xref: /openbmc/linux/sound/soc/codecs/sta350.c (revision 981ab3f1)
1 /*
2  * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system
3  *
4  * Copyright: 2014 Raumfeld GmbH
5  * Author: Sven Brandau <info@brandau.biz>
6  *
7  * based on code from:
8  *	Raumfeld GmbH
9  *	  Johannes Stezenbach <js@sig21.net>
10  *	Wolfson Microelectronics PLC.
11  *	  Mark Brown <broonie@opensource.wolfsonmicro.com>
12  *	Freescale Semiconductor, Inc.
13  *	  Timur Tabi <timur@freescale.com>
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  */
20 
21 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
22 
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/i2c.h>
29 #include <linux/of_device.h>
30 #include <linux/of_gpio.h>
31 #include <linux/regmap.h>
32 #include <linux/regulator/consumer.h>
33 #include <linux/gpio/consumer.h>
34 #include <linux/slab.h>
35 #include <sound/core.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/soc.h>
39 #include <sound/soc-dapm.h>
40 #include <sound/initval.h>
41 #include <sound/tlv.h>
42 
43 #include <sound/sta350.h>
44 #include "sta350.h"
45 
46 #define STA350_RATES (SNDRV_PCM_RATE_32000 | \
47 		      SNDRV_PCM_RATE_44100 | \
48 		      SNDRV_PCM_RATE_48000 | \
49 		      SNDRV_PCM_RATE_88200 | \
50 		      SNDRV_PCM_RATE_96000 | \
51 		      SNDRV_PCM_RATE_176400 | \
52 		      SNDRV_PCM_RATE_192000)
53 
54 #define STA350_FORMATS \
55 	(SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S16_BE  | \
56 	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
57 	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
58 	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
59 	 SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S24_BE  | \
60 	 SNDRV_PCM_FMTBIT_S32_LE  | SNDRV_PCM_FMTBIT_S32_BE)
61 
62 /* Power-up register defaults */
63 static const struct reg_default sta350_regs[] = {
64 	{  0x0, 0x63 },
65 	{  0x1, 0x80 },
66 	{  0x2, 0xdf },
67 	{  0x3, 0x40 },
68 	{  0x4, 0xc2 },
69 	{  0x5, 0x5c },
70 	{  0x6, 0x00 },
71 	{  0x7, 0xff },
72 	{  0x8, 0x60 },
73 	{  0x9, 0x60 },
74 	{  0xa, 0x60 },
75 	{  0xb, 0x00 },
76 	{  0xc, 0x00 },
77 	{  0xd, 0x00 },
78 	{  0xe, 0x00 },
79 	{  0xf, 0x40 },
80 	{ 0x10, 0x80 },
81 	{ 0x11, 0x77 },
82 	{ 0x12, 0x6a },
83 	{ 0x13, 0x69 },
84 	{ 0x14, 0x6a },
85 	{ 0x15, 0x69 },
86 	{ 0x16, 0x00 },
87 	{ 0x17, 0x00 },
88 	{ 0x18, 0x00 },
89 	{ 0x19, 0x00 },
90 	{ 0x1a, 0x00 },
91 	{ 0x1b, 0x00 },
92 	{ 0x1c, 0x00 },
93 	{ 0x1d, 0x00 },
94 	{ 0x1e, 0x00 },
95 	{ 0x1f, 0x00 },
96 	{ 0x20, 0x00 },
97 	{ 0x21, 0x00 },
98 	{ 0x22, 0x00 },
99 	{ 0x23, 0x00 },
100 	{ 0x24, 0x00 },
101 	{ 0x25, 0x00 },
102 	{ 0x26, 0x00 },
103 	{ 0x27, 0x2a },
104 	{ 0x28, 0xc0 },
105 	{ 0x29, 0xf3 },
106 	{ 0x2a, 0x33 },
107 	{ 0x2b, 0x00 },
108 	{ 0x2c, 0x0c },
109 	{ 0x31, 0x00 },
110 	{ 0x36, 0x00 },
111 	{ 0x37, 0x00 },
112 	{ 0x38, 0x00 },
113 	{ 0x39, 0x01 },
114 	{ 0x3a, 0xee },
115 	{ 0x3b, 0xff },
116 	{ 0x3c, 0x7e },
117 	{ 0x3d, 0xc0 },
118 	{ 0x3e, 0x26 },
119 	{ 0x3f, 0x00 },
120 	{ 0x48, 0x00 },
121 	{ 0x49, 0x00 },
122 	{ 0x4a, 0x00 },
123 	{ 0x4b, 0x04 },
124 	{ 0x4c, 0x00 },
125 };
126 
127 static const struct regmap_range sta350_write_regs_range[] = {
128 	regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
129 	regmap_reg_range(STA350_C1CFG,  STA350_FDRC2),
130 	regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
131 	regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
132 };
133 
134 static const struct regmap_range sta350_read_regs_range[] = {
135 	regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
136 	regmap_reg_range(STA350_C1CFG,  STA350_STATUS),
137 	regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
138 	regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
139 };
140 
141 static const struct regmap_range sta350_volatile_regs_range[] = {
142 	regmap_reg_range(STA350_CFADDR2, STA350_CFUD),
143 	regmap_reg_range(STA350_STATUS,  STA350_STATUS),
144 };
145 
146 static const struct regmap_access_table sta350_write_regs = {
147 	.yes_ranges =	sta350_write_regs_range,
148 	.n_yes_ranges =	ARRAY_SIZE(sta350_write_regs_range),
149 };
150 
151 static const struct regmap_access_table sta350_read_regs = {
152 	.yes_ranges =	sta350_read_regs_range,
153 	.n_yes_ranges =	ARRAY_SIZE(sta350_read_regs_range),
154 };
155 
156 static const struct regmap_access_table sta350_volatile_regs = {
157 	.yes_ranges =	sta350_volatile_regs_range,
158 	.n_yes_ranges =	ARRAY_SIZE(sta350_volatile_regs_range),
159 };
160 
161 /* regulator power supply names */
162 static const char * const sta350_supply_names[] = {
163 	"vdd-dig",	/* digital supply, 3.3V */
164 	"vdd-pll",	/* pll supply, 3.3V */
165 	"vcc"		/* power amp supply, 5V - 26V */
166 };
167 
168 /* codec private data */
169 struct sta350_priv {
170 	struct regmap *regmap;
171 	struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)];
172 	struct sta350_platform_data *pdata;
173 
174 	unsigned int mclk;
175 	unsigned int format;
176 
177 	u32 coef_shadow[STA350_COEF_COUNT];
178 	int shutdown;
179 
180 	struct gpio_desc *gpiod_nreset;
181 	struct gpio_desc *gpiod_power_down;
182 
183 	struct mutex coeff_lock;
184 };
185 
186 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1);
187 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
188 static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0);
189 
190 static const char * const sta350_drc_ac[] = {
191 	"Anti-Clipping", "Dynamic Range Compression"
192 };
193 static const char * const sta350_auto_gc_mode[] = {
194 	"User", "AC no clipping", "AC limited clipping (10%)",
195 	"DRC nighttime listening mode"
196 };
197 static const char * const sta350_auto_xo_mode[] = {
198 	"User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz",
199 	"200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz",
200 	"340Hz", "360Hz"
201 };
202 static const char * const sta350_binary_output[] = {
203 	"FFX 3-state output - normal operation", "Binary output"
204 };
205 static const char * const sta350_limiter_select[] = {
206 	"Limiter Disabled", "Limiter #1", "Limiter #2"
207 };
