xref: /openbmc/linux/sound/soc/codecs/sta32x.c (revision c1d45424)
1 /*
2  * Codec driver for ST STA32x 2.1-channel high-efficiency digital audio system
3  *
4  * Copyright: 2011 Raumfeld GmbH
5  * Author: Johannes Stezenbach <js@sig21.net>
6  *
7  * based on code from:
8  *	Wolfson Microelectronics PLC.
9  *	  Mark Brown <broonie@opensource.wolfsonmicro.com>
10  *	Freescale Semiconductor, Inc.
11  *	  Timur Tabi <timur@freescale.com>
12  *
13  * This program is free software; you can redistribute  it and/or modify it
14  * under  the terms of  the GNU General  Public License as published by the
15  * Free Software Foundation;  either version 2 of the  License, or (at your
16  * option) any later version.
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
20 
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/pm.h>
26 #include <linux/i2c.h>
27 #include <linux/regmap.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/slab.h>
30 #include <linux/workqueue.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
37 #include <sound/tlv.h>
38 
39 #include <sound/sta32x.h>
40 #include "sta32x.h"
41 
42 #define STA32X_RATES (SNDRV_PCM_RATE_32000 | \
43 		      SNDRV_PCM_RATE_44100 | \
44 		      SNDRV_PCM_RATE_48000 | \
45 		      SNDRV_PCM_RATE_88200 | \
46 		      SNDRV_PCM_RATE_96000 | \
47 		      SNDRV_PCM_RATE_176400 | \
48 		      SNDRV_PCM_RATE_192000)
49 
50 #define STA32X_FORMATS \
51 	(SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S16_BE  | \
52 	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
53 	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
54 	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
55 	 SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S24_BE  | \
56 	 SNDRV_PCM_FMTBIT_S32_LE  | SNDRV_PCM_FMTBIT_S32_BE)
57 
58 /* Power-up register defaults */
59 static const struct reg_default sta32x_regs[] = {
60 	{  0x0, 0x63 },
61 	{  0x1, 0x80 },
62 	{  0x2, 0xc2 },
63 	{  0x3, 0x40 },
64 	{  0x4, 0xc2 },
65 	{  0x5, 0x5c },
66 	{  0x6, 0x10 },
67 	{  0x7, 0xff },
68 	{  0x8, 0x60 },
69 	{  0x9, 0x60 },
70 	{  0xa, 0x60 },
71 	{  0xb, 0x80 },
72 	{  0xc, 0x00 },
73 	{  0xd, 0x00 },
74 	{  0xe, 0x00 },
75 	{  0xf, 0x40 },
76 	{ 0x10, 0x80 },
77 	{ 0x11, 0x77 },
78 	{ 0x12, 0x6a },
79 	{ 0x13, 0x69 },
80 	{ 0x14, 0x6a },
81 	{ 0x15, 0x69 },
82 	{ 0x16, 0x00 },
83 	{ 0x17, 0x00 },
84 	{ 0x18, 0x00 },
85 	{ 0x19, 0x00 },
86 	{ 0x1a, 0x00 },
87 	{ 0x1b, 0x00 },
88 	{ 0x1c, 0x00 },
89 	{ 0x1d, 0x00 },
90 	{ 0x1e, 0x00 },
91 	{ 0x1f, 0x00 },
92 	{ 0x20, 0x00 },
93 	{ 0x21, 0x00 },
94 	{ 0x22, 0x00 },
95 	{ 0x23, 0x00 },
96 	{ 0x24, 0x00 },
97 	{ 0x25, 0x00 },
98 	{ 0x26, 0x00 },
99 	{ 0x27, 0x2d },
100 	{ 0x28, 0xc0 },
101 	{ 0x2b, 0x00 },
102 	{ 0x2c, 0x0c },
103 };
104 
105 /* regulator power supply names */
106 static const char *sta32x_supply_names[] = {
107 	"Vdda",	/* analog supply, 3.3VV */
108 	"Vdd3",	/* digital supply, 3.3V */
109 	"Vcc"	/* power amp spply, 10V - 36V */
110 };
111 
112 /* codec private data */
113 struct sta32x_priv {
114 	struct regmap *regmap;
115 	struct regulator_bulk_data supplies[ARRAY_SIZE(sta32x_supply_names)];
116 	struct snd_soc_codec *codec;
117 	struct sta32x_platform_data *pdata;
118 
119 	unsigned int mclk;
120 	unsigned int format;
121 
122 	u32 coef_shadow[STA32X_COEF_COUNT];
123 	struct delayed_work watchdog_work;
124 	int shutdown;
125 };
126 
127 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12700, 50, 1);
128 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
129 static const DECLARE_TLV_DB_SCALE(tone_tlv, -120, 200, 0);
130 
131 static const char *sta32x_drc_ac[] = {
132 	"Anti-Clipping", "Dynamic Range Compression" };
133 static const char *sta32x_auto_eq_mode[] = {
134 	"User", "Preset", "Loudness" };
135 static const char *sta32x_auto_gc_mode[] = {
136 	"User", "AC no clipping", "AC limited clipping (10%)",
137 	"DRC nighttime listening mode" };
138 static const char *sta32x_auto_xo_mode[] = {
139 	"User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz",
140 	"220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" };
141 static const char *sta32x_preset_eq_mode[] = {
142 	"Flat", "Rock", "Soft Rock", "Jazz", "Classical", "Dance", "Pop", "Soft",
143 	"Hard", "Party", "Vocal", "Hip-Hop", "Dialog", "Bass-boost #1",
144 	"Bass-boost #2", "Bass-boost #3", "Loudness 1", "Loudness 2",
145 	"Loudness 3", "Loudness 4", "Loudness 5", "Loudness 6", "Loudness 7",
146 	"Loudness 8", "Loudness 9", "Loudness 10", "Loudness 11", "Loudness 12",
147 	"Loudness 13", "Loudness 14", "Loudness 15", "Loudness 16" };
148 static const char *sta32x_limiter_select[] = {
149 	"Limiter Disabled", "Limiter #1", "Limiter #2" };
150 static const char *sta32x_limiter_attack_rate[] = {
