1 /* 2 * Codec driver for ST STA32x 2.1-channel high-efficiency digital audio system 3 * 4 * Copyright: 2011 Raumfeld GmbH 5 * Author: Johannes Stezenbach <js@sig21.net> 6 * 7 * based on code from: 8 * Wolfson Microelectronics PLC. 9 * Mark Brown <broonie@opensource.wolfsonmicro.com> 10 * Freescale Semiconductor, Inc. 11 * Timur Tabi <timur@freescale.com> 12 * 13 * This program is free software; you can redistribute it and/or modify it 14 * under the terms of the GNU General Public License as published by the 15 * Free Software Foundation; either version 2 of the License, or (at your 16 * option) any later version. 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__ 20 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/init.h> 24 #include <linux/delay.h> 25 #include <linux/pm.h> 26 #include <linux/i2c.h> 27 #include <linux/of_device.h> 28 #include <linux/of_gpio.h> 29 #include <linux/regmap.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/gpio/consumer.h> 32 #include <linux/slab.h> 33 #include <linux/workqueue.h> 34 #include <sound/core.h> 35 #include <sound/pcm.h> 36 #include <sound/pcm_params.h> 37 #include <sound/soc.h> 38 #include <sound/soc-dapm.h> 39 #include <sound/initval.h> 40 #include <sound/tlv.h> 41 42 #include <sound/sta32x.h> 43 #include "sta32x.h" 44 45 #define STA32X_RATES (SNDRV_PCM_RATE_32000 | \ 46 SNDRV_PCM_RATE_44100 | \ 47 SNDRV_PCM_RATE_48000 | \ 48 SNDRV_PCM_RATE_88200 | \ 49 SNDRV_PCM_RATE_96000 | \ 50 SNDRV_PCM_RATE_176400 | \ 51 SNDRV_PCM_RATE_192000) 52 53 #define STA32X_FORMATS \ 54 (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE | \ 55 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \ 56 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \ 57 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \ 58 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE | \ 59 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE) 60 61 /* Power-up register defaults */ 62 static const struct reg_default sta32x_regs[] = { 63 { 0x0, 0x63 }, 64 { 0x1, 0x80 }, 65 { 0x2, 0xc2 }, 66 { 0x3, 0x40 }, 67 { 0x4, 0xc2 }, 68 { 0x5, 0x5c }, 69 { 0x6, 0x10 }, 70 { 0x7, 0xff }, 71 { 0x8, 0x60 }, 72 { 0x9, 0x60 }, 73 { 0xa, 0x60 }, 74 { 0xb, 0x80 }, 75 { 0xc, 0x00 }, 76 { 0xd, 0x00 }, 77 { 0xe, 0x00 }, 78 { 0xf, 0x40 }, 79 { 0x10, 0x80 }, 80 { 0x11, 0x77 }, 81 { 0x12, 0x6a }, 82 { 0x13, 0x69 }, 83 { 0x14, 0x6a }, 84 { 0x15, 0x69 }, 85 { 0x16, 0x00 }, 86 { 0x17, 0x00 }, 87 { 0x18, 0x00 }, 88 { 0x19, 0x00 }, 89 { 0x1a, 0x00 }, 90 { 0x1b, 0x00 }, 91 { 0x1c, 0x00 }, 92 { 0x1d, 0x00 }, 93 { 0x1e, 0x00 }, 94 { 0x1f, 0x00 }, 95 { 0x20, 0x00 }, 96 { 0x21, 0x00 }, 97 { 0x22, 0x00 }, 98 { 0x23, 0x00 }, 99 { 0x24, 0x00 }, 100 { 0x25, 0x00 }, 101 { 0x26, 0x00 }, 102 { 0x27, 0x2d }, 103 { 0x28, 0xc0 }, 104 { 0x2b, 0x00 }, 105 { 0x2c, 0x0c }, 106 }; 107 108 static const struct regmap_range sta32x_write_regs_range[] = { 109 regmap_reg_range(STA32X_CONFA, STA32X_FDRC2), 110 }; 111 112 static const struct regmap_range sta32x_read_regs_range[] = { 113 regmap_reg_range(STA32X_CONFA, STA32X_FDRC2), 114 }; 115 116 static const struct regmap_range sta32x_volatile_regs_range[] = { 117 regmap_reg_range(STA32X_CFADDR2, STA32X_CFUD), 118 }; 119 120 static const struct regmap_access_table sta32x_write_regs = { 121 .yes_ranges = sta32x_write_regs_range, 122 .n_yes_ranges = ARRAY_SIZE(sta32x_write_regs_range), 123 }; 124 125 static const struct regmap_access_table sta32x_read_regs = { 126 .yes_ranges = sta32x_read_regs_range, 127 .n_yes_ranges = ARRAY_SIZE(sta32x_read_regs_range), 128 }; 129 130 static const struct regmap_access_table sta32x_volatile_regs = { 131 .yes_ranges = sta32x_volatile_regs_range, 132 .n_yes_ranges = ARRAY_SIZE(sta32x_volatile_regs_range), 133 }; 134 135 /* regulator power supply names */ 136 static const char *sta32x_supply_names[] = { 137 "Vdda", /* analog supply, 3.3VV */ 138 "Vdd3", /* digital supply, 3.3V */ 139 "Vcc" /* power amp spply, 10V - 36V */ 140 }; 141 142 /* codec private data */ 143 struct sta32x_priv { 144 struct regmap *regmap; 145 struct regulator_bulk_data supplies[ARRAY_SIZE(sta32x_supply_names)]; 146 struct snd_soc_component *component; 147 struct sta32x_platform_data *pdata; 148 149 unsigned int mclk; 150 unsigned int format; 151 152 u32 coef_shadow[STA32X_COEF_COUNT]; 153 struct delayed_work watchdog_work; 154 int shutdown; 155 struct gpio_desc *gpiod_nreset; 156 struct mutex coeff_lock; 157 }; 158 159 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12700, 50, 1); 160 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1); 161 static const DECLARE_TLV_DB_SCALE(tone_tlv, -120, 200, 0); 162 163 static const char *sta32x_drc_ac[] = { 164 "Anti-Clipping", "Dynamic Range Compression" }; 165 static const char *sta32x_auto_eq_mode[] = { 166 "User", "Preset", "Loudness" }; 167 static const char *sta32x_auto_gc_mode[] = { 168 "User", "AC no clipping", "AC limited clipping (10%)", 169 "DRC nighttime listening mode" }; 170 static const char *sta32x_auto_xo_mode[] = { 171 "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz", 172 "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" }; 173 static const char *sta32x_preset_eq_mode[] = { 174 "Flat", "Rock", "Soft Rock", "Jazz", "Classical", "Dance", "Pop", "Soft", 175 "Hard", "Party", "Vocal", "Hip-Hop", "Dialog", "Bass-boost #1", 176 "Bass-boost #2", "Bass-boost #3", "Loudness 1", "Loudness 2", 177 "Loudness 3", "Loudness 4", "Loudness 5", "Loudness 6", "Loudness 7", 178 "Loudness 8", "Loudness 9", "Loudness 10", "Loudness 11", "Loudness 12", 179 "Loudness 13", "Loudness 14", "Loudness 15", "Loudness 16" }; 180 static const char *sta32x_limiter_select[] = { 181 "Limiter Disabled", "Limiter #1", "Limiter #2" }; 182 static const char *sta32x_limiter_attack_rate[] = { 183 "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024", 184 "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752", 185 "0.0645", "0.0564", "0.0501", "0.0451" }; 186 static const char *sta32x_limiter_release_rate[] = { 187 "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299", 188 "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137", 189 "0.0134", "0.0117", "0.0110", "0.0104" }; 190 static DECLARE_TLV_DB_RANGE(sta32x_limiter_ac_attack_tlv, 191 0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0), 192 8, 16, TLV_DB_SCALE_ITEM(300, 100, 0), 193 ); 194 195 static DECLARE_TLV_DB_RANGE(sta32x_limiter_ac_release_tlv, 196 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0), 197 1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0), 198 2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0), 199 3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0), 200 8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0), 201 ); 202 203 static DECLARE_TLV_DB_RANGE(sta32x_limiter_drc_attack_tlv, 204 0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0), 205 8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0), 206 14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0), 207 ); 208 209 static DECLARE_TLV_DB_RANGE(sta32x_limiter_drc_release_tlv, 210 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0), 211 1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0), 212 3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0), 213 5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0), 214 13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0), 215 ); 216 217 static SOC_ENUM_SINGLE_DECL(sta32x_drc_ac_enum, 218 STA32X_CONFD, STA32X_CONFD_DRC_SHIFT, 219 sta32x_drc_ac); 220 static SOC_ENUM_SINGLE_DECL(sta32x_auto_eq_enum, 221 STA32X_AUTO1, STA32X_AUTO1_AMEQ_SHIFT, 222 sta32x_auto_eq_mode); 223 static SOC_ENUM_SINGLE_DECL(sta32x_auto_gc_enum, 224 STA32X_AUTO1, STA32X_AUTO1_AMGC_SHIFT, 225 sta32x_auto_gc_mode); 226 static SOC_ENUM_SINGLE_DECL(sta32x_auto_xo_enum, 227 STA32X_AUTO2, STA32X_AUTO2_XO_SHIFT, 228 sta32x_auto_xo_mode); 229 static SOC_ENUM_SINGLE_DECL(sta32x_preset_eq_enum, 230 STA32X_AUTO3, STA32X_AUTO3_PEQ_SHIFT, 231 sta32x_preset_eq_mode); 232 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch1_enum, 233 STA32X_C1CFG, STA32X_CxCFG_LS_SHIFT, 234 sta32x_limiter_select); 235 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch2_enum, 236 STA32X_C2CFG, STA32X_CxCFG_LS_SHIFT, 237 sta32x_limiter_select); 238 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch3_enum, 239 STA32X_C3CFG, STA32X_CxCFG_LS_SHIFT, 240 sta32x_limiter_select); 241 static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_attack_rate_enum, 242 STA32X_L1AR, STA32X_LxA_SHIFT, 243 sta32x_limiter_attack_rate); 244 static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_attack_rate_enum, 245 STA32X_L2AR, STA32X_LxA_SHIFT, 246 sta32x_limiter_attack_rate); 247 static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_release_rate_enum, 248 STA32X_L1AR, STA32X_LxR_SHIFT, 249 sta32x_limiter_release_rate); 250 static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_release_rate_enum, 251 STA32X_L2AR, STA32X_LxR_SHIFT, 252 sta32x_limiter_release_rate); 253 254 /* byte array controls for setting biquad, mixer, scaling coefficients; 255 * for biquads all five coefficients need to be set in one go, 256 * mixer and pre/postscale coefs can be set individually; 257 * each coef is 24bit, the bytes are ordered in the same way 258 * as given in the STA32x data sheet (big endian; b1, b2, a1, a2, b0) 259 */ 260 261 static int