208 static const char * const sta350_limiter_attack_rate[] = {
209 	"3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
210 	"0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
211 	"0.0645", "0.0564", "0.0501", "0.0451"
212 };
213 static const char * const sta350_limiter_release_rate[] = {
214 	"0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
215 	"0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
216 	"0.0134", "0.0117", "0.0110", "0.0104"
217 };
218 static const char * const sta350_noise_shaper_type[] = {
219 	"Third order", "Fourth order"
220 };
221 
222 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv,
223 	0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
224 	8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
225 );
226 
227 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv,
228 	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
229 	1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
230 	2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
231 	3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
232 	8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
233 );
234 
235 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv,
236 	0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
237 	8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
238 	14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
239 );
240 
241 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv,
242 	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
243 	1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
244 	3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
245 	5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
246 	13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
247 );
248 
249 static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum,
250 			    STA350_CONFD, STA350_CONFD_DRC_SHIFT,
251 			    sta350_drc_ac);
252 static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum,
253 			    STA350_CONFE, STA350_CONFE_NSBW_SHIFT,
254 			    sta350_noise_shaper_type);
255 static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum,
256 			    STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT,
257 			    sta350_auto_gc_mode);
258 static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum,
259 			    STA350_AUTO2, STA350_AUTO2_XO_SHIFT,
260 			    sta350_auto_xo_mode);
261 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum,
262 			    STA350_C1CFG, STA350_CxCFG_BO_SHIFT,
263 			    sta350_binary_output);
264 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum,
265 			    STA350_C2CFG, STA350_CxCFG_BO_SHIFT,
266 			    sta350_binary_output);
267 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum,
268 			    STA350_C3CFG, STA350_CxCFG_BO_SHIFT,
269 			    sta350_binary_output);
270 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum,
271 			    STA350_C1CFG, STA350_CxCFG_LS_SHIFT,
272 			    sta350_limiter_select);
273 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum,
274 			    STA350_C2CFG, STA350_CxCFG_LS_SHIFT,
275 			    sta350_limiter_select);
276 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum,
277 			    STA350_C3CFG, STA350_CxCFG_LS_SHIFT,
278 			    sta350_limiter_select);
279 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum,
280 			    STA350_L1AR, STA350_LxA_SHIFT,
281 			    sta350_limiter_attack_rate);
282 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum,
283 			    STA350_L2AR, STA350_LxA_SHIFT,
284 			    sta350_limiter_attack_rate);
285 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum,
286 			    STA350_L1AR, STA350_LxR_SHIFT,
287 			    sta350_limiter_release_rate);
288 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum,
289 			    STA350_L2AR, STA350_LxR_SHIFT,
290 			    sta350_limiter_release_rate);
291 
292 /*
293  * byte array controls for setting biquad, mixer, scaling coefficients;
294  * for biquads all five coefficients need to be set in one go,
295  * mixer and pre/postscale coefs can be set individually;
296  * each coef is 24bit, the bytes are ordered in the same way
297  * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0)
298  */
299 
300 static int sta350_coefficient_info(struct snd_kcontrol *kcontrol,
301 				   struct snd_ctl_elem_info *uinfo)
302 {
303 	int numcoef = kcontrol->private_value >> 16;
304 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
305 	uinfo->count = 3 * numcoef;
306 	return 0;
307 }
308 
309 static int sta350_coefficient_get(struct snd_kcontrol *kcontrol,
310 				  struct snd_ctl_elem_value *ucontrol)
311 {
312 	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
313 	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
314 	int numcoef = kcontrol->private_value >> 16;
315 	int index = kcontrol->private_value & 0xffff;
316 	unsigned int cfud, val;
317 	int i, ret = 0;
318 
319 	mutex_lock(&sta350->coeff_lock);
320 
321 	/* preserve reserved bits in STA350_CFUD */
322 	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
323 	cfud &= 0xf0;
324 	/*
325 	 * chip documentation does not say if the bits are self clearing,
326 	 * so do it explicitly
327 	 */
328 	regmap_write(sta350->regmap, STA350_CFUD, cfud);
329 
330 	regmap_write(sta350->regmap, STA350_CFADDR2, index);
331 	if (numcoef == 1) {
332 		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04);
333 	} else if (numcoef == 5) {
334 		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08);
335 	} else {
336 		ret = -EINVAL;
337 		goto exit_unlock;
338 	}
339 
340 	for (i = 0; i < 3 * numcoef; i++) {
341 		regmap_read(sta350->regmap, STA350_B1CF1 + i, &val);
342 		ucontrol->value.bytes.data[i] = val;
343 	}
344 
345 exit_unlock:
346 	mutex_unlock(&sta350->coeff_lock);
347 
348 	return ret;
349 }
350 
351 static int sta350_coefficient_put(struct snd_kcontrol *kcontrol,
352 				  struct snd_ctl_elem_value *ucontrol)
353 {
354 	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
355 	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
356 	int numcoef = kcontrol->private_value >> 16;
