xref: /openbmc/linux/sound/soc/codecs/sta32x.c (revision 7132fe4f)
1 /*
2  * Codec driver for ST STA32x 2.1-channel high-efficiency digital audio system
3  *
4  * Copyright: 2011 Raumfeld GmbH
5  * Author: Johannes Stezenbach <js@sig21.net>
6  *
7  * based on code from:
8  *	Wolfson Microelectronics PLC.
9  *	  Mark Brown <broonie@opensource.wolfsonmicro.com>
10  *	Freescale Semiconductor, Inc.
11  *	  Timur Tabi <timur@freescale.com>
12  *
13  * This program is free software; you can redistribute  it and/or modify it
14  * under  the terms of  the GNU General  Public License as published by the
15  * Free Software Foundation;  either version 2 of the  License, or (at your
16  * option) any later version.
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
20 
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/pm.h>
26 #include <linux/i2c.h>
27 #include <linux/regmap.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/slab.h>
30 #include <linux/workqueue.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
37 #include <sound/tlv.h>
38 
39 #include <sound/sta32x.h>
40 #include "sta32x.h"
41 
42 #define STA32X_RATES (SNDRV_PCM_RATE_32000 | \
43 		      SNDRV_PCM_RATE_44100 | \
44 		      SNDRV_PCM_RATE_48000 | \
45 		      SNDRV_PCM_RATE_88200 | \
46 		      SNDRV_PCM_RATE_96000 | \
47 		      SNDRV_PCM_RATE_176400 | \
48 		      SNDRV_PCM_RATE_192000)
49 
50 #define STA32X_FORMATS \
51 	(SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S16_BE  | \
52 	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
53 	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
54 	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
55 	 SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S24_BE  | \
56 	 SNDRV_PCM_FMTBIT_S32_LE  | SNDRV_PCM_FMTBIT_S32_BE)
57 
58 /* Power-up register defaults */
59 static const struct reg_default sta32x_regs[] = {
60 	{  0x0, 0x63 },
61 	{  0x1, 0x80 },
62 	{  0x2, 0xc2 },
63 	{  0x3, 0x40 },
64 	{  0x4, 0xc2 },
65 	{  0x5, 0x5c },
66 	{  0x6, 0x10 },
67 	{  0x7, 0xff },
68 	{  0x8, 0x60 },
69 	{  0x9, 0x60 },
70 	{  0xa, 0x60 },
71 	{  0xb, 0x80 },
72 	{  0xc, 0x00 },
73 	{  0xd, 0x00 },
74 	{  0xe, 0x00 },
75 	{  0xf, 0x40 },
76 	{ 0x10, 0x80 },
77 	{ 0x11, 0x77 },
78 	{ 0x12, 0x6a },
79 	{ 0x13, 0x69 },
80 	{ 0x14, 0x6a },
81 	{ 0x15, 0x69 },
82 	{ 0x16, 0x00 },
83 	{ 0x17, 0x00 },
84 	{ 0x18, 0x00 },
85 	{ 0x19, 0x00 },
86 	{ 0x1a, 0x00 },
87 	{ 0x1b, 0x00 },
88 	{ 0x1c, 0x00 },
89 	{ 0x1d, 0x00 },
90 	{ 0x1e, 0x00 },
91 	{ 0x1f, 0x00 },
92 	{ 0x20, 0x00 },
93 	{ 0x21, 0x00 },
94 	{ 0x22, 0x00 },
95 	{ 0x23, 0x00 },
96 	{ 0x24, 0x00 },
97 	{ 0x25, 0x00 },
98 	{ 0x26, 0x00 },
99 	{ 0x27, 0x2d },
100 	{ 0x28, 0xc0 },
101 	{ 0x2b, 0x00 },
102 	{ 0x2c, 0x0c },
103 };
104 
105 /* regulator power supply names */
106 static const char *sta32x_supply_names[] = {
107 	"Vdda",	/* analog supply, 3.3VV */
108 	"Vdd3",	/* digital supply, 3.3V */
109 	"Vcc"	/* power amp spply, 10V - 36V */
110 };
111 
112 /* codec private data */
113 struct sta32x_priv {
114 	struct regmap *regmap;
115 	struct regulator_bulk_data supplies[ARRAY_SIZE(sta32x_supply_names)];
116 	struct snd_soc_codec *codec;
117 	struct sta32x_platform_data *pdata;
118 
119 	unsigned int mclk;
120 	unsigned int format;
121 
122 	u32 coef_shadow[STA32X_COEF_COUNT];
123 	struct delayed_work watchdog_work;
124 	int shutdown;
125 };
126 
127 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12700, 50, 1);
128 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
129 static const DECLARE_TLV_DB_SCALE(tone_tlv, -120, 200, 0);
130 
131 static const char *sta32x_drc_ac[] = {
132 	"Anti-Clipping", "Dynamic Range Compression" };
133 static const char *sta32x_auto_eq_mode[] = {
134 	"User", "Preset", "Loudness" };
135 static const char *sta32x_auto_gc_mode[] = {
