1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system 4 * 5 * Copyright: 2014 Raumfeld GmbH 6 * Author: Sven Brandau <info@brandau.biz> 7 * 8 * based on code from: 9 * Raumfeld GmbH 10 * Johannes Stezenbach <js@sig21.net> 11 * Wolfson Microelectronics PLC. 12 * Mark Brown <broonie@opensource.wolfsonmicro.com> 13 * Freescale Semiconductor, Inc. 14 * Timur Tabi <timur@freescale.com> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__ 18 19 #include <linux/module.h> 20 #include <linux/moduleparam.h> 21 #include <linux/init.h> 22 #include <linux/delay.h> 23 #include <linux/pm.h> 24 #include <linux/i2c.h> 25 #include <linux/of_device.h> 26 #include <linux/of_gpio.h> 27 #include <linux/regmap.h> 28 #include <linux/regulator/consumer.h> 29 #include <linux/gpio/consumer.h> 30 #include <linux/slab.h> 31 #include <sound/core.h> 32 #include <sound/pcm.h> 33 #include <sound/pcm_params.h> 34 #include <sound/soc.h> 35 #include <sound/soc-dapm.h> 36 #include <sound/initval.h> 37 #include <sound/tlv.h> 38 39 #include <sound/sta350.h> 40 #include "sta350.h" 41 42 #define STA350_RATES (SNDRV_PCM_RATE_32000 | \ 43 SNDRV_PCM_RATE_44100 | \ 44 SNDRV_PCM_RATE_48000 | \ 45 SNDRV_PCM_RATE_88200 | \ 46 SNDRV_PCM_RATE_96000 | \ 47 SNDRV_PCM_RATE_176400 | \ 48 SNDRV_PCM_RATE_192000) 49 50 #define STA350_FORMATS \ 51 (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S18_3LE | \ 52 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_3LE | \ 53 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE) 54 55 /* Power-up register defaults */ 56 static const struct reg_default sta350_regs[] = { 57 { 0x0, 0x63 }, 58 { 0x1, 0x80 }, 59 { 0x2, 0xdf }, 60 { 0x3, 0x40 }, 61 { 0x4, 0xc2 }, 62 { 0x5, 0x5c }, 63 { 0x6, 0x00 }, 64 { 0x7, 0xff }, 65 { 0x8, 0x60 }, 66 { 0x9, 0x60 }, 67 { 0xa, 0x60 }, 68 { 0xb, 0x00 }, 69 { 0xc, 0x00 }, 70 { 0xd, 0x00 }, 71 { 0xe, 0x00 }, 72 { 0xf, 0x40 }, 73 { 0x10, 0x80 }, 74 { 0x11, 0x77 }, 75 { 0x12, 0x6a }, 76 { 0x13, 0x69 }, 77 { 0x14, 0x6a }, 78 { 0x15, 0x69 }, 79 { 0x16, 0x00 }, 80 { 0x17, 0x00 }, 81 { 0x18, 0x00 }, 82 { 0x19, 0x00 }, 83 { 0x1a, 0x00 }, 84 { 0x1b, 0x00 }, 85 { 0x1c, 0x00 }, 86 { 0x1d, 0x00 }, 87 { 0x1e, 0x00 }, 88 { 0x1f, 0x00 }, 89 { 0x20, 0x00 }, 90 { 0x21, 0x00 }, 91 { 0x22, 0x00 }, 92 { 0x23, 0x00 }, 93 { 0x24, 0x00 }, 94 { 0x25, 0x00 }, 95 { 0x26, 0x00 }, 96 { 0x27, 0x2a }, 97 { 0x28, 0xc0 }, 98 { 0x29, 0xf3 }, 99 { 0x2a, 0x33 }, 100 { 0x2b, 0x00 }, 101 { 0x2c, 0x0c }, 102 { 0x31, 0x00 }, 103 { 0x36, 0x00 }, 104 { 0x37, 0x00 }, 105 { 0x38, 0x00 }, 106 { 0x39, 0x01 }, 107 { 0x3a, 0xee }, 108 { 0x3b, 0xff }, 109 { 0x3c, 0x7e }, 110 { 0x3d, 0xc0 }, 111 { 0x3e, 0x26 }, 112 { 0x3f, 0x00 }, 113 { 0x48, 0x00 }, 114 { 0x49, 0x00 }, 115 { 0x4a, 0x00 }, 116 { 0x4b, 0x04 }, 117 { 0x4c, 0x00 }, 118 }; 119 120 static const struct regmap_range sta350_write_regs_range[] = { 121 regmap_reg_range(STA350_CONFA, STA350_AUTO2), 122 regmap_reg_range(STA350_C1CFG, STA350_FDRC2), 123 regmap_reg_range(STA350_EQCFG, STA350_EVOLRES), 124 regmap_reg_range(STA350_NSHAPE, STA350_MISC2), 125 }; 126 127 static const struct regmap_range sta350_read_regs_range[] = { 128 regmap_reg_range(STA350_CONFA, STA350_AUTO2), 129 regmap_reg_range(STA350_C1CFG, STA350_STATUS), 130 regmap_reg_range(STA350_EQCFG, STA350_EVOLRES), 131 regmap_reg_range(STA350_NSHAPE, STA350_MISC2), 132 }; 133 134 static const struct regmap_range sta350_volatile_regs_range[] = { 135 regmap_reg_range(STA350_CFADDR2, STA350_CFUD), 136 regmap_reg_range(STA350_STATUS, STA350_STATUS), 137 }; 138 139 static const struct regmap_access_table sta350_write_regs = { 140 .yes_ranges = sta350_write_regs_range, 141 .n_yes_ranges = ARRAY_SIZE(sta350_write_regs_range), 142 }; 143 144 static const struct regmap_access_table sta350_read_regs = { 145 .yes_ranges = sta350_read_regs_range, 146 .n_yes_ranges = ARRAY_SIZE(sta350_read_regs_range), 147 }; 148 149 static const struct regmap_access_table sta350_volatile_regs = { 150 .yes_ranges = sta350_volatile_regs_range, 151 .n_yes_ranges = ARRAY_SIZE(sta350_volatile_regs_range), 152 }; 153 154 /* regulator power supply names */ 155 static const char * const sta350_supply_names[] = { 156 "vdd-dig", /* digital supply, 3.3V */ 157 "vdd-pll", /* pll supply, 3.3V */ 158 "vcc" /* power amp supply, 5V - 26V */ 159 }; 160 161 /* codec private data */ 162 struct sta350_priv { 163 struct regmap *regmap; 164 struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)]; 165 struct sta350_platform_data *pdata; 166 167 unsigned int mclk; 168 unsigned int format; 169 170 u32 coef_shadow[STA350_COEF_COUNT]; 171 int shutdown; 172 173 struct gpio_desc *gpiod_nreset; 174 struct gpio_desc *gpiod_power_down; 175 176 struct mutex coeff_lock; 177 }; 178 179 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1); 180 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1); 181 static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0); 182 183 static const char * const sta350_drc_ac[] = { 184 "Anti-Clipping", "Dynamic Range Compression" 185 }; 186 static const char * const sta350_auto_gc_mode[] = { 