1102 	SOC_SINGLE_TLV("Speaker Amplifier Playback Volume",
1103 			TAS2505_SPKVOL2, 4, 5, 0, tlv_amp_vol),
1104 
1105 	SOC_SINGLE("Auto-mute Switch", AIC32X4_DACMUTE, 4, 7, 0),
1106 };
1107 
1108 static const struct snd_kcontrol_new hp_output_mixer_controls[] = {
1109 	SOC_DAPM_SINGLE("DAC Switch", AIC32X4_HPLROUTE, 3, 1, 0),
1110 };
1111 
1112 static const struct snd_soc_dapm_widget aic32x4_tas2505_dapm_widgets[] = {
1113 	SND_SOC_DAPM_DAC("DAC", "Playback", AIC32X4_DACSETUP, 7, 0),
1114 	SND_SOC_DAPM_MIXER("HP Output Mixer", SND_SOC_NOPM, 0, 0,
1115 			   &hp_output_mixer_controls[0],
1116 			   ARRAY_SIZE(hp_output_mixer_controls)),
1117 	SND_SOC_DAPM_PGA("HP Power", AIC32X4_OUTPWRCTL, 5, 0, NULL, 0),
1118 
1119 	SND_SOC_DAPM_PGA("Speaker Driver", TAS2505_SPK, 1, 0, NULL, 0),
1120 
1121 	SND_SOC_DAPM_OUTPUT("HP"),
1122 	SND_SOC_DAPM_OUTPUT("Speaker"),
1123 };
1124 
1125 static const struct snd_soc_dapm_route aic32x4_tas2505_dapm_routes[] = {
1126 	/* Left Output */
1127 	{"HP Output Mixer", "DAC Switch", "DAC"},
1128 
1129 	{"HP Power", NULL, "HP Output Mixer"},
1130 	{"HP", NULL, "HP Power"},
1131 
1132 	{"Speaker Driver", NULL, "DAC"},
1133 	{"Speaker", NULL, "Speaker Driver"},
1134 };
1135 
1136 static struct snd_soc_dai_driver aic32x4_tas2505_dai = {
1137 	.name = "tas2505-hifi",
1138 	.playback = {
1139 			 .stream_name = "Playback",
1140 			 .channels_min = 1,
1141 			 .channels_max = 2,
1142 			 .rates = SNDRV_PCM_RATE_8000_96000,
1143 			 .formats = AIC32X4_FORMATS,},
1144 	.ops = &aic32x4_ops,
1145 	.symmetric_rate = 1,
1146 };
1147 
1148 static int aic32x4_tas2505_component_probe(struct snd_soc_component *component)
1149 {
1150 	struct aic32x4_priv *aic32x4 = snd_soc_component_get_drvdata(component);
1151 	u32 tmp_reg;
1152 	int ret;
1153 
1154 	static struct clk_bulk_data clocks[] = {
1155 		{ .id = "codec_clkin" },
1156 		{ .id = "pll" },
1157 		{ .id = "bdiv" },
1158 		{ .id = "mdac" },
1159 	};
1160 
1161 	ret = devm_clk_bulk_get(component->dev, ARRAY_SIZE(clocks), clocks);
1162 	if (ret)
1163 		return ret;
1164 
1165 	if (aic32x4->setup)
1166 		aic32x4_setup_gpios(component);
1167 
1168 	clk_set_parent(clocks[0].clk, clocks[1].clk);
1169 	clk_set_parent(clocks[2].clk, clocks[3].clk);
1170 
1171 	/* Power platform configuration */
1172 	if (aic32x4->power_cfg & AIC32X4_PWR_AVDD_DVDD_WEAK_DISABLE)
1173 		snd_soc_component_write(component, AIC32X4_PWRCFG, AIC32X4_AVDDWEAKDISABLE);
1174 
1175 	tmp_reg = (aic32x4->power_cfg & AIC32X4_PWR_AIC32X4_LDO_ENABLE) ?
