1 /* 2 * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system 3 * 4 * Copyright: 2014 Raumfeld GmbH 5 * Author: Sven Brandau <info@brandau.biz> 6 * 7 * based on code from: 8 * Raumfeld GmbH 9 * Johannes Stezenbach <js@sig21.net> 10 * Wolfson Microelectronics PLC. 11 * Mark Brown <broonie@opensource.wolfsonmicro.com> 12 * Freescale Semiconductor, Inc. 13 * Timur Tabi <timur@freescale.com> 14 * 15 * This program is free software; you can redistribute it and/or modify it 16 * under the terms of the GNU General Public License as published by the 17 * Free Software Foundation; either version 2 of the License, or (at your 18 * option) any later version. 19 */ 20 21 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__ 22 23 #include <linux/module.h> 24 #include <linux/moduleparam.h> 25 #include <linux/init.h> 26 #include <linux/delay.h> 27 #include <linux/pm.h> 28 #include <linux/i2c.h> 29 #include <linux/of_device.h> 30 #include <linux/of_gpio.h> 31 #include <linux/regmap.h> 32 #include <linux/regulator/consumer.h> 33 #include <linux/gpio/consumer.h> 34 #include <linux/slab.h> 35 #include <sound/core.h> 36 #include <sound/pcm.h> 37 #include <sound/pcm_params.h> 38 #include <sound/soc.h> 39 #include <sound/soc-dapm.h> 40 #include <sound/initval.h> 41 #include <sound/tlv.h> 42 43 #include <sound/sta350.h> 44 #include "sta350.h" 45 46 #define STA350_RATES (SNDRV_PCM_RATE_32000 | \ 47 SNDRV_PCM_RATE_44100 | \ 48 SNDRV_PCM_RATE_48000 | \ 49 SNDRV_PCM_RATE_88200 | \ 50 SNDRV_PCM_RATE_96000 | \ 51 SNDRV_PCM_RATE_176400 | \ 52 SNDRV_PCM_RATE_192000) 53 54 #define STA350_FORMATS \ 55 (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE | \ 56 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \ 57 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \ 58 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \ 59 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE | \ 60 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE) 61 62 /* Power-up register defaults */ 63 static const struct reg_default sta350_regs[] = { 64 { 0x0, 0x63 }, 65 { 0x1, 0x80 }, 66 { 0x2, 0xdf }, 67 { 0x3, 0x40 }, 68 { 0x4, 0xc2 }, 69 { 0x5, 0x5c }, 70 { 0x6, 0x00 }, 71 { 0x7, 0xff }, 72 { 0x8, 0x60 }, 73 { 0x9, 0x60 }, 74 { 0xa, 0x60 }, 75 { 0xb, 0x00 }, 76 { 0xc, 0x00 }, 77 { 0xd, 0x00 }, 78 { 0xe, 0x00 }, 79 { 0xf, 0x40 }, 80 { 0x10, 0x80 }, 81 { 0x11, 0x77 }, 82 { 0x12, 0x6a }, 83 { 0x13, 0x69 }, 84 { 0x14, 0x6a }, 85 { 0x15, 0x69 }, 86 { 0x16, 0x00 }, 87 { 0x17, 0x00 }, 88 { 0x18, 0x00 }, 89 { 0x19, 0x00 }, 90 { 0x1a, 0x00 }, 91 { 0x1b, 0x00 }, 92 { 0x1c, 0x00 }, 93 { 0x1d, 0x00 }, 94 { 0x1e, 0x00 }, 95 { 0x1f, 0x00 }, 96 { 0x20, 0x00 }, 97 { 0x21, 0x00 }, 98 { 0x22, 0x00 }, 99 { 0x23, 0x00 }, 100 { 0x24, 0x00 }, 101 { 0x25, 0x00 }, 102 { 0x26, 0x00 }, 103 { 0x27, 0x2a }, 104 { 0x28, 0xc0 }, 105 { 0x29, 0xf3 }, 106 { 0x2a, 0x33 }, 107 { 0x2b, 0x00 }, 108 { 0x2c, 0x0c }, 109 { 0x31, 0x00 }, 110 { 0x36, 0x00 }, 111 { 0x37, 0x00 }, 112 { 0x38, 0x00 }, 113 { 0x39, 0x01 }, 114 { 0x3a, 0xee }, 115 { 0x3b, 0xff }, 116 { 0x3c, 0x7e }, 117 { 0x3d, 0xc0 }, 118 { 0x3e, 0x26 }, 119 { 0x3f, 0x00 }, 120 { 0x48, 0x00 }, 121 { 0x49, 0x00 }, 122 { 0x4a, 0x00 }, 123 { 0x4b, 0x04 }, 124 { 0x4c, 0x00 }, 125 }; 126 127 static const struct regmap_range sta350_write_regs_range[] = { 128 regmap_reg_range(STA350_CONFA, STA350_AUTO2), 129 regmap_reg_range(STA350_C1CFG, STA350_FDRC2), 130 regmap_reg_range(STA350_EQCFG, STA350_EVOLRES), 131 regmap_reg_range(STA350_NSHAPE, STA350_MISC2), 132 }; 133 134 static const struct regmap_range sta350_read_regs_range[] = { 135 regmap_reg_range(STA350_CONFA, STA350_AUTO2), 136 regmap_reg_range(STA350_C1CFG, STA350_STATUS), 137 regmap_reg_range(STA350_EQCFG, STA350_EVOLRES), 138 regmap_reg_range(STA350_NSHAPE, STA350_MISC2), 139 }; 140 141 static const struct regmap_range sta350_volatile_regs_range[] = { 142 regmap_reg_range(STA350_CFADDR2, STA350_CFUD), 143 regmap_reg_range(STA350_STATUS, STA350_STATUS), 144 }; 145 146 static const struct regmap_access_table sta350_write_regs = { 147 .yes_ranges = sta350_write_regs_range, 148 .n_yes_ranges = ARRAY_SIZE(sta350_write_regs_range), 149 }; 150 151 static const struct regmap_access_table sta350_read_regs = { 152 .yes_ranges = sta350_read_regs_range, 153 .n_yes_ranges = ARRAY_SIZE(sta350_read_regs_range), 154 }; 155 156 static const struct regmap_access_table sta350_volatile_regs = { 157 .yes_ranges = sta350_volatile_regs_range, 158 .n_yes_ranges = ARRAY_SIZE(sta350_volatile_regs_range), 159 }; 160 161 /* regulator power supply names */ 162 static const char * const sta350_supply_names[] = { 163 "vdd-dig", /* digital supply, 3.3V */ 164 "vdd-pll", /* pll supply, 3.3V */ 165 "vcc" /* power amp supply, 5V - 26V */ 166 }; 167 168 /* codec private data */ 169 struct sta350_priv { 170 struct regmap *regmap; 171 struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)]; 172 struct sta350_platform_data *pdata; 173 174 unsigned int mclk; 175 unsigned int format; 176 177 u32 coef_shadow[STA350_COEF_COUNT]; 178 int shutdown; 179 180 struct gpio_desc *gpiod_nreset; 181 struct gpio_desc *gpiod_power_down; 182 183 struct mutex coeff_lock; 184 }; 185 186 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1); 187 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1); 188 static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0); 189 190 static const char * const sta350_drc_ac[] = { 191 "Anti-Clipping", "Dynamic Range Compression" 192 }; 193 static const char * const sta350_auto_gc_mode[] = { 194 "User", "AC no clipping", "AC limited clipping (10%)", 195 "DRC nighttime listening mode" 196 }; 197 static const char * const sta350_auto_xo_mode[] = { 198 "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", 199 "200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", 200 "340Hz", "360Hz" 201 }; 202 static const char * const sta350_binary_output[] = { 203 "FFX 3-state output - normal operation", "Binary output" 204 }; 205 static const char * const sta350_limiter_select[] = { 206 "Limiter Disabled", "Limiter #1", "Limiter #2" 207 }; 208 static const char * const sta350_limiter_attack_rate[] = { 209 "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024", 210 "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752", 211 "0.0645", "0.0564", "0.0501", "0.0451" 212 }; 213 static const char * const sta350_limiter_release_rate[] = { 214 "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299", 215 "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137", 216 "0.0134", "0.0117", "0.0110", "0.0104" 217 }; 218 static const char * const sta350_noise_shaper_type[] = { 219 "Third order", "Fourth order" 220 }; 221 222 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv, 223 0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0), 224 8, 16, TLV_DB_SCALE_ITEM(300, 100, 0), 225 ); 226 227 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv, 228 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0), 229 1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0), 230 2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0), 231 3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0), 232 8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0), 233 ); 234 235 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv, 236 0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0), 237 8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0), 238 14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0), 239 ); 240 241 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv, 242 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0), 243 1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0), 244 3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0), 245 5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0), 246 13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0), 247 ); 248 249 static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum, 250 STA350_CONFD, STA350_CONFD_DRC_SHIFT, 251 sta350_drc_ac); 252 static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum, 253 STA350_CONFE, STA350_CONFE_NSBW_SHIFT, 254 sta350_noise_shaper_type); 255 static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum, 256 STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT, 257 sta350_auto_gc_mode); 258 static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum, 259 STA350_AUTO2, STA350_AUTO2_XO_SHIFT, 260 sta350_auto_xo_mode); 261 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum, 262 STA350_C1CFG, STA350_CxCFG_BO_SHIFT, 263 sta350_binary_output); 264 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum, 265 STA350_C2CFG, STA350_CxCFG_BO_SHIFT, 266 sta350_binary_output); 267 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum, 268 STA350_C3CFG, STA350_CxCFG_BO_SHIFT, 269 sta350_binary_output); 270 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum, 271 STA350_C1CFG, STA350_CxCFG_LS_SHIFT, 272 sta350_limiter_select); 273 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum, 274 STA350_C2CFG, STA350_CxCFG_LS_SHIFT, 275 sta350_limiter_select); 276 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum, 277 STA350_C3CFG, STA350_CxCFG_LS_SHIFT, 278 sta350_limiter_select); 279 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum, 280 STA350_L1AR, STA350_LxA_SHIFT, 281 sta350_limiter_attack_rate); 282 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum, 283 STA350_L2AR, STA350_LxA_SHIFT, 284 sta350_limiter_attack_rate); 285 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum, 286 STA350_L1AR, STA350_LxR_SHIFT, 287 sta350_limiter_release_rate); 288 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum, 289 STA350_L2AR, STA350_LxR_SHIFT, 290 sta350_limiter_release_rate); 291 292 /* 293 * byte array controls for setting biquad, mixer, scaling coefficients; 294 * for biquads all five coefficients need to be set in one go, 295 * mixer and pre/postscale coefs can be set individually; 296 * each coef is 24bit, the bytes are ordered in the same way 297 * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0) 298 */ 299 300 static int sta350_coefficient_info(struct snd_kcontrol *kcontrol, 301 struct snd_ctl_elem_info *uinfo) 302 { 303 int numcoef = kcontrol->private_value >> 16; 304 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; 305 uinfo->count = 3 * numcoef; 306 return 0; 307 } 308 309 static int sta350_coefficient_get(struct snd_kcontrol *kcontrol, 310 struct snd_ctl_elem_value *ucontrol) 311 { 312 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); 313 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec); 314 int numcoef = kcontrol->private_value >> 16; 315 int index = kcontrol->private_value & 0xffff; 316 unsigned int cfud, val; 317 int i, ret = 0; 318 319 mutex_lock(&sta350->coeff_lock); 320 321 /* preserve reserved bits in STA350_CFUD */ 322 regmap_read(sta350->regmap, STA350_CFUD, &cfud); 323 cfud &= 0xf0; 324 /* 325 * chip documentation does not say if the bits are self clearing, 326 * so do it explicitly 327 */ 328 regmap_write(sta350->regmap, STA350_CFUD, cfud); 329 330 regmap_write(sta350->regmap, STA350_CFADDR2, index); 331 if (numcoef == 1) { 332 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04); 333 } else if (numcoef == 5) { 334 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08); 335 } else { 336 ret = -EINVAL; 337 goto exit_unlock; 338 } 339 340 for (i = 0; i < 3 * numcoef; i++) { 341 regmap_read(sta350->regmap, STA350_B1CF1 + i, &val); 342 ucontrol->value.bytes.data[i] = val; 343 } 344 345 exit_unlock: 346 mutex_unlock(&sta350->coeff_lock); 347 348 return ret; 349 } 350 351 static int sta350_coefficient_put(struct snd_kcontrol *kcontrol, 352 struct snd_ctl_elem_value *ucontrol) 353 { 354 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); 355 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec); 356 int numcoef = kcontrol->private_value >> 16; 357 int index = kcontrol->private_value & 0xffff; 358 unsigned int cfud; 359 int i; 360 361 /* preserve reserved bits in STA350_CFUD */ 362 regmap_read(sta350->regmap, STA350_CFUD, &cfud); 363 cfud &= 0xf0; 364 /* 365 * chip documentation does not say if the bits are self clearing, 366 * so do it explicitly 367 */ 368 regmap_write(sta350->regmap, STA350_CFUD, cfud); 369 370 regmap_write(sta350->regmap, STA350_CFADDR2, index); 371 for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++) 372 sta350->coef_shadow[index + i] = 373 (ucontrol->value.bytes.data[3 * i] << 16) 374 | (ucontrol->value.bytes.data[3 * i + 1] << 8) 375 | (ucontrol->value.bytes.data[3 * i + 2]); 376 for (i = 0; i < 3 * numcoef; i++) 377 regmap_write(sta350->regmap, STA350_B1CF1 + i, 378 ucontrol->value.bytes.data[i]); 379 if (numcoef == 1) 380 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01); 381 else if (numcoef == 5) 382 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02); 383 else 384 return -EINVAL; 385 386 return 0; 387 } 388 389 static int sta350_sync_coef_shadow(struct snd_soc_codec *codec) 390 { 391 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec); 392 unsigned int cfud; 393 int i; 394 395 /* preserve reserved bits in STA350_CFUD */ 396 regmap_read(sta350->regmap, STA350_CFUD, &cfud); 397 cfud &= 0xf0; 398 399 for (i = 0; i < STA350_COEF_COUNT; i++) { 400 regmap_write(sta350->regmap, STA350_CFADDR2, i); 401 regmap_write(sta350->regmap, STA350_B1CF1, 402 (sta350->coef_shadow[i] >> 16) & 0xff); 403 regmap_write(sta350->regmap, STA350_B1CF2, 404 (sta350->coef_shadow[i] >> 8) & 0xff); 405 regmap_write(sta350->regmap, STA350_B1CF3, 406 (sta350->coef_shadow[i]) & 0xff); 407 /* 408 * chip documentation does not say if the bits are 409 * self-clearing, so do it explicitly 410 */ 411 regmap_write(sta350->regmap, STA350_CFUD, cfud); 412 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01); 413 } 414 return 0; 415 } 416 417 static int sta350_cache_sync(struct snd_soc_codec *codec) 418 { 419 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec); 420 unsigned int mute; 421 int rc; 422 423 /* mute during register sync */ 424 regmap_read(sta350->regmap, STA350_CFUD, &mute); 425 regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE); 426 sta350_sync_coef_shadow(codec); 427 rc = regcache_sync(sta350->regmap); 428 regmap_write(sta350->regmap, STA350_MMUTE, mute); 429 return rc; 430 } 431 432 #define SINGLE_COEF(xname, index) \ 433 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 434 .info = sta350_coefficient_info, \ 435 .get = sta350_coefficient_get,\ 436 .put = sta350_coefficient_put, \ 437 .private_value = index | (1 << 16) } 438 439 #define BIQUAD_COEFS(xname, index) \ 440 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 441 .info = sta350_coefficient_info, \ 442 .get = sta350_coefficient_get,\ 443 .put = sta350_coefficient_put, \ 444 .private_value = index | (5 << 16) } 445 446 static const struct snd_kcontrol_new sta350_snd_controls[] = { 447 SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv), 448 /* VOL */ 449 SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv), 450 SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv), 451 SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv), 452 /* CONFD */ 453 SOC_SINGLE("High Pass Filter Bypass Switch", 454 STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1), 455 SOC_SINGLE("De-emphasis Filter Switch", 456 STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0), 457 SOC_SINGLE("DSP Bypass Switch", 458 STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0), 459 SOC_SINGLE("Post-scale Link Switch", 460 STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0), 461 SOC_SINGLE("Biquad Coefficient Link Switch", 462 STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0), 463 SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum), 464 SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum), 465 SOC_SINGLE("Zero-detect Mute Enable Switch", 466 STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0), 467 SOC_SINGLE("Submix Mode Switch", 468 STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0), 469 /* CONFE */ 470 SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0), 471 SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0), 472 /* MUTE */ 473 SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1), 474 SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1), 475 SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1), 476 SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1), 477 /* AUTOx */ 478 SOC_ENUM("Automode GC", sta350_auto_gc_enum), 479 SOC_ENUM("Automode XO", sta350_auto_xo_enum), 480 /* CxCFG */ 481 SOC_SINGLE("Ch1 Tone Control Bypass Switch", 482 STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0), 483 SOC_SINGLE("Ch2 Tone Control Bypass Switch", 484 STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0), 485 SOC_SINGLE("Ch1 EQ Bypass Switch", 486 STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0), 487 SOC_SINGLE("Ch2 EQ Bypass Switch", 488 STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0), 489 SOC_SINGLE("Ch1 Master Volume Bypass Switch", 490 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0), 491 SOC_SINGLE("Ch2 Master Volume Bypass Switch", 492 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0), 493 SOC_SINGLE("Ch3 Master Volume Bypass Switch", 494 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0), 495 SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum), 496 SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum), 497 SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum), 498 SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum), 499 SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum), 500 SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum), 501 /* TONE */ 502 SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume", 503 STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv), 504 SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume", 505 STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv), 506 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum), 507 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum), 508 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum), 509 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum), 510 511 /* 512 * depending on mode, the attack/release thresholds have 513 * two different enum definitions; provide both 514 */ 515 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", 516 STA350_L1ATRT, STA350_LxA_SHIFT, 517 16, 0, sta350_limiter_ac_attack_tlv), 518 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", 519 STA350_L2ATRT, STA350_LxA_SHIFT, 520 16, 0, sta350_limiter_ac_attack_tlv), 521 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", 522 STA350_L1ATRT, STA350_LxR_SHIFT, 523 16, 0, sta350_limiter_ac_release_tlv), 524 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", 525 STA350_L2ATRT, STA350_LxR_SHIFT, 526 16, 0, sta350_limiter_ac_release_tlv), 527 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", 528 STA350_L1ATRT, STA350_LxA_SHIFT, 529 16, 0, sta350_limiter_drc_attack_tlv), 530 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", 531 STA350_L2ATRT, STA350_LxA_SHIFT, 532 16, 0, sta350_limiter_drc_attack_tlv), 533 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", 534 STA350_L1ATRT, STA350_LxR_SHIFT, 535 16, 0, sta350_limiter_drc_release_tlv), 536 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", 537 STA350_L2ATRT, STA350_LxR_SHIFT, 538 16, 0, sta350_limiter_drc_release_tlv), 539 540 BIQUAD_COEFS("Ch1 - Biquad 1", 0), 541 BIQUAD_COEFS("Ch1 - Biquad 2", 5), 542 BIQUAD_COEFS("Ch1 - Biquad 3", 10), 543 BIQUAD_COEFS("Ch1 - Biquad 4", 15), 544 BIQUAD_COEFS("Ch2 - Biquad 1", 20), 545 BIQUAD_COEFS("Ch2 - Biquad 2", 25), 546 BIQUAD_COEFS("Ch2 - Biquad 3", 30), 547 BIQUAD_COEFS("Ch2 - Biquad 4", 35), 548 BIQUAD_COEFS("High-pass", 40), 549 BIQUAD_COEFS("Low-pass", 45), 550 SINGLE_COEF("Ch1 - Prescale", 50), 551 SINGLE_COEF("Ch2 - Prescale", 51), 552 SINGLE_COEF("Ch1 - Postscale", 52), 553 SINGLE_COEF("Ch2 - Postscale", 53), 554 SINGLE_COEF("Ch3 - Postscale", 54), 555 SINGLE_COEF("Thermal warning - Postscale", 55), 556 SINGLE_COEF("Ch1 - Mix 1", 56), 557 SINGLE_COEF("Ch1 - Mix 2", 57), 558 SINGLE_COEF("Ch2 - Mix 1", 58), 559 SINGLE_COEF("Ch2 - Mix 2", 59), 560 SINGLE_COEF("Ch3 - Mix 1", 60), 561 SINGLE_COEF("Ch3 - Mix 2", 61), 562 }; 563 564 static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = { 565 SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0), 566 SND_SOC_DAPM_OUTPUT("LEFT"), 567 SND_SOC_DAPM_OUTPUT("RIGHT"), 568 SND_SOC_DAPM_OUTPUT("SUB"), 569 }; 570 571 static const struct snd_soc_dapm_route sta350_dapm_routes[] = { 572 { "LEFT", NULL, "DAC" }, 573 { "RIGHT", NULL, "DAC" }, 574 { "SUB", NULL, "DAC" }, 575 { "DAC", NULL, "Playback" }, 576 }; 577 578 /* MCLK interpolation ratio per fs */ 579 static struct { 580 int fs; 581 int ir; 582 } interpolation_ratios[] = { 583 { 32000, 0 }, 584 { 44100, 0 }, 585 { 48000, 0 }, 586 { 88200, 1 }, 587 { 96000, 1 }, 588 { 176400, 2 }, 589 { 192000, 2 }, 590 }; 591 592 /* MCLK to fs clock ratios */ 593 static int mcs_ratio_table[3][6] = { 594 { 768, 512, 384, 256, 128, 576 }, 595 { 384, 256, 192, 128, 64, 0 }, 596 { 192, 128, 96, 64, 32, 0 }, 597 }; 598 599 /** 600 * sta350_set_dai_sysclk - configure MCLK 601 * @codec_dai: the codec DAI 602 * @clk_id: the clock ID (ignored) 603 * @freq: the MCLK input frequency 604 * @dir: the clock direction (ignored) 605 * 606 * The value of MCLK is used to determine which sample rates are supported 607 * by the STA350, based on the mcs_ratio_table. 608 * 609 * This function must be called by the machine driver's 'startup' function, 610 * otherwise the list of supported sample rates will not be available in 611 * time for ALSA. 612 */ 613 static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai, 614 int clk_id, unsigned int freq, int dir) 615 { 616 struct snd_soc_codec *codec = codec_dai->codec; 617 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec); 618 619 dev_dbg(codec->dev, "mclk=%u\n", freq); 620 sta350->mclk = freq; 621 622 return 0; 623 } 624 625 /** 626 * sta350_set_dai_fmt - configure the codec for the selected audio format 627 * @codec_dai: the codec DAI 628 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format 629 * 630 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the 631 * codec accordingly. 632 */ 633 static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai, 634 unsigned int fmt) 635 { 636 struct snd_soc_codec *codec = codec_dai->codec; 637 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec); 638 unsigned int confb = 0; 639 640 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { 641 case SND_SOC_DAIFMT_CBS_CFS: 642 break; 643 default: 644 return -EINVAL; 645 } 646 647 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 648 case SND_SOC_DAIFMT_I2S: 649 case SND_SOC_DAIFMT_RIGHT_J: 650 case SND_SOC_DAIFMT_LEFT_J: 651 sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK; 652 break; 653 default: 654 return -EINVAL; 655 } 656 657 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 658 case SND_SOC_DAIFMT_NB_NF: 659 confb |= STA350_CONFB_C2IM; 660 break; 661 case SND_SOC_DAIFMT_NB_IF: 662 confb |= STA350_CONFB_C1IM; 663 break; 664 default: 665 return -EINVAL; 666 } 667 668 return regmap_update_bits(sta350->regmap, STA350_CONFB, 669 STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb); 670 } 671 672 /** 673 * sta350_hw_params - program the STA350 with the given hardware parameters. 674 * @substream: the audio stream 675 * @params: the hardware parameters to set 676 * @dai: the SOC DAI (ignored) 677 * 678 * This function programs the hardware with the values provided. 679 * Specifically, the sample rate and the data format. 680 */ 681 static int sta350_hw_params(struct snd_pcm_substream *substream, 682 struct snd_pcm_hw_params *params, 683 struct snd_soc_dai *dai) 684 { 685 struct snd_soc_codec *codec = dai->codec; 686 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec); 687 int i, mcs = -EINVAL, ir = -EINVAL; 688 unsigned int confa, confb; 689 unsigned int rate, ratio; 690 int ret; 691 692 if (!sta350->mclk) { 693 dev_err(codec->dev, 694 "sta350->mclk is unset. Unable to determine ratio\n"); 695 return -EIO; 696 } 697 698 rate = params_rate(params); 699 ratio = sta350->mclk / rate; 700 dev_dbg(codec->dev, "rate: %u, ratio: %u\n", rate, ratio); 701 702 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) { 703 if (interpolation_ratios[i].fs == rate) { 704 ir = interpolation_ratios[i].ir; 705 break; 706 } 707 } 708 709 if (ir < 0) { 710 dev_err(codec->dev, "Unsupported samplerate: %u\n", rate); 711 return -EINVAL; 712 } 713 714 for (i = 0; i < 6; i++) { 715 if (mcs_ratio_table[ir][i] == ratio) { 716 mcs = i; 717 break; 718 } 719 } 720 721 if (mcs < 0) { 722 dev_err(codec->dev, "Unresolvable ratio: %u\n", ratio); 723 return -EINVAL; 724 } 725 726 confa = (ir << STA350_CONFA_IR_SHIFT) | 727 (mcs << STA350_CONFA_MCS_SHIFT); 728 confb = 0; 729 730 switch (params_width(params)) { 731 case 24: 732 dev_dbg(codec->dev, "24bit\n"); 733 /* fall through */ 734 case 32: 735 dev_dbg(codec->dev, "24bit or 32bit\n"); 736 switch (sta350->format) { 737 case SND_SOC_DAIFMT_I2S: 738 confb |= 0x0; 739 break; 740 case SND_SOC_DAIFMT_LEFT_J: 741 confb |= 0x1; 742 break; 743 case SND_SOC_DAIFMT_RIGHT_J: 744 confb |= 0x2; 745 break; 746 } 747 748 break; 749 case 20: 750 dev_dbg(codec->dev, "20bit\n"); 751 switch (sta350->format) { 752 case SND_SOC_DAIFMT_I2S: 753 confb |= 0x4; 754 break; 755 case