xref: /openbmc/linux/sound/soc/codecs/sta32x.c (revision e1f7c9ee)
1 /*
2  * Codec driver for ST STA32x 2.1-channel high-efficiency digital audio system
3  *
4  * Copyright: 2011 Raumfeld GmbH
5  * Author: Johannes Stezenbach <js@sig21.net>
6  *
7  * based on code from:
8  *	Wolfson Microelectronics PLC.
9  *	  Mark Brown <broonie@opensource.wolfsonmicro.com>
10  *	Freescale Semiconductor, Inc.
11  *	  Timur Tabi <timur@freescale.com>
12  *
13  * This program is free software; you can redistribute  it and/or modify it
14  * under  the terms of  the GNU General  Public License as published by the
15  * Free Software Foundation;  either version 2 of the  License, or (at your
16  * option) any later version.
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
20 
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/pm.h>
26 #include <linux/i2c.h>
27 #include <linux/regmap.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/slab.h>
30 #include <linux/workqueue.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
37 #include <sound/tlv.h>
38 
39 #include <sound/sta32x.h>
40 #include "sta32x.h"
41 
42 #define STA32X_RATES (SNDRV_PCM_RATE_32000 | \
43 		      SNDRV_PCM_RATE_44100 | \
44 		      SNDRV_PCM_RATE_48000 | \
45 		      SNDRV_PCM_RATE_88200 | \
46 		      SNDRV_PCM_RATE_96000 | \
47 		      SNDRV_PCM_RATE_176400 | \
48 		      SNDRV_PCM_RATE_192000)
49 
50 #define STA32X_FORMATS \
51 	(SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S16_BE  | \
52 	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
53 	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
54 	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
55 	 SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S24_BE  | \
56 	 SNDRV_PCM_FMTBIT_S32_LE  | SNDRV_PCM_FMTBIT_S32_BE)
57 
58 /* Power-up register defaults */
59 static const struct reg_default sta32x_regs[] = {
60 	{  0x0, 0x63 },
61 	{  0x1, 0x80 },
62 	{  0x2, 0xc2 },
63 	{  0x3, 0x40 },
64 	{  0x4, 0xc2 },
65 	{  0x5, 0x5c },
66 	{  0x6, 0x10 },
67 	{  0x7, 0xff },
68 	{  0x8, 0x60 },
69 	{  0x9, 0x60 },
70 	{  0xa, 0x60 },
71 	{  0xb, 0x80 },
72 	{  0xc, 0x00 },
73 	{  0xd, 0x00 },
74 	{  0xe, 0x00 },
75 	{  0xf, 0x40 },
76 	{ 0x10, 0x80 },
77 	{ 0x11, 0x77 },
78 	{ 0x12, 0x6a },
79 	{ 0x13, 0x69 },
80 	{ 0x14, 0x6a },
81 	{ 0x15, 0x69 },
82 	{ 0x16, 0x00 },
83 	{ 0x17, 0x00 },
84 	{ 0x18, 0x00 },
85 	{ 0x19, 0x00 },
86 	{ 0x1a, 0x00 },
87 	{ 0x1b, 0x00 },
88 	{ 0x1c, 0x00 },
89 	{ 0x1d, 0x00 },
90 	{ 0x1e, 0x00 },
91 	{ 0x1f, 0x00 },
92 	{ 0x20, 0x00 },
93 	{ 0x21, 0x00 },
94 	{ 0x22, 0x00 },
95 	{ 0x23, 0x00 },
96 	{ 0x24, 0x00 },
97 	{ 0x25, 0x00 },
98 	{ 0x26, 0x00 },
99 	{ 0x27, 0x2d },
100 	{ 0x28, 0xc0 },
101 	{ 0x2b, 0x00 },
102 	{ 0x2c, 0x0c },
103 };
104 
105 /* regulator power supply names */
106 static const char *sta32x_supply_names[] = {
107 	"Vdda",	/* analog supply, 3.3VV */
108 	"Vdd3",	/* digital supply, 3.3V */
109 	"Vcc"	/* power amp spply, 10V - 36V */
110 };
111 
112 /* codec private data */
113 struct sta32x_priv {
114 	struct regmap *regmap;
115 	struct regulator_bulk_data supplies[ARRAY_SIZE(sta32x_supply_names)];
116 	struct snd_soc_codec *codec;
117 	struct sta32x_platform_data *pdata;
118 
119 	unsigned int mclk;
120 	unsigned int format;
121 
122 	u32 coef_shadow[STA32X_COEF_COUNT];
123 	struct delayed_work watchdog_work;
124 	int shutdown;
125 };
126 
127 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12700, 50, 1);
128 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
129 static const DECLARE_TLV_DB_SCALE(tone_tlv, -120, 200, 0);
130 
131 static const char *sta32x_drc_ac[] = {
132 	"Anti-Clipping", "Dynamic Range Compression" };
133 static const char *sta32x_auto_eq_mode[] = {
134 	"User", "Preset", "Loudness" };
135 static const char *sta32x_auto_gc_mode[] = {
136 	"User", "AC no clipping", "AC limited clipping (10%)",
137 	"DRC nighttime listening mode" };
138 static const char *sta32x_auto_xo_mode[] = {
139 	"User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz",
140 	"220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" };
141 static const char *sta32x_preset_eq_mode[] = {
142 	"Flat", "Rock", "Soft Rock", "Jazz", "Classical", "Dance", "Pop", "Soft",
143 	"Hard", "Party", "Vocal", "Hip-Hop", "Dialog", "Bass-boost #1",
144 	"Bass-boost #2", "Bass-boost #3", "Loudness 1", "Loudness 2",
145 	"Loudness 3", "Loudness 4", "Loudness 5", "Loudness 6", "Loudness 7",
146 	"Loudness 8", "Loudness 9", "Loudness 10", "Loudness 11", "Loudness 12",
147 	"Loudness 13", "Loudness 14", "Loudness 15", "Loudness 16" };
148 static const char *sta32x_limiter_select[] = {
149 	"Limiter Disabled", "Limiter #1", "Limiter #2" };
150 static const char *sta32x_limiter_attack_rate[] = {
