1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system 4 * 5 * Copyright: 2014 Raumfeld GmbH 6 * Author: Sven Brandau <info@brandau.biz> 7 * 8 * based on code from: 9 * Raumfeld GmbH 10 * Johannes Stezenbach <js@sig21.net> 11 * Wolfson Microelectronics PLC. 12 * Mark Brown <broonie@opensource.wolfsonmicro.com> 13 * Freescale Semiconductor, Inc. 14 * Timur Tabi <timur@freescale.com> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__ 18 19 #include <linux/module.h> 20 #include <linux/moduleparam.h> 21 #include <linux/init.h> 22 #include <linux/delay.h> 23 #include <linux/pm.h> 24 #include <linux/i2c.h> 25 #include <linux/of_device.h> 26 #include <linux/of_gpio.h> 27 #include <linux/regmap.h> 28 #include <linux/regulator/consumer.h> 29 #include <linux/gpio/consumer.h> 30 #include <linux/slab.h> 31 #include <sound/core.h> 32 #include <sound/pcm.h> 33 #include <sound/pcm_params.h> 34 #include <sound/soc.h> 35 #include <sound/soc-dapm.h> 36 #include <sound/initval.h> 37 #include <sound/tlv.h> 38 39 #include <sound/sta350.h> 40 #include "sta350.h" 41 42 #define STA350_RATES (SNDRV_PCM_RATE_32000 | \ 43 SNDRV_PCM_RATE_44100 | \ 44 SNDRV_PCM_RATE_48000 | \ 45 SNDRV_PCM_RATE_88200 | \ 46 SNDRV_PCM_RATE_96000 | \ 47 SNDRV_PCM_RATE_176400 | \ 48 SNDRV_PCM_RATE_192000) 49 50 #define STA350_FORMATS \ 51 (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE | \ 52 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \ 53 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \ 54 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \ 55 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE | \ 56 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE) 57 58 /* Power-up register defaults */ 59 static const struct reg_default sta350_regs[] = { 60 { 0x0, 0x63 }, 61 { 0x1, 0x80 }, 62 { 0x2, 0xdf }, 63 { 0x3, 0x40 }, 64 { 0x4, 0xc2 }, 65 { 0x5, 0x5c }, 66 { 0x6, 0x00 }, 67 { 0x7, 0xff }, 68 { 0x8, 0x60 }, 69 { 0x9, 0x60 }, 70 { 0xa, 0x60 }, 71 { 0xb, 0x00 }, 72 { 0xc, 0x00 }, 73 { 0xd, 0x00 }, 74 { 0xe, 0x00 }, 75 { 0xf, 0x40 }, 76 { 0x10, 0x80 }, 77 { 0x11, 0x77 }, 78 { 0x12, 0x6a }, 79 { 0x13, 0x69 }, 80 { 0x14, 0x6a }, 81 { 0x15, 0x69 }, 82 { 0x16, 0x00 }, 83 { 0x17, 0x00 }, 84 { 0x18, 0x00 }, 85 { 0x19, 0x00 }, 86 { 0x1a, 0x00 }, 87 { 0x1b, 0x00 }, 88 { 0x1c, 0x00 }, 89 { 0x1d, 0x00 }, 90 { 0x1e, 0x00 }, 91 { 0x1f, 0x00 }, 92 { 0x20, 0x00 }, 93 { 0x21, 0x00 }, 94 { 0x22, 0x00 }, 95 { 0x23, 0x00 }, 96 { 0x24, 0x00 }, 97 { 0x25, 0x00 }, 98 { 0x26, 0x00 }, 99 { 0x27, 0x2a }, 100 { 0x28, 0xc0 }, 101 { 0x29, 0xf3 }, 102 { 0x2a, 0x33 }, 103 { 0x2b, 0x00 }, 104 { 0x2c, 0x0c }, 105 { 0x31, 0x00 }, 106 { 0x36, 0x00 }, 107 { 0x37, 0x00 }, 108 { 0x38, 0x00 }, 109 { 0x39, 0x01 }, 110 { 0x3a, 0xee }, 111 { 0x3b, 0xff }, 112 { 0x3c, 0x7e }, 113 { 0x3d, 0xc0 }, 114 { 0x3e, 0x26 }, 115 { 0x3f, 0x00 }, 116 { 0x48, 0x00 }, 117 { 0x49, 0x00 }, 118 { 0x4a, 0x00 }, 119 { 0x4b, 0x04 }, 120 { 0x4c, 0x00 }, 121 }; 122 123 static const struct regmap_range sta350_write_regs_range[] = { 124 regmap_reg_range(STA350_CONFA, STA350_AUTO2), 125 regmap_reg_range(STA350_C1CFG, STA350_FDRC2), 126 regmap_reg_range(STA350_EQCFG, STA350_EVOLRES), 127 regmap_reg_range(STA350_NSHAPE, STA350_MISC2), 128 }; 129 130 static const struct regmap_range sta350_read_regs_range[] = { 131 regmap_reg_range(STA350_CONFA, STA350_AUTO2), 132 regmap_reg_range(STA350_C1CFG, STA350_STATUS), 133 regmap_reg_range(STA350_EQCFG, STA350_EVOLRES), 134 regmap_reg_range(STA350_NSHAPE, STA350_MISC2), 135 }; 136 137 static const struct regmap_range sta350_volatile_regs_range[] = { 138 regmap_reg_range(STA350_CFADDR2, STA350_CFUD), 139 regmap_reg_range(STA350_STATUS, STA350_STATUS), 140 }; 141 142 static const struct regmap_access_table sta350_write_regs = { 143 .yes_ranges = sta350_write_regs_range, 144 .n_yes_ranges = ARRAY_SIZE(sta350_write_regs_range), 145 }; 146 147 static const struct regmap_access_table sta350_read_regs = { 148 .yes_ranges = sta350_read_regs_range, 149 .n_yes_ranges = ARRAY_SIZE(sta350_read_regs_range), 150 }; 151 152 static const struct regmap_access_table sta350_volatile_regs = { 153 .yes_ranges = sta350_volatile_regs_range, 154 .n_yes_ranges = ARRAY_SIZE(sta350_volatile_regs_range), 155 }; 156 157 /* regulator power supply names */ 158 static const char * const sta350_supply_names[] = { 159 "vdd-dig", /* digital supply, 3.3V */ 160 "vdd-pll", /* pll supply, 3.3V */ 161 "vcc" /* power amp supply, 5V - 26V */ 162 }; 163 164 /* codec private data */ 165 struct sta350_priv { 166 struct regmap *regmap; 167 struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)]; 168 struct sta350_platform_data *pdata; 169 170 unsigned int mclk; 171 unsigned int format; 172 173 u32 coef_shadow[STA350_COEF_COUNT]; 174 int shutdown; 175 176 struct gpio_desc *gpiod_nreset; 177 struct gpio_desc *gpiod_power_down; 178 179 struct mutex coeff_lock; 180 }; 181 182 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1); 183 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1); 184 static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0); 185 186 static const