1176 			AIC32X4_LDOCTLEN : 0;
1177 	snd_soc_component_write(component, AIC32X4_LDOCTL, tmp_reg);
1178 
1179 	tmp_reg = snd_soc_component_read(component, AIC32X4_CMMODE);
1180 	if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_LDOIN_RANGE_18_36)
1181 		tmp_reg |= AIC32X4_LDOIN_18_36;
1182 	if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_HP_LDOIN_POWERED)
1183 		tmp_reg |= AIC32X4_LDOIN2HP;
1184 	snd_soc_component_write(component, AIC32X4_CMMODE, tmp_reg);
1185 
1186 	/*
1187 	 * Enable the fast charging feature and ensure the needed 40ms ellapsed
1188 	 * before using the analog circuits.
1189 	 */
1190 	snd_soc_component_write(component, TAS2505_REFPOWERUP,
1191 				AIC32X4_REFPOWERUP_40MS);
1192 	msleep(40);
1193 
1194 	return 0;
1195 }
1196 
1197 static const struct snd_soc_component_driver soc_component_dev_aic32x4_tas2505 = {
1198 	.probe			= aic32x4_tas2505_component_probe,
1199 	.set_bias_level		= aic32x4_set_bias_level,
1200 	.controls		= aic32x4_tas2505_snd_controls,
1201 	.num_controls		= ARRAY_SIZE(aic32x4_tas2505_snd_controls),
1202 	.dapm_widgets		= aic32x4_tas2505_dapm_widgets,
1203 	.num_dapm_widgets	= ARRAY_SIZE(aic32x4_tas2505_dapm_widgets),
1204 	.dapm_routes		= aic32x4_tas2505_dapm_routes,
1205 	.num_dapm_routes	= ARRAY_SIZE(aic32x4_tas2505_dapm_routes),
1206 	.suspend_bias_off	= 1,
1207 	.idle_bias_on		= 1,
1208 	.use_pmdown_time	= 1,
1209 	.endianness		= 1,
1210 };
1211 
1212 static int aic32x4_parse_dt(struct aic32x4_priv *aic32x4,
1213 		struct device_node *np)
1214 {
1215 	struct aic32x4_setup_data *aic32x4_setup;
1216 	int ret;
1217 
1218 	aic32x4_setup = devm_kzalloc(aic32x4->dev, sizeof(*aic32x4_setup),
1219 							GFP_KERNEL);
1220 	if (!aic32x4_setup)
1221 		return -ENOMEM;
1222 
1223 	ret = of_property_match_string(np, "clock-names", "mclk");
1224 	if (ret < 0)
1225 		return -EINVAL;
1226 	aic32x4->mclk_name = of_clk_get_parent_name(np, ret);
1227 
1228 	aic32x4->swapdacs = false;
1229 	aic32x4->micpga_routing = 0;
1230 	aic32x4->rstn_gpio = of_get_named_gpio(np, "reset-gpios", 0);
1231 
1232 	if (of_property_read_u32_array(np, "aic32x4-gpio-func",
1233 				aic32x4_setup->gpio_func, 5) >= 0)
1234 		aic32x4->setup = aic32x4_setup;
1235 	return 0;
1236 }
1237 
1238 static void aic32x4_disable_regulators(struct aic32x4_priv *aic32x4)
1239 {
1240 	regulator_disable(aic32x4->supply_iov);
1241 
1242 	if (!IS_ERR(aic32x4->supply_ldo))
1243 		regulator_disable(aic32x4->supply_ldo);
1244 
1245 	if (!IS_ERR(aic32x4->supply_dv))
1246 		regulator_disable(aic32x4->supply_dv);
1247 
1248 	if (!IS_ERR(aic32x4->supply_av))
1249 		regulator_disable(aic32x4->supply_av);
1250 }
1251 
1252 static int aic32x4_setup_regulators(struct device *dev,