357 	int index = kcontrol->private_value & 0xffff;
358 	unsigned int cfud;
359 	int i;
360 
361 	/* preserve reserved bits in STA350_CFUD */
362 	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
363 	cfud &= 0xf0;
364 	/*
365 	 * chip documentation does not say if the bits are self clearing,
366 	 * so do it explicitly
367 	 */
368 	regmap_write(sta350->regmap, STA350_CFUD, cfud);
369 
370 	regmap_write(sta350->regmap, STA350_CFADDR2, index);
371 	for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++)
372 		sta350->coef_shadow[index + i] =
373 			  (ucontrol->value.bytes.data[3 * i] << 16)
374 			| (ucontrol->value.bytes.data[3 * i + 1] << 8)
375 			| (ucontrol->value.bytes.data[3 * i + 2]);
376 	for (i = 0; i < 3 * numcoef; i++)
377 		regmap_write(sta350->regmap, STA350_B1CF1 + i,
378 			     ucontrol->value.bytes.data[i]);
379 	if (numcoef == 1)
380 		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
381 	else if (numcoef == 5)
382 		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02);
383 	else
384 		return -EINVAL;
385 
386 	return 0;
387 }
388 
389 static int sta350_sync_coef_shadow(struct snd_soc_codec *codec)
390 {
391 	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
392 	unsigned int cfud;
393 	int i;
394 
395 	/* preserve reserved bits in STA350_CFUD */
396 	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
397 	cfud &= 0xf0;
398 
399 	for (i = 0; i < STA350_COEF_COUNT; i++) {
400 		regmap_write(sta350->regmap, STA350_CFADDR2, i);
401 		regmap_write(sta350->regmap, STA350_B1CF1,
402 			     (sta350->coef_shadow[i] >> 16) & 0xff);
403 		regmap_write(sta350->regmap, STA350_B1CF2,
404 			     (sta350->coef_shadow[i] >> 8) & 0xff);
405 		regmap_write(sta350->regmap, STA350_B1CF3,
406 			     (sta350->coef_shadow[i]) & 0xff);
407 		/*
408 		 * chip documentation does not say if the bits are
409 		 * self-clearing, so do it explicitly
410 		 */
411 		regmap_write(sta350->regmap, STA350_CFUD, cfud);
412 		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
413 	}
414 	return 0;
415 }
416 
417 static int sta350_cache_sync(struct snd_soc_codec *codec)
418 {
419 	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
420 	unsigned int mute;
421 	int rc;
422 
423 	/* mute during register sync */
424 	regmap_read(sta350->regmap, STA350_CFUD, &mute);
425 	regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE);
426 	sta350_sync_coef_shadow(codec);
427 	rc = regcache_sync(sta350->regmap);
428 	regmap_write(sta350->regmap, STA350_MMUTE, mute);
429 	return rc;
430 }
431 
432 #define SINGLE_COEF(xname, index) \
433 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
434 	.info = sta350_coefficient_info, \
435 	.get = sta350_coefficient_get,\
436 	.put = sta350_coefficient_put, \
437 	.private_value = index | (1 << 16) }
438 
439 #define BIQUAD_COEFS(xname, index) \
440 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
441 	.info = sta350_coefficient_info, \
442 	.get = sta350_coefficient_get,\
443 	.put = sta350_coefficient_put, \
444 	.private_value = index | (5 << 16) }
445 
446 static const struct snd_kcontrol_new sta350_snd_controls[] = {
447 SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv),
448 /* VOL */
449 SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv),
450 SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv),
451 SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv),
452 /* CONFD */
453 SOC_SINGLE("High Pass Filter Bypass Switch",
454 	   STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1),
455 SOC_SINGLE("De-emphasis Filter Switch",
456 	   STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0),
457 SOC_SINGLE("DSP Bypass Switch",
458 	   STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0),
459 SOC_SINGLE("Post-scale Link Switch",
460 	   STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0),
461 SOC_SINGLE("Biquad Coefficient Link Switch",
462 	   STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0),
463 SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum),
464 SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum),
465 SOC_SINGLE("Zero-detect Mute Enable Switch",
466 	   STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0),
467 SOC_SINGLE("Submix Mode Switch",
468 	   STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0),
469 /* CONFE */
470 SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0),
471 SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0),
472 /* MUTE */
473 SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1),
474 SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1),
475 SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1),
476 SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1),
477 /* AUTOx */
478 SOC_ENUM("Automode GC", sta350_auto_gc_enum),
479 SOC_ENUM("Automode XO", sta350_auto_xo_enum),
480 /* CxCFG */
481 SOC_SINGLE("Ch1 Tone Control Bypass Switch",
482 	   STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
483 SOC_SINGLE("Ch2 Tone Control Bypass Switch",
484 	   STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
485 SOC_SINGLE("Ch1 EQ Bypass Switch",
486 	   STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
487 SOC_SINGLE("Ch2 EQ Bypass Switch",
488 	   STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
489 SOC_SINGLE("Ch1 Master Volume Bypass Switch",
490 	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
491 SOC_SINGLE("Ch2 Master Volume Bypass Switch",
492 	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
493 SOC_SINGLE("Ch3 Master Volume Bypass Switch",
494 	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
495 SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum),
496 SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum),
497 SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum),
498 SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum),
499 SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum),
500 SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum),
501 /* TONE */
502 SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume",