151 	"3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
152 	"0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
153 	"0.0645", "0.0564", "0.0501", "0.0451" };
154 static const char *sta32x_limiter_release_rate[] = {
155 	"0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
156 	"0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
157 	"0.0134", "0.0117", "0.0110", "0.0104" };
158 
159 static const unsigned int sta32x_limiter_ac_attack_tlv[] = {
160 	TLV_DB_RANGE_HEAD(2),
161 	0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
162 	8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
163 };
164 
165 static const unsigned int sta32x_limiter_ac_release_tlv[] = {
166 	TLV_DB_RANGE_HEAD(5),
167 	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
168 	1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
169 	2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
170 	3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
171 	8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
172 };
173 
174 static const unsigned int sta32x_limiter_drc_attack_tlv[] = {
175 	TLV_DB_RANGE_HEAD(3),
176 	0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
177 	8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
178 	14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
179 };
180 
181 static const unsigned int sta32x_limiter_drc_release_tlv[] = {
182 	TLV_DB_RANGE_HEAD(5),
183 	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
184 	1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
185 	3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
186 	5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
187 	13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
188 };
189 
190 static SOC_ENUM_SINGLE_DECL(sta32x_drc_ac_enum,
191 			    STA32X_CONFD, STA32X_CONFD_DRC_SHIFT,
192 			    sta32x_drc_ac);
193 static SOC_ENUM_SINGLE_DECL(sta32x_auto_eq_enum,
194 			    STA32X_AUTO1, STA32X_AUTO1_AMEQ_SHIFT,
195 			    sta32x_auto_eq_mode);
196 static SOC_ENUM_SINGLE_DECL(sta32x_auto_gc_enum,
197 			    STA32X_AUTO1, STA32X_AUTO1_AMGC_SHIFT,
198 			    sta32x_auto_gc_mode);
199 static SOC_ENUM_SINGLE_DECL(sta32x_auto_xo_enum,
200 			    STA32X_AUTO2, STA32X_AUTO2_XO_SHIFT,
201 			    sta32x_auto_xo_mode);
202 static SOC_ENUM_SINGLE_DECL(sta32x_preset_eq_enum,
203 			    STA32X_AUTO3, STA32X_AUTO3_PEQ_SHIFT,
204 			    sta32x_preset_eq_mode);
205 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch1_enum,
206 			    STA32X_C1CFG, STA32X_CxCFG_LS_SHIFT,
207 			    sta32x_limiter_select);
208 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch2_enum,
209 			    STA32X_C2CFG, STA32X_CxCFG_LS_SHIFT,
210 			    sta32x_limiter_select);
211 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch3_enum,
212 			    STA32X_C3CFG, STA32X_CxCFG_LS_SHIFT,
213 			    sta32x_limiter_select);
214 static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_attack_rate_enum,
215 			    STA32X_L1AR, STA32X_LxA_SHIFT,
216 			    sta32x_limiter_attack_rate);
217 static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_attack_rate_enum,
218 			    STA32X_L2AR, STA32X_LxA_SHIFT,
219 			    sta32x_limiter_attack_rate);
220 static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_release_rate_enum,
221 			    STA32X_L1AR, STA32X_LxR_SHIFT,
222 			    sta32x_limiter_release_rate);
223 static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_release_rate_enum,
224 			    STA32X_L2AR, STA32X_LxR_SHIFT,
225 			    sta32x_limiter_release_rate);
226 
227 /* byte array controls for setting biquad, mixer, scaling coefficients;
228  * for biquads all five coefficients need to be set in one go,
229  * mixer and pre/postscale coefs can be set individually;
230  * each coef is 24bit, the bytes are ordered in the same way
231  * as given in the STA32x data sheet (big endian; b1, b2, a1, a2, b0)
232  */
233 
234 static int sta32x_coefficient_info(struct snd_kcontrol *kcontrol,
235 				   struct snd_ctl_elem_info *uinfo)
236 {
237 	int numcoef = kcontrol->private_value >> 16;
238 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
239 	uinfo->count = 3 * numcoef;
240 	return 0;
241 }
242 
243 static int sta32x_coefficient_get(struct snd_kcontrol *kcontrol,
244 				  struct snd_ctl_elem_value *ucontrol)
245 {
246 	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
247 	int numcoef = kcontrol->private_value >> 16;
248 	int index = kcontrol->private_value & 0xffff;
249 	unsigned int cfud;
250 	int i;
251 
252 	/* preserve reserved bits in STA32X_CFUD */
253 	cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
254 	/* chip documentation does not say if the bits are self clearing,
255 	 * so do it explicitly */
256 	snd_soc_write(codec, STA32X_CFUD, cfud);