187 "User", "AC no clipping", "AC limited clipping (10%)", 188 "DRC nighttime listening mode" 189 }; 190 static const char * const sta350_auto_xo_mode[] = { 191 "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", 192 "200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", 193 "340Hz", "360Hz" 194 }; 195 static const char * const sta350_binary_output[] = { 196 "FFX 3-state output - normal operation", "Binary output" 197 }; 198 static const char * const sta350_limiter_select[] = { 199 "Limiter Disabled", "Limiter #1", "Limiter #2" 200 }; 201 static const char * const sta350_limiter_attack_rate[] = { 202 "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024", 203 "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752", 204 "0.0645", "0.0564", "0.0501", "0.0451" 205 }; 206 static const char * const sta350_limiter_release_rate[] = { 207 "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299", 208 "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137", 209 "0.0134", "0.0117", "0.0110", "0.0104" 210 }; 211 static const char * const sta350_noise_shaper_type[] = { 212 "Third order", "Fourth order" 213 }; 214 215 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv, 216 0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0), 217 8, 16, TLV_DB_SCALE_ITEM(300, 100, 0), 218 ); 219 220 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv, 221 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0), 222 1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0), 223 2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0), 224 3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0), 225 8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0), 226 ); 227 228 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv, 229 0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0), 230 8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0), 231 14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0), 232 ); 233 234 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv, 235 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0), 236 1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0), 237 3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0), 238 5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0), 239 13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0), 240 ); 241 242 static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum, 243 STA350_CONFD, STA350_CONFD_DRC_SHIFT, 244 sta350_drc_ac); 245 static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum, 246 STA350_CONFE, STA350_CONFE_NSBW_SHIFT, 247 sta350_noise_shaper_type); 248 static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum, 249 STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT, 250 sta350_auto_gc_mode); 251 static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum, 252 STA350_AUTO2, STA350_AUTO2_XO_SHIFT, 253 sta350_auto_xo_mode); 254 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum, 255 STA350_C1CFG, STA350_CxCFG_BO_SHIFT, 256 sta350_binary_output); 257 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum, 258 STA350_C2CFG, STA350_CxCFG_BO_SHIFT, 259 sta350_binary_output); 260 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum, 261 STA350_C3CFG, STA350_CxCFG_BO_SHIFT, 262 sta350_binary_output); 263 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum, 264 STA350_C1CFG, STA350_CxCFG_LS_SHIFT, 265 sta350_limiter_select); 266 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum, 267 STA350_C2CFG, STA350_CxCFG_LS_SHIFT, 268 sta350_limiter_select); 269 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum, 270 STA350_C3CFG, STA350_CxCFG_LS_SHIFT, 271 sta350_limiter_select); 272 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum, 273 STA350_L1AR, STA350_LxA_SHIFT, 274 sta350_limiter_attack_rate); 275 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum, 276 STA350_L2AR, STA350_LxA_SHIFT, 277 sta350_limiter_attack_rate); 278 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum, 279 STA350_L1AR, STA350_LxR_SHIFT, 280 sta350_limiter_release_rate); 281 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum, 282 STA350_L2AR, STA350_LxR_SHIFT, 283 sta350_limiter_release_rate); 284 285 /* 286 * byte array controls for setting biquad, mixer, scaling coefficients; 287 * for biquads all five coefficients need to be set in one go, 288 * mixer and pre/postscale coefs can be set individually; 289 * each coef is 24bit, the bytes are ordered in the same way 290 * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0) 291 */ 292 293 static int sta350_coefficient_info(struct snd_kcontrol *kcontrol, 294 struct snd_ctl_elem_info *uinfo) 295 { 296 int numcoef = kcontrol->private_value >> 16; 297 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; 298 uinfo->count = 3 * numcoef; 299 return 0; 300 } 301 302 static int sta350_coefficient_get(struct snd_kcontrol *kcontrol, 303 struct snd_ctl_elem_value *ucontrol) 304 { 305 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 306 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 307 int numcoef = kcontrol->private_value >> 16; 308 int index = kcontrol->private_value & 0xffff; 309 unsigned int cfud, val; 310 int i, ret = 0; 311 312 mutex_lock(&sta350->coeff_lock); 313 314 /* preserve reserved bits in STA350_CFUD */ 315 regmap_read(sta350->regmap, STA350_CFUD, &cfud); 316 cfud &= 0xf0; 317 /* 318 * chip documentation does not say if the bits are self clearing, 319 * so do it explicitly 320 */ 321 regmap_write(sta350->regmap, STA350_CFUD, cfud); 322 323 regmap_write(sta350->regmap, STA350_CFADDR2, index); 324 if (numcoef == 1) { 325 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04); 326 } else if (numcoef == 5) { 327 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08); 328 } else { 329 ret = -EINVAL; 330 goto exit_unlock; 331 } 332 333 for (i = 0; i < 3 * numcoef; i++) { 334 regmap_read(sta350->regmap, STA350_B1CF1 + i, &val); 335 ucontrol->value.bytes.data[i] = val; 336 } 337 338 exit_unlock: 339 mutex_unlock(&sta350->coeff_lock); 340 341 return ret; 342 } 343 344 static int sta350_coefficient_put(struct snd_kcontrol *kcontrol, 345 struct snd_ctl_elem_value *ucontrol) 346 { 347 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 348 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 349 int numcoef = kcontrol->private_value >> 16; 350 int index = kcontrol->private_value & 0xffff; 351 unsigned int cfud; 352 int i; 353 354 /* preserve reserved bits in STA350_CFUD */ 355 regmap_read(sta350->regmap, STA350_CFUD, &cfud); 356 cfud &= 0xf0; 357 /* 358 * chip documentation does not say if the bits are self clearing, 359 * so do it explicitly 360 */ 361 regmap_write(sta350->regmap, STA350_CFUD, cfud); 362 363 regmap_write(sta350->regmap, STA350_CFADDR2, index); 364 for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++) 365 sta350->coef_shadow[index + i] = 366 (ucontrol->value.bytes.data[3 * i] << 16) 367 | (ucontrol->value.bytes.data[3 * i + 1] << 8) 368 | (ucontrol->value.bytes.data[3 * i + 2]); 369 for (i = 0; i < 3 * numcoef; i++) 370 regmap_write(sta350->regmap, STA350_B1CF1 + i, 371 ucontrol->value.bytes.data[i]); 372 if (numcoef == 1) 373 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01); 374 else if (numcoef == 5) 375 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02); 376 else 377 return -EINVAL; 378 379 return 0; 380 } 381 382 static int sta350_sync_coef_shadow(struct snd_soc_component *component) 383 { 384 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 385 unsigned int cfud; 386 int i; 387 388 /* preserve reserved bits in STA350_CFUD */ 389 regmap_read(sta350->regmap, STA350_CFUD, &cfud); 390 cfud &= 0xf0; 391 392 for (i = 0; i < STA350_COEF_COUNT; i++) { 393 regmap_write(sta350->regmap, STA350_CFADDR2, i); 394 regmap_write(sta350->regmap, STA350_B1CF1, 395 (sta350->coef_shadow[i] >> 16) & 0xff); 396 regmap_write(sta350->regmap, STA350_B1CF2, 397 (sta350->coef_shadow[i] >> 8) & 0xff); 398 regmap_write(sta350->regmap, STA350_B1CF3, 399 (sta350->coef_shadow[i]) & 0xff); 400 /* 401 * chip documentation does not say if the bits are 402 * self-clearing, so do it explicitly 403 */ 404 regmap_write(sta350->regmap, STA350_CFUD, cfud); 405 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01); 406 } 407 return 0; 408 } 409 410 static int sta350_cache_sync(struct snd_soc_component *component) 411 { 412 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 413 unsigned int mute; 414 int rc; 415 416 /* mute during register sync */ 417 regmap_read(sta350->regmap, STA350_CFUD, &mute); 418 regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE); 419 sta350_sync_coef_shadow(component); 420 rc = regcache_sync(sta350->regmap); 421 regmap_write(sta350->regmap, STA350_MMUTE, mute); 422 return rc; 423 } 424 425 #define SINGLE_COEF(xname, index) \ 426 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 427 .info = sta350_coefficient_info, \ 428 .get = sta350_coefficient_get,\ 429 .put = sta350_coefficient_put, \ 430 .private_value = index | (1 << 16) } 431 432 #define BIQUAD_COEFS(xname, index) \ 433 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 434 .info = sta350_coefficient_info, \ 435 .get = sta350_coefficient_get,\ 436 .put = sta350_coefficient_put, \ 437 .private_value = index | (5 << 16) } 438 439 static const struct snd_kcontrol_new sta350_snd_controls[] = { 440 SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv), 441 /* VOL */ 442 SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv), 443 SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv), 444 SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv), 445 /* CONFD */ 446 SOC_SINGLE("High Pass Filter Bypass Switch", 447 STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1), 448 SOC_SINGLE("De-emphasis Filter Switch", 449 STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0), 450 SOC_SINGLE("DSP Bypass Switch", 451 STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0), 452 SOC_SINGLE("Post-scale Link Switch", 453 STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0), 454 SOC_SINGLE("Biquad Coefficient Link Switch", 455 STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0), 456 SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum), 457 SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum), 458 SOC_SINGLE("Zero-detect Mute Enable Switch", 459 STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0), 460 SOC_SINGLE("Submix Mode Switch", 461 STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0), 462 /* CONFE */ 463 SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0), 464 SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0), 465 /* MUTE */ 466 SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1), 467 SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1), 468 SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1), 469 SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1), 470 /* AUTOx */ 471 SOC_ENUM("Automode GC", sta350_auto_gc_enum), 472 SOC_ENUM("Automode XO", sta350_auto_xo_enum), 473 /* CxCFG */ 474 SOC_SINGLE("Ch1 Tone Control Bypass Switch", 475 STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0), 476 SOC_SINGLE("Ch2 Tone Control Bypass Switch", 477 STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0), 478 SOC_SINGLE("Ch1 EQ Bypass Switch", 479 STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0), 480 SOC_SINGLE("Ch2 EQ Bypass Switch", 481 STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0), 482 SOC_SINGLE("Ch1 Master Volume Bypass Switch", 483 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0), 484 SOC_SINGLE("Ch2 Master Volume Bypass Switch", 485 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0), 486 SOC_SINGLE("Ch3 Master Volume Bypass Switch", 487 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0), 488 SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum), 489 SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum), 490 SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum), 491 SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum), 492 SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum), 493 SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum), 494 /* TONE */ 495 SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume", 496 STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv), 497 SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume", 498 STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv), 499 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum), 500 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum), 501 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum), 502 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum), 503 504 /* 505 * depending on mode, the attack/release thresholds have 506 * two different enum definitions; provide both 507 */ 508 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", 509 STA350_L1ATRT, STA350_LxA_SHIFT, 510 16, 0, sta350_limiter_ac_attack_tlv), 511 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", 512 STA350_L2ATRT, STA350_LxA_SHIFT, 513 16, 0, sta350_limiter_ac_attack_tlv), 514 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", 515 STA350_L1ATRT, STA350_LxR_SHIFT, 516 16, 0, sta350_limiter_ac_release_tlv), 517 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", 518 STA350_L2ATRT, STA350_LxR_SHIFT, 519 16, 0, sta350_limiter_ac_release_tlv), 520 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", 521 STA350_L1ATRT, STA350_LxA_SHIFT, 522 16, 0, sta350_limiter_drc_attack_tlv), 523 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", 524 STA350_L2ATRT, STA350_LxA_SHIFT, 525 16, 0, sta350_limiter_drc_attack_tlv), 526 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", 527 STA350_L1ATRT, STA350_LxR_SHIFT, 528 16, 0, sta350_limiter_drc_release_tlv), 529 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", 530 STA350_L2ATRT, STA350_LxR_SHIFT, 531 16, 0, sta350_limiter_drc_release_tlv), 532 533 BIQUAD_COEFS("Ch1 - Biquad 1", 0), 534 BIQUAD_COEFS("Ch1 - Biquad 2", 5), 535 BIQUAD_COEFS("Ch1 - Biquad 3", 10), 536 BIQUAD_COEFS("Ch1 - Biquad 4", 15), 537 BIQUAD_COEFS("Ch2 - Biquad 1", 20), 538 BIQUAD_COEFS("Ch2 - Biquad 2", 25), 539 BIQUAD_COEFS("Ch2 - Biquad 3", 30), 540 BIQUAD_COEFS("Ch2 - Biquad 4", 35), 541 BIQUAD_COEFS("High-pass", 40), 542 BIQUAD_COEFS("Low-pass", 45), 543 SINGLE_COEF("Ch1 - Prescale", 50), 544 SINGLE_COEF("Ch2 - Prescale", 51), 545 SINGLE_COEF("Ch1 - Postscale", 52), 546 SINGLE_COEF("Ch2 - Postscale", 53), 547 SINGLE_COEF("Ch3 - Postscale", 54), 548 SINGLE_COEF("Thermal warning - Postscale", 55), 549 SINGLE_COEF("Ch1 - Mix 1", 56), 550 SINGLE_COEF("Ch1 - Mix 2", 57), 551 SINGLE_COEF("Ch2 - Mix 1", 58), 552 SINGLE_COEF("Ch2 - Mix 2", 59), 553 SINGLE_COEF("Ch3 - Mix 1", 60), 554 SINGLE_COEF("Ch3 - Mix 2", 61), 555 }; 556 557 static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = { 558 SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0), 559 SND_SOC_DAPM_OUTPUT("LEFT"), 560 SND_SOC_DAPM_OUTPUT("RIGHT"), 561 SND_SOC_DAPM_OUTPUT("SUB"), 562 }; 563 564 static const struct snd_soc_dapm_route sta350_dapm_routes[] = { 565 { "LEFT", NULL, "DAC" }, 566 { "RIGHT", NULL, "DAC" }, 567 { "SUB", NULL, "DAC" }, 568 { "DAC", NULL, "Playback" }, 569 }; 570 571 /* MCLK interpolation ratio per fs */ 572 static struct { 573 int fs; 574 int ir; 575 } interpolation_ratios[] = { 576 { 32000, 0 }, 577 { 44100, 0 }, 578 { 48000, 0 }, 579 { 88200, 1 }, 580 { 96000, 1 }, 581 { 176400, 2 }, 582 { 192000, 2 }, 583 }; 584 585 /* MCLK to fs clock ratios */ 586 static int mcs_ratio_table[3][6] = { 587 { 768, 512, 384, 256, 128, 576 }, 588 { 384, 256, 192, 128, 64, 0 }, 589 { 192, 128, 96, 64, 32, 0 }, 590 }; 591 592 /** 593 * sta350_set_dai_sysclk - configure MCLK 594 * @codec_dai: the codec DAI 595 * @clk_id: the clock ID (ignored) 596 * @freq: the MCLK input frequency 597 * @dir: the clock direction (ignored) 598 * 599 * The value of MCLK is used to determine which sample rates are supported 600 * by the STA350, based on the mcs_ratio_table. 601 * 602 * This function must be called by the machine driver's 'startup' function, 603 * otherwise the list of supported sample rates will not be available in 604 * time for ALSA. 605 */ 606 static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai, 607 int clk_id, unsigned int freq, int dir) 608 { 609 struct snd_soc_component *component = codec_dai->component; 610 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 611 612 dev_dbg(component->dev, "mclk=%u\n", freq); 613 sta350->mclk = freq; 614 615 return 0; 616 } 617 618 /** 619 * sta350_set_dai_fmt - configure the codec for the selected audio format 620 * @codec_dai: the codec DAI 621 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format 622 * 623 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the 624 * codec accordingly. 625 */ 626 static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai, 627 unsigned int fmt) 628 { 629 struct snd_soc_component *component = codec_dai->component; 630 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 631 unsigned int confb = 0; 632 633 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { 634 case SND_SOC_DAIFMT_CBS_CFS: 635 break; 636 default: 637 return -EINVAL; 638 } 639 640 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 641 case SND_SOC_DAIFMT_I2S: 642 case SND_SOC_DAIFMT_RIGHT_J: 643 case SND_SOC_DAIFMT_LEFT_J: 644 sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK; 645 break; 646 default: 647 return -EINVAL; 648 } 649 650 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 651 case SND_SOC_DAIFMT_NB_NF: 652 confb |= STA350_CONFB_C2IM; 653 break; 654 case SND_SOC_DAIFMT_NB_IF: 655 confb |= STA350_CONFB_C1IM; 656 break; 657 default: 658 return -EINVAL; 659 } 660 661 return regmap_update_bits(sta350->regmap, STA350_CONFB, 662 STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb); 663 } 664 665 /** 666 * sta350_hw_params - program the STA350 with the given hardware parameters. 667 * @substream: the audio stream 668 * @params: the hardware parameters to set 669 * @dai: the SOC DAI (ignored) 670 * 671 * This function programs the hardware with the values provided. 672 * Specifically, the sample rate and the data format. 673 */ 674 static int sta350_hw_params(struct snd_pcm_substream *substream, 675 struct snd_pcm_hw_params *params, 676 struct snd_soc_dai *dai) 677 { 678 struct snd_soc_component *component = dai->component; 679 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 680 int i, mcs = -EINVAL, ir = -EINVAL; 681 unsigned int confa, confb; 682 unsigned int rate, ratio; 683 int ret; 684 685 if (!sta350->mclk) { 686 dev_err(component->dev, 687 "sta350->mclk is unset. Unable to determine ratio\n"); 688 return -EIO; 689 } 690 691 rate = params_rate(params); 692 ratio = sta350->mclk / rate; 693 dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio); 694 695 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) { 696 if (interpolation_ratios[i].fs == rate) { 697 ir = interpolation_ratios[i].ir; 698 break; 699 } 700 } 701 702 if (ir < 0) { 703 dev_err(component->dev, "Unsupported samplerate: %u\n", rate); 704 return -EINVAL; 705 } 706 707 for (i = 0; i < 6; i++) { 708 if (mcs_ratio_table[ir][i] == ratio) { 709 mcs = i; 710 break; 711 } 712 } 713 714 if (mcs < 0) { 715 dev_err(component->dev, "Unresolvable ratio: %u\n", ratio); 716 return -EINVAL; 717 } 718 719 confa = (ir << STA350_CONFA_IR_SHIFT) | 720 (mcs << STA350_CONFA_MCS_SHIFT); 721 confb = 0; 722 723 switch (params_width(params)) { 724 case 24: 725 dev_dbg(component->dev, "24bit\n"); 726 fallthrough; 727 case 32: 728 dev_dbg(component->dev, "24bit or 32bit\n"); 729 switch (sta350->format) { 730 case SND_SOC_DAIFMT_I2S: 731 confb |= 0x0; 732 break; 733 case SND_SOC_DAIFMT_LEFT_J: 734 confb |= 0x1; 735 break; 736 case SND_SOC_DAIFMT_RIGHT_J: 737 confb |= 0x2; 738 break; 739 } 740 741 break; 742 case 20: 743 dev_dbg(component->dev, "20bit\n"); 744 switch (sta350->format) { 745 case SND_SOC_DAIFMT_I2S: 746 confb |= 0x4; 747 break; 748 case SND_SOC_DAIFMT_LEFT_J: 749 confb |= 0x5; 750 break; 751 case SND_SOC_DAIFMT_RIGHT_J: 752 confb |= 0x6; 753 break; 754 } 755 756 break; 757 case 18: 758 dev_dbg(component->dev, "18bit\n"); 759 switch (sta350->format) { 760 case SND_SOC_DAIFMT_I2S: 761 confb |= 0x8; 762 break; 763 case SND_SOC_DAIFMT_LEFT_J: 764 confb |= 0x9; 765 break; 766 case SND_SOC_DAIFMT_RIGHT_J: 767 confb |= 0xa; 768 break; 769 } 770 771 break; 772 case 16: 773 dev_dbg(component->dev, "16bit\n"); 774 switch (sta350->format) { 775 case SND_SOC_DAIFMT_I2S: 776 confb |= 0x0; 777 break; 778 case SND_SOC_DAIFMT_LEFT_J: 779 confb |= 0xd; 780 break; 781 case SND_SOC_DAIFMT_RIGHT_J: 782 confb |= 0xe; 783 break; 784 } 785 786 break; 787 default: 788 return -EINVAL; 789 } 790 791 ret = regmap_update_bits(sta350->regmap, STA350_CONFA, 792 STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK, 793 confa); 794 if (ret < 0) 795 return ret; 796 797 ret = regmap_update_bits(sta350->regmap, STA350_CONFB, 798 STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB, 799 confb); 800 if (ret < 0) 801 return ret; 802 803 return 0; 804 } 805 806 static int sta350_startup_sequence(struct sta350_priv *sta350) 807 { 808 if (sta350->gpiod_power_down) 809 gpiod_set_value(sta350->gpiod_power_down, 1); 810 811 if (sta350->gpiod_nreset) { 812 gpiod_set_value(sta350->gpiod_nreset, 0); 813 mdelay(1); 814 gpiod_set_value(sta350->gpiod_nreset, 1); 815 mdelay(1); 816 } 817 818 return 0; 819 } 820 821 /** 822 * sta350_set_bias_level - DAPM callback 823 * @component: the component device 824 * @level: DAPM power level 825 * 826 * This is called by ALSA to put the component into low power mode 827 * or to wake it up. If the component is powered off completely 828 * all registers must be restored after power on. 829 */ 830 static int sta350_set_bias_level(struct snd_soc_component *component, 831 enum snd_soc_bias_level level) 832 { 833 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 834 int ret; 835 836 dev_dbg(component->dev, "level = %d\n", level); 837 switch (level) { 838 case SND_SOC_BIAS_ON: 839 break; 840 841 case SND_SOC_BIAS_PREPARE: 842 /* Full power on */ 843 regmap_update_bits(sta350->regmap, STA350_CONFF, 844 STA350_CONFF_PWDN | STA350_CONFF_EAPD, 845 STA350_CONFF_PWDN | STA350_CONFF_EAPD); 846 break; 847 848 case SND_SOC_BIAS_STANDBY: 849 if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) { 850 ret = regulator_bulk_enable( 851 ARRAY_SIZE(sta350->supplies), 852 sta350->supplies); 853 if (ret < 0) { 854 dev_err(component->dev, 855 "Failed to enable supplies: %d\n", 856 ret); 857 return ret; 858 } 859 sta350_startup_sequence(sta350); 860 sta350_cache_sync(component); 861 } 862 863 /* Power down */ 864 regmap_update_bits(sta350->regmap, STA350_CONFF, 865 STA350_CONFF_PWDN | STA350_CONFF_EAPD, 866 0); 867 868 break; 869 870 case SND_SOC_BIAS_OFF: 871 /* The chip runs through the power down sequence for us */ 872 regmap_update_bits(sta350->regmap, STA350_CONFF, 873 STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0); 874 875 /* power down: low */ 876 if (sta350->gpiod_power_down) 877 gpiod_set_value(sta350->gpiod_power_down, 0); 878 879 if (sta350->gpiod_nreset) 880 gpiod_set_value(sta350->gpiod_nreset, 0); 881 882 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), 883 sta350->supplies); 884 break; 885 } 886 return 0; 887 } 888 889 static const struct snd_soc_dai_ops sta350_dai_ops = { 890 .hw_params = sta350_hw_params, 891 .set_sysclk = sta350_set_dai_sysclk, 892 .set_fmt = sta350_set_dai_fmt, 893 }; 894 895 static struct snd_soc_dai_driver sta350_dai = { 896 .name = "sta350-hifi", 897 .playback = { 898 .stream_name = "Playback", 899 .channels_min = 2, 900 .channels_max = 2, 901 .rates = STA350_RATES, 902 .formats = STA350_FORMATS, 903 }, 904 .ops = &sta350_dai_ops, 905 }; 906 907 static int sta350_probe(struct snd_soc_component *component) 908 { 909 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 910 struct sta350_platform_data *pdata = sta350->pdata; 911 int i, ret = 0, thermal = 0; 912 913 ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies), 914 sta350->supplies); 915 if (ret < 0) { 916 dev_err(component->dev, "Failed to enable supplies: %d\n", ret); 917 return ret; 918 } 919 920 ret = sta350_startup_sequence(sta350); 921 if (ret < 0) { 922 dev_err(component->dev, "Failed to startup device\n"); 923 return ret; 924 } 925 926 /* CONFA */ 927 if (!pdata->thermal_warning_recovery) 928 thermal |= STA350_CONFA_TWAB; 929 if (!pdata->thermal_warning_adjustment) 930 thermal |= STA350_CONFA_TWRB; 931 if (!pdata->fault_detect_recovery) 932 thermal |= STA350_CONFA_FDRB; 933 regmap_update_bits(sta350->regmap, STA350_CONFA, 934 STA350_CONFA_TWAB | STA350_CONFA_TWRB | 935 STA350_CONFA_FDRB, 936 thermal); 937 938 /* CONFC */ 939 regmap_update_bits(sta350->regmap, STA350_CONFC, 940 STA350_CONFC_OM_MASK, 941 pdata->ffx_power_output_mode 942 << STA350_CONFC_OM_SHIFT); 943 regmap_update_bits(sta350->regmap, STA350_CONFC, 944 STA350_CONFC_CSZ_MASK, 945 pdata->drop_compensation_ns 946 << STA350_CONFC_CSZ_SHIFT); 947 regmap_update_bits(sta350->regmap, 948 STA350_CONFC, 949 STA350_CONFC_OCRB, 950 pdata->oc_warning_adjustment ? 951 STA350_CONFC_OCRB : 0); 952 953 /* CONFE */ 954 regmap_update_bits(sta350->regmap, STA350_CONFE, 955 STA350_CONFE_MPCV, 956 pdata->max_power_use_mpcc ? 