503 		     STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv),
504 SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume",
505 		     STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv),
506 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum),
507 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum),
508 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum),
509 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum),
510 
511 /*
512  * depending on mode, the attack/release thresholds have
513  * two different enum definitions; provide both
514  */
515 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)",
516 	       STA350_L1ATRT, STA350_LxA_SHIFT,
517 	       16, 0, sta350_limiter_ac_attack_tlv),
518 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)",
519 	       STA350_L2ATRT, STA350_LxA_SHIFT,
520 	       16, 0, sta350_limiter_ac_attack_tlv),
521 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)",
522 	       STA350_L1ATRT, STA350_LxR_SHIFT,
523 	       16, 0, sta350_limiter_ac_release_tlv),
524 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)",
525 	       STA350_L2ATRT, STA350_LxR_SHIFT,
526 	       16, 0, sta350_limiter_ac_release_tlv),
527 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)",
528 	       STA350_L1ATRT, STA350_LxA_SHIFT,
529 	       16, 0, sta350_limiter_drc_attack_tlv),
530 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)",
531 	       STA350_L2ATRT, STA350_LxA_SHIFT,
532 	       16, 0, sta350_limiter_drc_attack_tlv),
533 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)",
534 	       STA350_L1ATRT, STA350_LxR_SHIFT,
535 	       16, 0, sta350_limiter_drc_release_tlv),
536 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)",
537 	       STA350_L2ATRT, STA350_LxR_SHIFT,
538 	       16, 0, sta350_limiter_drc_release_tlv),
539 
540 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
541 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
542 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
543 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
544 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
545 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
546 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
547 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
548 BIQUAD_COEFS("High-pass", 40),
549 BIQUAD_COEFS("Low-pass", 45),
550 SINGLE_COEF("Ch1 - Prescale", 50),
551 SINGLE_COEF("Ch2 - Prescale", 51),
552 SINGLE_COEF("Ch1 - Postscale", 52),
553 SINGLE_COEF("Ch2 - Postscale", 53),
554 SINGLE_COEF("Ch3 - Postscale", 54),
555 SINGLE_COEF("Thermal warning - Postscale", 55),
556 SINGLE_COEF("Ch1 - Mix 1", 56),
557 SINGLE_COEF("Ch1 - Mix 2", 57),
558 SINGLE_COEF("Ch2 - Mix 1", 58),
559 SINGLE_COEF("Ch2 - Mix 2", 59),
560 SINGLE_COEF("Ch3 - Mix 1", 60),
561 SINGLE_COEF("Ch3 - Mix 2", 61),
562 };
563 
564 static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = {
565 SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0),
566 SND_SOC_DAPM_OUTPUT("LEFT"),
567 SND_SOC_DAPM_OUTPUT("RIGHT"),
568 SND_SOC_DAPM_OUTPUT("SUB"),
569 };
570 
571 static const struct snd_soc_dapm_route sta350_dapm_routes[] = {
572 	{ "LEFT", NULL, "DAC" },
573 	{ "RIGHT", NULL, "DAC" },
574 	{ "SUB", NULL, "DAC" },
575 	{ "DAC", NULL, "Playback" },
576 };
577 
578 /* MCLK interpolation ratio per fs */
579 static struct {
580 	int fs;
581 	int ir;
582 } interpolation_ratios[] = {
583 	{ 32000, 0 },
584 	{ 44100, 0 },
585 	{ 48000, 0 },
586 	{ 88200, 1 },
587 	{ 96000, 1 },
588 	{ 176400, 2 },
589 	{ 192000, 2 },
590 };
591 
592 /* MCLK to fs clock ratios */
593 static int mcs_ratio_table[3][6] = {
594 	{ 768, 512, 384, 256, 128, 576 },
595 	{ 384, 256, 192, 128,  64,   0 },
596 	{ 192, 128,  96,  64,  32,   0 },
597 };
598 
599 /**
600  * sta350_set_dai_sysclk - configure MCLK
601  * @codec_dai: the codec DAI
602  * @clk_id: the clock ID (ignored)
603  * @freq: the MCLK input frequency
604  * @dir: the clock direction (ignored)
605  *
606  * The value of MCLK is used to determine which sample rates are supported
607  * by the STA350, based on the mcs_ratio_table.
608  *
609  * This function must be called by the machine driver's 'startup' function,
610  * otherwise the list of supported sample rates will not be available in
611  * time for ALSA.
612  */
613 static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai,
614 				 int clk_id, unsigned int freq, int dir)
615 {
616 	struct snd_soc_codec *codec = codec_dai->codec;
617 	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
618 
619 	dev_dbg(codec->dev, "mclk=%u\n", freq);
620 	sta350->mclk = freq;
621 
622 	return 0;
623 }
624 
625 /**
626  * sta350_set_dai_fmt - configure the codec for the selected audio format
627  * @codec_dai: the codec DAI
628  * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
629  *
630  * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
631  * codec accordingly.
632  */
633 static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai,
634 			      unsigned int fmt)
635 {
636 	struct snd_soc_codec *codec = codec_dai->codec;
637 	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
638 	unsigned int confb = 0;
639 
640 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
641 	case SND_SOC_DAIFMT_CBS_CFS:
642 		break;
643 	default:
644 		return -EINVAL;
645 	}
646 
647 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
648 	case SND_SOC_DAIFMT_I2S:
649 	case SND_SOC_DAIFMT_RIGHT_J:
650 	case SND_SOC_DAIFMT_LEFT_J:
651 		sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
652 		break;
653 	default:
654 		return -EINVAL;
655 	}
656 
657 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
658 	case SND_SOC_DAIFMT_NB_NF:
659 		confb |= STA350_CONFB_C2IM;
660 		break;
661 	case SND_SOC_DAIFMT_NB_IF:
662 		confb |= STA350_CONFB_C1IM;
663 		break;
664 	default:
665 		return -EINVAL;
666 	}
667 
668 	return regmap_update_bits(sta350->regmap, STA350_CONFB,
669 				  STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb);
670 }
671 
672 /**
673  * sta350_hw_params - program the STA350 with the given hardware parameters.