257 
258 	snd_soc_write(codec, STA32X_CFADDR2, index);
259 	if (numcoef == 1)
260 		snd_soc_write(codec, STA32X_CFUD, cfud | 0x04);
261 	else if (numcoef == 5)
262 		snd_soc_write(codec, STA32X_CFUD, cfud | 0x08);
263 	else
264 		return -EINVAL;
265 	for (i = 0; i < 3 * numcoef; i++)
266 		ucontrol->value.bytes.data[i] =
267 			snd_soc_read(codec, STA32X_B1CF1 + i);
268 
269 	return 0;
270 }
271 
272 static int sta32x_coefficient_put(struct snd_kcontrol *kcontrol,
273 				  struct snd_ctl_elem_value *ucontrol)
274 {
275 	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
276 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
277 	int numcoef = kcontrol->private_value >> 16;
278 	int index = kcontrol->private_value & 0xffff;
279 	unsigned int cfud;
280 	int i;
281 
282 	/* preserve reserved bits in STA32X_CFUD */
283 	cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
284 	/* chip documentation does not say if the bits are self clearing,
285 	 * so do it explicitly */
286 	snd_soc_write(codec, STA32X_CFUD, cfud);
287 
288 	snd_soc_write(codec, STA32X_CFADDR2, index);
289 	for (i = 0; i < numcoef && (index + i < STA32X_COEF_COUNT); i++)
290 		sta32x->coef_shadow[index + i] =
291 			  (ucontrol->value.bytes.data[3 * i] << 16)
292 			| (ucontrol->value.bytes.data[3 * i + 1] << 8)
293 			| (ucontrol->value.bytes.data[3 * i + 2]);
294 	for (i = 0; i < 3 * numcoef; i++)
295 		snd_soc_write(codec, STA32X_B1CF1 + i,
296 			      ucontrol->value.bytes.data[i]);
297 	if (numcoef == 1)
298 		snd_soc_write(codec, STA32X_CFUD, cfud | 0x01);
299 	else if (numcoef == 5)
300 		snd_soc_write(codec, STA32X_CFUD, cfud | 0x02);
301 	else
302 		return -EINVAL;
303 
304 	return 0;
305 }
306 
307 static int sta32x_sync_coef_shadow(struct snd_soc_codec *codec)
308 {
309 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
310 	unsigned int cfud;
311 	int i;
312 
313 	/* preserve reserved bits in STA32X_CFUD */
314 	cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
315 
316 	for (i = 0; i < STA32X_COEF_COUNT; i++) {
317 		snd_soc_write(codec, STA32X_CFADDR2, i);
318 		snd_soc_write(codec, STA32X_B1CF1,
319 			      (sta32x->coef_shadow[i] >> 16) & 0xff);
320 		snd_soc_write(codec, STA32X_B1CF2,
321 			      (sta32x->coef_shadow[i] >> 8) & 0xff);
322 		snd_soc_write(codec, STA32X_B1CF3,
323 			      (sta32x->coef_shadow[i]) & 0xff);
324 		/* chip documentation does not say if the bits are
325 		 * self-clearing, so do it explicitly */
326 		snd_soc_write(codec, STA32X_CFUD, cfud);
327 		snd_soc_write(codec, STA32X_CFUD, cfud | 0x01);
328 	}
329 	return 0;
330 }
331 
332 static int sta32x_cache_sync(struct snd_soc_codec *codec)
333 {
334 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
335 	unsigned int mute;
336 	int rc;
337 
338 	/* mute during register sync */
339 	mute = snd_soc_read(codec, STA32X_MMUTE);
340 	snd_soc_write(codec, STA32X_MMUTE, mute | STA32X_MMUTE_MMUTE);
341 	sta32x_sync_coef_shadow(codec);
342 	rc = regcache_sync(sta32x->regmap);
343 	snd_soc_write(codec, STA32X_MMUTE, mute);
344 	return rc;
345 }
346 
347 /* work around ESD issue where sta32x resets and loses all configuration */
348 static void sta32x_watchdog(struct work_struct *work)
349 {
350 	struct sta32x_priv *sta32x = container_of(work, struct sta32x_priv,
351 						  watchdog_work.work);
352 	struct snd_soc_codec *codec = sta32x->codec;
353 	unsigned int confa, confa_cached;
354 
355 	/* check if sta32x has reset itself */
356 	confa_cached = snd_soc_read(codec, STA32X_CONFA);
357 	regcache_cache_bypass(sta32x->regmap, true);
358 	confa = snd_soc_read(codec, STA32X_CONFA);
359 	regcache_cache_bypass(sta32x->regmap, false);
360 	if (confa != confa_cached) {
361 		regcache_mark_dirty(sta32x->regmap);
362 		sta32x_cache_sync(codec);
363 	}
364 
365 	if (!sta32x->shutdown)
366 		queue_delayed_work(system_power_efficient_wq,
367 				   &sta32x->watchdog_work,
368 				   round_jiffies_relative(HZ));
369 }
370 
371 static void sta32x_watchdog_start(struct sta32x_priv *sta32x)
372 {
373 	if (sta32x->pdata->needs_esd_watchdog) {
374 		sta32x->shutdown = 0;
375 		queue_delayed_work(system_power_efficient_wq,
376 				   &sta32x->watchdog_work,
377 				   round_jiffies_relative(HZ));
378 	}
379 }
380 
381 static void sta32x_watchdog_stop(struct sta32x_priv *sta32x)
382 {
383 	if (sta32x->pdata->needs_esd_watchdog) {
384 		sta32x->shutdown = 1;
385 		cancel_delayed_work_sync(&sta32x->watchdog_work);
386 	}
387 }
388 
389 #define SINGLE_COEF(xname, index) \
390 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
391 	.info = sta32x_coefficient_info, \
392 	.get = sta32x_coefficient_get,\
393 	.put = sta32x_coefficient_put, \
394 	.private_value = index | (1 << 16) }
395 