sta32x_coefficient_info(struct snd_kcontrol *kcontrol, 262 struct snd_ctl_elem_info *uinfo) 263 { 264 int numcoef = kcontrol->private_value >> 16; 265 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; 266 uinfo->count = 3 * numcoef; 267 return 0; 268 } 269 270 static int sta32x_coefficient_get(struct snd_kcontrol *kcontrol, 271 struct snd_ctl_elem_value *ucontrol) 272 { 273 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 274 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); 275 int numcoef = kcontrol->private_value >> 16; 276 int index = kcontrol->private_value & 0xffff; 277 unsigned int cfud, val; 278 int i, ret = 0; 279 280 mutex_lock(&sta32x->coeff_lock); 281 282 /* preserve reserved bits in STA32X_CFUD */ 283 regmap_read(sta32x->regmap, STA32X_CFUD, &cfud); 284 cfud &= 0xf0; 285 /* 286 * chip documentation does not say if the bits are self clearing, 287 * so do it explicitly 288 */ 289 regmap_write(sta32x->regmap, STA32X_CFUD, cfud); 290 291 regmap_write(sta32x->regmap, STA32X_CFADDR2, index); 292 if (numcoef == 1) { 293 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x04); 294 } else if (numcoef == 5) { 295 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x08); 296 } else { 297 ret = -EINVAL; 298 goto exit_unlock; 299 } 300 301 for (i = 0; i < 3 * numcoef; i++) { 302 regmap_read(sta32x->regmap, STA32X_B1CF1 + i, &val); 303 ucontrol->value.bytes.data[i] = val; 304 } 305 306 exit_unlock: 307 mutex_unlock(&sta32x->coeff_lock); 308 309 return ret; 310 } 311 312 static int sta32x_coefficient_put(struct snd_kcontrol *kcontrol, 313 struct snd_ctl_elem_value *ucontrol) 314 { 315 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 316 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); 317 int numcoef = kcontrol->private_value >> 16; 318 int index = kcontrol->private_value & 0xffff; 319 unsigned int cfud; 320 int i; 321 322 /* preserve reserved bits in STA32X_CFUD */ 323 regmap_read(sta32x->regmap, STA32X_CFUD, &cfud); 324 cfud &= 0xf0; 325 /* 326 * chip documentation does not say if the bits are self clearing, 327 * so do it explicitly 328 */ 329 regmap_write(sta32x->regmap, STA32X_CFUD, cfud); 330 331 regmap_write(sta32x->regmap, STA32X_CFADDR2, index); 332 for (i = 0; i < numcoef && (index + i < STA32X_COEF_COUNT); i++) 333 sta32x->coef_shadow[index + i] = 334 (ucontrol->value.bytes.data[3 * i] << 16) 335 | (ucontrol->value.bytes.data[3 * i + 1] << 8) 336 | (ucontrol->value.bytes.data[3 * i + 2]); 337 for (i = 0; i < 3 * numcoef; i++) 338 regmap_write(sta32x->regmap, STA32X_B1CF1 + i, 339 ucontrol->value.bytes.data[i]); 340 if (numcoef == 1) 341 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x01); 342 else if (numcoef == 5) 343 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x02); 344 else 345 return -EINVAL; 346 347 return 0; 348 } 349 350 static int sta32x_sync_coef_shadow(struct snd_soc_component *component) 351 { 352 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); 353 unsigned int cfud; 354 int i; 355 356 /* preserve reserved bits in STA32X_CFUD */ 357 regmap_read(sta32x->regmap, STA32X_CFUD, &cfud); 358 cfud &= 0xf0; 359 360 for (i = 0; i < STA32X_COEF_COUNT; i++) { 361 regmap_write(sta32x->regmap, STA32X_CFADDR2, i); 362 regmap_write(sta32x->regmap, STA32X_B1CF1, 363 (sta32x->coef_shadow[i] >> 16) & 0xff); 364 regmap_write(sta32x->regmap, STA32X_B1CF2, 365 (sta32x->coef_shadow[i] >> 8) & 0xff); 366 regmap_write(sta32x->regmap, STA32X_B1CF3, 367 (sta32x->coef_shadow[i]) & 0xff); 368 /* 369 * chip documentation does not say if the bits are 370 * self-clearing, so do it explicitly 371 */ 372 regmap_write(sta32x->regmap, STA32X_CFUD, cfud); 373 regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x01); 374 } 375 return 0; 376 } 377 378 static int sta32x_cache_sync(struct snd_soc_component *component) 379 { 380 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); 381 unsigned int mute; 382 int rc; 383 384 /* mute during register sync */ 385 regmap_read(sta32x->regmap, STA32X_MMUTE, &mute); 386 regmap_write(sta32x->regmap, STA32X_MMUTE, mute | STA32X_MMUTE_MMUTE); 387 sta32x_sync_coef_shadow(component); 388 rc = regcache_sync(sta32x->regmap); 389 regmap_write(sta32x->regmap, STA32X_MMUTE, mute); 390 return rc; 391 } 392 393 /* work around ESD issue where sta32x resets and loses all configuration */ 394 static void sta32x_watchdog(struct work_struct *work) 395 { 396 struct sta32x_priv *sta32x = container_of(work, struct sta32x_priv, 397 watchdog_work.work); 398 struct snd_soc_component *component = sta32x->component; 399 unsigned int confa, confa_cached; 400 401 /* check if sta32x has reset itself */ 402 confa_cached = snd_soc_component_read32(component, STA32X_CONFA); 