674  * @substream: the audio stream
675  * @params: the hardware parameters to set
676  * @dai: the SOC DAI (ignored)
677  *
678  * This function programs the hardware with the values provided.
679  * Specifically, the sample rate and the data format.
680  */
681 static int sta350_hw_params(struct snd_pcm_substream *substream,
682 			    struct snd_pcm_hw_params *params,
683 			    struct snd_soc_dai *dai)
684 {
685 	struct snd_soc_codec *codec = dai->codec;
686 	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
687 	int i, mcs = -EINVAL, ir = -EINVAL;
688 	unsigned int confa, confb;
689 	unsigned int rate, ratio;
690 	int ret;
691 
692 	if (!sta350->mclk) {
693 		dev_err(codec->dev,
694 			"sta350->mclk is unset. Unable to determine ratio\n");
695 		return -EIO;
696 	}
697 
698 	rate = params_rate(params);
699 	ratio = sta350->mclk / rate;
700 	dev_dbg(codec->dev, "rate: %u, ratio: %u\n", rate, ratio);
701 
702 	for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
703 		if (interpolation_ratios[i].fs == rate) {
704 			ir = interpolation_ratios[i].ir;
705 			break;
706 		}
707 	}
708 
709 	if (ir < 0) {
710 		dev_err(codec->dev, "Unsupported samplerate: %u\n", rate);
711 		return -EINVAL;
712 	}
713 
714 	for (i = 0; i < 6; i++) {
715 		if (mcs_ratio_table[ir][i] == ratio) {
716 			mcs = i;
717 			break;
718 		}
719 	}
720 
721 	if (mcs < 0) {
722 		dev_err(codec->dev, "Unresolvable ratio: %u\n", ratio);
723 		return -EINVAL;
724 	}
725 
726 	confa = (ir << STA350_CONFA_IR_SHIFT) |
727 		(mcs << STA350_CONFA_MCS_SHIFT);
728 	confb = 0;
729 
730 	switch (params_width(params)) {
731 	case 24:
732 		dev_dbg(codec->dev, "24bit\n");
733 		/* fall through */
734 	case 32:
735 		dev_dbg(codec->dev, "24bit or 32bit\n");
736 		switch (sta350->format) {
737 		case SND_SOC_DAIFMT_I2S:
738 			confb |= 0x0;
739 			break;
740 		case SND_SOC_DAIFMT_LEFT_J:
741 			confb |= 0x1;
742 			break;
743 		case SND_SOC_DAIFMT_RIGHT_J:
744 			confb |= 0x2;
745 			break;
746 		}
747 
748 		break;
749 	case 20:
750 		dev_dbg(codec->dev, "20bit\n");
751 		switch (sta350->format) {
752 		case SND_SOC_DAIFMT_I2S:
753 			confb |= 0x4;
754 			break;
755 		case SND_SOC_DAIFMT_LEFT_J:
756 			confb |= 0x5;
757 			break;
758 		case SND_SOC_DAIFMT_RIGHT_J:
759 			confb |= 0x6;
760 			break;
761 		}
762 
763 		break;
764 	case 18:
765 		dev_dbg(codec->dev, "18bit\n");
766 		switch (sta350->format) {
767 		case SND_SOC_DAIFMT_I2S:
768 			confb |= 0x8;
769 			break;
770 		case SND_SOC_DAIFMT_LEFT_J:
771 			confb |= 0x9;
772 			break;
773 		case SND_SOC_DAIFMT_RIGHT_J:
774 			confb |= 0xa;
775 			break;
776 		}
777 
778 		break;
779 	case 16:
780 		dev_dbg(codec->dev, "16bit\n");
781 		switch (sta350->format) {
782 		case SND_SOC_DAIFMT_I2S:
783 			confb |= 0x0;
784 			break;
785 		case SND_SOC_DAIFMT_LEFT_J:
786 			confb |= 0xd;
787 			break;
788 		case SND_SOC_DAIFMT_RIGHT_J:
789 			confb |= 0xe;
790 			break;
791 		}
792 
793 		break;
794 	default:
795 		return -EINVAL;
796 	}
797 
798 	ret = regmap_update_bits(sta350->regmap, STA350_CONFA,
799 				 STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK,
800 				 confa);
801 	if (ret < 0)
802 		return ret;
803 
804 	ret = regmap_update_bits(sta350->regmap, STA350_CONFB,
805 				 STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB,
806 				 confb);
807 	if (ret < 0)
808 		return ret;
809 
810 	return 0;
811 }
812 
813 static int sta350_startup_sequence(struct sta350_priv *sta350)
814 {
815 	if (sta350->gpiod_power_down)
816 		gpiod_set_value(sta350->gpiod_power_down, 1);
817 
818 	if (sta350->gpiod_nreset) {
819 		gpiod_set_value(sta350->gpiod_nreset, 0);
820 		mdelay(1);
821 		gpiod_set_value(sta350->gpiod_nreset, 1);
822 		mdelay(1);
823 	}
824 
825 	return 0;
826 }
827 
828 /**
829  * sta350_set_bias_level - DAPM callback
830  * @codec: the codec device
831  * @level: DAPM power level
832  *
833  * This is called by ALSA to put the codec into low power mode
834  * or to wake it up.  If the codec is powered off completely
835  * all registers must be restored after power on.