char * const sta350_drc_ac[] = { 187 "Anti-Clipping", "Dynamic Range Compression" 188 }; 189 static const char * const sta350_auto_gc_mode[] = { 190 "User", "AC no clipping", "AC limited clipping (10%)", 191 "DRC nighttime listening mode" 192 }; 193 static const char * const sta350_auto_xo_mode[] = { 194 "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", 195 "200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", 196 "340Hz", "360Hz" 197 }; 198 static const char * const sta350_binary_output[] = { 199 "FFX 3-state output - normal operation", "Binary output" 200 }; 201 static const char * const sta350_limiter_select[] = { 202 "Limiter Disabled", "Limiter #1", "Limiter #2" 203 }; 204 static const char * const sta350_limiter_attack_rate[] = { 205 "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024", 206 "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752", 207 "0.0645", "0.0564", "0.0501", "0.0451" 208 }; 209 static const char * const sta350_limiter_release_rate[] = { 210 "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299", 211 "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137", 212 "0.0134", "0.0117", "0.0110", "0.0104" 213 }; 214 static const char * const sta350_noise_shaper_type[] = { 215 "Third order", "Fourth order" 216 }; 217 218 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv, 219 0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0), 220 8, 16, TLV_DB_SCALE_ITEM(300, 100, 0), 221 ); 222 223 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv, 224 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0), 225 1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0), 226 2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0), 227 3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0), 228 8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0), 229 ); 230 231 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv, 232 0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0), 233 8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0), 234 14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0), 235 ); 236 237 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv, 238 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0), 239 1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0), 240 3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0), 241 5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0), 242 13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0), 243 ); 244 245 static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum, 246 STA350_CONFD, STA350_CONFD_DRC_SHIFT, 247 sta350_drc_ac); 248 static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum, 249 STA350_CONFE, STA350_CONFE_NSBW_SHIFT, 250 sta350_noise_shaper_type); 251 static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum, 252 STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT, 253 sta350_auto_gc_mode); 254 static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum, 255 STA350_AUTO2, STA350_AUTO2_XO_SHIFT, 256 sta350_auto_xo_mode); 257 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum, 258 STA350_C1CFG, STA350_CxCFG_BO_SHIFT, 259 sta350_binary_output); 260 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum, 261 STA350_C2CFG, STA350_CxCFG_BO_SHIFT, 262 sta350_binary_output); 263 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum, 264 STA350_C3CFG, STA350_CxCFG_BO_SHIFT, 265 sta350_binary_output); 266 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum, 267 STA350_C1CFG, STA350_CxCFG_LS_SHIFT, 268 sta350_limiter_select); 269 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum, 270 STA350_C2CFG, STA350_CxCFG_LS_SHIFT, 271 sta350_limiter_select); 272 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum, 273 STA350_C3CFG, STA350_CxCFG_LS_SHIFT, 274 sta350_limiter_select); 275 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum, 276 STA350_L1AR, STA350_LxA_SHIFT, 277 sta350_limiter_attack_rate); 278 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum, 279 STA350_L2AR, STA350_LxA_SHIFT, 280 sta350_limiter_attack_rate); 281 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum, 282 STA350_L1AR, STA350_LxR_SHIFT, 283 sta350_limiter_release_rate); 284 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum, 285 STA350_L2AR, STA350_LxR_SHIFT, 286 sta350_limiter_release_rate); 287 288 /* 289 * byte array controls for setting biquad, mixer, scaling coefficients; 290 * for biquads all five coefficients need to be set in one go, 291 * mixer and pre/postscale coefs can be set individually; 292 * each coef is 24bit, the bytes are ordered in the same way 293 * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0) 294 */ 295 296 static int sta350_coefficient_info(struct snd_kcontrol *kcontrol, 297 struct snd_ctl_elem_info *uinfo) 298 { 299 int numcoef = kcontrol->private_value >> 16; 300 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; 301 uinfo->count = 3 * numcoef; 302 return 0; 303 } 304 305 static int sta350_coefficient_get(struct snd_kcontrol *kcontrol, 306 struct snd_ctl_elem_value *ucontrol) 307 { 308 