136 	"User", "AC no clipping", "AC limited clipping (10%)",
137 	"DRC nighttime listening mode" };
138 static const char *sta32x_auto_xo_mode[] = {
139 	"User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz",
140 	"220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" };
141 static const char *sta32x_preset_eq_mode[] = {
142 	"Flat", "Rock", "Soft Rock", "Jazz", "Classical", "Dance", "Pop", "Soft",
143 	"Hard", "Party", "Vocal", "Hip-Hop", "Dialog", "Bass-boost #1",
144 	"Bass-boost #2", "Bass-boost #3", "Loudness 1", "Loudness 2",
145 	"Loudness 3", "Loudness 4", "Loudness 5", "Loudness 6", "Loudness 7",
146 	"Loudness 8", "Loudness 9", "Loudness 10", "Loudness 11", "Loudness 12",
147 	"Loudness 13", "Loudness 14", "Loudness 15", "Loudness 16" };
148 static const char *sta32x_limiter_select[] = {
149 	"Limiter Disabled", "Limiter #1", "Limiter #2" };
150 static const char *sta32x_limiter_attack_rate[] = {
151 	"3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
152 	"0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
153 	"0.0645", "0.0564", "0.0501", "0.0451" };
154 static const char *sta32x_limiter_release_rate[] = {
155 	"0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
156 	"0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
157 	"0.0134", "0.0117", "0.0110", "0.0104" };
158 
159 static const unsigned int sta32x_limiter_ac_attack_tlv[] = {
160 	TLV_DB_RANGE_HEAD(2),
161 	0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
162 	8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
163 };
164 
165 static const unsigned int sta32x_limiter_ac_release_tlv[] = {
166 	TLV_DB_RANGE_HEAD(5),
167 	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
168 	1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
169 	2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
170 	3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
171 	8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
172 };
173 
174 static const unsigned int sta32x_limiter_drc_attack_tlv[] = {
175 	TLV_DB_RANGE_HEAD(3),
176 	0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
177 	8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
178 	14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
179 };
180 
181 static const unsigned int sta32x_limiter_drc_release_tlv[] = {
182 	TLV_DB_RANGE_HEAD(5),
183 	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
184 	1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
185 	3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
186 	5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
187 	13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
188 };
189 
190 static SOC_ENUM_SINGLE_DECL(sta32x_drc_ac_enum,
191 			    STA32X_CONFD, STA32X_CONFD_DRC_SHIFT,
192 			    sta32x_drc_ac);
193 static SOC_ENUM_SINGLE_DECL(sta32x_auto_eq_enum,
194 			    STA32X_AUTO1, STA32X_AUTO1_AMEQ_SHIFT,
195 			    sta32x_auto_eq_mode);
196 static SOC_ENUM_SINGLE_DECL(sta32x_auto_gc_enum,
197 			    STA32X_AUTO1, STA32X_AUTO1_AMGC_SHIFT,
198 			    sta32x_auto_gc_mode);
199 static SOC_ENUM_SINGLE_DECL(sta32x_auto_xo_enum,
200 			    STA32X_AUTO2, STA32X_AUTO2_XO_SHIFT,
201 			    sta32x_auto_xo_mode);
202 static SOC_ENUM_SINGLE_DECL(sta32x_preset_eq_enum,
203 			    STA32X_AUTO3, STA32X_AUTO3_PEQ_SHIFT,
204 			    sta32x_preset_eq_mode);
205 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch1_enum,
206 			    STA32X_C1CFG, STA32X_CxCFG_LS_SHIFT,
207 			    sta32x_limiter_select);
208 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch2_enum,
209 			    STA32X_C2CFG, STA32X_CxCFG_LS_SHIFT,
210 			    sta32x_limiter_select);
211 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch3_enum,
212 			    STA32X_C3CFG, STA32X_CxCFG_LS_SHIFT,
213 			    sta32x_limiter_select);
214 static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_attack_rate_enum,