151 	"3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
152 	"0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
153 	"0.0645", "0.0564", "0.0501", "0.0451" };
154 static const char *sta32x_limiter_release_rate[] = {
155 	"0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
156 	"0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
157 	"0.0134", "0.0117", "0.0110", "0.0104" };
158 
159 static const unsigned int sta32x_limiter_ac_attack_tlv[] = {
160 	TLV_DB_RANGE_HEAD(2),
161 	0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
162 	8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
163 };
164 
165 static const unsigned int sta32x_limiter_ac_release_tlv[] = {
166 	TLV_DB_RANGE_HEAD(5),
167 	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
168 	1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
169 	2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
170 	3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
171 	8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
172 };
173 
174 static const unsigned int sta32x_limiter_drc_attack_tlv[] = {
175 	TLV_DB_RANGE_HEAD(3),
176 	0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
177 	8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
178 	14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
179 };
180 
181 static const unsigned int sta32x_limiter_drc_release_tlv[] = {
182 	TLV_DB_RANGE_HEAD(5),
183 	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
184 	1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
185 	3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
186 	5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
187 	13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
188 };
189 
190 static const struct soc_enum sta32x_drc_ac_enum =
191 	SOC_ENUM_SINGLE(STA32X_CONFD, STA32X_CONFD_DRC_SHIFT,
192 			2, sta32x_drc_ac);
193 static const struct soc_enum sta32x_auto_eq_enum =
194 	SOC_ENUM_SINGLE(STA32X_AUTO1, STA32X_AUTO1_AMEQ_SHIFT,
195 			3, sta32x_auto_eq_mode);
196 static const struct soc_enum sta32x_auto_gc_enum =
197 	SOC_ENUM_SINGLE(STA32X_AUTO1, STA32X_AUTO1_AMGC_SHIFT,
198 			4, sta32x_auto_gc_mode);
199 static const struct soc_enum sta32x_auto_xo_enum =
200 	SOC_ENUM_SINGLE(STA32X_AUTO2, STA32X_AUTO2_XO_SHIFT,
201 			16, sta32x_auto_xo_mode);
202 static const struct soc_enum sta32x_preset_eq_enum =
203 	SOC_ENUM_SINGLE(STA32X_AUTO3, STA32X_AUTO3_PEQ_SHIFT,
204 			32, sta32x_preset_eq_mode);
205 static const struct soc_enum sta32x_limiter_ch1_enum =
206 	SOC_ENUM_SINGLE(STA32X_C1CFG, STA32X_CxCFG_LS_SHIFT,
207 			3, sta32x_limiter_select);
208 static const struct soc_enum sta32x_limiter_ch2_enum =
209 	SOC_ENUM_SINGLE(STA32X_C2CFG, STA32X_CxCFG_LS_SHIFT,
210 			3, sta32x_limiter_select);
211 static const struct soc_enum sta32x_limiter_ch3_enum =
212 	SOC_ENUM_SINGLE(STA32X_C3CFG, STA32X_CxCFG_LS_SHIFT,
213 			3, sta32x_limiter_select);
214 static const struct soc_enum sta32x_limiter1_attack_rate_enum =
215 	SOC_ENUM_SINGLE(STA32X_L1AR, STA32X_LxA_SHIFT,
216 			16, sta32x_limiter_attack_rate);
217 static const struct soc_enum sta32x_limiter2_attack_rate_enum =
218 	SOC_ENUM_SINGLE(STA32X_L2AR, STA32X_LxA_SHIFT,
219 			16, sta32x_limiter_attack_rate);
220 static const struct soc_enum sta32x_limiter1_release_rate_enum =
221 	SOC_ENUM_SINGLE(STA32X_L1AR, STA32X_LxR_SHIFT,
222 			16, sta32x_limiter_release_rate);
223 static const struct soc_enum sta32x_limiter2_release_rate_enum =
224 	SOC_ENUM_SINGLE(STA32X_L2AR, STA32X_LxR_SHIFT,
225 			16, sta32x_limiter_release_rate);
226 
227 /* byte array controls for setting biquad, mixer, scaling coefficients;
228  * for biquads all five coefficients need to be set in one go,
229  * mixer and pre/postscale coefs can be set individually;
230  * each coef is 24bit, the bytes are ordered in the same way
231  * as given in the STA32x data sheet (big endian; b1, b2, a1, a2, b0)
232  */
233 
234 static int sta32x_coefficient_info(struct snd_kcontrol *kcontrol,
235 				   struct snd_ctl_elem_info *uinfo)
236 {
237 	int numcoef = kcontrol->private_value >> 16;
238 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
239 	uinfo->count = 3 * numcoef;
240 	return 0;
241 }
242 
243 static int sta32x_coefficient_get(struct snd_kcontrol *kcontrol,
244 				  struct snd_ctl_elem_value *ucontrol)
245 {
246 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
247 	int numcoef = kcontrol->private_value >> 16;
248 	int index = kcontrol->private_value & 0xffff;
249 	unsigned int cfud;
250 	int i;
251 
252 	/* preserve reserved bits in STA32X_CFUD */
253 	cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
254 	/* chip documentation does not say if the bits are self clearing,