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 309 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 310 int numcoef = kcontrol->private_value >> 16; 311 int index = kcontrol->private_value & 0xffff; 312 unsigned int cfud, val; 313 int i, ret = 0; 314 315 mutex_lock(&sta350->coeff_lock); 316 317 /* preserve reserved bits in STA350_CFUD */ 318 regmap_read(sta350->regmap, STA350_CFUD, &cfud); 319 cfud &= 0xf0; 320 /* 321 * chip documentation does not say if the bits are self clearing, 322 * so do it explicitly 323 */ 324 regmap_write(sta350->regmap, STA350_CFUD, cfud); 325 326 regmap_write(sta350->regmap, STA350_CFADDR2, index); 327 if (numcoef == 1) { 328 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04); 329 } else if (numcoef == 5) { 330 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08); 331 } else { 332 ret = -EINVAL; 333 goto exit_unlock; 334 } 335 336 for (i = 0; i < 3 * numcoef; i++) { 337 regmap_read(sta350->regmap, STA350_B1CF1 + i, &val); 338 ucontrol->value.bytes.data[i] = val; 339 } 340 341 exit_unlock: 342 mutex_unlock(&sta350->coeff_lock); 343 344 return ret; 345 } 346 347 static int sta350_coefficient_put(struct snd_kcontrol *kcontrol, 348 struct snd_ctl_elem_value *ucontrol) 349 { 350 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 351 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 352 int numcoef = kcontrol->private_value >> 16; 353 int index = kcontrol->private_value & 0xffff; 354 unsigned int cfud; 355 int i; 356 357 /* preserve reserved bits in STA350_CFUD */ 358 regmap_read(sta350->regmap, STA350_CFUD, &cfud); 359 cfud &= 0xf0; 360 /* 361 * chip documentation does not say if the bits are self clearing, 362 * so do it explicitly 363 */ 364 regmap_write(sta350->regmap, STA350_CFUD, cfud); 365 366 regmap_write(sta350->regmap, STA350_CFADDR2, index); 367 for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++) 368 sta350->coef_shadow[index + i] = 369 (ucontrol->value.bytes.data[3 * i] << 16) 370 | (ucontrol->value.bytes.data[3 * i + 1] << 8) 371 | (ucontrol->value.bytes.data[3 * i + 2]); 372 for (i = 0; i < 3 * numcoef; i++) 373 regmap_write(sta350->regmap, STA350_B1CF1 + i, 374 ucontrol->value.bytes.data[i]); 375 if (numcoef == 1) 376 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01); 377 else if (numcoef == 5) 378 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02); 379 else 380 return -EINVAL; 381 382 return 0; 383 } 384 385 static int sta350_sync_coef_shadow(struct snd_soc_component *component) 386 { 387 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 388 unsigned int cfud; 389 int i; 390 391 /* preserve reserved bits in STA350_CFUD */ 392 regmap_read(sta350->regmap, STA350_CFUD, &cfud); 393 cfud &= 0xf0; 394 395 for (i = 0; i < STA350_COEF_COUNT; i++) { 396 regmap_write(sta350->regmap, STA350_CFADDR2, i); 397 regmap_write(sta350->regmap, STA350_B1CF1, 398 (sta350->coef_shadow[i] >> 16) & 0xff); 399 regmap_write(sta350->regmap, STA350_B1CF2, 400 (sta350->coef_shadow[i] >> 8) & 0xff); 401 regmap_write(sta350->regmap, STA350_B1CF3, 402 (sta350->coef_shadow[i]) & 0xff); 403 /* 404 * chip documentation does not say if the bits are 405 * self-clearing, so do it explicitly 406 */ 407 regmap_write(sta350->regmap, STA350_CFUD, cfud); 408 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01); 409 } 410 return 0; 411 } 412 413 static int sta350_cache_sync(struct snd_soc_component *component) 414 { 415 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 416 unsigned int mute; 417 int rc; 418 419 /* mute during register sync */ 420 regmap_read(sta350->regmap, STA350_CFUD, &mute); 421 regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE); 422 sta350_sync_coef_shadow(component); 423 rc = regcache_sync(sta350->regmap); 424 regmap_write(sta350->regmap, STA350_MMUTE, mute); 425 return rc; 426 } 427 428 #define SINGLE_COEF(xname, index) \ 429 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 430 .info = sta350_coefficient_info, \ 431 .get = sta350_coefficient_get,\ 432 .put = sta350_coefficient_put, \ 433 .private_value = index | (1 << 16) } 434 435 #define BIQUAD_COEFS(xname, index) \ 436 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 437 .info = sta350_coefficient_info, \ 438 .get = sta350_coefficient_get,\ 439 .put = sta350_coefficient_put, \ 440 .private_value = index | (5 << 16) } 441 442 static const struct snd_kcontrol_new sta350_snd_controls[] = { 443 SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv), 444 /* VOL */ 445 SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv), 446 SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv), 447 SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv), 448 /* CONFD */ 449 SOC_SINGLE("High Pass Filter Bypass Switch", 450 STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1), 451 SOC_SINGLE("De-emphasis Filter Switch", 452 STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0), 453 SOC_SINGLE("DSP Bypass Switch", 454 STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0), 455 SOC_SINGLE("Post-scale Link Switch", 456 STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0), 