215 			    STA32X_L1AR, STA32X_LxA_SHIFT,
216 			    sta32x_limiter_attack_rate);
217 static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_attack_rate_enum,
218 			    STA32X_L2AR, STA32X_LxA_SHIFT,
219 			    sta32x_limiter_attack_rate);
220 static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_release_rate_enum,
221 			    STA32X_L1AR, STA32X_LxR_SHIFT,
222 			    sta32x_limiter_release_rate);
223 static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_release_rate_enum,
224 			    STA32X_L2AR, STA32X_LxR_SHIFT,
225 			    sta32x_limiter_release_rate);
226 
227 /* byte array controls for setting biquad, mixer, scaling coefficients;
228  * for biquads all five coefficients need to be set in one go,
229  * mixer and pre/postscale coefs can be set individually;
230  * each coef is 24bit, the bytes are ordered in the same way
231  * as given in the STA32x data sheet (big endian; b1, b2, a1, a2, b0)
232  */
233 
234 static int sta32x_coefficient_info(struct snd_kcontrol *kcontrol,
235 				   struct snd_ctl_elem_info *uinfo)
236 {
237 	int numcoef = kcontrol->private_value >> 16;
238 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
239 	uinfo->count = 3 * numcoef;
240 	return 0;
241 }
242 
243 static int sta32x_coefficient_get(struct snd_kcontrol *kcontrol,
244 				  struct snd_ctl_elem_value *ucontrol)
245 {
246 	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
247 	int numcoef = kcontrol->private_value >> 16;
248 	int index = kcontrol->private_value & 0xffff;
249 	unsigned int cfud;
250 	int i;
251 
252 	/* preserve reserved bits in STA32X_CFUD */
253 	cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
254 	/* chip documentation does not say if the bits are self clearing,
255 	 * so do it explicitly */
256 	snd_soc_write(codec, STA32X_CFUD, cfud);
257 
258 	snd_soc_write(codec, STA32X_CFADDR2, index);
259 	if (numcoef == 1)
260 		snd_soc_write(codec, STA32X_CFUD, cfud | 0x04);
261 	else if (numcoef == 5)
262 		snd_soc_write(codec, STA32X_CFUD, cfud | 0x08);
263 	else
264 		return -EINVAL;
265 	for (i = 0; i < 3 * numcoef; i++)
266 		ucontrol->value.bytes.data[i] =
267 			snd_soc_read(codec, STA32X_B1CF1 + i);
268 
269 	return 0;
270 }
271 
272 static int sta32x_coefficient_put(struct snd_kcontrol *kcontrol,
273 				  struct snd_ctl_elem_value *ucontrol)
274 {
275 	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
276 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
277 	int numcoef = kcontrol->private_value >> 16;
278 	int index = kcontrol->private_value & 0xffff;
279 	unsigned int cfud;
280 	int i;
281 
282 	/* preserve reserved bits in STA32X_CFUD */
283 	cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
284 	/* chip documentation does not say if the bits are self clearing,
285 	 * so do it explicitly */
286 	snd_soc_write(codec, STA32X_CFUD, cfud);
287 
288 	snd_soc_write(codec, STA32X_CFADDR2, index);
289 	for (i = 0; i < numcoef && (index + i < STA32X_COEF_COUNT); i++)
290 		sta32x->coef_shadow[index + i] =
291 			  (ucontrol->value.bytes.data[3 * i] << 16)
292 			| (ucontrol->value.bytes.data[3 * i + 1] << 8)
293 			| (ucontrol->value.bytes.data[3 * i + 2]);
294 	for (i = 0; i < 3 * numcoef; i++)
295 		snd_soc_write(codec, STA32X_B1CF1 + i,
296 			      ucontrol->value.bytes.data[i]);
297 	if (numcoef == 1)
298 		snd_soc_write(codec, STA32X_CFUD, cfud | 0x01);
299 	else if (numcoef == 5)
300 		snd_soc_write(codec, STA32X_CFUD, cfud | 0x02);
301 	else
302 		return -EINVAL;
303 
304 	return 0;
305 }
306 
307 static int sta32x_sync_coef_shadow(struct snd_soc_codec *codec)
308 {
309 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
310 	unsigned int cfud;
311 	int i;
312 
313 	/* preserve reserved bits in STA32X_CFUD */
314 	cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