396 #define BIQUAD_COEFS(xname, index) \
397 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
398 	.info = sta32x_coefficient_info, \
399 	.get = sta32x_coefficient_get,\
400 	.put = sta32x_coefficient_put, \
401 	.private_value = index | (5 << 16) }
402 
403 static const struct snd_kcontrol_new sta32x_snd_controls[] = {
404 SOC_SINGLE_TLV("Master Volume", STA32X_MVOL, 0, 0xff, 1, mvol_tlv),
405 SOC_SINGLE("Master Switch", STA32X_MMUTE, 0, 1, 1),
406 SOC_SINGLE("Ch1 Switch", STA32X_MMUTE, 1, 1, 1),
407 SOC_SINGLE("Ch2 Switch", STA32X_MMUTE, 2, 1, 1),
408 SOC_SINGLE("Ch3 Switch", STA32X_MMUTE, 3, 1, 1),
409 SOC_SINGLE_TLV("Ch1 Volume", STA32X_C1VOL, 0, 0xff, 1, chvol_tlv),
410 SOC_SINGLE_TLV("Ch2 Volume", STA32X_C2VOL, 0, 0xff, 1, chvol_tlv),
411 SOC_SINGLE_TLV("Ch3 Volume", STA32X_C3VOL, 0, 0xff, 1, chvol_tlv),
412 SOC_SINGLE("De-emphasis Filter Switch", STA32X_CONFD, STA32X_CONFD_DEMP_SHIFT, 1, 0),
413 SOC_ENUM("Compressor/Limiter Switch", sta32x_drc_ac_enum),
414 SOC_SINGLE("Miami Mode Switch", STA32X_CONFD, STA32X_CONFD_MME_SHIFT, 1, 0),
415 SOC_SINGLE("Zero Cross Switch", STA32X_CONFE, STA32X_CONFE_ZCE_SHIFT, 1, 0),
416 SOC_SINGLE("Soft Ramp Switch", STA32X_CONFE, STA32X_CONFE_SVE_SHIFT, 1, 0),
417 SOC_SINGLE("Auto-Mute Switch", STA32X_CONFF, STA32X_CONFF_IDE_SHIFT, 1, 0),
418 SOC_ENUM("Automode EQ", sta32x_auto_eq_enum),
419 SOC_ENUM("Automode GC", sta32x_auto_gc_enum),
420 SOC_ENUM("Automode XO", sta32x_auto_xo_enum),
421 SOC_ENUM("Preset EQ", sta32x_preset_eq_enum),
422 SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
423 SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
424 SOC_SINGLE("Ch1 EQ Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
425 SOC_SINGLE("Ch2 EQ Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
426 SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
427 SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
428 SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
429 SOC_ENUM("Ch1 Limiter Select", sta32x_limiter_ch1_enum),
430 SOC_ENUM("Ch2 Limiter Select", sta32x_limiter_ch2_enum),
431 SOC_ENUM("Ch3 Limiter Select", sta32x_limiter_ch3_enum),
432 SOC_SINGLE_TLV("Bass Tone Control", STA32X_TONE, STA32X_TONE_BTC_SHIFT, 15, 0, tone_tlv),
433 SOC_SINGLE_TLV("Treble Tone Control", STA32X_TONE, STA32X_TONE_TTC_SHIFT, 15, 0, tone_tlv),
434 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta32x_limiter1_attack_rate_enum),
435 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta32x_limiter2_attack_rate_enum),
436 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
437 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta32x_limiter2_release_rate_enum),
438 
439 /* depending on mode, the attack/release thresholds have
440  * two different enum definitions; provide both
441  */
442 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
443 	       16, 0, sta32x_limiter_ac_attack_tlv),
444 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
445 	       16, 0, sta32x_limiter_ac_attack_tlv),
446 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
447 	       16, 0, sta32x_limiter_ac_release_tlv),
448 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
449 	       16, 0, sta32x_limiter_ac_release_tlv),
450 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
451 	       16, 0, sta32x_limiter_drc_attack_tlv),
452 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
453 	       16, 0, sta32x_limiter_drc_attack_tlv),
454 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
455 	       16, 0, sta32x_limiter_drc_release_tlv),
456 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
457 	       16, 0, sta32x_limiter_drc_release_tlv),
458 
459 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
460 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
461 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
462 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
463 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
464 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
465 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
466 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
467 BIQUAD_COEFS("High-pass", 40),
468 BIQUAD_COEFS("Low-pass", 45),
469 SINGLE_COEF("Ch1 - Prescale", 50),
470 SINGLE_COEF("Ch2 - Prescale", 51),
471 SINGLE_COEF("Ch1 - Postscale", 52),
472 SINGLE_COEF("Ch2 - Postscale", 53),
473 SINGLE_COEF("Ch3 - Postscale", 54),
474 SINGLE_COEF("Thermal warning - Postscale", 55),
475 SINGLE_COEF("Ch1 - Mix 1", 56),
476 SINGLE_COEF("Ch1 - Mix 2", 57),
477 SINGLE_COEF("Ch2 - Mix 1", 58),
478 SINGLE_COEF("Ch2 - Mix 2", 59),
479 SINGLE_COEF("Ch3 - Mix 1", 60),
480 SINGLE_COEF("Ch3 - Mix 2", 61),
481 };
482 
483 static const struct snd_soc_dapm_widget sta32x_dapm_widgets[] = {