255 	 * so do it explicitly */
256 	snd_soc_write(codec, STA32X_CFUD, cfud);
257 
258 	snd_soc_write(codec, STA32X_CFADDR2, index);
259 	if (numcoef == 1)
260 		snd_soc_write(codec, STA32X_CFUD, cfud | 0x04);
261 	else if (numcoef == 5)
262 		snd_soc_write(codec, STA32X_CFUD, cfud | 0x08);
263 	else
264 		return -EINVAL;
265 	for (i = 0; i < 3 * numcoef; i++)
266 		ucontrol->value.bytes.data[i] =
267 			snd_soc_read(codec, STA32X_B1CF1 + i);
268 
269 	return 0;
270 }
271 
272 static int sta32x_coefficient_put(struct snd_kcontrol *kcontrol,
273 				  struct snd_ctl_elem_value *ucontrol)
274 {
275 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
276 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
277 	int numcoef = kcontrol->private_value >> 16;
278 	int index = kcontrol->private_value & 0xffff;
279 	unsigned int cfud;
280 	int i;
281 
282 	/* preserve reserved bits in STA32X_CFUD */
283 	cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
284 	/* chip documentation does not say if the bits are self clearing,
285 	 * so do it explicitly */
286 	snd_soc_write(codec, STA32X_CFUD, cfud);
287 
288 	snd_soc_write(codec, STA32X_CFADDR2, index);
289 	for (i = 0; i < numcoef && (index + i < STA32X_COEF_COUNT); i++)
290 		sta32x->coef_shadow[index + i] =
291 			  (ucontrol->value.bytes.data[3 * i] << 16)
292 			| (ucontrol->value.bytes.data[3 * i + 1] << 8)
293 			| (ucontrol->value.bytes.data[3 * i + 2]);
294 	for (i = 0; i < 3 * numcoef; i++)
295 		snd_soc_write(codec, STA32X_B1CF1 + i,
296 			      ucontrol->value.bytes.data[i]);
297 	if (numcoef == 1)
298 		snd_soc_write(codec, STA32X_CFUD, cfud | 0x01);
299 	else if (numcoef == 5)
300 		snd_soc_write(codec, STA32X_CFUD, cfud | 0x02);
301 	else
302 		return -EINVAL;
303 
304 	return 0;
305 }
306 
307 static int sta32x_sync_coef_shadow(struct snd_soc_codec *codec)
308 {
309 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
310 	unsigned int cfud;
311 	int i;
312 
313 	/* preserve reserved bits in STA32X_CFUD */
314 	cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
315 
316 	for (i = 0; i < STA32X_COEF_COUNT; i++) {
317 		snd_soc_write(codec, STA32X_CFADDR2, i);
318 		snd_soc_write(codec, STA32X_B1CF1,
319 			      (sta32x->coef_shadow[i] >> 16) & 0xff);
320 		snd_soc_write(codec, STA32X_B1CF2,
321 			      (sta32x->coef_shadow[i] >> 8) & 0xff);
322 		snd_soc_write(codec, STA32X_B1CF3,
323 			      (sta32x->coef_shadow[i]) & 0xff);
324 		/* chip documentation does not say if the bits are
325 		 * self-clearing, so do it explicitly */
326 		snd_soc_write(codec, STA32X_CFUD, cfud);
327 		snd_soc_write(codec, STA32X_CFUD, cfud | 0x01);
328 	}
329 	return 0;
330 }
331 
332 static int sta32x_cache_sync(struct snd_soc_codec *codec)
333 {
334 	struct sta32x_priv *sta32x = codec->control_data;
335 	unsigned int mute;
336 	int rc;
337 
338 	/* mute during register sync */
339 	mute = snd_soc_read(codec, STA32X_MMUTE);
340 	snd_soc_write(codec, STA32X_MMUTE, mute | STA32X_MMUTE_MMUTE);
341 	sta32x_sync_coef_shadow(codec);
342 	rc = regcache_sync(sta32x->regmap);
343 	snd_soc_write(codec, STA32X_MMUTE, mute);
344 	return rc;
345 }
346 
347 /* work around ESD issue where sta32x resets and loses all configuration */
348 static void sta32x_watchdog(struct work_struct *work)
349 {
350 	struct sta32x_priv *sta32x = container_of(work, struct sta32x_priv,
351 						  watchdog_work.work);
352 	struct snd_soc_codec *codec = sta32x->codec;
353 	unsigned int confa, confa_cached;
354 
355 	/* check if sta32x has reset itself */
356 	confa_cached = snd_soc_read(codec, STA32X_CONFA);
357 	regcache_cache_bypass(sta32x->regmap, true);
358 	confa = snd_soc_read(codec, STA32X_CONFA);
359 	regcache_cache_bypass(sta32x->regmap, false);
360 	if (confa != confa_cached) {
361 		regcache_mark_dirty(sta32x->regmap);
362 		sta32x_cache_sync(codec);
363 	}
364 
365 	if (!sta32x->shutdown)
366 		schedule_delayed_work(&sta32x->watchdog_work,
367 				      round_jiffies_relative(HZ));
368 }
369 
370 static void sta32x_watchdog_start(struct sta32x_priv *sta32x)
371 {
372 	if (sta32x->pdata->needs_esd_watchdog) {
373 		sta32x->shutdown = 0;
374 		schedule_delayed_work(&sta32x->watchdog_work,
375 				      round_jiffies_relative(HZ));
376 	}
377 }
378 
379 static void sta32x_watchdog_stop(struct sta32x_priv *sta32x)
380 {
381 	if (sta32x->pdata->needs_esd_watchdog) {
382 		sta32x->shutdown = 1;
383 		cancel_delayed_work_sync(&sta32x->watchdog_work);
384 	}
385 }
386 
387 #define SINGLE_COEF(xname, index) \
388 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
389 	.info = sta32x_coefficient_info, \
390 	.get = sta32x_coefficient_get,\
391 	.put = sta32x_coefficient_put, \
392 	.private_value = index | (1 << 16) }
393 