457 SOC_SINGLE("Biquad Coefficient Link Switch", 458 STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0), 459 SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum), 460 SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum), 461 SOC_SINGLE("Zero-detect Mute Enable Switch", 462 STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0), 463 SOC_SINGLE("Submix Mode Switch", 464 STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0), 465 /* CONFE */ 466 SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0), 467 SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0), 468 /* MUTE */ 469 SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1), 470 SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1), 471 SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1), 472 SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1), 473 /* AUTOx */ 474 SOC_ENUM("Automode GC", sta350_auto_gc_enum), 475 SOC_ENUM("Automode XO", sta350_auto_xo_enum), 476 /* CxCFG */ 477 SOC_SINGLE("Ch1 Tone Control Bypass Switch", 478 STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0), 479 SOC_SINGLE("Ch2 Tone Control Bypass Switch", 480 STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0), 481 SOC_SINGLE("Ch1 EQ Bypass Switch", 482 STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0), 483 SOC_SINGLE("Ch2 EQ Bypass Switch", 484 STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0), 485 SOC_SINGLE("Ch1 Master Volume Bypass Switch", 486 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0), 487 SOC_SINGLE("Ch2 Master Volume Bypass Switch", 488 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0), 489 SOC_SINGLE("Ch3 Master Volume Bypass Switch", 490 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0), 491 SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum), 492 SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum), 493 SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum), 494 SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum), 495 SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum), 496 SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum), 497 /* TONE */ 498 SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume", 499 STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv), 500 SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume", 501 STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv), 502 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum), 503 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum), 504 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum), 505 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum), 506 507 /* 508 * depending on mode, the attack/release thresholds have 509 * two different enum definitions; provide both 510 */ 511 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", 512 STA350_L1ATRT, STA350_LxA_SHIFT, 513 16, 0, sta350_limiter_ac_attack_tlv), 514 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", 515 STA350_L2ATRT, STA350_LxA_SHIFT, 516 16, 0, sta350_limiter_ac_attack_tlv), 517 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", 518 STA350_L1ATRT, STA350_LxR_SHIFT, 519 16, 0, sta350_limiter_ac_release_tlv), 520 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", 521 STA350_L2ATRT, STA350_LxR_SHIFT, 522 16, 0, sta350_limiter_ac_release_tlv), 523 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", 524 STA350_L1ATRT, STA350_LxA_SHIFT, 525 16, 0, sta350_limiter_drc_attack_tlv), 526 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", 527 STA350_L2ATRT, STA350_LxA_SHIFT, 528 16, 0, sta350_limiter_drc_attack_tlv), 529 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", 530 STA350_L1ATRT, STA350_LxR_SHIFT, 531 16, 0, sta350_limiter_drc_release_tlv), 532 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", 533 STA350_L2ATRT, STA350_LxR_SHIFT, 534 16, 0, sta350_limiter_drc_release_tlv), 535 536 BIQUAD_COEFS("Ch1 - Biquad 1", 0), 537 BIQUAD_COEFS("Ch1 - Biquad 2", 5), 538 BIQUAD_COEFS("Ch1 - Biquad 3", 10), 539 BIQUAD_COEFS("Ch1 - Biquad 4", 15), 540 BIQUAD_COEFS("Ch2 - Biquad 1", 20), 541 BIQUAD_COEFS("Ch2 - Biquad 2", 25), 542 BIQUAD_COEFS("Ch2 - Biquad 3", 30), 543 BIQUAD_COEFS("Ch2 - Biquad 4", 35), 544 BIQUAD_COEFS("High-pass", 40), 545 BIQUAD_COEFS("Low-pass", 45), 546 SINGLE_COEF("Ch1 - Prescale", 50), 547 SINGLE_COEF("Ch2 - Prescale", 51), 548 SINGLE_COEF("Ch1 - Postscale", 52), 549 SINGLE_COEF("Ch2 - Postscale", 53), 550 SINGLE_COEF("Ch3 - Postscale", 54), 551 SINGLE_COEF("Thermal warning - Postscale", 55), 552 SINGLE_COEF("Ch1 - Mix 1", 56), 553 SINGLE_COEF("Ch1 - Mix 2", 57), 554 SINGLE_COEF("Ch2 - Mix 1", 58), 555 SINGLE_COEF("Ch2 - Mix 2", 59), 556 SINGLE_COEF("Ch3 - Mix 1", 60), 557 SINGLE_COEF("Ch3 - Mix 2", 61), 558 }; 559 560 static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = { 561 SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0), 562 SND_SOC_DAPM_OUTPUT("LEFT"), 563 SND_SOC_DAPM_OUTPUT("RIGHT"), 564 SND_SOC_DAPM_OUTPUT("SUB"), 565 }; 566 567 static const struct snd_soc_dapm_route sta350_dapm_routes[] = { 