1253 		struct aic32x4_priv *aic32x4)
1254 {
1255 	int ret = 0;
1256 
1257 	aic32x4->supply_ldo = devm_regulator_get_optional(dev, "ldoin");
1258 	aic32x4->supply_iov = devm_regulator_get(dev, "iov");
1259 	aic32x4->supply_dv = devm_regulator_get_optional(dev, "dv");
1260 	aic32x4->supply_av = devm_regulator_get_optional(dev, "av");
1261 
1262 	/* Check if the regulator requirements are fulfilled */
1263 
1264 	if (IS_ERR(aic32x4->supply_iov)) {
1265 		dev_err(dev, "Missing supply 'iov'\n");
1266 		return PTR_ERR(aic32x4->supply_iov);
1267 	}
1268 
1269 	if (IS_ERR(aic32x4->supply_ldo)) {
1270 		if (PTR_ERR(aic32x4->supply_ldo) == -EPROBE_DEFER)
1271 			return -EPROBE_DEFER;
1272 
1273 		if (IS_ERR(aic32x4->supply_dv)) {
1274 			dev_err(dev, "Missing supply 'dv' or 'ldoin'\n");
1275 			return PTR_ERR(aic32x4->supply_dv);
1276 		}
1277 		if (IS_ERR(aic32x4->supply_av)) {
1278 			dev_err(dev, "Missing supply 'av' or 'ldoin'\n");
1279 			return PTR_ERR(aic32x4->supply_av);
1280 		}
1281 	} else {
1282 		if (PTR_ERR(aic32x4->supply_dv) == -EPROBE_DEFER)
1283 			return -EPROBE_DEFER;
1284 		if (PTR_ERR(aic32x4->supply_av) == -EPROBE_DEFER)
1285 			return -EPROBE_DEFER;
1286 	}
1287 
1288 	ret = regulator_enable(aic32x4->supply_iov);
1289 	if (ret) {
1290 		dev_err(dev, "Failed to enable regulator iov\n");
1291 		return ret;
1292 	}
1293 
1294 	if (!IS_ERR(aic32x4->supply_ldo)) {
1295 		ret = regulator_enable(aic32x4->supply_ldo);
1296 		if (ret) {
1297 			dev_err(dev, "Failed to enable regulator ldo\n");
1298 			goto error_ldo;
1299 		}
1300 	}
1301 
1302 	if (!IS_ERR(aic32x4->supply_dv)) {
1303 		ret = regulator_enable(aic32x4->supply_dv);
1304 		if (ret) {
1305 			dev_err(dev, "Failed to enable regulator dv\n");
1306 			goto error_dv;
1307 		}
1308 	}
1309 
1310 	if (!IS_ERR(aic32x4->supply_av)) {
1311 		ret = regulator_enable(aic32x4->supply_av);
1312 		if (ret) {
1313 			dev_err(dev, "Failed to enable regulator av\n");
1314 			goto error_av;
1315 		}
1316 	}
1317 
1318 	if (!IS_ERR(aic32x4->supply_ldo) && IS_ERR(aic32x4->supply_av))
1319 		aic32x4->power_cfg |= AIC32X4_PWR_AIC32X4_LDO_ENABLE;
1320 
1321 	return 0;
1322 
1323 error_av:
1324 	if (!IS_ERR(aic32x4->supply_dv))
1325 		regulator_disable(aic32x4->supply_dv);
1326 
1327 error_dv:
1328 	if (!IS_ERR(aic32x4->supply_ldo))
1329 		regulator_disable(aic32x4->supply_ldo);
1330 
1331 error_ldo:
1332 	regulator_disable(aic32x4->supply_iov);
1333 	return ret;
1334 }
1335 
1336 int aic32x4_probe(struct device *dev, struct regmap *regmap)
1337 {
1338 	struct aic32x4_priv *aic32x4;
1339 	struct aic32x4_pdata *pdata = dev->platform_data;
1340 	struct device_node *np = dev->of_node;
1341 	int ret;