394 #define BIQUAD_COEFS(xname, index) \
395 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
396 	.info = sta32x_coefficient_info, \
397 	.get = sta32x_coefficient_get,\
398 	.put = sta32x_coefficient_put, \
399 	.private_value = index | (5 << 16) }
400 
401 static const struct snd_kcontrol_new sta32x_snd_controls[] = {
402 SOC_SINGLE_TLV("Master Volume", STA32X_MVOL, 0, 0xff, 1, mvol_tlv),
403 SOC_SINGLE("Master Switch", STA32X_MMUTE, 0, 1, 1),
404 SOC_SINGLE("Ch1 Switch", STA32X_MMUTE, 1, 1, 1),
405 SOC_SINGLE("Ch2 Switch", STA32X_MMUTE, 2, 1, 1),
406 SOC_SINGLE("Ch3 Switch", STA32X_MMUTE, 3, 1, 1),
407 SOC_SINGLE_TLV("Ch1 Volume", STA32X_C1VOL, 0, 0xff, 1, chvol_tlv),
408 SOC_SINGLE_TLV("Ch2 Volume", STA32X_C2VOL, 0, 0xff, 1, chvol_tlv),
409 SOC_SINGLE_TLV("Ch3 Volume", STA32X_C3VOL, 0, 0xff, 1, chvol_tlv),
410 SOC_SINGLE("De-emphasis Filter Switch", STA32X_CONFD, STA32X_CONFD_DEMP_SHIFT, 1, 0),
411 SOC_ENUM("Compressor/Limiter Switch", sta32x_drc_ac_enum),
412 SOC_SINGLE("Miami Mode Switch", STA32X_CONFD, STA32X_CONFD_MME_SHIFT, 1, 0),
413 SOC_SINGLE("Zero Cross Switch", STA32X_CONFE, STA32X_CONFE_ZCE_SHIFT, 1, 0),
414 SOC_SINGLE("Soft Ramp Switch", STA32X_CONFE, STA32X_CONFE_SVE_SHIFT, 1, 0),
415 SOC_SINGLE("Auto-Mute Switch", STA32X_CONFF, STA32X_CONFF_IDE_SHIFT, 1, 0),
416 SOC_ENUM("Automode EQ", sta32x_auto_eq_enum),
417 SOC_ENUM("Automode GC", sta32x_auto_gc_enum),
418 SOC_ENUM("Automode XO", sta32x_auto_xo_enum),
419 SOC_ENUM("Preset EQ", sta32x_preset_eq_enum),
420 SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
421 SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
422 SOC_SINGLE("Ch1 EQ Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
423 SOC_SINGLE("Ch2 EQ Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
424 SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
425 SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
426 SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
427 SOC_ENUM("Ch1 Limiter Select", sta32x_limiter_ch1_enum),
428 SOC_ENUM("Ch2 Limiter Select", sta32x_limiter_ch2_enum),
429 SOC_ENUM("Ch3 Limiter Select", sta32x_limiter_ch3_enum),
430 SOC_SINGLE_TLV("Bass Tone Control", STA32X_TONE, STA32X_TONE_BTC_SHIFT, 15, 0, tone_tlv),
431 SOC_SINGLE_TLV("Treble Tone Control", STA32X_TONE, STA32X_TONE_TTC_SHIFT, 15, 0, tone_tlv),
432 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta32x_limiter1_attack_rate_enum),
433 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta32x_limiter2_attack_rate_enum),
434 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
435 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
436 
437 /* depending on mode, the attack/release thresholds have
438  * two different enum definitions; provide both
439  */
440 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
441 	       16, 0, sta32x_limiter_ac_attack_tlv),
442 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
443 	       16, 0, sta32x_limiter_ac_attack_tlv),
444 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
445 	       16, 0, sta32x_limiter_ac_release_tlv),
446 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
447 	       16, 0, sta32x_limiter_ac_release_tlv),
448 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
449 	       16, 0, sta32x_limiter_drc_attack_tlv),
450 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
451 	       16, 0, sta32x_limiter_drc_attack_tlv),
452 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
453 	       16, 0, sta32x_limiter_drc_release_tlv),
454 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
455 	       16, 0, sta32x_limiter_drc_release_tlv),
456 
457 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
458 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
459 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
460 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
461 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
462 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
463 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
464 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
465 BIQUAD_COEFS("High-pass", 40),
466 BIQUAD_COEFS("Low-pass", 45),
467 SINGLE_COEF("Ch1 - Prescale", 50),
468 SINGLE_COEF("Ch2 - Prescale", 51),
469 SINGLE_COEF("Ch1 - Postscale", 52),
470 SINGLE_COEF("Ch2 - Postscale", 53),
471 SINGLE_COEF("Ch3 - Postscale", 54),
472 SINGLE_COEF("Thermal warning - Postscale", 55),
473 SINGLE_COEF("Ch1 - Mix 1", 56),
474 SINGLE_COEF("Ch1 - Mix 2", 57),
475 SINGLE_COEF("Ch2 - Mix 1", 58),
476 SINGLE_COEF("Ch2 - Mix 2", 59),
477 SINGLE_COEF("Ch3 - Mix 1", 60),
478 SINGLE_COEF("Ch3 - Mix 2", 61),
479 };
480 
481 static const struct snd_soc_dapm_widget sta32x_dapm_widgets[] = {