568 { "LEFT", NULL, "DAC" }, 569 { "RIGHT", NULL, "DAC" }, 570 { "SUB", NULL, "DAC" }, 571 { "DAC", NULL, "Playback" }, 572 }; 573 574 /* MCLK interpolation ratio per fs */ 575 static struct { 576 int fs; 577 int ir; 578 } interpolation_ratios[] = { 579 { 32000, 0 }, 580 { 44100, 0 }, 581 { 48000, 0 }, 582 { 88200, 1 }, 583 { 96000, 1 }, 584 { 176400, 2 }, 585 { 192000, 2 }, 586 }; 587 588 /* MCLK to fs clock ratios */ 589 static int mcs_ratio_table[3][6] = { 590 { 768, 512, 384, 256, 128, 576 }, 591 { 384, 256, 192, 128, 64, 0 }, 592 { 192, 128, 96, 64, 32, 0 }, 593 }; 594 595 /** 596 * sta350_set_dai_sysclk - configure MCLK 597 * @codec_dai: the codec DAI 598 * @clk_id: the clock ID (ignored) 599 * @freq: the MCLK input frequency 600 * @dir: the clock direction (ignored) 601 * 602 * The value of MCLK is used to determine which sample rates are supported 603 * by the STA350, based on the mcs_ratio_table. 604 * 605 * This function must be called by the machine driver's 'startup' function, 606 * otherwise the list of supported sample rates will not be available in 607 * time for ALSA. 608 */ 609 static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai, 610 int clk_id, unsigned int freq, int dir) 611 { 612 struct snd_soc_component *component = codec_dai->component; 613 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 614 615 dev_dbg(component->dev, "mclk=%u\n", freq); 616 sta350->mclk = freq; 617 618 return 0; 619 } 620 621 /** 622 * sta350_set_dai_fmt - configure the codec for the selected audio format 623 * @codec_dai: the codec DAI 624 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format 625 * 626 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the 627 * codec accordingly. 628 */ 629 static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai, 630 unsigned int fmt) 631 { 632 struct snd_soc_component *component = codec_dai->component; 633 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 634 unsigned int confb = 0; 635 636 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { 637 case SND_SOC_DAIFMT_CBS_CFS: 638 break; 639 default: 640 return -EINVAL; 641 } 642 643 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 644 case SND_SOC_DAIFMT_I2S: 645 case SND_SOC_DAIFMT_RIGHT_J: 646 case SND_SOC_DAIFMT_LEFT_J: 647 sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK; 648 break; 649 default: 650 return -EINVAL; 651 } 652 653 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 654 case SND_SOC_DAIFMT_NB_NF: 655 confb |= STA350_CONFB_C2IM; 656 break; 657 case SND_SOC_DAIFMT_NB_IF: 658 confb |= STA350_CONFB_C1IM; 659 break; 660 default: 661 return -EINVAL; 662 } 663 664 return regmap_update_bits(sta350->regmap, STA350_CONFB, 665 STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb); 666 } 667 668 /** 669 * sta350_hw_params - program the STA350 with the given hardware parameters. 670 * @substream: the audio stream 671 * @params: the hardware parameters to set 672 * @dai: the SOC DAI (ignored) 673 * 674 * This function programs the hardware with the values provided. 675 * Specifically, the sample rate and the data format. 676 */ 677 static int sta350_hw_params(struct snd_pcm_substream *substream, 678 struct snd_pcm_hw_params *params, 679 struct snd_soc_dai *dai) 680 { 681 struct snd_soc_component *component = dai->component; 682 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 683 int i, mcs = -EINVAL, ir = -EINVAL; 684 unsigned int confa, confb; 685 unsigned int rate, ratio; 686 int ret; 687 688 if (!sta350->mclk) { 689 dev_err(component->dev, 690 "sta350->mclk is unset. Unable to determine ratio\n"); 691 return -EIO; 692 } 693 694 rate = params_rate(params); 695 ratio = sta350->mclk / rate; 696 dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio); 697 698 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) { 699 if (interpolation_ratios[i].fs == rate) { 700 ir = interpolation_ratios[i].ir; 701 break; 702 } 703 } 704 705 if (ir < 0) { 706 dev_err(component->dev, "Unsupported samplerate: %u\n", rate); 707 return -EINVAL; 708 } 709 710 for (i = 0; i < 6; i++) { 711 if (mcs_ratio_table[ir][i] == ratio) { 712 mcs = i; 713 break; 714 } 715 } 716 717 if (mcs < 0) { 718 dev_err(component->dev, "Unresolvable ratio: %u\n", ratio); 719 return -EINVAL; 720 } 721 722 confa = (ir << STA350_CONFA_IR_SHIFT) | 723 (mcs << STA350_CONFA_MCS_SHIFT); 724 confb = 0; 725 726 switch (params_width(params)) { 727 case 24: 728 dev_dbg(component->dev, "24bit\n"); 729 fallthrough; 730 case 32: 731 dev_dbg(component->dev, "24bit or 32bit\n"); 732 switch (sta350->format) { 733 case SND_SOC_DAIFMT_I2S: 734 confb |= 0x0; 735 break; 736 case SND_SOC_DAIFMT_LEFT_J: 737 confb |= 0x1; 738 break; 739 case SND_SOC_DAIFMT_RIGHT_J: 740 confb |= 0x2; 741 break; 742 } 743 744 break; 745 case 20: 746 dev_dbg(component->dev, "20bit\n"); 747 switch (sta350->format) { 748 case SND_SOC_DAIFMT_I2S: 749 confb |= 0x4; 750 break; 751 case SND_SOC_DAIFMT_LEFT_J: 752 confb |= 0x5; 753 break; 754 case SND_SOC_DAIFMT_RIGHT_J: 755 confb |= 0x6; 756 break; 757 } 758 759 break; 760 case 18: 761 