SND_SOC_DAIFMT_LEFT_J: 756 confb |= 0x5; 757 break; 758 case SND_SOC_DAIFMT_RIGHT_J: 759 confb |= 0x6; 760 break; 761 } 762 763 break; 764 case 18: 765 dev_dbg(codec->dev, "18bit\n"); 766 switch (sta350->format) { 767 case SND_SOC_DAIFMT_I2S: 768 confb |= 0x8; 769 break; 770 case SND_SOC_DAIFMT_LEFT_J: 771 confb |= 0x9; 772 break; 773 case SND_SOC_DAIFMT_RIGHT_J: 774 confb |= 0xa; 775 break; 776 } 777 778 break; 779 case 16: 780 dev_dbg(codec->dev, "16bit\n"); 781 switch (sta350->format) { 782 case SND_SOC_DAIFMT_I2S: 783 confb |= 0x0; 784 break; 785 case SND_SOC_DAIFMT_LEFT_J: 786 confb |= 0xd; 787 break; 788 case SND_SOC_DAIFMT_RIGHT_J: 789 confb |= 0xe; 790 break; 791 } 792 793 break; 794 default: 795 return -EINVAL; 796 } 797 798 ret = regmap_update_bits(sta350->regmap, STA350_CONFA, 799 STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK, 800 confa); 801 if (ret < 0) 802 return ret; 803 804 ret = regmap_update_bits(sta350->regmap, STA350_CONFB, 805 STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB, 806 confb); 807 if (ret < 0) 808 return ret; 809 810 return 0; 811 } 812 813 static int sta350_startup_sequence(struct sta350_priv *sta350) 814 { 815 if (sta350->gpiod_power_down) 816 gpiod_set_value(sta350->gpiod_power_down, 1); 817 818 if (sta350->gpiod_nreset) { 819 gpiod_set_value(sta350->gpiod_nreset, 0); 820 mdelay(1); 821 gpiod_set_value(sta350->gpiod_nreset, 1); 822 mdelay(1); 823 } 824 825 return 0; 826 } 827 828 /** 829 * sta350_set_bias_level - DAPM callback 830 * @codec: the codec device 831 * @level: DAPM power level 832 * 833 * This is called by ALSA to put the codec into low power mode 834 * or to wake it up. If the codec is powered off completely 835 * all registers must be restored after power on. 836 */ 837 static int sta350_set_bias_level(struct snd_soc_codec *codec, 838 enum snd_soc_bias_level level) 839 { 840 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec); 841 int ret; 842 843 dev_dbg(codec->dev, "level = %d\n", level); 844 switch (level) { 845 case SND_SOC_BIAS_ON: 846 break; 847 848 case SND_SOC_BIAS_PREPARE: 849 /* Full power on */ 850 regmap_update_bits(sta350->regmap, STA350_CONFF, 851 STA350_CONFF_PWDN | STA350_CONFF_EAPD, 852 STA350_CONFF_PWDN | STA350_CONFF_EAPD); 853 break; 854 855 case SND_SOC_BIAS_STANDBY: 856 if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) { 857 ret = regulator_bulk_enable( 858 ARRAY_SIZE(sta350->supplies), 859 sta350->supplies); 860 if (ret < 0) { 861 dev_err(codec->dev, 862 "Failed to enable supplies: %d\n", 863 ret); 864 return ret; 865 } 866 sta350_startup_sequence(sta350); 867 sta350_cache_sync(codec); 868 } 869 870 /* Power down */ 871 regmap_update_bits(sta350->regmap, STA350_CONFF, 872 STA350_CONFF_PWDN | STA350_CONFF_EAPD, 873 0); 874 875 break; 876 877 case SND_SOC_BIAS_OFF: 878 /* The chip runs through the power down sequence for us */ 879 regmap_update_bits(sta350->regmap, STA350_CONFF, 880 STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0); 881 882 /* power down: low */ 883 if (sta350->gpiod_power_down) 884 gpiod_set_value(sta350->gpiod_power_down, 0); 885 886 if (sta350->gpiod_nreset) 887 gpiod_set_value(sta350->gpiod_nreset, 0); 888 889 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), 890 sta350->supplies); 891 break; 892 } 893 return 0; 894 } 895 896 static const struct snd_soc_dai_ops sta350_dai_ops = { 897 .hw_params = sta350_hw_params, 898 .set_sysclk = sta350_set_dai_sysclk, 899 .set_fmt = sta350_set_dai_fmt, 900 }; 901 902 static struct snd_soc_dai_driver sta350_dai = { 903 .name = "sta350-hifi", 904 .playback = { 905 .stream_name = "Playback", 906 .channels_min = 2, 907 .channels_max = 2, 908 .rates = STA350_RATES, 909 .formats = STA350_FORMATS, 910 }, 911 .ops = &sta350_dai_ops, 912 }; 913 914 static int sta350_probe(struct snd_soc_codec *codec) 915 { 916 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec); 917 struct sta350_platform_data *pdata = sta350->pdata; 918 int i, ret = 0, thermal = 0; 919 920 ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies), 921 sta350->supplies); 922 if (ret < 0) { 923 dev_err(codec->dev, "Failed to enable supplies: %d\n", ret); 924 return ret; 925 } 926 927 ret = sta350_startup_sequence(sta350); 928 if (ret < 0) { 929 dev_err(codec->dev, "Failed to startup device\n"); 930 return ret; 931 } 932 933 /* CONFA */ 934 if (!pdata->thermal_warning_recovery) 935 thermal |= STA350_CONFA_TWAB; 936 if (!pdata->thermal_warning_adjustment) 937 thermal |= STA350_CONFA_TWRB; 938 if (!pdata->fault_detect_recovery) 939 thermal |= STA350_CONFA_FDRB; 940 regmap_update_bits(sta350->regmap, STA350_CONFA, 941 STA350_CONFA_TWAB | STA350_CONFA_TWRB | 942 STA350_CONFA_FDRB, 943 thermal); 944 945 /* CONFC */ 946 regmap_update_bits(sta350->regmap, STA350_CONFC, 947 STA350_CONFC_OM_MASK, 948 pdata->ffx_power_output_mode 949 << STA350_CONFC_OM_SHIFT); 950 regmap_update_bits(sta350->regmap, STA350_CONFC, 951 STA350_CONFC_CSZ_MASK, 952 pdata->drop_compensation_ns 953 << STA350_CONFC_CSZ_SHIFT); 954 regmap_update_bits(sta350->regmap, 955 STA350_CONFC, 956 STA350_CONFC_OCRB, 957 pdata->oc_warning_adjustment ? 