482 SND_SOC_DAPM_DAC("DAC", "Playback", SND_SOC_NOPM, 0, 0),
483 SND_SOC_DAPM_OUTPUT("LEFT"),
484 SND_SOC_DAPM_OUTPUT("RIGHT"),
485 SND_SOC_DAPM_OUTPUT("SUB"),
486 };
487 
488 static const struct snd_soc_dapm_route sta32x_dapm_routes[] = {
489 	{ "LEFT", NULL, "DAC" },
490 	{ "RIGHT", NULL, "DAC" },
491 	{ "SUB", NULL, "DAC" },
492 };
493 
494 /* MCLK interpolation ratio per fs */
495 static struct {
496 	int fs;
497 	int ir;
498 } interpolation_ratios[] = {
499 	{ 32000, 0 },
500 	{ 44100, 0 },
501 	{ 48000, 0 },
502 	{ 88200, 1 },
503 	{ 96000, 1 },
504 	{ 176400, 2 },
505 	{ 192000, 2 },
506 };
507 
508 /* MCLK to fs clock ratios */
509 static struct {
510 	int ratio;
511 	int mcs;
512 } mclk_ratios[3][7] = {
513 	{ { 768, 0 }, { 512, 1 }, { 384, 2 }, { 256, 3 },
514 	  { 128, 4 }, { 576, 5 }, { 0, 0 } },
515 	{ { 384, 2 }, { 256, 3 }, { 192, 4 }, { 128, 5 }, {64, 0 }, { 0, 0 } },
516 	{ { 384, 2 }, { 256, 3 }, { 192, 4 }, { 128, 5 }, {64, 0 }, { 0, 0 } },
517 };
518 
519 
520 /**
521  * sta32x_set_dai_sysclk - configure MCLK
522  * @codec_dai: the codec DAI
523  * @clk_id: the clock ID (ignored)
524  * @freq: the MCLK input frequency
525  * @dir: the clock direction (ignored)
526  *
527  * The value of MCLK is used to determine which sample rates are supported
528  * by the STA32X, based on the mclk_ratios table.
529  *
530  * This function must be called by the machine driver's 'startup' function,
531  * otherwise the list of supported sample rates will not be available in
532  * time for ALSA.
533  *
534  * For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause
535  * theoretically possible sample rates to be enabled. Call it again with a
536  * proper value set one the external clock is set (most probably you would do
537  * that from a machine's driver 'hw_param' hook.
538  */
539 static int sta32x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
540 		int clk_id, unsigned int freq, int dir)
541 {
542 	struct snd_soc_codec *codec = codec_dai->codec;
543 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
544 	int i, j, ir, fs;
545 	unsigned int rates = 0;
546 	unsigned int rate_min = -1;
547 	unsigned int rate_max = 0;
548 
549 	pr_debug("mclk=%u\n", freq);
550 	sta32x->mclk = freq;
551 
552 	if (sta32x->mclk) {
553 		for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
554 			ir = interpolation_ratios[i].ir;
555 			fs = interpolation_ratios[i].fs;
556 			for (j = 0; mclk_ratios[ir][j].ratio; j++) {
557 				if (mclk_ratios[ir][j].ratio * fs == freq) {
558 					rates |= snd_pcm_rate_to_rate_bit(fs);
559 					if (fs < rate_min)
560 						rate_min = fs;
561 					if (fs > rate_max)
562 						rate_max = fs;
563 					break;
564 				}
565 			}
566 		}
567 		/* FIXME: soc should support a rate list */
568 		rates &= ~SNDRV_PCM_RATE_KNOT;
569 
570 		if (!rates) {
571 			dev_err(codec->dev, "could not find a valid sample rate\n");
572 			return -EINVAL;
573 		}
574 	} else {
575 		/* enable all possible rates */
576 		rates = STA32X_RATES;
577 		rate_min = 32000;
578 		rate_max = 192000;
579 	}
580 
581 	codec_dai->driver->playback.rates = rates;
582 	codec_dai->driver->playback.rate_min = rate_min;
583 	codec_dai->driver->playback.rate_max = rate_max;
584 	return 0;
585 }
586 
587 /**
588  * sta32x_set_dai_fmt - configure the codec for the selected audio format
589  * @codec_dai: the codec DAI
590  * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
591  *
592  * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
593  * codec accordingly.
594  */
595 static int sta32x_set_dai_fmt(struct snd_soc_dai *codec_dai,
596 			      unsigned int fmt)
597 {
598 	struct snd_soc_codec *codec = codec_dai->codec;
599 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
600 	u8 confb = snd_soc_read(codec, STA32X_CONFB);
601 
602 	pr_debug("\n");
603 	confb &= ~(STA32X_CONFB_C1IM | STA32X_CONFB_C2IM);
604 
605 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
606 	case SND_SOC_DAIFMT_CBS_CFS:
607 		break;
608 	default:
609 		return -EINVAL;
610 	}
611 
612 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
613 	case SND_SOC_DAIFMT_I2S:
614 	case SND_SOC_DAIFMT_RIGHT_J:
615 	case SND_SOC_DAIFMT_LEFT_J:
616 		sta32x->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
617 		break;
618 	default:
619 		return -EINVAL;
620 	}
621 
622 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
623 	case SND_SOC_DAIFMT_NB_NF:
624 		confb |= STA32X_CONFB_C2IM;
625 		break;
626 	case SND_SOC_DAIFMT_NB_IF:
627 		confb |= STA32X_CONFB_C1IM;
628 		break;
629 	default:
630 		return -EINVAL;
631 	}
632 
633 	snd_soc_write(codec, STA32X_CONFB, confb);
634 	return 0;
635 }
636 
637 /**
638  * sta32x_hw_params - program the STA32X with the given hardware parameters.