484 SND_SOC_DAPM_DAC("DAC", "Playback", SND_SOC_NOPM, 0, 0),
485 SND_SOC_DAPM_OUTPUT("LEFT"),
486 SND_SOC_DAPM_OUTPUT("RIGHT"),
487 SND_SOC_DAPM_OUTPUT("SUB"),
488 };
489 
490 static const struct snd_soc_dapm_route sta32x_dapm_routes[] = {
491 	{ "LEFT", NULL, "DAC" },
492 	{ "RIGHT", NULL, "DAC" },
493 	{ "SUB", NULL, "DAC" },
494 };
495 
496 /* MCLK interpolation ratio per fs */
497 static struct {
498 	int fs;
499 	int ir;
500 } interpolation_ratios[] = {
501 	{ 32000, 0 },
502 	{ 44100, 0 },
503 	{ 48000, 0 },
504 	{ 88200, 1 },
505 	{ 96000, 1 },
506 	{ 176400, 2 },
507 	{ 192000, 2 },
508 };
509 
510 /* MCLK to fs clock ratios */
511 static struct {
512 	int ratio;
513 	int mcs;
514 } mclk_ratios[3][7] = {
515 	{ { 768, 0 }, { 512, 1 }, { 384, 2 }, { 256, 3 },
516 	  { 128, 4 }, { 576, 5 }, { 0, 0 } },
517 	{ { 384, 2 }, { 256, 3 }, { 192, 4 }, { 128, 5 }, {64, 0 }, { 0, 0 } },
518 	{ { 384, 2 }, { 256, 3 }, { 192, 4 }, { 128, 5 }, {64, 0 }, { 0, 0 } },
519 };
520 
521 
522 /**
523  * sta32x_set_dai_sysclk - configure MCLK
524  * @codec_dai: the codec DAI
525  * @clk_id: the clock ID (ignored)
526  * @freq: the MCLK input frequency
527  * @dir: the clock direction (ignored)
528  *
529  * The value of MCLK is used to determine which sample rates are supported
530  * by the STA32X, based on the mclk_ratios table.
531  *
532  * This function must be called by the machine driver's 'startup' function,
533  * otherwise the list of supported sample rates will not be available in
534  * time for ALSA.
535  *
536  * For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause
537  * theoretically possible sample rates to be enabled. Call it again with a
538  * proper value set one the external clock is set (most probably you would do
539  * that from a machine's driver 'hw_param' hook.
540  */
541 static int sta32x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
542 		int clk_id, unsigned int freq, int dir)
543 {
544 	struct snd_soc_codec *codec = codec_dai->codec;
545 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
546 	int i, j, ir, fs;
547 	unsigned int rates = 0;
548 	unsigned int rate_min = -1;
549 	unsigned int rate_max = 0;
550 
551 	pr_debug("mclk=%u\n", freq);
552 	sta32x->mclk = freq;
553 
554 	if (sta32x->mclk) {
555 		for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
556 			ir = interpolation_ratios[i].ir;
557 			fs = interpolation_ratios[i].fs;
558 			for (j = 0; mclk_ratios[ir][j].ratio; j++) {
559 				if (mclk_ratios[ir][j].ratio * fs == freq) {
560 					rates |= snd_pcm_rate_to_rate_bit(fs);
561 					if (fs < rate_min)
562 						rate_min = fs;
563 					if (fs > rate_max)
564 						rate_max = fs;
565 					break;
566 				}
567 			}
568 		}
569 		/* FIXME: soc should support a rate list */
570 		rates &= ~SNDRV_PCM_RATE_KNOT;
571 
572 		if (!rates) {
573 			dev_err(codec->dev, "could not find a valid sample rate\n");
574 			return -EINVAL;
575 		}
576 	} else {
577 		/* enable all possible rates */
578 		rates = STA32X_RATES;
579 		rate_min = 32000;
580 		rate_max = 192000;
581 	}
582 
583 	codec_dai->driver->playback.rates = rates;
584 	codec_dai->driver->playback.rate_min = rate_min;
585 	codec_dai->driver->playback.rate_max = rate_max;
586 	return 0;
587 }
588 
589 /**
590  * sta32x_set_dai_fmt - configure the codec for the selected audio format
591  * @codec_dai: the codec DAI
592  * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
593  *
594  * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
595  * codec accordingly.
596  */
597 static int sta32x_set_dai_fmt(struct snd_soc_dai *codec_dai,
598 			      unsigned int fmt)
599 {
600 	struct snd_soc_codec *codec = codec_dai->codec;
601 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
602 	u8 confb = snd_soc_read(codec, STA32X_CONFB);
603 
604 	pr_debug("\n");
605 	confb &= ~(STA32X_CONFB_C1IM | STA32X_CONFB_C2IM);
606 
607 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
608 	case SND_SOC_DAIFMT_CBS_CFS:
609 		break;
610 	default:
611 		return -EINVAL;
612 	}
613 
614 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
615 	case SND_SOC_DAIFMT_I2S:
616 	case SND_SOC_DAIFMT_RIGHT_J:
617 	case SND_SOC_DAIFMT_LEFT_J:
618 		sta32x->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
619 		break;
620 	default:
621 		return -EINVAL;
622 	}
623 
624 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
625 	case SND_SOC_DAIFMT_NB_NF:
626 		confb |= STA32X_CONFB_C2IM;
627 		break;
628 	case SND_SOC_DAIFMT_NB_IF:
629 		confb |= STA32X_CONFB_C1IM;
630 		break;
631 	default:
632 		return -EINVAL;
633 	}
634 
635 	snd_soc_write(codec, STA32X_CONFB, confb);
636 	return 0;
637 }
638 
639 /**
640  * sta32x_hw_params - program the STA32X with the given hardware parameters.