403 regcache_cache_bypass(sta32x->regmap, true); 404 confa = snd_soc_component_read32(component, STA32X_CONFA); 405 regcache_cache_bypass(sta32x->regmap, false); 406 if (confa != confa_cached) { 407 regcache_mark_dirty(sta32x->regmap); 408 sta32x_cache_sync(component); 409 } 410 411 if (!sta32x->shutdown) 412 queue_delayed_work(system_power_efficient_wq, 413 &sta32x->watchdog_work, 414 round_jiffies_relative(HZ)); 415 } 416 417 static void sta32x_watchdog_start(struct sta32x_priv *sta32x) 418 { 419 if (sta32x->pdata->needs_esd_watchdog) { 420 sta32x->shutdown = 0; 421 queue_delayed_work(system_power_efficient_wq, 422 &sta32x->watchdog_work, 423 round_jiffies_relative(HZ)); 424 } 425 } 426 427 static void sta32x_watchdog_stop(struct sta32x_priv *sta32x) 428 { 429 if (sta32x->pdata->needs_esd_watchdog) { 430 sta32x->shutdown = 1; 431 cancel_delayed_work_sync(&sta32x->watchdog_work); 432 } 433 } 434 435 #define SINGLE_COEF(xname, index) \ 436 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 437 .info = sta32x_coefficient_info, \ 438 .get = sta32x_coefficient_get,\ 439 .put = sta32x_coefficient_put, \ 440 .private_value = index | (1 << 16) } 441 442 #define BIQUAD_COEFS(xname, index) \ 443 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 444 .info = sta32x_coefficient_info, \ 445 .get = sta32x_coefficient_get,\ 446 .put = sta32x_coefficient_put, \ 447 .private_value = index | (5 << 16) } 448 449 static const struct snd_kcontrol_new sta32x_snd_controls[] = { 450 SOC_SINGLE_TLV("Master Volume", STA32X_MVOL, 0, 0xff, 1, mvol_tlv), 451 SOC_SINGLE("Master Switch", STA32X_MMUTE, 0, 1, 1), 452 SOC_SINGLE("Ch1 Switch", STA32X_MMUTE, 1, 1, 1), 453 SOC_SINGLE("Ch2 Switch", STA32X_MMUTE, 2, 1, 1), 454 SOC_SINGLE("Ch3 Switch", STA32X_MMUTE, 3, 1, 1), 455 SOC_SINGLE_TLV("Ch1 Volume", STA32X_C1VOL, 0, 0xff, 1, chvol_tlv), 456 SOC_SINGLE_TLV("Ch2 Volume", STA32X_C2VOL, 0, 0xff, 1, chvol_tlv), 457 SOC_SINGLE_TLV("Ch3 Volume", STA32X_C3VOL, 0, 0xff, 1, chvol_tlv), 458 SOC_SINGLE("De-emphasis Filter Switch", STA32X_CONFD, STA32X_CONFD_DEMP_SHIFT, 1, 0), 459 SOC_ENUM("Compressor/Limiter Switch", sta32x_drc_ac_enum), 460 SOC_SINGLE("Miami Mode Switch", STA32X_CONFD, STA32X_CONFD_MME_SHIFT, 1, 0), 461 SOC_SINGLE("Zero Cross Switch", STA32X_CONFE, STA32X_CONFE_ZCE_SHIFT, 1, 0), 462 SOC_SINGLE("Soft Ramp Switch", STA32X_CONFE, STA32X_CONFE_SVE_SHIFT, 1, 0), 463 SOC_SINGLE("Auto-Mute Switch", STA32X_CONFF, STA32X_CONFF_IDE_SHIFT, 1, 0), 464 SOC_ENUM("Automode EQ", sta32x_auto_eq_enum), 465 SOC_ENUM("Automode GC", sta32x_auto_gc_enum), 466 SOC_ENUM("Automode XO", sta32x_auto_xo_enum), 467 SOC_ENUM("Preset EQ", sta32x_preset_eq_enum), 468 SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0), 469 SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0), 470 SOC_SINGLE("Ch1 EQ Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0), 471 SOC_SINGLE("Ch2 EQ Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0), 472 SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0), 473 SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0), 474 SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0), 475 SOC_ENUM("Ch1 Limiter Select", sta32x_limiter_ch1_enum), 476 SOC_ENUM("Ch2 Limiter Select", sta32x_limiter_ch2_enum), 477 SOC_ENUM("Ch3 Limiter Select", sta32x_limiter_ch3_enum), 478 SOC_SINGLE_TLV("Bass Tone Control", STA32X_TONE, STA32X_TONE_BTC_SHIFT, 15, 0, tone_tlv), 479 SOC_SINGLE_TLV("Treble Tone Control", STA32X_TONE, STA32X_TONE_TTC_SHIFT, 15, 0, tone_tlv), 480 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta32x_limiter1_attack_rate_enum), 481 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta32x_limiter2_attack_rate_enum), 482 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum), 483 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta32x_limiter2_release_rate_enum), 484 485 /* depending on mode, the attack/release thresholds have 486 * two different enum definitions; provide both 487 */ 488 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT, 489 16, 0, sta32x_limiter_ac_attack_tlv), 490 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT, 491 16, 0, sta32x_limiter_ac_attack_tlv), 492 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT, 493 16, 0, sta32x_limiter_ac_release_tlv), 494 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT, 495 16, 0, sta32x_limiter_ac_release_tlv), 496 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT, 497 16, 0, sta32x_limiter_drc_attack_tlv), 498 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT, 499 16, 0, sta32x_limiter_drc_attack_tlv), 500 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT, 501 16, 