639  * @substream: the audio stream
640  * @params: the hardware parameters to set
641  * @dai: the SOC DAI (ignored)
642  *
643  * This function programs the hardware with the values provided.
644  * Specifically, the sample rate and the data format.
645  */
646 static int sta32x_hw_params(struct snd_pcm_substream *substream,
647 			    struct snd_pcm_hw_params *params,
648 			    struct snd_soc_dai *dai)
649 {
650 	struct snd_soc_codec *codec = dai->codec;
651 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
652 	unsigned int rate;
653 	int i, mcs = -1, ir = -1;
654 	u8 confa, confb;
655 
656 	rate = params_rate(params);
657 	pr_debug("rate: %u\n", rate);
658 	for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++)
659 		if (interpolation_ratios[i].fs == rate) {
660 			ir = interpolation_ratios[i].ir;
661 			break;
662 		}
663 	if (ir < 0)
664 		return -EINVAL;
665 	for (i = 0; mclk_ratios[ir][i].ratio; i++)
666 		if (mclk_ratios[ir][i].ratio * rate == sta32x->mclk) {
667 			mcs = mclk_ratios[ir][i].mcs;
668 			break;
669 		}
670 	if (mcs < 0)
671 		return -EINVAL;
672 
673 	confa = snd_soc_read(codec, STA32X_CONFA);
674 	confa &= ~(STA32X_CONFA_MCS_MASK | STA32X_CONFA_IR_MASK);
675 	confa |= (ir << STA32X_CONFA_IR_SHIFT) | (mcs << STA32X_CONFA_MCS_SHIFT);
676 
677 	confb = snd_soc_read(codec, STA32X_CONFB);
678 	confb &= ~(STA32X_CONFB_SAI_MASK | STA32X_CONFB_SAIFB);
679 	switch (params_format(params)) {
680 	case SNDRV_PCM_FORMAT_S24_LE:
681 	case SNDRV_PCM_FORMAT_S24_BE:
682 	case SNDRV_PCM_FORMAT_S24_3LE:
683 	case SNDRV_PCM_FORMAT_S24_3BE:
684 		pr_debug("24bit\n");
685 		/* fall through */
686 	case SNDRV_PCM_FORMAT_S32_LE:
687 	case SNDRV_PCM_FORMAT_S32_BE:
688 		pr_debug("24bit or 32bit\n");
689 		switch (sta32x->format) {
690 		case SND_SOC_DAIFMT_I2S:
691 			confb |= 0x0;
692 			break;
693 		case SND_SOC_DAIFMT_LEFT_J:
694 			confb |= 0x1;
695 			break;
696 		case SND_SOC_DAIFMT_RIGHT_J:
697 			confb |= 0x2;
698 			break;
699 		}
700 
701 		break;
702 	case SNDRV_PCM_FORMAT_S20_3LE:
703 	case SNDRV_PCM_FORMAT_S20_3BE:
704 		pr_debug("20bit\n");
705 		switch (sta32x->format) {
706 		case SND_SOC_DAIFMT_I2S:
707 			confb |= 0x4;
708 			break;
709 		case SND_SOC_DAIFMT_LEFT_J:
710 			confb |= 0x5;
711 			break;
712 		case SND_SOC_DAIFMT_RIGHT_J:
713 			confb |= 0x6;
714 			break;
715 		}
716 
717 		break;
718 	case SNDRV_PCM_FORMAT_S18_3LE:
719 	case SNDRV_PCM_FORMAT_S18_3BE:
720 		pr_debug("18bit\n");
721 		switch (sta32x->format) {
722 		case SND_SOC_DAIFMT_I2S:
723 			confb |= 0x8;
724 			break;
725 		case SND_SOC_DAIFMT_LEFT_J:
726 			confb |= 0x9;
727 			break;
728 		case SND_SOC_DAIFMT_RIGHT_J:
729 			confb |= 0xa;
730 			break;
731 		}
732 
733 		break;
734 	case SNDRV_PCM_FORMAT_S16_LE:
735 	case SNDRV_PCM_FORMAT_S16_BE:
736 		pr_debug("16bit\n");
737 		switch (sta32x->format) {
738 		case SND_SOC_DAIFMT_I2S:
739 			confb |= 0x0;
740 			break;
741 		case SND_SOC_DAIFMT_LEFT_J:
742 			confb |= 0xd;
743 			break;
744 		case SND_SOC_DAIFMT_RIGHT_J:
745 			confb |= 0xe;
746 			break;
747 		}
748 
749 		break;
750 	default:
751 		return -EINVAL;
752 	}
753 
754 	snd_soc_write(codec, STA32X_CONFA, confa);
755 	snd_soc_write(codec, STA32X_CONFB, confb);
756 	return 0;
757 }
758 
759 /**
760  * sta32x_set_bias_level - DAPM callback
761  * @codec: the codec device
762  * @level: DAPM power level
763  *
764  * This is called by ALSA to put the codec into low power mode
765  * or to wake it up.  If the codec is powered off completely
766  * all registers must be restored after power on.