957 STA350_CONFE_MPCV : 0); 958 regmap_update_bits(sta350->regmap, STA350_CONFE, 959 STA350_CONFE_MPC, 960 pdata->max_power_correction ? 961 STA350_CONFE_MPC : 0); 962 regmap_update_bits(sta350->regmap, STA350_CONFE, 963 STA350_CONFE_AME, 964 pdata->am_reduction_mode ? 965 STA350_CONFE_AME : 0); 966 regmap_update_bits(sta350->regmap, STA350_CONFE, 967 STA350_CONFE_PWMS, 968 pdata->odd_pwm_speed_mode ? 969 STA350_CONFE_PWMS : 0); 970 regmap_update_bits(sta350->regmap, STA350_CONFE, 971 STA350_CONFE_DCCV, 972 pdata->distortion_compensation ? 973 STA350_CONFE_DCCV : 0); 974 /* CONFF */ 975 regmap_update_bits(sta350->regmap, STA350_CONFF, 976 STA350_CONFF_IDE, 977 pdata->invalid_input_detect_mute ? 978 STA350_CONFF_IDE : 0); 979 regmap_update_bits(sta350->regmap, STA350_CONFF, 980 STA350_CONFF_OCFG_MASK, 981 pdata->output_conf 982 << STA350_CONFF_OCFG_SHIFT); 983 984 /* channel to output mapping */ 985 regmap_update_bits(sta350->regmap, STA350_C1CFG, 986 STA350_CxCFG_OM_MASK, 987 pdata->ch1_output_mapping 988 << STA350_CxCFG_OM_SHIFT); 989 regmap_update_bits(sta350->regmap, STA350_C2CFG, 990 STA350_CxCFG_OM_MASK, 991 pdata->ch2_output_mapping 992 << STA350_CxCFG_OM_SHIFT); 993 regmap_update_bits(sta350->regmap, STA350_C3CFG, 994 STA350_CxCFG_OM_MASK, 995 pdata->ch3_output_mapping 996 << STA350_CxCFG_OM_SHIFT); 997 998 /* miscellaneous registers */ 999 regmap_update_bits(sta350->regmap, STA350_MISC1, 1000 STA350_MISC1_CPWMEN, 1001 pdata->activate_mute_output ? 1002 STA350_MISC1_CPWMEN : 0); 1003 regmap_update_bits(sta350->regmap, STA350_MISC1, 1004 STA350_MISC1_BRIDGOFF, 1005 pdata->bridge_immediate_off ? 1006 STA350_MISC1_BRIDGOFF : 0); 1007 regmap_update_bits(sta350->regmap, STA350_MISC1, 1008 STA350_MISC1_NSHHPEN, 1009 pdata->noise_shape_dc_cut ? 1010 STA350_MISC1_NSHHPEN : 0); 1011 regmap_update_bits(sta350->regmap, STA350_MISC1, 1012 STA350_MISC1_RPDNEN, 1013 pdata->powerdown_master_vol ? 1014 STA350_MISC1_RPDNEN: 0); 1015 1016 regmap_update_bits(sta350->regmap, STA350_MISC2, 1017 STA350_MISC2_PNDLSL_MASK, 1018 pdata->powerdown_delay_divider 1019 << STA350_MISC2_PNDLSL_SHIFT); 1020 1021 /* initialize coefficient shadow RAM with reset values */ 1022 for (i = 4; i <= 49; i += 5) 1023 sta350->coef_shadow[i] = 0x400000; 1024 for (i = 50; i <= 54; i++) 1025 sta350->coef_shadow[i] = 0x7fffff; 1026 sta350->coef_shadow[55] = 0x5a9df7; 1027 sta350->coef_shadow[56] = 0x7fffff; 1028 sta350->coef_shadow[59] = 0x7fffff; 1029 sta350->coef_shadow[60] = 0x400000; 1030 sta350->coef_shadow[61] = 0x400000; 1031 1032 snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY); 1033 /* Bias level configuration will have done an extra enable */ 1034 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies); 1035 1036 return 0; 1037 } 1038 1039 static void sta350_remove(struct snd_soc_component *component) 1040 { 1041 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 1042 1043 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies); 1044 } 1045 1046 static const struct snd_soc_component_driver sta350_component = { 1047 .probe = sta350_probe, 1048 .remove = sta350_remove, 1049 .set_bias_level = sta350_set_bias_level, 1050 .controls = sta350_snd_controls, 1051 .num_controls = ARRAY_SIZE(sta350_snd_controls), 1052 .dapm_widgets = sta350_dapm_widgets, 1053 .num_dapm_widgets = ARRAY_SIZE(sta350_dapm_widgets), 1054 .dapm_routes = sta350_dapm_routes, 1055 .num_dapm_routes = ARRAY_SIZE(sta350_dapm_routes), 1056 .suspend_bias_off = 1, 1057 .idle_bias_on = 1, 1058 .use_pmdown_time = 1, 1059 .endianness = 1, 1060 .non_legacy_dai_naming = 1, 1061 }; 1062 1063 static const struct regmap_config sta350_regmap = { 1064 .reg_bits = 8, 1065 .val_bits = 8, 1066 .max_register = STA350_MISC2, 1067 .reg_defaults = sta350_regs, 1068 .num_reg_defaults = ARRAY_SIZE(sta350_regs), 1069 .cache_type = REGCACHE_RBTREE, 1070 .wr_table = &sta350_write_regs, 1071 .rd_table = &sta350_read_regs, 1072 .volatile_table = &sta350_volatile_regs, 1073 }; 1074 1075 #ifdef CONFIG_OF 1076 static const struct of_device_id st350_dt_ids[] = { 1077 { .compatible = "st,sta350", }, 1078 { } 1079 }; 1080 MODULE_DEVICE_TABLE(of, st350_dt_ids); 1081 1082 static const char * const sta350_ffx_modes[] = { 1083 [STA350_FFX_PM_DROP_COMP] = "drop-compensation", 1084 [STA350_FFX_PM_TAPERED_COMP] = "tapered-compensation", 1085 [STA350_FFX_PM_FULL_POWER] = "full-power-mode", 1086 [STA350_FFX_PM_VARIABLE_DROP_COMP] = "variable-drop-compensation", 1087 }; 1088 1089 static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350) 1090 { 1091 struct device_node *np = dev->of_node; 1092 struct sta350_platform_data *pdata; 1093 const char *ffx_power_mode; 1094 u16 tmp; 1095 u8 tmp8; 1096 1097 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 1098 if (!pdata) 1099 return -ENOMEM; 1100 1101 of_property_read_u8(np, "st,output-conf", 1102 &pdata->output_conf); 1103 of_property_read_u8(np, "st,ch1-output-mapping", 1104 &pdata->ch1_output_mapping); 1105 of_property_read_u8(np, "st,ch2-output-mapping", 