958 STA350_CONFC_OCRB : 0); 959 960 /* CONFE */ 961 regmap_update_bits(sta350->regmap, STA350_CONFE, 962 STA350_CONFE_MPCV, 963 pdata->max_power_use_mpcc ? 964 STA350_CONFE_MPCV : 0); 965 regmap_update_bits(sta350->regmap, STA350_CONFE, 966 STA350_CONFE_MPC, 967 pdata->max_power_correction ? 968 STA350_CONFE_MPC : 0); 969 regmap_update_bits(sta350->regmap, STA350_CONFE, 970 STA350_CONFE_AME, 971 pdata->am_reduction_mode ? 972 STA350_CONFE_AME : 0); 973 regmap_update_bits(sta350->regmap, STA350_CONFE, 974 STA350_CONFE_PWMS, 975 pdata->odd_pwm_speed_mode ? 976 STA350_CONFE_PWMS : 0); 977 regmap_update_bits(sta350->regmap, STA350_CONFE, 978 STA350_CONFE_DCCV, 979 pdata->distortion_compensation ? 980 STA350_CONFE_DCCV : 0); 981 /* CONFF */ 982 regmap_update_bits(sta350->regmap, STA350_CONFF, 983 STA350_CONFF_IDE, 984 pdata->invalid_input_detect_mute ? 985 STA350_CONFF_IDE : 0); 986 regmap_update_bits(sta350->regmap, STA350_CONFF, 987 STA350_CONFF_OCFG_MASK, 988 pdata->output_conf 989 << STA350_CONFF_OCFG_SHIFT); 990 991 /* channel to output mapping */ 992 regmap_update_bits(sta350->regmap, STA350_C1CFG, 993 STA350_CxCFG_OM_MASK, 994 pdata->ch1_output_mapping 995 << STA350_CxCFG_OM_SHIFT); 996 regmap_update_bits(sta350->regmap, STA350_C2CFG, 997 STA350_CxCFG_OM_MASK, 998 pdata->ch2_output_mapping 999 << STA350_CxCFG_OM_SHIFT); 1000 regmap_update_bits(sta350->regmap, STA350_C3CFG, 1001 STA350_CxCFG_OM_MASK, 1002 pdata->ch3_output_mapping 1003 << STA350_CxCFG_OM_SHIFT); 1004 1005 /* miscellaneous registers */ 1006 regmap_update_bits(sta350->regmap, STA350_MISC1, 1007 STA350_MISC1_CPWMEN, 1008 pdata->activate_mute_output ? 1009 STA350_MISC1_CPWMEN : 0); 1010 regmap_update_bits(sta350->regmap, STA350_MISC1, 1011 STA350_MISC1_BRIDGOFF, 1012 pdata->bridge_immediate_off ? 1013 STA350_MISC1_BRIDGOFF : 0); 1014 regmap_update_bits(sta350->regmap, STA350_MISC1, 1015 STA350_MISC1_NSHHPEN, 1016 pdata->noise_shape_dc_cut ? 1017 STA350_MISC1_NSHHPEN : 0); 1018 regmap_update_bits(sta350->regmap, STA350_MISC1, 1019 STA350_MISC1_RPDNEN, 1020 pdata->powerdown_master_vol ? 1021 STA350_MISC1_RPDNEN: 0); 1022 1023 regmap_update_bits(sta350->regmap, STA350_MISC2, 1024 STA350_MISC2_PNDLSL_MASK, 1025 pdata->powerdown_delay_divider 1026 << STA350_MISC2_PNDLSL_SHIFT); 1027 1028 /* initialize coefficient shadow RAM with reset values */ 1029 for (i = 4; i <= 49; i += 5) 1030 sta350->coef_shadow[i] = 0x400000; 1031 for (i = 50; i <= 54; i++) 1032 sta350->coef_shadow[i] = 0x7fffff; 1033 sta350->coef_shadow[55] = 0x5a9df7; 1034 sta350->coef_shadow[56] = 0x7fffff; 1035 sta350->coef_shadow[59] = 0x7fffff; 1036 sta350->coef_shadow[60] = 0x400000; 1037 sta350->coef_shadow[61] = 0x400000; 1038 1039 snd_soc_codec_force_bias_level(codec, SND_SOC_BIAS_STANDBY); 1040 /* Bias level configuration will have done an extra enable */ 1041 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies); 1042 1043 return 0; 1044 } 1045 1046 static int sta350_remove(struct snd_soc_codec *codec) 1047 { 1048 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec); 1049 1050 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies); 1051 1052 return 0; 1053 } 1054 1055 static const struct snd_soc_codec_driver sta350_codec = { 1056 .probe = sta350_probe, 1057 .remove = sta350_remove, 1058 .set_bias_level = sta350_set_bias_level, 1059 .suspend_bias_off = true, 1060 .controls = sta350_snd_controls, 1061 .num_controls = ARRAY_SIZE(sta350_snd_controls), 1062 .dapm_widgets = sta350_dapm_widgets, 1063 .num_dapm_widgets = ARRAY_SIZE(sta350_dapm_widgets), 1064 .dapm_routes = sta350_dapm_routes, 1065 .num_dapm_routes = ARRAY_SIZE(sta350_dapm_routes), 1066 }; 1067 1068 static const struct regmap_config sta350_regmap = { 1069 .reg_bits = 8, 1070 .val_bits = 8, 1071 .max_register = STA350_MISC2, 1072 .reg_defaults = sta350_regs, 1073 .num_reg_defaults = ARRAY_SIZE(sta350_regs), 1074 .cache_type = REGCACHE_RBTREE, 1075 .wr_table = &sta350_write_regs, 1076 .rd_table = &sta350_read_regs, 1077 .volatile_table = &sta350_volatile_regs, 1078 }; 1079 1080 #ifdef CONFIG_OF 1081 static const struct of_device_id st350_dt_ids[] = { 1082 { .compatible = "st,sta350", }, 1083 { } 1084 }; 1085 MODULE_DEVICE_TABLE(of, st350_dt_ids); 1086 1087 static const char * const sta350_ffx_modes[] = { 1088 [STA350_FFX_PM_DROP_COMP] = "drop-compensation", 1089 [STA350_FFX_PM_TAPERED_COMP] = "tapered-compensation", 1090 [STA350_FFX_PM_FULL_POWER] = "full-power-mode", 1091 [STA350_FFX_PM_VARIABLE_DROP_COMP] = "variable-drop-compensation", 1092 }; 1093 1094 static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350) 1095 { 1096 struct device_node *np = dev->of_node; 1097 struct sta350_platform_data *pdata; 1098 const char *ffx_power_mode; 1099 u16 tmp; 1100 u8 tmp8; 1101 1102 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 1103 if (!pdata) 1104 return -ENOMEM; 1105 1106 of_property_read_u8(np, "st,output-conf", 1107 &pdata->output_conf); 1108 of_property_read_u8(np, "st,ch1-output-mapping", 1109 &pdata->ch1_output_mapping); 1110 of_property_read_u8(np, "st,ch2-output-mapping", 1111 &pdata->ch2_output_mapping); 1112 of_property_read_u8(np, "st,ch3-output-mapping", 1113 &pdata->ch3_output_mapping); 1114 1115 if (of_get_property(np, "st,thermal-warning-recovery", NULL)) 1116 pdata->thermal_warning_recovery = 1; 1117 if (of_get_property(np, "st,thermal-warning-adjustment", NULL)) 1118 pdata->thermal_warning_adjustment = 1; 1119 if (of_get_property(np, "st,fault-detect-recovery", NULL)) 1120 pdata->fault_detect_recovery = 1; 1121 1122 pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP; 1123 if (!of_property_read_string(np, "st,ffx-power-output-mode", 1124 &ffx_power_mode)) { 1125 int i, mode = -EINVAL; 1126 1127 for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++) 1128 if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i])) 1129 mode = i; 1130 1131 if (mode < 0) 1132 dev_warn(dev, "Unsupported ffx output mode: %s\n", 1133 ffx_power_mode); 1134 else 1135 pdata->ffx_power_output_mode = mode; 1136 } 1137 1138 tmp = 140; 1139 of_property_read_u16(np, "st,drop-compensation-ns", &tmp); 1140 pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20; 1141 1142 if (of_get_property(np, "st,overcurrent-warning-adjustment", NULL)) 1143 pdata->oc_warning_adjustment = 1; 1144 1145 /* CONFE */ 1146 if (of_get_property(np, "st,max-power-use-mpcc", NULL)) 1147 pdata->max_power_use_mpcc = 1; 1148 1149 if (of_get_property(np, "st,max-power-correction", NULL)) 1150 pdata->max_power_correction = 1; 1151 1152 if (of_get_property(np, "st,am-reduction-mode", NULL)) 1153 pdata->am_reduction_mode = 1; 1154 1155 if (of_get_property(np, "st,odd-pwm-speed-mode", NULL)) 1156 pdata->odd_pwm_speed_mode = 1; 1157 1158 if (of_get_property(np, "st,distortion-compensation", NULL)) 1159 pdata->distortion_compensation = 1; 1160 1161 /* CONFF */ 1162 if (of_get_property(np, "st,invalid-input-detect-mute", NULL)) 1163 pdata->invalid_input_detect_mute = 1; 1164 1165 /* MISC */ 1166 if (of_get_property(np, "st,activate-mute-output", NULL)) 1167 pdata->activate_mute_output = 1; 1168 1169 if (of_get_property(np, "st,bridge-immediate-off", NULL)) 1170 pdata->bridge_immediate_off = 1; 1171 1172 if (of_get_property(np, "st,noise-shape-dc-cut", NULL)) 1173 pdata->noise_shape_dc_cut = 1; 1174 1175 if (of_get_property(np, "st,powerdown-master-volume", NULL)) 1176 pdata->powerdown_master_vol = 1; 1177 1178 if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) { 1179 if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128) 1180 pdata->powerdown_delay_divider = ilog2(tmp8); 1181 else 1182 dev_warn(dev, "Unsupported powerdown delay divider %d\n", 1183 tmp8); 1184 } 1185 1186 sta350->pdata = pdata; 1187 1188 return 0; 1189 } 1190 #endif 1191 1192 static int sta350_i2c_probe(struct i2c_client *i2c, 1193 const struct i2c_device_id *id) 1194 { 1195 struct device *dev = &i2c->dev; 1196 struct sta350_priv *sta350; 1197 int ret, i; 1198 1199 sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL); 1200 if (!sta350) 1201 return -ENOMEM; 1202 1203 mutex_init(&sta350->coeff_lock); 1204 sta350->pdata = dev_get_platdata(dev); 1205 1206 #ifdef CONFIG_OF 1207 if (dev->of_node) { 1208 ret = sta350_probe_dt(dev, sta350); 1209 if (ret < 0) 1210 return ret; 1211 } 1212 #endif 1213 1214 /* GPIOs */ 1215 sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset", 1216 GPIOD_OUT_LOW); 1217 if (IS_ERR(sta350->gpiod_nreset)) 1218 return PTR_ERR(sta350->gpiod_nreset); 1219 1220 sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down", 1221 GPIOD_OUT_LOW); 1222 if (IS_ERR(sta350->gpiod_power_down)) 1223 return PTR_ERR(sta350->gpiod_power_down); 1224 1225 /* regulators */ 1226 for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++) 1227 sta350->supplies[i].supply = sta350_supply_names[i]; 1228 1229 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies), 1230 sta350->supplies); 1231 if (ret < 0) { 1232 dev_err(dev, "Failed to request supplies: %d\n", ret); 1233 return ret; 1234 } 1235 1236 sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap); 1237 if (IS_ERR(sta350->regmap)) { 1238 ret = PTR_ERR(sta350->regmap); 1239 dev_err(dev, "Failed to init regmap: %d\n", ret); 1240 return ret; 1241 } 1242 1243 i2c_set_clientdata(i2c, sta350); 1244 1245 ret = snd_soc_register_codec(dev, &sta350_codec, &sta350_dai, 1); 1246 if (ret < 0) 1247 dev_err(dev, "Failed to register codec (%d)\n", ret); 1248 1249 return ret; 1250 } 1251 1252 static int sta350_i2c_remove(struct i2c_client *client) 1253 { 1254 snd_soc_unregister_codec(&client->dev); 1255 return 0; 1256 } 1257 1258 static const struct i2c_device_id sta350_i2c_id[] = { 1259 { "sta350", 0 }, 1260 { } 1261 }; 1262 MODULE_DEVICE_TABLE(i2c, sta350_i2c_id); 1263 1264 static struct i2c_driver sta350_i2c_driver = { 1265 .driver = { 1266 .name = "sta350", 1267 .of_match_table = of_match_ptr(st350_dt_ids), 1268 }, 1269 .probe = sta350_i2c_probe, 1270 .remove = sta350_i2c_remove, 1271 .id_table = sta350_i2c_id, 1272 }; 1273 1274 module_i2c_driver(sta350_i2c_driver); 1275 1276 MODULE_DESCRIPTION("ASoC STA350 driver"); 1277 MODULE_AUTHOR("Sven Brandau <info@brandau.biz>"); 1278 MODULE_LICENSE("GPL"); 1279