0, sta32x_limiter_drc_release_tlv), 502 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT, 503 16, 0, sta32x_limiter_drc_release_tlv), 504 505 BIQUAD_COEFS("Ch1 - Biquad 1", 0), 506 BIQUAD_COEFS("Ch1 - Biquad 2", 5), 507 BIQUAD_COEFS("Ch1 - Biquad 3", 10), 508 BIQUAD_COEFS("Ch1 - Biquad 4", 15), 509 BIQUAD_COEFS("Ch2 - Biquad 1", 20), 510 BIQUAD_COEFS("Ch2 - Biquad 2", 25), 511 BIQUAD_COEFS("Ch2 - Biquad 3", 30), 512 BIQUAD_COEFS("Ch2 - Biquad 4", 35), 513 BIQUAD_COEFS("High-pass", 40), 514 BIQUAD_COEFS("Low-pass", 45), 515 SINGLE_COEF("Ch1 - Prescale", 50), 516 SINGLE_COEF("Ch2 - Prescale", 51), 517 SINGLE_COEF("Ch1 - Postscale", 52), 518 SINGLE_COEF("Ch2 - Postscale", 53), 519 SINGLE_COEF("Ch3 - Postscale", 54), 520 SINGLE_COEF("Thermal warning - Postscale", 55), 521 SINGLE_COEF("Ch1 - Mix 1", 56), 522 SINGLE_COEF("Ch1 - Mix 2", 57), 523 SINGLE_COEF("Ch2 - Mix 1", 58), 524 SINGLE_COEF("Ch2 - Mix 2", 59), 525 SINGLE_COEF("Ch3 - Mix 1", 60), 526 SINGLE_COEF("Ch3 - Mix 2", 61), 527 }; 528 529 static const struct snd_soc_dapm_widget sta32x_dapm_widgets[] = { 530 SND_SOC_DAPM_DAC("DAC", "Playback", SND_SOC_NOPM, 0, 0), 531 SND_SOC_DAPM_OUTPUT("LEFT"), 532 SND_SOC_DAPM_OUTPUT("RIGHT"), 533 SND_SOC_DAPM_OUTPUT("SUB"), 534 }; 535 536 static const struct snd_soc_dapm_route sta32x_dapm_routes[] = { 537 { "LEFT", NULL, "DAC" }, 538 { "RIGHT", NULL, "DAC" }, 539 { "SUB", NULL, "DAC" }, 540 }; 541 542 /* MCLK interpolation ratio per fs */ 543 static struct { 544 int fs; 545 int ir; 546 } interpolation_ratios[] = { 547 { 32000, 0 }, 548 { 44100, 0 }, 549 { 48000, 0 }, 550 { 88200, 1 }, 551 { 96000, 1 }, 552 { 176400, 2 }, 553 { 192000, 2 }, 554 }; 555 556 /* MCLK to fs clock ratios */ 557 static int mcs_ratio_table[3][7] = { 558 { 768, 512, 384, 256, 128, 576, 0 }, 559 { 384, 256, 192, 128, 64, 0 }, 560 { 384, 256, 192, 128, 64, 0 }, 561 }; 562 563 /** 564 * sta32x_set_dai_sysclk - configure MCLK 565 * @codec_dai: the codec DAI 566 * @clk_id: the clock ID (ignored) 567 * @freq: the MCLK input frequency 568 * @dir: the clock direction (ignored) 569 * 570 * The value of MCLK is used to determine which sample rates are supported 571 * by the STA32X, based on the mclk_ratios table. 572 * 573 * This function must be called by the machine driver's 'startup' function, 574 * otherwise the list of supported sample rates will not be available in 575 * time for ALSA. 576 * 577 * For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause 578 * theoretically possible sample rates to be enabled. Call it again with a 579 * proper value set one the external clock is set (most probably you would do 580 * that from a machine's driver 'hw_param' hook. 581 */ 582 static int sta32x_set_dai_sysclk(struct snd_soc_dai *codec_dai, 583 int clk_id, unsigned int freq, int dir) 584 { 585 struct snd_soc_component *component = codec_dai->component; 586 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); 587 588 dev_dbg(component->dev, "mclk=%u\n", freq); 589 sta32x->mclk = freq; 590 591 return 0; 592 } 593 594 /** 595 * sta32x_set_dai_fmt - configure the codec for the selected audio format 596 * @codec_dai: the codec DAI 597 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format 598 * 599 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the 600 * codec accordingly. 601 */ 602 static int sta32x_set_dai_fmt(struct snd_soc_dai *codec_dai, 603 unsigned int fmt) 604 { 605 struct snd_soc_component *component = codec_dai->component; 606 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); 607 u8 confb = 0; 608 609 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { 610 case SND_SOC_DAIFMT_CBS_CFS: 611 break; 612 default: 613 return -EINVAL; 614 } 615 616 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 617 case SND_SOC_DAIFMT_I2S: 618 case SND_SOC_DAIFMT_RIGHT_J: 619 case SND_SOC_DAIFMT_LEFT_J: 620 sta32x->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK; 621 break; 622 default: 623 return -EINVAL; 624 } 625 626 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 627 case SND_SOC_DAIFMT_NB_NF: 628 confb |= STA32X_CONFB_C2IM; 629 break; 630 case SND_SOC_DAIFMT_NB_IF: 631 confb |= STA32X_CONFB_C1IM; 632 break; 633 default: 634 return -EINVAL; 635 } 636 637 return regmap_update_bits(sta32x->regmap, STA32X_CONFB, 638 STA32X_CONFB_C1IM | STA32X_CONFB_C2IM, confb); 639 } 640 641 /** 642 * sta32x_hw_params - program the STA32X with the given hardware parameters. 643 * @substream: the audio stream 644 * @params: the hardware parameters to set 645 * @dai: the SOC DAI (ignored) 646 * 647 * This function programs the hardware with the values provided. 648 * Specifically, the sample rate and the data format. 