836  */
837 static int sta350_set_bias_level(struct snd_soc_codec *codec,
838 				 enum snd_soc_bias_level level)
839 {
840 	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
841 	int ret;
842 
843 	dev_dbg(codec->dev, "level = %d\n", level);
844 	switch (level) {
845 	case SND_SOC_BIAS_ON:
846 		break;
847 
848 	case SND_SOC_BIAS_PREPARE:
849 		/* Full power on */
850 		regmap_update_bits(sta350->regmap, STA350_CONFF,
851 				   STA350_CONFF_PWDN | STA350_CONFF_EAPD,
852 				   STA350_CONFF_PWDN | STA350_CONFF_EAPD);
853 		break;
854 
855 	case SND_SOC_BIAS_STANDBY:
856 		if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) {
857 			ret = regulator_bulk_enable(
858 				ARRAY_SIZE(sta350->supplies),
859 				sta350->supplies);
860 			if (ret < 0) {
861 				dev_err(codec->dev,
862 					"Failed to enable supplies: %d\n",
863 					ret);
864 				return ret;
865 			}
866 			sta350_startup_sequence(sta350);
867 			sta350_cache_sync(codec);
868 		}
869 
870 		/* Power down */
871 		regmap_update_bits(sta350->regmap, STA350_CONFF,
872 				   STA350_CONFF_PWDN | STA350_CONFF_EAPD,
873 				   0);
874 
875 		break;
876 
877 	case SND_SOC_BIAS_OFF:
878 		/* The chip runs through the power down sequence for us */
879 		regmap_update_bits(sta350->regmap, STA350_CONFF,
880 				   STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0);
881 
882 		/* power down: low */
883 		if (sta350->gpiod_power_down)
884 			gpiod_set_value(sta350->gpiod_power_down, 0);
885 
886 		if (sta350->gpiod_nreset)
887 			gpiod_set_value(sta350->gpiod_nreset, 0);
888 
889 		regulator_bulk_disable(ARRAY_SIZE(sta350->supplies),
890 				       sta350->supplies);
891 		break;
892 	}
893 	return 0;
894 }
895 
896 static const struct snd_soc_dai_ops sta350_dai_ops = {
897 	.hw_params	= sta350_hw_params,
898 	.set_sysclk	= sta350_set_dai_sysclk,
899 	.set_fmt	= sta350_set_dai_fmt,
900 };
901 
902 static struct snd_soc_dai_driver sta350_dai = {
903 	.name = "sta350-hifi",
904 	.playback = {
905 		.stream_name = "Playback",
906 		.channels_min = 2,
907 		.channels_max = 2,
908 		.rates = STA350_RATES,
909 		.formats = STA350_FORMATS,
910 	},
911 	.ops = &sta350_dai_ops,
912 };
913 
914 static int sta350_probe(struct snd_soc_codec *codec)
915 {
916 	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
917 	struct sta350_platform_data *pdata = sta350->pdata;
918 	int i, ret = 0, thermal = 0;
919 
920 	ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies),
921 				    sta350->supplies);
922 	if (ret < 0) {
923 		dev_err(codec->dev, "Failed to enable supplies: %d\n", ret);
924 		return ret;
925 	}
926 
927 	ret = sta350_startup_sequence(sta350);
928 	if (ret < 0) {
929 		dev_err(codec->dev, "Failed to startup device\n");
930 		return ret;
931 	}
932 
933 	/* CONFA */
934 	if (!pdata->thermal_warning_recovery)
935 		thermal |= STA350_CONFA_TWAB;
936 	if (!pdata->thermal_warning_adjustment)
937 		thermal |= STA350_CONFA_TWRB;
938 	if (!pdata->fault_detect_recovery)
939 		thermal |= STA350_CONFA_FDRB;
940 	regmap_update_bits(sta350->regmap, STA350_CONFA,
941 			   STA350_CONFA_TWAB | STA350_CONFA_TWRB |
942 			   STA350_CONFA_FDRB,
943 			   thermal);
944 
945 	/* CONFC */
946 	regmap_update_bits(sta350->regmap, STA350_CONFC,
947 			   STA350_CONFC_OM_MASK,
948 			   pdata->ffx_power_output_mode
949 				<< STA350_CONFC_OM_SHIFT);
950 	regmap_update_bits(sta350->regmap, STA350_CONFC,
951 			   STA350_CONFC_CSZ_MASK,
952 			   pdata->drop_compensation_ns
953 				<< STA350_CONFC_CSZ_SHIFT);
954 	regmap_update_bits(sta350->regmap,
955 			   STA350_CONFC,
956 			   STA350_CONFC_OCRB,
957 			   pdata->oc_warning_adjustment ?
958 				STA350_CONFC_OCRB : 0);
959 
960 	/* CONFE */
961 	regmap_update_bits(sta350->regmap, STA350_CONFE,
962 			   STA350_CONFE_MPCV,
963 			   pdata->max_power_use_mpcc ?
964 				STA350_CONFE_MPCV : 0);
965 	regmap_update_bits(sta350->regmap, STA350_CONFE,
966 			   STA350_CONFE_MPC,
967 			   pdata->max_power_correction ?
968 				STA350_CONFE_MPC : 0);
969 	regmap_update_bits(sta350->regmap, STA350_CONFE,
970 			   STA350_CONFE_AME,
971 			   pdata->am_reduction_mode ?
972 				STA350_CONFE_AME : 0);
973 	regmap_update_bits(sta350->regmap, STA350_CONFE,
974 			   STA350_CONFE_PWMS,
975 			   pdata->odd_pwm_speed_mode ?
976 				STA350_CONFE_PWMS : 0);
977 	regmap_update_bits(sta350->regmap, STA350_CONFE,
978 			   STA350_CONFE_DCCV,
979 			   pdata->distortion_compensation ?
980 				STA350_CONFE_DCCV : 0);
981 	/*  CONFF */
982 	regmap_update_bits(sta350->regmap, STA350_CONFF,
983 			   STA350_CONFF_IDE,
984 			   pdata->invalid_input_detect_mute ?
985 				STA350_CONFF_IDE : 0);
986 	regmap_update_bits(sta350->regmap, STA350_CONFF,
987 			   STA350_CONFF_OCFG_MASK,
988 			   pdata->output_conf
989 				<< STA350_CONFF_OCFG_SHIFT);
990 
991 	/* channel to output mapping */
992 	regmap_update_bits(sta350->regmap, STA350_C1CFG,
993 			   STA350_CxCFG_OM_MASK,
994 			   pdata->ch1_output_mapping
995 				<< STA350_CxCFG_OM_SHIFT);
996 	regmap_update_bits(sta350->regmap, STA350_C2CFG,
997 			   STA350_CxCFG_OM_MASK,
998 			   pdata->ch2_output_mapping
999 				<< STA350_CxCFG_OM_SHIFT);
1000 	regmap_update_bits(sta350->regmap, STA350_C3CFG,
1001 			   STA350_CxCFG_OM_MASK,
1002 			   pdata->ch3_output_mapping
1003 				<< STA350_CxCFG_OM_SHIFT);
1004 
1005 	/* miscellaneous registers */
1006 	regmap_update_bits(sta350->regmap, STA350_MISC1,
1007 			   STA350_MISC1_CPWMEN,
1008 			   pdata->activate_mute_output ?