767  */
768 static int sta32x_set_bias_level(struct snd_soc_codec *codec,
769 				 enum snd_soc_bias_level level)
770 {
771 	int ret;
772 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
773 
774 	pr_debug("level = %d\n", level);
775 	switch (level) {
776 	case SND_SOC_BIAS_ON:
777 		break;
778 
779 	case SND_SOC_BIAS_PREPARE:
780 		/* Full power on */
781 		snd_soc_update_bits(codec, STA32X_CONFF,
782 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
783 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
784 		break;
785 
786 	case SND_SOC_BIAS_STANDBY:
787 		if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
788 			ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
789 						    sta32x->supplies);
790 			if (ret != 0) {
791 				dev_err(codec->dev,
792 					"Failed to enable supplies: %d\n", ret);
793 				return ret;
794 			}
795 
796 			sta32x_cache_sync(codec);
797 			sta32x_watchdog_start(sta32x);
798 		}
799 
800 		/* Power up to mute */
801 		/* FIXME */
802 		snd_soc_update_bits(codec, STA32X_CONFF,
803 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
804 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
805 
806 		break;
807 
808 	case SND_SOC_BIAS_OFF:
809 		/* The chip runs through the power down sequence for us. */
810 		snd_soc_update_bits(codec, STA32X_CONFF,
811 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
812 				    STA32X_CONFF_PWDN);
813 		msleep(300);
814 		sta32x_watchdog_stop(sta32x);
815 		regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies),
816 				       sta32x->supplies);
817 		break;
818 	}
819 	codec->dapm.bias_level = level;
820 	return 0;
821 }
822 
823 static const struct snd_soc_dai_ops sta32x_dai_ops = {
824 	.hw_params	= sta32x_hw_params,
825 	.set_sysclk	= sta32x_set_dai_sysclk,
826 	.set_fmt	= sta32x_set_dai_fmt,
827 };
828 
829 static struct snd_soc_dai_driver sta32x_dai = {
830 	.name = "STA32X",
831 	.playback = {
832 		.stream_name = "Playback",
833 		.channels_min = 2,
834 		.channels_max = 2,
835 		.rates = STA32X_RATES,
836 		.formats = STA32X_FORMATS,
837 	},
838 	.ops = &sta32x_dai_ops,
839 };
840 
841 #ifdef CONFIG_PM
842 static int sta32x_suspend(struct snd_soc_codec *codec)
843 {
844 	sta32x_set_bias_level(codec, SND_SOC_BIAS_OFF);
845 	return 0;
846 }
847 
848 static int sta32x_resume(struct snd_soc_codec *codec)
849 {
850 	sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
851 	return 0;
852 }
853 #else
854 #define sta32x_suspend NULL
855 #define sta32x_resume NULL
856 #endif
857 
858 static int sta32x_probe(struct snd_soc_codec *codec)
859 {
860 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
861 	int i, ret = 0, thermal = 0;
862 
863 	sta32x->codec = codec;
864 	sta32x->pdata = dev_get_platdata(codec->dev);
865 
866 	ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
867 				    sta32x->supplies);
868 	if (ret != 0) {
869 		dev_err(codec->dev, "Failed to enable supplies: %d\n", ret);
870 		return ret;
871 	}
872 
873 	/* Tell ASoC what kind of I/O to use to read the registers.  ASoC will
874 	 * then do the I2C transactions itself.
875 	 */
876 	codec->control_data = sta32x->regmap;
877 	ret = snd_soc_codec_set_cache_io(codec, 8, 8, SND_SOC_REGMAP);
878 	if (ret < 0) {
879 		dev_err(codec->dev, "failed to set cache I/O (ret=%i)\n", ret);
880 		goto err;
881 	}
882 
883 	/* Chip documentation explicitly requires that the reset values
884 	 * of reserved register bits are left untouched.
885 	 * Write the register default value to cache for reserved registers,
886 	 * so the write to the these registers are suppressed by the cache
887 	 * restore code when it skips writes of default registers.
888 	 */
889 	regcache_cache_only(sta32x->regmap, true);
890 	snd_soc_write(codec, STA32X_CONFC, 0xc2);
891 	snd_soc_write(codec, STA32X_CONFE, 0xc2);
892 	snd_soc_write(codec, STA32X_CONFF, 0x5c);
893 	snd_soc_write(codec, STA32X_MMUTE, 0x10);
894 	snd_soc_write(codec, STA32X_AUTO1, 0x60);
895 	snd_soc_write(codec, STA32X_AUTO3, 0x00);
896 	snd_soc_write(codec, STA32X_C3CFG, 0x40);
897 	regcache_cache_only(sta32x->regmap, false);
898 
899 	/* set thermal warning adjustment and recovery */
900 	if (!(sta32x->pdata->thermal_conf & STA32X_THERMAL_ADJUSTMENT_ENABLE))
901 		thermal |= STA32X_CONFA_TWAB;
902 	if (!(sta32x->pdata->thermal_conf & STA32X_THERMAL_RECOVERY_ENABLE))
903 		thermal |= STA32X_CONFA_TWRB;
904 	snd_soc_update_bits(codec, STA32X_CONFA,
905 			    STA32X_CONFA_TWAB | STA32X_CONFA_TWRB,
906 			    thermal);
907 
908 	/* select output configuration  */
909 	snd_soc_update_bits(codec, STA32X_CONFF,
910 			    STA32X_CONFF_OCFG_MASK,
911 			    sta32x->pdata->output_conf
912 			    << STA32X_CONFF_OCFG_SHIFT);
913 