dev_dbg(component->dev, "18bit\n"); 762 switch (sta350->format) { 763 case SND_SOC_DAIFMT_I2S: 764 confb |= 0x8; 765 break; 766 case SND_SOC_DAIFMT_LEFT_J: 767 confb |= 0x9; 768 break; 769 case SND_SOC_DAIFMT_RIGHT_J: 770 confb |= 0xa; 771 break; 772 } 773 774 break; 775 case 16: 776 dev_dbg(component->dev, "16bit\n"); 777 switch (sta350->format) { 778 case SND_SOC_DAIFMT_I2S: 779 confb |= 0x0; 780 break; 781 case SND_SOC_DAIFMT_LEFT_J: 782 confb |= 0xd; 783 break; 784 case SND_SOC_DAIFMT_RIGHT_J: 785 confb |= 0xe; 786 break; 787 } 788 789 break; 790 default: 791 return -EINVAL; 792 } 793 794 ret = regmap_update_bits(sta350->regmap, STA350_CONFA, 795 STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK, 796 confa); 797 if (ret < 0) 798 return ret; 799 800 ret = regmap_update_bits(sta350->regmap, STA350_CONFB, 801 STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB, 802 confb); 803 if (ret < 0) 804 return ret; 805 806 return 0; 807 } 808 809 static int sta350_startup_sequence(struct sta350_priv *sta350) 810 { 811 if (sta350->gpiod_power_down) 812 gpiod_set_value(sta350->gpiod_power_down, 1); 813 814 if (sta350->gpiod_nreset) { 815 gpiod_set_value(sta350->gpiod_nreset, 0); 816 mdelay(1); 817 gpiod_set_value(sta350->gpiod_nreset, 1); 818 mdelay(1); 819 } 820 821 return 0; 822 } 823 824 /** 825 * sta350_set_bias_level - DAPM callback 826 * @component: the component device 827 * @level: DAPM power level 828 * 829 * This is called by ALSA to put the component into low power mode 830 * or to wake it up. If the component is powered off completely 831 * all registers must be restored after power on. 832 */ 833 static int sta350_set_bias_level(struct snd_soc_component *component, 834 enum snd_soc_bias_level level) 835 { 836 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 837 int ret; 838 839 dev_dbg(component->dev, "level = %d\n", level); 840 switch (level) { 841 case SND_SOC_BIAS_ON: 842 break; 843 844 case SND_SOC_BIAS_PREPARE: 845 /* Full power on */ 846 regmap_update_bits(sta350->regmap, STA350_CONFF, 847 STA350_CONFF_PWDN | STA350_CONFF_EAPD, 848 STA350_CONFF_PWDN | STA350_CONFF_EAPD); 849 break; 850 851 case SND_SOC_BIAS_STANDBY: 852 if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) { 853 ret = regulator_bulk_enable( 854 ARRAY_SIZE(sta350->supplies), 855 sta350->supplies); 856 if (ret < 0) { 857 dev_err(component->dev, 858 "Failed to enable supplies: %d\n", 859 ret); 860 return ret; 861 } 862 sta350_startup_sequence(sta350); 863 sta350_cache_sync(component); 864 } 865 866 /* Power down */ 867 regmap_update_bits(sta350->regmap, STA350_CONFF, 868 STA350_CONFF_PWDN | STA350_CONFF_EAPD, 869 0); 870 871 break; 872 873 case SND_SOC_BIAS_OFF: 874 /* The chip runs through the power down sequence for us */ 875 regmap_update_bits(sta350->regmap, STA350_CONFF, 876 STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0); 877 878 /* power down: low */ 879 if (sta350->gpiod_power_down) 880 gpiod_set_value(sta350->gpiod_power_down, 0); 881 882 if (sta350->gpiod_nreset) 883 gpiod_set_value(sta350->gpiod_nreset, 0); 884 885 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), 886 sta350->supplies); 887 break; 888 } 889 return 0; 890 } 891 892 static const struct snd_soc_dai_ops sta350_dai_ops = { 893 .hw_params = sta350_hw_params, 894 .set_sysclk = sta350_set_dai_sysclk, 895 .set_fmt = sta350_set_dai_fmt, 896 }; 897 898 static struct snd_soc_dai_driver sta350_dai = { 899 .name = "sta350-hifi", 900 .playback = { 901 .stream_name = "Playback", 902 .channels_min = 2, 903 .channels_max = 2, 904 .rates = STA350_RATES, 905 .formats = STA350_FORMATS, 906 }, 907 .ops = &sta350_dai_ops, 908 }; 909 910 static int sta350_probe(struct snd_soc_component *component) 911 { 912 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 913 struct sta350_platform_data *pdata = sta350->pdata; 914 int i, ret = 0, thermal = 0; 915 916 ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies), 917 sta350->supplies); 918 if (ret < 0) { 919 dev_err(component->dev, "Failed to enable supplies: %d\n", ret); 920 return ret; 921 } 922 923 ret = sta350_startup_sequence(sta350); 924 if (ret < 0) { 925 dev_err(component->dev, "Failed to startup device\n"); 926 return ret; 927 } 928 929 /* CONFA */ 930 if (!pdata->thermal_warning_recovery) 931 thermal |= STA350_CONFA_TWAB; 932 if (!pdata->thermal_warning_adjustment) 933 thermal |= STA350_CONFA_TWRB; 934 if (!pdata->fault_detect_recovery) 935 thermal |= STA350_CONFA_FDRB; 936 regmap_update_bits(sta350->regmap, STA350_CONFA, 937 STA350_CONFA_TWAB | STA350_CONFA_TWRB | 938 STA350_CONFA_FDRB, 939 thermal); 940 941 /* CONFC */ 942 regmap_update_bits(sta350->regmap, STA350_CONFC, 943 STA350_CONFC_OM_MASK, 944 pdata->ffx_power_output_mode 945 << STA350_CONFC_OM_SHIFT); 946 regmap_update_bits(sta350->regmap, STA350_CONFC, 947 STA350_CONFC_CSZ_MASK, 948 pdata->drop_compensation_ns 949 << STA350_CONFC_CSZ_SHIFT); 950 regmap_update_bits(sta350->regmap, 951 STA350_CONFC, 952 STA350_CONFC_OCRB, 953 pdata->oc_warning_adjustment ? 