1009 				STA350_MISC1_CPWMEN : 0);
1010 	regmap_update_bits(sta350->regmap, STA350_MISC1,
1011 			   STA350_MISC1_BRIDGOFF,
1012 			   pdata->bridge_immediate_off ?
1013 				STA350_MISC1_BRIDGOFF : 0);
1014 	regmap_update_bits(sta350->regmap, STA350_MISC1,
1015 			   STA350_MISC1_NSHHPEN,
1016 			   pdata->noise_shape_dc_cut ?
1017 				STA350_MISC1_NSHHPEN : 0);
1018 	regmap_update_bits(sta350->regmap, STA350_MISC1,
1019 			   STA350_MISC1_RPDNEN,
1020 			   pdata->powerdown_master_vol ?
1021 				STA350_MISC1_RPDNEN: 0);
1022 
1023 	regmap_update_bits(sta350->regmap, STA350_MISC2,
1024 			   STA350_MISC2_PNDLSL_MASK,
1025 			   pdata->powerdown_delay_divider
1026 				<< STA350_MISC2_PNDLSL_SHIFT);
1027 
1028 	/* initialize coefficient shadow RAM with reset values */
1029 	for (i = 4; i <= 49; i += 5)
1030 		sta350->coef_shadow[i] = 0x400000;
1031 	for (i = 50; i <= 54; i++)
1032 		sta350->coef_shadow[i] = 0x7fffff;
1033 	sta350->coef_shadow[55] = 0x5a9df7;
1034 	sta350->coef_shadow[56] = 0x7fffff;
1035 	sta350->coef_shadow[59] = 0x7fffff;
1036 	sta350->coef_shadow[60] = 0x400000;
1037 	sta350->coef_shadow[61] = 0x400000;
1038 
1039 	snd_soc_codec_force_bias_level(codec, SND_SOC_BIAS_STANDBY);
1040 	/* Bias level configuration will have done an extra enable */
1041 	regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1042 
1043 	return 0;
1044 }
1045 
1046 static int sta350_remove(struct snd_soc_codec *codec)
1047 {
1048 	struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
1049 
1050 	regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1051 
1052 	return 0;
1053 }
1054 
1055 static const struct snd_soc_codec_driver sta350_codec = {
1056 	.probe =		sta350_probe,
1057 	.remove =		sta350_remove,
1058 	.set_bias_level =	sta350_set_bias_level,
1059 	.suspend_bias_off =	true,
1060 	.component_driver = {
1061 		.controls =		sta350_snd_controls,
1062 		.num_controls =		ARRAY_SIZE(sta350_snd_controls),
1063 		.dapm_widgets =		sta350_dapm_widgets,
1064 		.num_dapm_widgets =	ARRAY_SIZE(sta350_dapm_widgets),
1065 		.dapm_routes =		sta350_dapm_routes,
1066 		.num_dapm_routes =	ARRAY_SIZE(sta350_dapm_routes),
1067 	},
1068 };
1069 
1070 static const struct regmap_config sta350_regmap = {
1071 	.reg_bits =		8,
1072 	.val_bits =		8,
1073 	.max_register =		STA350_MISC2,
1074 	.reg_defaults =		sta350_regs,
1075 	.num_reg_defaults =	ARRAY_SIZE(sta350_regs),
1076 	.cache_type =		REGCACHE_RBTREE,
1077 	.wr_table =		&sta350_write_regs,
1078 	.rd_table =		&sta350_read_regs,
1079 	.volatile_table =	&sta350_volatile_regs,
1080 };
1081 
1082 #ifdef CONFIG_OF
1083 static const struct of_device_id st350_dt_ids[] = {
1084 	{ .compatible = "st,sta350", },
1085 	{ }
1086 };
1087 MODULE_DEVICE_TABLE(of, st350_dt_ids);
1088 
1089 static const char * const sta350_ffx_modes[] = {
1090 	[STA350_FFX_PM_DROP_COMP]		= "drop-compensation",
1091 	[STA350_FFX_PM_TAPERED_COMP]		= "tapered-compensation",
1092 	[STA350_FFX_PM_FULL_POWER]		= "full-power-mode",
1093 	[STA350_FFX_PM_VARIABLE_DROP_COMP]	= "variable-drop-compensation",
1094 };
1095 
1096 static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350)
1097 {
1098 	struct device_node *np = dev->of_node;
1099 	struct sta350_platform_data *pdata;
1100 	const char *ffx_power_mode;
1101 	u16 tmp;
1102 	u8 tmp8;
1103 
1104 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1105 	if (!pdata)
1106 		return -ENOMEM;
1107 
1108 	of_property_read_u8(np, "st,output-conf",
1109 			    &pdata->output_conf);
1110 	of_property_read_u8(np, "st,ch1-output-mapping",
1111 			    &pdata->ch1_output_mapping);
1112 	of_property_read_u8(np, "st,ch2-output-mapping",
1113 			    &pdata->ch2_output_mapping);
1114 	of_property_read_u8(np, "st,ch3-output-mapping",
1115 			    &pdata->ch3_output_mapping);
1116 
1117 	if (of_get_property(np, "st,thermal-warning-recovery", NULL))
1118 		pdata->thermal_warning_recovery = 1;
1119 	if (of_get_property(np, "st,thermal-warning-adjustment", NULL))
1120 		pdata->thermal_warning_adjustment = 1;
1121 	if (of_get_property(np, "st,fault-detect-recovery", NULL))
1122 		pdata->fault_detect_recovery = 1;
1123 
1124 	pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP;
1125 	if (!of_property_read_string(np, "st,ffx-power-output-mode",
1126 				     &ffx_power_mode)) {
1127 		int i, mode = -EINVAL;
1128 
1129 		for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++)
1130 			if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i]))
1131 				mode = i;
1132 
1133 		if (mode < 0)