641  * @substream: the audio stream
642  * @params: the hardware parameters to set
643  * @dai: the SOC DAI (ignored)
644  *
645  * This function programs the hardware with the values provided.
646  * Specifically, the sample rate and the data format.
647  */
648 static int sta32x_hw_params(struct snd_pcm_substream *substream,
649 			    struct snd_pcm_hw_params *params,
650 			    struct snd_soc_dai *dai)
651 {
652 	struct snd_soc_codec *codec = dai->codec;
653 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
654 	unsigned int rate;
655 	int i, mcs = -1, ir = -1;
656 	u8 confa, confb;
657 
658 	rate = params_rate(params);
659 	pr_debug("rate: %u\n", rate);
660 	for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++)
661 		if (interpolation_ratios[i].fs == rate) {
662 			ir = interpolation_ratios[i].ir;
663 			break;
664 		}
665 	if (ir < 0)
666 		return -EINVAL;
667 	for (i = 0; mclk_ratios[ir][i].ratio; i++)
668 		if (mclk_ratios[ir][i].ratio * rate == sta32x->mclk) {
669 			mcs = mclk_ratios[ir][i].mcs;
670 			break;
671 		}
672 	if (mcs < 0)
673 		return -EINVAL;
674 
675 	confa = snd_soc_read(codec, STA32X_CONFA);
676 	confa &= ~(STA32X_CONFA_MCS_MASK | STA32X_CONFA_IR_MASK);
677 	confa |= (ir << STA32X_CONFA_IR_SHIFT) | (mcs << STA32X_CONFA_MCS_SHIFT);
678 
679 	confb = snd_soc_read(codec, STA32X_CONFB);
680 	confb &= ~(STA32X_CONFB_SAI_MASK | STA32X_CONFB_SAIFB);
681 	switch (params_width(params)) {
682 	case 24:
683 		pr_debug("24bit\n");
684 		/* fall through */
685 	case 32:
686 		pr_debug("24bit or 32bit\n");
687 		switch (sta32x->format) {
688 		case SND_SOC_DAIFMT_I2S:
689 			confb |= 0x0;
690 			break;
691 		case SND_SOC_DAIFMT_LEFT_J:
692 			confb |= 0x1;
693 			break;
694 		case SND_SOC_DAIFMT_RIGHT_J:
695 			confb |= 0x2;
696 			break;
697 		}
698 
699 		break;
700 	case 20:
701 		pr_debug("20bit\n");
702 		switch (sta32x->format) {
703 		case SND_SOC_DAIFMT_I2S:
704 			confb |= 0x4;
705 			break;
706 		case SND_SOC_DAIFMT_LEFT_J:
707 			confb |= 0x5;
708 			break;
709 		case SND_SOC_DAIFMT_RIGHT_J:
710 			confb |= 0x6;
711 			break;
712 		}
713 
714 		break;
715 	case 18:
716 		pr_debug("18bit\n");
717 		switch (sta32x->format) {
718 		case SND_SOC_DAIFMT_I2S:
719 			confb |= 0x8;
720 			break;
721 		case SND_SOC_DAIFMT_LEFT_J:
722 			confb |= 0x9;
723 			break;
724 		case SND_SOC_DAIFMT_RIGHT_J:
725 			confb |= 0xa;
726 			break;
727 		}
728 
729 		break;
730 	case 16:
731 		pr_debug("16bit\n");
732 		switch (sta32x->format) {
733 		case SND_SOC_DAIFMT_I2S:
734 			confb |= 0x0;
735 			break;
736 		case SND_SOC_DAIFMT_LEFT_J:
737 			confb |= 0xd;
738 			break;
739 		case SND_SOC_DAIFMT_RIGHT_J:
740 			confb |= 0xe;
741 			break;
742 		}
743 
744 		break;
745 	default:
746 		return -EINVAL;
747 	}
748 
749 	snd_soc_write(codec, STA32X_CONFA, confa);
750 	snd_soc_write(codec, STA32X_CONFB, confb);
751 	return 0;
752 }
753 
754 /**
755  * sta32x_set_bias_level - DAPM callback
756  * @codec: the codec device
757  * @level: DAPM power level
758  *
759  * This is called by ALSA to put the codec into low power mode
760  * or to wake it up.  If the codec is powered off completely
761  * all registers must be restored after power on.