954 STA350_CONFC_OCRB : 0); 955 956 /* CONFE */ 957 regmap_update_bits(sta350->regmap, STA350_CONFE, 958 STA350_CONFE_MPCV, 959 pdata->max_power_use_mpcc ? 960 STA350_CONFE_MPCV : 0); 961 regmap_update_bits(sta350->regmap, STA350_CONFE, 962 STA350_CONFE_MPC, 963 pdata->max_power_correction ? 964 STA350_CONFE_MPC : 0); 965 regmap_update_bits(sta350->regmap, STA350_CONFE, 966 STA350_CONFE_AME, 967 pdata->am_reduction_mode ? 968 STA350_CONFE_AME : 0); 969 regmap_update_bits(sta350->regmap, STA350_CONFE, 970 STA350_CONFE_PWMS, 971 pdata->odd_pwm_speed_mode ? 972 STA350_CONFE_PWMS : 0); 973 regmap_update_bits(sta350->regmap, STA350_CONFE, 974 STA350_CONFE_DCCV, 975 pdata->distortion_compensation ? 976 STA350_CONFE_DCCV : 0); 977 /* CONFF */ 978 regmap_update_bits(sta350->regmap, STA350_CONFF, 979 STA350_CONFF_IDE, 980 pdata->invalid_input_detect_mute ? 981 STA350_CONFF_IDE : 0); 982 regmap_update_bits(sta350->regmap, STA350_CONFF, 983 STA350_CONFF_OCFG_MASK, 984 pdata->output_conf 985 << STA350_CONFF_OCFG_SHIFT); 986 987 /* channel to output mapping */ 988 regmap_update_bits(sta350->regmap, STA350_C1CFG, 989 STA350_CxCFG_OM_MASK, 990 pdata->ch1_output_mapping 991 << STA350_CxCFG_OM_SHIFT); 992 regmap_update_bits(sta350->regmap, STA350_C2CFG, 993 STA350_CxCFG_OM_MASK, 994 pdata->ch2_output_mapping 995 << STA350_CxCFG_OM_SHIFT); 996 regmap_update_bits(sta350->regmap, STA350_C3CFG, 997 STA350_CxCFG_OM_MASK, 998 pdata->ch3_output_mapping 999 << STA350_CxCFG_OM_SHIFT); 1000 1001 /* miscellaneous registers */ 1002 regmap_update_bits(sta350->regmap, STA350_MISC1, 1003 STA350_MISC1_CPWMEN, 1004 pdata->activate_mute_output ? 1005 STA350_MISC1_CPWMEN : 0); 1006 regmap_update_bits(sta350->regmap, STA350_MISC1, 1007 STA350_MISC1_BRIDGOFF, 1008 pdata->bridge_immediate_off ? 1009 STA350_MISC1_BRIDGOFF : 0); 1010 regmap_update_bits(sta350->regmap, STA350_MISC1, 1011 STA350_MISC1_NSHHPEN, 1012 pdata->noise_shape_dc_cut ? 1013 STA350_MISC1_NSHHPEN : 0); 1014 regmap_update_bits(sta350->regmap, STA350_MISC1, 1015 STA350_MISC1_RPDNEN, 1016 pdata->powerdown_master_vol ? 1017 STA350_MISC1_RPDNEN: 0); 1018 1019 regmap_update_bits(sta350->regmap, STA350_MISC2, 1020 STA350_MISC2_PNDLSL_MASK, 1021 pdata->powerdown_delay_divider 1022 << STA350_MISC2_PNDLSL_SHIFT); 1023 1024 /* initialize coefficient shadow RAM with reset values */ 1025 for (i = 4; i <= 49; i += 5) 1026 sta350->coef_shadow[i] = 0x400000; 1027 for (i = 50; i <= 54; i++) 1028 sta350->coef_shadow[i] = 0x7fffff; 1029 sta350->coef_shadow[55] = 0x5a9df7; 1030 sta350->coef_shadow[56] = 0x7fffff; 1031 sta350->coef_shadow[59] = 0x7fffff; 1032 sta350->coef_shadow[60] = 0x400000; 1033 sta350->coef_shadow[61] = 0x400000; 1034 1035 snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY); 1036 /* Bias level configuration will have done an extra enable */ 1037 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies); 1038 1039 return 0; 1040 } 1041 1042 static void sta350_remove(struct snd_soc_component *component) 1043 { 1044 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 1045 1046 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies); 1047 } 1048 1049 static const struct snd_soc_component_driver sta350_component = { 1050 .probe = sta350_probe, 1051 .remove = sta350_remove, 1052 .set_bias_level = sta350_set_bias_level, 1053 .controls = sta350_snd_controls, 1054 .num_controls = ARRAY_SIZE(sta350_snd_controls), 1055 .dapm_widgets = sta350_dapm_widgets, 1056 .num_dapm_widgets = ARRAY_SIZE(sta350_dapm_widgets), 1057 .dapm_routes = sta350_dapm_routes, 1058 .num_dapm_routes = ARRAY_SIZE(sta350_dapm_routes), 1059 .suspend_bias_off = 1, 1060 .idle_bias_on = 1, 1061 .use_pmdown_time = 1, 1062 .endianness = 1, 1063 .non_legacy_dai_naming = 1, 1064 }; 1065 1066 static const struct regmap_config sta350_regmap = { 1067 .reg_bits = 8, 1068 .val_bits = 8, 1069 .max_register = STA350_MISC2, 1070 .reg_defaults = sta350_regs, 1071 .num_reg_defaults = ARRAY_SIZE(sta350_regs), 1072 .cache_type = REGCACHE_RBTREE, 1073 .wr_table = &sta350_write_regs, 1074 .rd_table = &sta350_read_regs, 1075 .volatile_table = &sta350_volatile_regs, 1076 }; 1077 1078 #ifdef CONFIG_OF 1079 static const struct of_device_id st350_dt_ids[] = { 1080 { .compatible = "st,sta350", }, 1081 { } 1082 }; 1083 MODULE_DEVICE_TABLE(of, st350_dt_ids); 1084 1085 static const char * const sta350_ffx_modes[] = { 1086 [STA350_FFX_PM_DROP_COMP] = "drop-compensation", 1087 [STA350_FFX_PM_TAPERED_COMP] = "tapered-compensation", 1088 [STA350_FFX_PM_FULL_POWER] = "full-power-mode", 1089 [STA350_FFX_PM_VARIABLE_DROP_COMP] = "variable-drop-compensation", 1090 }; 1091 1092 static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350) 1093 { 1094 struct device_node *np = dev->of_node; 1095 struct sta350_platform_data *pdata; 1096 const char *ffx_power_mode; 1097 u16 tmp; 1098 u8 tmp8; 1099 1100 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 1101 if (!pdata) 1102 return -ENOMEM; 1103 1104 of_property_read_u8(np, "st,output-conf", 1105 &pdata->output_conf); 1106 of_property_read_u8(np, "st,ch1-output-mapping", 1107 &pdata->ch1_output_mapping); 1108 of_property_read_u8(np, "st,ch2-output-mapping", 