1342 
1343 	if (IS_ERR(regmap))
1344 		return PTR_ERR(regmap);
1345 
1346 	aic32x4 = devm_kzalloc(dev, sizeof(struct aic32x4_priv),
1347 				   GFP_KERNEL);
1348 	if (aic32x4 == NULL)
1349 		return -ENOMEM;
1350 
1351 	aic32x4->dev = dev;
1352 	aic32x4->type = (enum aic32x4_type)dev_get_drvdata(dev);
1353 
1354 	dev_set_drvdata(dev, aic32x4);
1355 
1356 	if (pdata) {
1357 		aic32x4->power_cfg = pdata->power_cfg;
1358 		aic32x4->swapdacs = pdata->swapdacs;
1359 		aic32x4->micpga_routing = pdata->micpga_routing;
1360 		aic32x4->rstn_gpio = pdata->rstn_gpio;
1361 		aic32x4->mclk_name = "mclk";
1362 	} else if (np) {
1363 		ret = aic32x4_parse_dt(aic32x4, np);
1364 		if (ret) {
1365 			dev_err(dev, "Failed to parse DT node\n");
1366 			return ret;
1367 		}
1368 	} else {
1369 		aic32x4->power_cfg = 0;
1370 		aic32x4->swapdacs = false;
1371 		aic32x4->micpga_routing = 0;
1372 		aic32x4->rstn_gpio = -1;
1373 		aic32x4->mclk_name = "mclk";
1374 	}
1375 
1376 	if (gpio_is_valid(aic32x4->rstn_gpio)) {
1377 		ret = devm_gpio_request_one(dev, aic32x4->rstn_gpio,
1378 				GPIOF_OUT_INIT_LOW, "tlv320aic32x4 rstn");
1379 		if (ret != 0)
1380 			return ret;
1381 	}
1382 
1383 	ret = aic32x4_setup_regulators(dev, aic32x4);
1384 	if (ret) {
1385 		dev_err(dev, "Failed to setup regulators\n");
1386 		return ret;
1387 	}
1388 
1389 	if (gpio_is_valid(aic32x4->rstn_gpio)) {
1390 		ndelay(10);
1391 		gpio_set_value_cansleep(aic32x4->rstn_gpio, 1);
1392 		mdelay(1);
1393 	}
1394 
1395 	ret = regmap_write(regmap, AIC32X4_RESET, 0x01);
1396 	if (ret)
1397 		goto err_disable_regulators;
1398 
1399 	ret = aic32x4_register_clocks(dev, aic32x4->mclk_name);
1400 	if (ret)
1401 		goto err_disable_regulators;
1402 
1403 	switch (aic32x4->type) {
1404 	case AIC32X4_TYPE_TAS2505:
1405 		ret = devm_snd_soc_register_component(dev,
1406 			&soc_component_dev_aic32x4_tas2505, &aic32x4_tas2505_dai, 1);
1407 		break;
1408 	default:
1409 		ret = devm_snd_soc_register_component(dev,
1410 			&soc_component_dev_aic32x4, &aic32x4_dai, 1);
1411 	}
1412 
1413 	if (ret) {
1414 		dev_err(dev, "Failed to register component\n");
1415 		goto err_disable_regulators;
1416 	}
1417 
1418 	return 0;
1419 
1420 err_disable_regulators:
1421 	aic32x4_disable_regulators(aic32x4);
1422 
1423 	return ret;
1424 }
1425 EXPORT_SYMBOL(aic32x4_probe);
1426 
1427 void aic32x4_remove(struct device *dev)
1428 {
1429 	struct aic32x4_priv *aic32x4 = dev_get_drvdata(dev);
1430 
1431 	aic32x4_disable_regulators(aic32x4);
1432 }
1433 EXPORT_SYMBOL(aic32x4_remove);
1434 
1435 MODULE_DESCRIPTION("ASoC tlv320aic32x4 codec driver");
1436 MODULE_AUTHOR("Javier Martin <javier.martin@vista-silicon.com>");
1437 MODULE_LICENSE("GPL");
1438