1106 &pdata->ch2_output_mapping); 1107 of_property_read_u8(np, "st,ch3-output-mapping", 1108 &pdata->ch3_output_mapping); 1109 1110 if (of_get_property(np, "st,thermal-warning-recovery", NULL)) 1111 pdata->thermal_warning_recovery = 1; 1112 if (of_get_property(np, "st,thermal-warning-adjustment", NULL)) 1113 pdata->thermal_warning_adjustment = 1; 1114 if (of_get_property(np, "st,fault-detect-recovery", NULL)) 1115 pdata->fault_detect_recovery = 1; 1116 1117 pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP; 1118 if (!of_property_read_string(np, "st,ffx-power-output-mode", 1119 &ffx_power_mode)) { 1120 int i, mode = -EINVAL; 1121 1122 for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++) 1123 if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i])) 1124 mode = i; 1125 1126 if (mode < 0) 1127 dev_warn(dev, "Unsupported ffx output mode: %s\n", 1128 ffx_power_mode); 1129 else 1130 pdata->ffx_power_output_mode = mode; 1131 } 1132 1133 tmp = 140; 1134 of_property_read_u16(np, "st,drop-compensation-ns", &tmp); 1135 pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20; 1136 1137 if (of_get_property(np, "st,overcurrent-warning-adjustment", NULL)) 1138 pdata->oc_warning_adjustment = 1; 1139 1140 /* CONFE */ 1141 if (of_get_property(np, "st,max-power-use-mpcc", NULL)) 1142 pdata->max_power_use_mpcc = 1; 1143 1144 if (of_get_property(np, "st,max-power-correction", NULL)) 1145 pdata->max_power_correction = 1; 1146 1147 if (of_get_property(np, "st,am-reduction-mode", NULL)) 1148 pdata->am_reduction_mode = 1; 1149 1150 if (of_get_property(np, "st,odd-pwm-speed-mode", NULL)) 1151 pdata->odd_pwm_speed_mode = 1; 1152 1153 if (of_get_property(np, "st,distortion-compensation", NULL)) 1154 pdata->distortion_compensation = 1; 1155 1156 /* CONFF */ 1157 if (of_get_property(np, "st,invalid-input-detect-mute", NULL)) 1158 pdata->invalid_input_detect_mute = 1; 1159 1160 /* MISC */ 1161 if (of_get_property(np, "st,activate-mute-output", NULL)) 1162 pdata->activate_mute_output = 1; 1163 1164 if (of_get_property(np, "st,bridge-immediate-off", NULL)) 1165 pdata->bridge_immediate_off = 1; 1166 1167 if (of_get_property(np, "st,noise-shape-dc-cut", NULL)) 1168 pdata->noise_shape_dc_cut = 1; 1169 1170 if (of_get_property(np, "st,powerdown-master-volume", NULL)) 1171 pdata->powerdown_master_vol = 1; 1172 1173 if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) { 1174 if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128) 1175 pdata->powerdown_delay_divider = ilog2(tmp8); 1176 else 1177 dev_warn(dev, "Unsupported powerdown delay divider %d\n", 1178 tmp8); 1179 } 1180 1181 sta350->pdata = pdata; 1182 1183 return 0; 1184 } 1185 #endif 1186 1187 static int sta350_i2c_probe(struct i2c_client *i2c) 1188 { 1189 struct device *dev = &i2c->dev; 1190 struct sta350_priv *sta350; 1191 int ret, i; 1192 1193 sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL); 1194 if (!sta350) 1195 return -ENOMEM; 1196 1197 mutex_init(&sta350->coeff_lock); 1198 sta350->pdata = dev_get_platdata(dev); 1199 1200 #ifdef CONFIG_OF 1201 if (dev->of_node) { 1202 ret = sta350_probe_dt(dev, sta350); 1203 if (ret < 0) 1204 return ret; 1205 } 1206 #endif 1207 1208 /* GPIOs */ 1209 sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset", 1210 GPIOD_OUT_LOW); 1211 if (IS_ERR(sta350->gpiod_nreset)) 1212 return PTR_ERR(sta350->gpiod_nreset); 1213 1214 sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down", 1215 GPIOD_OUT_LOW); 1216 if (IS_ERR(sta350->gpiod_power_down)) 1217 return PTR_ERR(sta350->gpiod_power_down); 1218 1219 /* regulators */ 1220 for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++) 1221 sta350->supplies[i].supply = sta350_supply_names[i]; 1222 1223 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies), 1224 sta350->supplies); 1225 if (ret < 0) { 1226 dev_err(dev, "Failed to request supplies: %d\n", ret); 1227 return ret; 1228 } 1229 1230 sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap); 1231 if (IS_ERR(sta350->regmap)) { 1232 ret = PTR_ERR(sta350->regmap); 1233 dev_err(dev, "Failed to init regmap: %d\n", ret); 1234 return ret; 1235 } 1236 1237 i2c_set_clientdata(i2c, sta350); 1238 1239 ret = devm_snd_soc_register_component(dev, &sta350_component, &sta350_dai, 1); 1240 if (ret < 0) 1241 dev_err(dev, "Failed to register component (%d)\n", ret); 1242 1243 return ret; 1244 } 1245 1246 static int sta350_i2c_remove(struct i2c_client *client) 1247 { 1248 return 0; 1249 } 1250 1251 static const struct i2c_device_id sta350_i2c_id[] = { 1252 { "sta350", 0 }, 1253 { } 1254 }; 1255 MODULE_DEVICE_TABLE(i2c, sta350_i2c_id); 1256 1257 static struct i2c_driver sta350_i2c_driver = { 1258 .driver = { 1259 .name = "sta350", 1260 .of_match_table = of_match_ptr(st350_dt_ids), 1261 }, 1262 .probe_new = sta350_i2c_probe, 1263 .remove = sta350_i2c_remove, 1264 .id_table = sta350_i2c_id, 1265 }; 1266 1267 module_i2c_driver(sta350_i2c_driver); 1268 1269 MODULE_DESCRIPTION("ASoC STA350 driver"); 1270 MODULE_AUTHOR("Sven Brandau <info@brandau.biz>"); 1271 MODULE_LICENSE("GPL"); 1272