315 
316 	for (i = 0; i < STA32X_COEF_COUNT; i++) {
317 		snd_soc_write(codec, STA32X_CFADDR2, i);
318 		snd_soc_write(codec, STA32X_B1CF1,
319 			      (sta32x->coef_shadow[i] >> 16) & 0xff);
320 		snd_soc_write(codec, STA32X_B1CF2,
321 			      (sta32x->coef_shadow[i] >> 8) & 0xff);
322 		snd_soc_write(codec, STA32X_B1CF3,
323 			      (sta32x->coef_shadow[i]) & 0xff);
324 		/* chip documentation does not say if the bits are
325 		 * self-clearing, so do it explicitly */
326 		snd_soc_write(codec, STA32X_CFUD, cfud);
327 		snd_soc_write(codec, STA32X_CFUD, cfud | 0x01);
328 	}
329 	return 0;
330 }
331 
332 static int sta32x_cache_sync(struct snd_soc_codec *codec)
333 {
334 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
335 	unsigned int mute;
336 	int rc;
337 
338 	/* mute during register sync */
339 	mute = snd_soc_read(codec, STA32X_MMUTE);
340 	snd_soc_write(codec, STA32X_MMUTE, mute | STA32X_MMUTE_MMUTE);
341 	sta32x_sync_coef_shadow(codec);
342 	rc = regcache_sync(sta32x->regmap);
343 	snd_soc_write(codec, STA32X_MMUTE, mute);
344 	return rc;
345 }
346 
347 /* work around ESD issue where sta32x resets and loses all configuration */
348 static void sta32x_watchdog(struct work_struct *work)
349 {
350 	struct sta32x_priv *sta32x = container_of(work, struct sta32x_priv,
351 						  watchdog_work.work);
352 	struct snd_soc_codec *codec = sta32x->codec;
353 	unsigned int confa, confa_cached;
354 
355 	/* check if sta32x has reset itself */
356 	confa_cached = snd_soc_read(codec, STA32X_CONFA);
357 	regcache_cache_bypass(sta32x->regmap, true);
358 	confa = snd_soc_read(codec, STA32X_CONFA);
359 	regcache_cache_bypass(sta32x->regmap, false);
360 	if (confa != confa_cached) {
361 		regcache_mark_dirty(sta32x->regmap);
362 		sta32x_cache_sync(codec);
363 	}
364 
365 	if (!sta32x->shutdown)
366 		queue_delayed_work(system_power_efficient_wq,
367 				   &sta32x->watchdog_work,
368 				   round_jiffies_relative(HZ));
369 }
370 
371 static void sta32x_watchdog_start(struct sta32x_priv *sta32x)
372 {
373 	if (sta32x->pdata->needs_esd_watchdog) {
374 		sta32x->shutdown = 0;
375 		queue_delayed_work(system_power_efficient_wq,
376 				   &sta32x->watchdog_work,
377 				   round_jiffies_relative(HZ));
378 	}
379 }
380 
381 static void sta32x_watchdog_stop(struct sta32x_priv *sta32x)
382 {
383 	if (sta32x->pdata->needs_esd_watchdog) {
384 		sta32x->shutdown = 1;
385 		cancel_delayed_work_sync(&sta32x->watchdog_work);
386 	}
387 }
388 
389 #define SINGLE_COEF(xname, index) \
390 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
391 	.info = sta32x_coefficient_info, \
392 	.get = sta32x_coefficient_get,\
393 	.put = sta32x_coefficient_put, \
394 	.private_value = index | (1 << 16) }
395 
396 #define BIQUAD_COEFS(xname, index) \
397 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
398 	.info = sta32x_coefficient_info, \
399 	.get = sta32x_coefficient_get,\
400 	.put = sta32x_coefficient_put, \
401 	.private_value = index | (5 << 16) }
402 
403 static const struct snd_kcontrol_new sta32x_snd_controls[] = {
404 SOC_SINGLE_TLV("Master Volume", STA32X_MVOL, 0, 0xff, 1, mvol_tlv),
405 SOC_SINGLE("Master Switch", STA32X_MMUTE, 0, 1, 1),
406 SOC_SINGLE("Ch1 Switch", STA32X_MMUTE, 1, 1, 1),
407 SOC_SINGLE("Ch2 Switch", STA32X_MMUTE, 2, 1, 1),
408 SOC_SINGLE("Ch3 Switch", STA32X_MMUTE, 3, 1, 1),
409 SOC_SINGLE_TLV("Ch1 Volume", STA32X_C1VOL, 0, 0xff, 1, chvol_tlv),
410 SOC_SINGLE_TLV("Ch2 Volume", STA32X_C2VOL, 0, 0xff, 1, chvol_tlv),
411 SOC_SINGLE_TLV("Ch3 Volume", STA32X_C3VOL, 0, 0xff, 1, chvol_tlv),
412 SOC_SINGLE("De-emphasis Filter Switch", STA32X_CONFD, STA32X_CONFD_DEMP_SHIFT, 1, 0),
413 SOC_ENUM("Compressor/Limiter Switch", sta32x_drc_ac_enum),
414 SOC_SINGLE("Miami Mode Switch", STA32X_CONFD, STA32X_CONFD_MME_SHIFT, 1, 0),