1134 			dev_warn(dev, "Unsupported ffx output mode: %s\n",
1135 				 ffx_power_mode);
1136 		else
1137 			pdata->ffx_power_output_mode = mode;
1138 	}
1139 
1140 	tmp = 140;
1141 	of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1142 	pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1143 
1144 	if (of_get_property(np, "st,overcurrent-warning-adjustment", NULL))
1145 		pdata->oc_warning_adjustment = 1;
1146 
1147 	/* CONFE */
1148 	if (of_get_property(np, "st,max-power-use-mpcc", NULL))
1149 		pdata->max_power_use_mpcc = 1;
1150 
1151 	if (of_get_property(np, "st,max-power-correction", NULL))
1152 		pdata->max_power_correction = 1;
1153 
1154 	if (of_get_property(np, "st,am-reduction-mode", NULL))
1155 		pdata->am_reduction_mode = 1;
1156 
1157 	if (of_get_property(np, "st,odd-pwm-speed-mode", NULL))
1158 		pdata->odd_pwm_speed_mode = 1;
1159 
1160 	if (of_get_property(np, "st,distortion-compensation", NULL))
1161 		pdata->distortion_compensation = 1;
1162 
1163 	/* CONFF */
1164 	if (of_get_property(np, "st,invalid-input-detect-mute", NULL))
1165 		pdata->invalid_input_detect_mute = 1;
1166 
1167 	/* MISC */
1168 	if (of_get_property(np, "st,activate-mute-output", NULL))
1169 		pdata->activate_mute_output = 1;
1170 
1171 	if (of_get_property(np, "st,bridge-immediate-off", NULL))
1172 		pdata->bridge_immediate_off = 1;
1173 
1174 	if (of_get_property(np, "st,noise-shape-dc-cut", NULL))
1175 		pdata->noise_shape_dc_cut = 1;
1176 
1177 	if (of_get_property(np, "st,powerdown-master-volume", NULL))
1178 		pdata->powerdown_master_vol = 1;
1179 
1180 	if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) {
1181 		if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128)
1182 			pdata->powerdown_delay_divider = ilog2(tmp8);
1183 		else
1184 			dev_warn(dev, "Unsupported powerdown delay divider %d\n",
1185 				 tmp8);
1186 	}
1187 
1188 	sta350->pdata = pdata;
1189 
1190 	return 0;
1191 }
1192 #endif
1193 
1194 static int sta350_i2c_probe(struct i2c_client *i2c,
1195 			    const struct i2c_device_id *id)
1196 {
1197 	struct device *dev = &i2c->dev;
1198 	struct sta350_priv *sta350;
1199 	int ret, i;
1200 
1201 	sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL);
1202 	if (!sta350)
1203 		return -ENOMEM;
1204 
1205 	mutex_init(&sta350->coeff_lock);
1206 	sta350->pdata = dev_get_platdata(dev);
1207 
1208 #ifdef CONFIG_OF
1209 	if (dev->of_node) {
1210 		ret = sta350_probe_dt(dev, sta350);
1211 		if (ret < 0)
1212 			return ret;
1213 	}
1214 #endif
1215 
1216 	/* GPIOs */
1217 	sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1218 						       GPIOD_OUT_LOW);
1219 	if (IS_ERR(sta350->gpiod_nreset))
1220 		return PTR_ERR(sta350->gpiod_nreset);
1221 
1222 	sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down",
1223 							   GPIOD_OUT_LOW);
1224 	if (IS_ERR(sta350->gpiod_power_down))
1225 		return PTR_ERR(sta350->gpiod_power_down);
1226 
1227 	/* regulators */
1228 	for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++)
1229 		sta350->supplies[i].supply = sta350_supply_names[i];
1230 
1231 	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies),
1232 				      sta350->supplies);
1233 	if (ret < 0) {
1234 		dev_err(dev, "Failed to request supplies: %d\n", ret);
1235 		return ret;
1236 	}
1237 
1238 	sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap);
1239 	if (IS_ERR(sta350->regmap)) {
1240 		ret = PTR_ERR(sta350->regmap);
1241 		dev_err(dev, "Failed to init regmap: %d\n", ret);
1242 		return ret;
1243 	}
1244 
1245 	i2c_set_clientdata(i2c, sta350);
1246 
1247 	ret = snd_soc_register_codec(dev, &sta350_codec, &sta350_dai, 1);
1248 	if (ret < 0)
1249 		dev_err(dev, "Failed to register codec (%d)\n", ret);
1250 
1251 	return ret;
1252 }
1253 
1254 static int sta350_i2c_remove(struct i2c_client *client)
1255 {
1256 	snd_soc_unregister_codec(&client->dev);
1257 	return 0;
1258 }
1259 
1260 static const struct i2c_device_id sta350_i2c_id[] = {
1261 	{ "sta350", 0 },
1262 	{ }
1263 };
1264 MODULE_DEVICE_TABLE(i2c, sta350_i2c_id);
1265 
1266 static struct i2c_driver sta350_i2c_driver = {
1267 	.driver = {
1268 		.name = "sta350",
1269 		.of_match_table = of_match_ptr(st350_dt_ids),
1270 	},
1271 	.probe =    sta350_i2c_probe,
1272 	.remove =   sta350_i2c_remove,
1273 	.id_table = sta350_i2c_id,
1274 };
1275 
1276 module_i2c_driver(sta350_i2c_driver);
1277 
1278 MODULE_DESCRIPTION("ASoC STA350 driver");
1279 MODULE_AUTHOR("Sven Brandau <info@brandau.biz>");
1280 MODULE_LICENSE("GPL");
1281