762  */
763 static int sta32x_set_bias_level(struct snd_soc_codec *codec,
764 				 enum snd_soc_bias_level level)
765 {
766 	int ret;
767 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
768 
769 	pr_debug("level = %d\n", level);
770 	switch (level) {
771 	case SND_SOC_BIAS_ON:
772 		break;
773 
774 	case SND_SOC_BIAS_PREPARE:
775 		/* Full power on */
776 		snd_soc_update_bits(codec, STA32X_CONFF,
777 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
778 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
779 		break;
780 
781 	case SND_SOC_BIAS_STANDBY:
782 		if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
783 			ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
784 						    sta32x->supplies);
785 			if (ret != 0) {
786 				dev_err(codec->dev,
787 					"Failed to enable supplies: %d\n", ret);
788 				return ret;
789 			}
790 
791 			sta32x_cache_sync(codec);
792 			sta32x_watchdog_start(sta32x);
793 		}
794 
795 		/* Power up to mute */
796 		/* FIXME */
797 		snd_soc_update_bits(codec, STA32X_CONFF,
798 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
799 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
800 
801 		break;
802 
803 	case SND_SOC_BIAS_OFF:
804 		/* The chip runs through the power down sequence for us. */
805 		snd_soc_update_bits(codec, STA32X_CONFF,
806 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
807 				    STA32X_CONFF_PWDN);
808 		msleep(300);
809 		sta32x_watchdog_stop(sta32x);
810 		regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies),
811 				       sta32x->supplies);
812 		break;
813 	}
814 	codec->dapm.bias_level = level;
815 	return 0;
816 }
817 
818 static const struct snd_soc_dai_ops sta32x_dai_ops = {
819 	.hw_params	= sta32x_hw_params,
820 	.set_sysclk	= sta32x_set_dai_sysclk,
821 	.set_fmt	= sta32x_set_dai_fmt,
822 };
823 
824 static struct snd_soc_dai_driver sta32x_dai = {
825 	.name = "STA32X",
826 	.playback = {
827 		.stream_name = "Playback",
828 		.channels_min = 2,
829 		.channels_max = 2,
830 		.rates = STA32X_RATES,
831 		.formats = STA32X_FORMATS,
832 	},
833 	.ops = &sta32x_dai_ops,
834 };
835 
836 #ifdef CONFIG_PM
837 static int sta32x_suspend(struct snd_soc_codec *codec)
838 {
839 	sta32x_set_bias_level(codec, SND_SOC_BIAS_OFF);
840 	return 0;
841 }
842 
843 static int sta32x_resume(struct snd_soc_codec *codec)
844 {
845 	sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
846 	return 0;
847 }
848 #else
849 #define sta32x_suspend NULL
850 #define sta32x_resume NULL
851 #endif
852 
853 static int sta32x_probe(struct snd_soc_codec *codec)
854 {
855 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
856 	int i, ret = 0, thermal = 0;
857 
858 	sta32x->codec = codec;
859 	sta32x->pdata = dev_get_platdata(codec->dev);
860 
861 	ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
862 				    sta32x->supplies);
863 	if (ret != 0) {
864 		dev_err(codec->dev, "Failed to enable supplies: %d\n", ret);
865 		return ret;
866 	}
867 
868 	/* Chip documentation explicitly requires that the reset values
869 	 * of reserved register bits are left untouched.
870 	 * Write the register default value to cache for reserved registers,
871 	 * so the write to the these registers are suppressed by the cache
872 	 * restore code when it skips writes of default registers.
873 	 */
874 	regcache_cache_only(sta32x->regmap, true);
875 	snd_soc_write(codec, STA32X_CONFC, 0xc2);
876 	snd_soc_write(codec, STA32X_CONFE, 0xc2);
877 	snd_soc_write(codec, STA32X_CONFF, 0x5c);
878 	snd_soc_write(codec, STA32X_MMUTE, 0x10);
879 	snd_soc_write(codec, STA32X_AUTO1, 0x60);
880 	snd_soc_write(codec, STA32X_AUTO3, 0x00);
881 	snd_soc_write(codec, STA32X_C3CFG, 0x40);
882 	regcache_cache_only(sta32x->regmap, false);
883 
884 	/* set thermal warning adjustment and recovery */
885 	if (!(sta32x->pdata->thermal_conf & STA32X_THERMAL_ADJUSTMENT_ENABLE))
886 		thermal |= STA32X_CONFA_TWAB;
887 	if (!(sta32x->pdata->thermal_conf & STA32X_THERMAL_RECOVERY_ENABLE))
888 		thermal |= STA32X_CONFA_TWRB;
889 	snd_soc_update_bits(codec, STA32X_CONFA,
890 			    STA32X_CONFA_TWAB | STA32X_CONFA_TWRB,
891 			    thermal);
892 
893 	/* select output configuration  */
894 	snd_soc_update_bits(codec, STA32X_CONFF,
895 			    STA32X_CONFF_OCFG_MASK,
896 			    sta32x->pdata->output_conf
897 			    << STA32X_CONFF_OCFG_SHIFT);
898 
899 	/* channel to output mapping */
900 	snd_soc_update_bits(codec, STA32X_C1CFG,
901 			    STA32X_CxCFG_OM_MASK,