649 */ 650 static int sta32x_hw_params(struct snd_pcm_substream *substream, 651 struct snd_pcm_hw_params *params, 652 struct snd_soc_dai *dai) 653 { 654 struct snd_soc_component *component = dai->component; 655 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); 656 int i, mcs = -EINVAL, ir = -EINVAL; 657 unsigned int confa, confb; 658 unsigned int rate, ratio; 659 int ret; 660 661 if (!sta32x->mclk) { 662 dev_err(component->dev, 663 "sta32x->mclk is unset. Unable to determine ratio\n"); 664 return -EIO; 665 } 666 667 rate = params_rate(params); 668 ratio = sta32x->mclk / rate; 669 dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio); 670 671 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) { 672 if (interpolation_ratios[i].fs == rate) { 673 ir = interpolation_ratios[i].ir; 674 break; 675 } 676 } 677 678 if (ir < 0) { 679 dev_err(component->dev, "Unsupported samplerate: %u\n", rate); 680 return -EINVAL; 681 } 682 683 for (i = 0; i < 6; i++) { 684 if (mcs_ratio_table[ir][i] == ratio) { 685 mcs = i; 686 break; 687 } 688 } 689 690 if (mcs < 0) { 691 dev_err(component->dev, "Unresolvable ratio: %u\n", ratio); 692 return -EINVAL; 693 } 694 695 confa = (ir << STA32X_CONFA_IR_SHIFT) | 696 (mcs << STA32X_CONFA_MCS_SHIFT); 697 confb = 0; 698 699 switch (params_width(params)) { 700 case 24: 701 dev_dbg(component->dev, "24bit\n"); 702 /* fall through */ 703 case 32: 704 dev_dbg(component->dev, "24bit or 32bit\n"); 705 switch (sta32x->format) { 706 case SND_SOC_DAIFMT_I2S: 707 confb |= 0x0; 708 break; 709 case SND_SOC_DAIFMT_LEFT_J: 710 confb |= 0x1; 711 break; 712 case SND_SOC_DAIFMT_RIGHT_J: 713 confb |= 0x2; 714 break; 715 } 716 717 break; 718 case 20: 719 dev_dbg(component->dev, "20bit\n"); 720 switch (sta32x->format) { 721 case SND_SOC_DAIFMT_I2S: 722 confb |= 0x4; 723 break; 724 case SND_SOC_DAIFMT_LEFT_J: 725 confb |= 0x5; 726 break; 727 case SND_SOC_DAIFMT_RIGHT_J: 728 confb |= 0x6; 729 break; 730 } 731 732 break; 733 case 18: 734 dev_dbg(component->dev, "18bit\n"); 735 switch (sta32x->format) { 736 case SND_SOC_DAIFMT_I2S: 737 confb |= 0x8; 738 break; 739 case SND_SOC_DAIFMT_LEFT_J: 740 confb |= 0x9; 741 break; 742 case SND_SOC_DAIFMT_RIGHT_J: 743 confb |= 0xa; 744 break; 745 } 746 747 break; 748 case 16: 749 dev_dbg(component->dev, "16bit\n"); 750 switch (sta32x->format) { 751 case SND_SOC_DAIFMT_I2S: 752 confb |= 0x0; 753 break; 754 case SND_SOC_DAIFMT_LEFT_J: 755 confb |= 0xd; 756 break; 757 case SND_SOC_DAIFMT_RIGHT_J: 758 confb |= 0xe; 759 break; 760 } 761 762 break; 763 default: 764 return -EINVAL; 765 } 766 767 ret = regmap_update_bits(sta32x->regmap, STA32X_CONFA, 768 STA32X_CONFA_MCS_MASK | STA32X_CONFA_IR_MASK, 769 confa); 770 if (ret < 0) 771 return ret; 772 773 ret = regmap_update_bits(sta32x->regmap, STA32X_CONFB, 774 STA32X_CONFB_SAI_MASK | STA32X_CONFB_SAIFB, 775 confb); 776 if (ret < 0) 777 return ret; 778 779 return 0; 780 } 781 782 static int sta32x_startup_sequence(struct sta32x_priv *sta32x) 783 { 784 if (sta32x->gpiod_nreset) { 785 gpiod_set_value(sta32x->gpiod_nreset, 0); 786 mdelay(1); 787 gpiod_set_value(sta32x->gpiod_nreset, 1); 788 mdelay(1); 789 } 790 791 return 0; 792 } 793 794 /** 795 * sta32x_set_bias_level - DAPM callback 796 * @component: the component device 797 * @level: DAPM power level 798 * 799 * This is called by ALSA to put the component into low power mode 800 * or to wake it up. If the component is powered off completely 801 * all registers must be restored after power on. 802 */ 803 static int sta32x_set_bias_level(struct snd_soc_component *component, 804 enum snd_soc_bias_level level) 805 { 806 int ret; 807 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); 808 809 dev_dbg(component->dev, "level = %d\n", level); 810 switch (level) { 811 case SND_SOC_BIAS_ON: 812 break; 813 814 case SND_SOC_BIAS_PREPARE: 815 /* Full power on */ 816 regmap_update_bits(sta32x->regmap, STA32X_CONFF, 817 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD, 818 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD); 819 break; 820 821 case SND_SOC_BIAS_STANDBY: 822 if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) { 823 ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies), 824 sta32x->supplies); 825 if (ret != 0) { 826 dev_err(component->dev, 827 "Failed to enable supplies: %d\n", ret); 828 return ret; 829 } 830 831 sta32x_startup_sequence(sta32x); 832 sta32x_cache_sync(component); 833 sta32x_watchdog_start(sta32x); 834 } 835 836 /* Power down */ 837 regmap_update_bits(sta32x->regmap, STA32X_CONFF, 838 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD, 839 0); 840 841 break; 842 843 case SND_SOC_BIAS_OFF: 844 /* The chip runs through the power down sequence