914 	/* channel to output mapping */
915 	snd_soc_update_bits(codec, STA32X_C1CFG,
916 			    STA32X_CxCFG_OM_MASK,
917 			    sta32x->pdata->ch1_output_mapping
918 			    << STA32X_CxCFG_OM_SHIFT);
919 	snd_soc_update_bits(codec, STA32X_C2CFG,
920 			    STA32X_CxCFG_OM_MASK,
921 			    sta32x->pdata->ch2_output_mapping
922 			    << STA32X_CxCFG_OM_SHIFT);
923 	snd_soc_update_bits(codec, STA32X_C3CFG,
924 			    STA32X_CxCFG_OM_MASK,
925 			    sta32x->pdata->ch3_output_mapping
926 			    << STA32X_CxCFG_OM_SHIFT);
927 
928 	/* initialize coefficient shadow RAM with reset values */
929 	for (i = 4; i <= 49; i += 5)
930 		sta32x->coef_shadow[i] = 0x400000;
931 	for (i = 50; i <= 54; i++)
932 		sta32x->coef_shadow[i] = 0x7fffff;
933 	sta32x->coef_shadow[55] = 0x5a9df7;
934 	sta32x->coef_shadow[56] = 0x7fffff;
935 	sta32x->coef_shadow[59] = 0x7fffff;
936 	sta32x->coef_shadow[60] = 0x400000;
937 	sta32x->coef_shadow[61] = 0x400000;
938 
939 	if (sta32x->pdata->needs_esd_watchdog)
940 		INIT_DELAYED_WORK(&sta32x->watchdog_work, sta32x_watchdog);
941 
942 	sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
943 	/* Bias level configuration will have done an extra enable */
944 	regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
945 
946 	return 0;
947 
948 err:
949 	regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
950 	return ret;
951 }
952 
953 static int sta32x_remove(struct snd_soc_codec *codec)
954 {
955 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
956 
957 	sta32x_watchdog_stop(sta32x);
958 	sta32x_set_bias_level(codec, SND_SOC_BIAS_OFF);
959 	regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
960 
961 	return 0;
962 }
963 
964 static bool sta32x_reg_is_volatile(struct device *dev, unsigned int reg)
965 {
966 	switch (reg) {
967 	case STA32X_CONFA ... STA32X_L2ATRT:
968 	case STA32X_MPCC1 ... STA32X_FDRC2:
969 		return 0;
970 	}
971 	return 1;
972 }
973 
974 static const struct snd_soc_codec_driver sta32x_codec = {
975 	.probe =		sta32x_probe,
976 	.remove =		sta32x_remove,
977 	.suspend =		sta32x_suspend,
978 	.resume =		sta32x_resume,
979 	.set_bias_level =	sta32x_set_bias_level,
980 	.controls =		sta32x_snd_controls,
981 	.num_controls =		ARRAY_SIZE(sta32x_snd_controls),
982 	.dapm_widgets =		sta32x_dapm_widgets,
983 	.num_dapm_widgets =	ARRAY_SIZE(sta32x_dapm_widgets),
984 	.dapm_routes =		sta32x_dapm_routes,
985 	.num_dapm_routes =	ARRAY_SIZE(sta32x_dapm_routes),
986 };
987 
988 static const struct regmap_config sta32x_regmap = {
989 	.reg_bits =		8,
990 	.val_bits =		8,
991 	.max_register =		STA32X_FDRC2,
992 	.reg_defaults =		sta32x_regs,
993 	.num_reg_defaults =	ARRAY_SIZE(sta32x_regs),
994 	.cache_type =		REGCACHE_RBTREE,
995 	.volatile_reg =		sta32x_reg_is_volatile,
996 };
997 
998 static int sta32x_i2c_probe(struct i2c_client *i2c,
999 			    const struct i2c_device_id *id)
1000 {
1001 	struct sta32x_priv *sta32x;
1002 	int ret, i;
1003 
1004 	sta32x = devm_kzalloc(&i2c->dev, sizeof(struct sta32x_priv),
1005 			      GFP_KERNEL);
1006 	if (!sta32x)
1007 		return -ENOMEM;
1008 
1009 	/* regulators */
1010 	for (i = 0; i < ARRAY_SIZE(sta32x->supplies); i++)
1011 		sta32x->supplies[i].supply = sta32x_supply_names[i];
1012 
1013 	ret = devm_regulator_bulk_get(&i2c->dev, ARRAY_SIZE(sta32x->supplies),
1014 				      sta32x->supplies);
1015 	if (ret != 0) {
1016 		dev_err(&i2c->dev, "Failed to request supplies: %d\n", ret);
1017 		return ret;
1018 	}
1019 
1020 	sta32x->regmap = devm_regmap_init_i2c(i2c, &sta32x_regmap);
1021 	if (IS_ERR(sta32x->regmap)) {
1022 		ret = PTR_ERR(sta32x->regmap);
1023 		dev_err(&i2c->dev, "Failed to init regmap: %d\n", ret);
1024 		return ret;
1025 	}
1026 
1027 	i2c_set_clientdata(i2c, sta32x);
1028 
1029 	ret = snd_soc_register_codec(&i2c->dev, &sta32x_codec, &sta32x_dai, 1);
1030 	if (ret != 0)
1031 		dev_err(&i2c->dev, "Failed to register codec (%d)\n", ret);
1032 
1033 	return ret;
1034 }
1035 
1036 static int sta32x_i2c_remove(struct i2c_client *client)
1037 {
1038 	snd_soc_unregister_codec(&client->dev);
1039 	return 0;
1040 }
1041 
1042 static const struct i2c_device_id sta32x_i2c_id[] = {
1043 	{ "sta326", 0 },
1044 	{ "sta328", 0 },
1045 	{ "sta329", 0 },
1046 	{ }
1047 };
1048 MODULE_DEVICE_TABLE(i2c, sta32x_i2c_id);
1049 
1050 static struct i2c_driver sta32x_i2c_driver = {
1051 	.driver = {
1052 		.name = "sta32x",
1053 		.owner = THIS_MODULE,
1054 	},
1055 	.probe =    sta32x_i2c_probe,
1056 	.remove =   sta32x_i2c_remove,
1057 	.id_table = sta32x_i2c_id,
1058 };
1059 
1060 module_i2c_driver(sta32x_i2c_driver);
1061 
1062 MODULE_DESCRIPTION("ASoC STA32X driver");
1063 MODULE_AUTHOR("Johannes Stezenbach <js@sig21.net>");
1064 MODULE_LICENSE("GPL");
1065