902 			    sta32x->pdata->ch1_output_mapping
903 			    << STA32X_CxCFG_OM_SHIFT);
904 	snd_soc_update_bits(codec, STA32X_C2CFG,
905 			    STA32X_CxCFG_OM_MASK,
906 			    sta32x->pdata->ch2_output_mapping
907 			    << STA32X_CxCFG_OM_SHIFT);
908 	snd_soc_update_bits(codec, STA32X_C3CFG,
909 			    STA32X_CxCFG_OM_MASK,
910 			    sta32x->pdata->ch3_output_mapping
911 			    << STA32X_CxCFG_OM_SHIFT);
912 
913 	/* initialize coefficient shadow RAM with reset values */
914 	for (i = 4; i <= 49; i += 5)
915 		sta32x->coef_shadow[i] = 0x400000;
916 	for (i = 50; i <= 54; i++)
917 		sta32x->coef_shadow[i] = 0x7fffff;
918 	sta32x->coef_shadow[55] = 0x5a9df7;
919 	sta32x->coef_shadow[56] = 0x7fffff;
920 	sta32x->coef_shadow[59] = 0x7fffff;
921 	sta32x->coef_shadow[60] = 0x400000;
922 	sta32x->coef_shadow[61] = 0x400000;
923 
924 	if (sta32x->pdata->needs_esd_watchdog)
925 		INIT_DELAYED_WORK(&sta32x->watchdog_work, sta32x_watchdog);
926 
927 	sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
928 	/* Bias level configuration will have done an extra enable */
929 	regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
930 
931 	return 0;
932 }
933 
934 static int sta32x_remove(struct snd_soc_codec *codec)
935 {
936 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
937 
938 	sta32x_watchdog_stop(sta32x);
939 	sta32x_set_bias_level(codec, SND_SOC_BIAS_OFF);
940 	regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
941 
942 	return 0;
943 }
944 
945 static bool sta32x_reg_is_volatile(struct device *dev, unsigned int reg)
946 {
947 	switch (reg) {
948 	case STA32X_CONFA ... STA32X_L2ATRT:
949 	case STA32X_MPCC1 ... STA32X_FDRC2:
950 		return 0;
951 	}
952 	return 1;
953 }
954 
955 static const struct snd_soc_codec_driver sta32x_codec = {
956 	.probe =		sta32x_probe,
957 	.remove =		sta32x_remove,
958 	.suspend =		sta32x_suspend,
959 	.resume =		sta32x_resume,
960 	.set_bias_level =	sta32x_set_bias_level,
961 	.controls =		sta32x_snd_controls,
962 	.num_controls =		ARRAY_SIZE(sta32x_snd_controls),
963 	.dapm_widgets =		sta32x_dapm_widgets,
964 	.num_dapm_widgets =	ARRAY_SIZE(sta32x_dapm_widgets),
965 	.dapm_routes =		sta32x_dapm_routes,
966 	.num_dapm_routes =	ARRAY_SIZE(sta32x_dapm_routes),
967 };
968 
969 static const struct regmap_config sta32x_regmap = {
970 	.reg_bits =		8,
971 	.val_bits =		8,
972 	.max_register =		STA32X_FDRC2,
973 	.reg_defaults =		sta32x_regs,
974 	.num_reg_defaults =	ARRAY_SIZE(sta32x_regs),
975 	.cache_type =		REGCACHE_RBTREE,
976 	.volatile_reg =		sta32x_reg_is_volatile,
977 };
978 
979 static int sta32x_i2c_probe(struct i2c_client *i2c,
980 			    const struct i2c_device_id *id)
981 {
982 	struct sta32x_priv *sta32x;
983 	int ret, i;
984 
985 	sta32x = devm_kzalloc(&i2c->dev, sizeof(struct sta32x_priv),
986 			      GFP_KERNEL);
987 	if (!sta32x)
988 		return -ENOMEM;
989 
990 	/* regulators */
991 	for (i = 0; i < ARRAY_SIZE(sta32x->supplies); i++)
992 		sta32x->supplies[i].supply = sta32x_supply_names[i];
993 
994 	ret = devm_regulator_bulk_get(&i2c->dev, ARRAY_SIZE(sta32x->supplies),
995 				      sta32x->supplies);
996 	if (ret != 0) {
997 		dev_err(&i2c->dev, "Failed to request supplies: %d\n", ret);
998 		return ret;
999 	}
1000 
1001 	sta32x->regmap = devm_regmap_init_i2c(i2c, &sta32x_regmap);
1002 	if (IS_ERR(sta32x->regmap)) {
1003 		ret = PTR_ERR(sta32x->regmap);
1004 		dev_err(&i2c->dev, "Failed to init regmap: %d\n", ret);
1005 		return ret;
1006 	}
1007 
1008 	i2c_set_clientdata(i2c, sta32x);
1009 
1010 	ret = snd_soc_register_codec(&i2c->dev, &sta32x_codec, &sta32x_dai, 1);
1011 	if (ret != 0)
1012 		dev_err(&i2c->dev, "Failed to register codec (%d)\n", ret);
1013 
1014 	return ret;
1015 }
1016 
1017 static int sta32x_i2c_remove(struct i2c_client *client)
1018 {
1019 	snd_soc_unregister_codec(&client->dev);
1020 	return 0;
1021 }
1022 
1023 static const struct i2c_device_id sta32x_i2c_id[] = {
1024 	{ "sta326", 0 },
1025 	{ "sta328", 0 },
1026 	{ "sta329", 0 },
1027 	{ }
1028 };
1029 MODULE_DEVICE_TABLE(i2c, sta32x_i2c_id);
1030 
1031 static struct i2c_driver sta32x_i2c_driver = {
1032 	.driver = {
1033 		.name = "sta32x",
1034 		.owner = THIS_MODULE,
1035 	},
1036 	.probe =    sta32x_i2c_probe,
1037 	.remove =   sta32x_i2c_remove,
1038 	.id_table = sta32x_i2c_id,
1039 };
1040 
1041 module_i2c_driver(sta32x_i2c_driver);
1042 
1043 MODULE_DESCRIPTION("ASoC STA32X driver");
1044 MODULE_AUTHOR("Johannes Stezenbach <js@sig21.net>");
1045 MODULE_LICENSE("GPL");
1046