for us. */ 845 regmap_update_bits(sta32x->regmap, STA32X_CONFF, 846 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD, 0); 847 msleep(300); 848 sta32x_watchdog_stop(sta32x); 849 850 gpiod_set_value(sta32x->gpiod_nreset, 0); 851 852 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), 853 sta32x->supplies); 854 break; 855 } 856 return 0; 857 } 858 859 static const struct snd_soc_dai_ops sta32x_dai_ops = { 860 .hw_params = sta32x_hw_params, 861 .set_sysclk = sta32x_set_dai_sysclk, 862 .set_fmt = sta32x_set_dai_fmt, 863 }; 864 865 static struct snd_soc_dai_driver sta32x_dai = { 866 .name = "sta32x-hifi", 867 .playback = { 868 .stream_name = "Playback", 869 .channels_min = 2, 870 .channels_max = 2, 871 .rates = STA32X_RATES, 872 .formats = STA32X_FORMATS, 873 }, 874 .ops = &sta32x_dai_ops, 875 }; 876 877 static int sta32x_probe(struct snd_soc_component *component) 878 { 879 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); 880 struct sta32x_platform_data *pdata = sta32x->pdata; 881 int i, ret = 0, thermal = 0; 882 ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies), 883 sta32x->supplies); 884 if (ret != 0) { 885 dev_err(component->dev, "Failed to enable supplies: %d\n", ret); 886 return ret; 887 } 888 889 ret = sta32x_startup_sequence(sta32x); 890 if (ret < 0) { 891 dev_err(component->dev, "Failed to startup device\n"); 892 return ret; 893 } 894 895 /* CONFA */ 896 if (!pdata->thermal_warning_recovery) 897 thermal |= STA32X_CONFA_TWAB; 898 if (!pdata->thermal_warning_adjustment) 899 thermal |= STA32X_CONFA_TWRB; 900 if (!pdata->fault_detect_recovery) 901 thermal |= STA32X_CONFA_FDRB; 902 regmap_update_bits(sta32x->regmap, STA32X_CONFA, 903 STA32X_CONFA_TWAB | STA32X_CONFA_TWRB | 904 STA32X_CONFA_FDRB, 905 thermal); 906 907 /* CONFC */ 908 regmap_update_bits(sta32x->regmap, STA32X_CONFC, 909 STA32X_CONFC_CSZ_MASK, 910 pdata->drop_compensation_ns 911 << STA32X_CONFC_CSZ_SHIFT); 912 913 /* CONFE */ 914 regmap_update_bits(sta32x->regmap, STA32X_CONFE, 915 STA32X_CONFE_MPCV, 916 pdata->max_power_use_mpcc ? 917 STA32X_CONFE_MPCV : 0); 918 regmap_update_bits(sta32x->regmap, STA32X_CONFE, 919 STA32X_CONFE_MPC, 920 pdata->max_power_correction ? 921 STA32X_CONFE_MPC : 0); 922 regmap_update_bits(sta32x->regmap, STA32X_CONFE, 923 STA32X_CONFE_AME, 924 pdata->am_reduction_mode ? 925 STA32X_CONFE_AME : 0); 926 regmap_update_bits(sta32x->regmap, STA32X_CONFE, 927 STA32X_CONFE_PWMS, 928 pdata->odd_pwm_speed_mode ? 929 STA32X_CONFE_PWMS : 0); 930 931 /* CONFF */ 932 regmap_update_bits(sta32x->regmap, STA32X_CONFF, 933 STA32X_CONFF_IDE, 934 pdata->invalid_input_detect_mute ? 935 STA32X_CONFF_IDE : 0); 936 937 /* select output configuration */ 938 regmap_update_bits(sta32x->regmap, STA32X_CONFF, 939 STA32X_CONFF_OCFG_MASK, 940 pdata->output_conf 941 << STA32X_CONFF_OCFG_SHIFT); 942 943 /* channel to output mapping */ 944 regmap_update_bits(sta32x->regmap, STA32X_C1CFG, 945 STA32X_CxCFG_OM_MASK, 946 pdata->ch1_output_mapping 947 << STA32X_CxCFG_OM_SHIFT); 948 regmap_update_bits(sta32x->regmap, STA32X_C2CFG, 949 STA32X_CxCFG_OM_MASK, 950 pdata->ch2_output_mapping 951 << STA32X_CxCFG_OM_SHIFT); 952 regmap_update_bits(sta32x->regmap, STA32X_C3CFG, 953 STA32X_CxCFG_OM_MASK, 954 pdata->ch3_output_mapping 955 << STA32X_CxCFG_OM_SHIFT); 956 957 /* initialize coefficient shadow RAM with reset values */ 958 for (i = 4; i <= 49; i += 5) 959 sta32x->coef_shadow[i] = 0x400000; 960 for (i = 50; i <= 54; i++) 961 sta32x->coef_shadow[i] = 0x7fffff; 962 sta32x->coef_shadow[55] = 0x5a9df7; 963 sta32x->coef_shadow[56] = 0x7fffff; 964 sta32x->coef_shadow[59] = 0x7fffff; 965 sta32x->coef_shadow[60] = 0x400000; 966 sta32x->coef_shadow[61] = 0x400000; 967 968 if (sta32x->pdata->needs_esd_watchdog) 969 INIT_DELAYED_WORK(&sta32x->watchdog_work, sta32x_watchdog); 970 971 snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY); 972 /* Bias level configuration will have done an extra enable */ 973 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies); 974 975 return 0; 976 } 977 978 static void sta32x_remove(struct snd_soc_component *component) 979 { 980 struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component); 981 982 sta32x_watchdog_stop(sta32x); 983 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies); 984 } 985 986 static const struct snd_soc_component_driver sta32x_component = { 987 .probe = sta32x_probe, 988 .remove = sta32x_remove, 989 .set_bias_level = sta32x_set_bias_level, 990 .controls = sta32x_snd_controls, 991 .num_controls = ARRAY_SIZE(sta32x_snd_controls), 992 .dapm_widgets = sta32x_dapm_widgets, 993 .num_dapm_widgets = ARRAY_SIZE(sta32x_dapm_widgets), 994 .dapm_routes = sta32x_dapm_routes, 