1109 &pdata->ch2_output_mapping); 1110 of_property_read_u8(np, "st,ch3-output-mapping", 1111 &pdata->ch3_output_mapping); 1112 1113 if (of_get_property(np, "st,thermal-warning-recovery", NULL)) 1114 pdata->thermal_warning_recovery = 1; 1115 if (of_get_property(np, "st,thermal-warning-adjustment", NULL)) 1116 pdata->thermal_warning_adjustment = 1; 1117 if (of_get_property(np, "st,fault-detect-recovery", NULL)) 1118 pdata->fault_detect_recovery = 1; 1119 1120 pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP; 1121 if (!of_property_read_string(np, "st,ffx-power-output-mode", 1122 &ffx_power_mode)) { 1123 int i, mode = -EINVAL; 1124 1125 for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++) 1126 if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i])) 1127 mode = i; 1128 1129 if (mode < 0) 1130 dev_warn(dev, "Unsupported ffx output mode: %s\n", 1131 ffx_power_mode); 1132 else 1133 pdata->ffx_power_output_mode = mode; 1134 } 1135 1136 tmp = 140; 1137 of_property_read_u16(np, "st,drop-compensation-ns", &tmp); 1138 pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20; 1139 1140 if (of_get_property(np, "st,overcurrent-warning-adjustment", NULL)) 1141 pdata->oc_warning_adjustment = 1; 1142 1143 /* CONFE */ 1144 if (of_get_property(np, "st,max-power-use-mpcc", NULL)) 1145 pdata->max_power_use_mpcc = 1; 1146 1147 if (of_get_property(np, "st,max-power-correction", NULL)) 1148 pdata->max_power_correction = 1; 1149 1150 if (of_get_property(np, "st,am-reduction-mode", NULL)) 1151 pdata->am_reduction_mode = 1; 1152 1153 if (of_get_property(np, "st,odd-pwm-speed-mode", NULL)) 1154 pdata->odd_pwm_speed_mode = 1; 1155 1156 if (of_get_property(np, "st,distortion-compensation", NULL)) 1157 pdata->distortion_compensation = 1; 1158 1159 /* CONFF */ 1160 if (of_get_property(np, "st,invalid-input-detect-mute", NULL)) 1161 pdata->invalid_input_detect_mute = 1; 1162 1163 /* MISC */ 1164 if (of_get_property(np, "st,activate-mute-output", NULL)) 1165 pdata->activate_mute_output = 1; 1166 1167 if (of_get_property(np, "st,bridge-immediate-off", NULL)) 1168 pdata->bridge_immediate_off = 1; 1169 1170 if (of_get_property(np, "st,noise-shape-dc-cut", NULL)) 1171 pdata->noise_shape_dc_cut = 1; 1172 1173 if (of_get_property(np, "st,powerdown-master-volume", NULL)) 1174 pdata->powerdown_master_vol = 1; 1175 1176 if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) { 1177 if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128) 1178 pdata->powerdown_delay_divider = ilog2(tmp8); 1179 else 1180 dev_warn(dev, "Unsupported powerdown delay divider %d\n", 1181 tmp8); 1182 } 1183 1184 sta350->pdata = pdata; 1185 1186 return 0; 1187 } 1188 #endif 1189 1190 static int sta350_i2c_probe(struct i2c_client *i2c, 1191 const struct i2c_device_id *id) 1192 { 1193 struct device *dev = &i2c->dev; 1194 struct sta350_priv *sta350; 1195 int ret, i; 1196 1197 sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL); 1198 if (!sta350) 1199 return -ENOMEM; 1200 1201 mutex_init(&sta350->coeff_lock); 1202 sta350->pdata = dev_get_platdata(dev); 1203 1204 #ifdef CONFIG_OF 1205 if (dev->of_node) { 1206 ret = sta350_probe_dt(dev, sta350); 1207 if (ret < 0) 1208 return ret; 1209 } 1210 #endif 1211 1212 /* GPIOs */ 1213 sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset", 1214 GPIOD_OUT_LOW); 1215 if (IS_ERR(sta350->gpiod_nreset)) 1216 return PTR_ERR(sta350->gpiod_nreset); 1217 1218 sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down", 1219 GPIOD_OUT_LOW); 1220 if (IS_ERR(sta350->gpiod_power_down)) 1221 return PTR_ERR(sta350->gpiod_power_down); 1222 1223 /* regulators */ 1224 for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++) 1225 sta350->supplies[i].supply = sta350_supply_names[i]; 1226 1227 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies), 1228 sta350->supplies); 1229 if (ret < 0) { 1230 dev_err(dev, "Failed to request supplies: %d\n", ret); 1231 return ret; 1232 } 1233 1234 sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap); 1235 if (IS_ERR(sta350->regmap)) { 1236 ret = PTR_ERR(sta350->regmap); 1237 dev_err(dev, "Failed to init regmap: %d\n", ret); 1238 return ret; 1239 } 1240 1241 i2c_set_clientdata(i2c, sta350); 1242 1243 ret = devm_snd_soc_register_component(dev, &sta350_component, &sta350_dai, 1); 1244 if (ret < 0) 1245 dev_err(dev, "Failed to register component (%d)\n", ret); 1246 1247 return ret; 1248 } 1249 1250 static int sta350_i2c_remove(struct i2c_client *client) 1251 { 1252 return 0; 1253 } 1254 1255 static const struct i2c_device_id sta350_i2c_id[] = { 1256 { "sta350", 0 }, 1257 { } 1258 }; 1259 MODULE_DEVICE_TABLE(i2c, sta350_i2c_id); 1260 1261 static struct i2c_driver sta350_i2c_driver = { 1262 .driver = { 1263 .name = "sta350", 1264 .of_match_table = of_match_ptr(st350_dt_ids), 1265 }, 1266 .probe = sta350_i2c_probe, 1267 .remove = sta350_i2c_remove, 1268 .id_table = sta350_i2c_id, 1269 }; 1270 1271 module_i2c_driver(sta350_i2c_driver); 1272 1273 MODULE_DESCRIPTION("ASoC STA350 driver"); 1274 MODULE_AUTHOR("Sven Brandau <info@brandau.biz>"); 1275 MODULE_LICENSE("GPL"); 1276