995 .num_dapm_routes = ARRAY_SIZE(sta32x_dapm_routes), 996 .suspend_bias_off = 1, 997 .idle_bias_on = 1, 998 .use_pmdown_time = 1, 999 .endianness = 1, 1000 .non_legacy_dai_naming = 1, 1001 }; 1002 1003 static const struct regmap_config sta32x_regmap = { 1004 .reg_bits = 8, 1005 .val_bits = 8, 1006 .max_register = STA32X_FDRC2, 1007 .reg_defaults = sta32x_regs, 1008 .num_reg_defaults = ARRAY_SIZE(sta32x_regs), 1009 .cache_type = REGCACHE_RBTREE, 1010 .wr_table = &sta32x_write_regs, 1011 .rd_table = &sta32x_read_regs, 1012 .volatile_table = &sta32x_volatile_regs, 1013 }; 1014 1015 #ifdef CONFIG_OF 1016 static const struct of_device_id st32x_dt_ids[] = { 1017 { .compatible = "st,sta32x", }, 1018 { } 1019 }; 1020 MODULE_DEVICE_TABLE(of, st32x_dt_ids); 1021 1022 static int sta32x_probe_dt(struct device *dev, struct sta32x_priv *sta32x) 1023 { 1024 struct device_node *np = dev->of_node; 1025 struct sta32x_platform_data *pdata; 1026 u16 tmp; 1027 1028 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 1029 if (!pdata) 1030 return -ENOMEM; 1031 1032 of_property_read_u8(np, "st,output-conf", 1033 &pdata->output_conf); 1034 of_property_read_u8(np, "st,ch1-output-mapping", 1035 &pdata->ch1_output_mapping); 1036 of_property_read_u8(np, "st,ch2-output-mapping", 1037 &pdata->ch2_output_mapping); 1038 of_property_read_u8(np, "st,ch3-output-mapping", 1039 &pdata->ch3_output_mapping); 1040 1041 if (of_get_property(np, "st,thermal-warning-recovery", NULL)) 1042 pdata->thermal_warning_recovery = 1; 1043 if (of_get_property(np, "st,thermal-warning-adjustment", NULL)) 1044 pdata->thermal_warning_adjustment = 1; 1045 if (of_get_property(np, "st,needs_esd_watchdog", NULL)) 1046 pdata->needs_esd_watchdog = 1; 1047 1048 tmp = 140; 1049 of_property_read_u16(np, "st,drop-compensation-ns", &tmp); 1050 pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20; 1051 1052 /* CONFE */ 1053 if (of_get_property(np, "st,max-power-use-mpcc", NULL)) 1054 pdata->max_power_use_mpcc = 1; 1055 1056 if (of_get_property(np, "st,max-power-correction", NULL)) 1057 pdata->max_power_correction = 1; 1058 1059 if (of_get_property(np, "st,am-reduction-mode", NULL)) 1060 pdata->am_reduction_mode = 1; 1061 1062 if (of_get_property(np, "st,odd-pwm-speed-mode", NULL)) 1063 pdata->odd_pwm_speed_mode = 1; 1064 1065 /* CONFF */ 1066 if (of_get_property(np, "st,invalid-input-detect-mute", NULL)) 1067 pdata->invalid_input_detect_mute = 1; 1068 1069 sta32x->pdata = pdata; 1070 1071 return 0; 1072 } 1073 #endif 1074 1075 static int sta32x_i2c_probe(struct i2c_client *i2c, 1076 const struct i2c_device_id *id) 1077 { 1078 struct device *dev = &i2c->dev; 1079 struct sta32x_priv *sta32x; 1080 int ret, i; 1081 1082 sta32x = devm_kzalloc(&i2c->dev, sizeof(struct sta32x_priv), 1083 GFP_KERNEL); 1084 if (!sta32x) 1085 return -ENOMEM; 1086 1087 mutex_init(&sta32x->coeff_lock); 1088 sta32x->pdata = dev_get_platdata(dev); 1089 1090 #ifdef CONFIG_OF 1091 if (dev->of_node) { 1092 ret = sta32x_probe_dt(dev, sta32x); 1093 if (ret < 0) 1094 return ret; 1095 } 1096 #endif 1097 1098 /* GPIOs */ 1099 sta32x->gpiod_nreset = devm_gpiod_get_optional(dev, "reset", 1100 GPIOD_OUT_LOW); 1101 if (IS_ERR(sta32x->gpiod_nreset)) 1102 return PTR_ERR(sta32x->gpiod_nreset); 1103 1104 /* regulators */ 1105 for (i = 0; i < ARRAY_SIZE(sta32x->supplies); i++) 1106 sta32x->supplies[i].supply = sta32x_supply_names[i]; 1107 1108 ret = devm_regulator_bulk_get(&i2c->dev, ARRAY_SIZE(sta32x->supplies), 1109 sta32x->supplies); 1110 if (ret != 0) { 1111 dev_err(&i2c->dev, "Failed to request supplies: %d\n", ret); 1112 return ret; 1113 } 1114 1115 sta32x->regmap = devm_regmap_init_i2c(i2c, &sta32x_regmap); 1116 if (IS_ERR(sta32x->regmap)) { 1117 ret = PTR_ERR(sta32x->regmap); 1118 dev_err(dev, "Failed to init regmap: %d\n", ret); 1119 return ret; 1120 } 1121 1122 i2c_set_clientdata(i2c, sta32x); 1123 1124 ret = devm_snd_soc_register_component(dev, &sta32x_component, 1125 &sta32x_dai, 1); 1126 if (ret < 0) 1127 dev_err(dev, "Failed to register component (%d)\n", ret); 1128 1129 return ret; 1130 } 1131 1132 static const struct i2c_device_id sta32x_i2c_id[] = { 1133 { "sta326", 0 }, 1134 { "sta328", 0 }, 1135 { "sta329", 0 }, 1136 { } 1137 }; 1138 MODULE_DEVICE_TABLE(i2c, sta32x_i2c_id); 1139 1140 static struct i2c_driver sta32x_i2c_driver = { 1141 .driver = { 1142 .name = "sta32x", 1143 .of_match_table = of_match_ptr(st32x_dt_ids), 1144 }, 1145 .probe = sta32x_i2c_probe, 1146 .id_table = sta32x_i2c_id, 1147 }; 1148 1149 module_i2c_driver(sta32x_i2c_driver); 1150 1151 MODULE_DESCRIPTION("ASoC STA32X driver"); 1152 MODULE_AUTHOR("Johannes Stezenbach <js@sig21.net>"); 1153 MODULE_LICENSE("GPL"); 1154