415 SOC_SINGLE("Zero Cross Switch", STA32X_CONFE, STA32X_CONFE_ZCE_SHIFT, 1, 0),
416 SOC_SINGLE("Soft Ramp Switch", STA32X_CONFE, STA32X_CONFE_SVE_SHIFT, 1, 0),
417 SOC_SINGLE("Auto-Mute Switch", STA32X_CONFF, STA32X_CONFF_IDE_SHIFT, 1, 0),
418 SOC_ENUM("Automode EQ", sta32x_auto_eq_enum),
419 SOC_ENUM("Automode GC", sta32x_auto_gc_enum),
420 SOC_ENUM("Automode XO", sta32x_auto_xo_enum),
421 SOC_ENUM("Preset EQ", sta32x_preset_eq_enum),
422 SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
423 SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
424 SOC_SINGLE("Ch1 EQ Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
425 SOC_SINGLE("Ch2 EQ Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
426 SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
427 SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
428 SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
429 SOC_ENUM("Ch1 Limiter Select", sta32x_limiter_ch1_enum),
430 SOC_ENUM("Ch2 Limiter Select", sta32x_limiter_ch2_enum),
431 SOC_ENUM("Ch3 Limiter Select", sta32x_limiter_ch3_enum),
432 SOC_SINGLE_TLV("Bass Tone Control", STA32X_TONE, STA32X_TONE_BTC_SHIFT, 15, 0, tone_tlv),
433 SOC_SINGLE_TLV("Treble Tone Control", STA32X_TONE, STA32X_TONE_TTC_SHIFT, 15, 0, tone_tlv),
434 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta32x_limiter1_attack_rate_enum),
435 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta32x_limiter2_attack_rate_enum),
436 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
437 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta32x_limiter2_release_rate_enum),
438 
439 /* depending on mode, the attack/release thresholds have
440  * two different enum definitions; provide both
441  */
442 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
443 	       16, 0, sta32x_limiter_ac_attack_tlv),
444 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
445 	       16, 0, sta32x_limiter_ac_attack_tlv),
446 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
447 	       16, 0, sta32x_limiter_ac_release_tlv),
448 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
449 	       16, 0, sta32x_limiter_ac_release_tlv),
450 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
451 	       16, 0, sta32x_limiter_drc_attack_tlv),
452 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
453 	       16, 0, sta32x_limiter_drc_attack_tlv),
454 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
455 	       16, 0, sta32x_limiter_drc_release_tlv),
456 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
457 	       16, 0, sta32x_limiter_drc_release_tlv),
458 
459 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
460 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
461 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
462 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
463 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
464 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
465 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
466 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
467 BIQUAD_COEFS("High-pass", 40),
468 BIQUAD_COEFS("Low-pass", 45),
469 SINGLE_COEF("Ch1 - Prescale", 50),
470 SINGLE_COEF("Ch2 - Prescale", 51),
471 SINGLE_COEF("Ch1 - Postscale", 52),
472 SINGLE_COEF("Ch2 - Postscale", 53),
473 SINGLE_COEF("Ch3 - Postscale", 54),
474 SINGLE_COEF("Thermal warning - Postscale", 55),
475 SINGLE_COEF("Ch1 - Mix 1", 56),
476 SINGLE_COEF("Ch1 - Mix 2", 57),
477 SINGLE_COEF("Ch2 - Mix 1", 58),
478 SINGLE_COEF("Ch2 - Mix 2", 59),
479 SINGLE_COEF("Ch3 - Mix 1", 60),
480 SINGLE_COEF("Ch3 - Mix 2", 61),
481 };
482 
483 static const struct snd_soc_dapm_widget sta32x_dapm_widgets[] = {
484 SND_SOC_DAPM_DAC("DAC", "Playback", SND_SOC_NOPM, 0, 0),
485 SND_SOC_DAPM_OUTPUT("LEFT"),
486 SND_SOC_DAPM_OUTPUT("RIGHT"),
487 SND_SOC_DAPM_OUTPUT("SUB"),
488 };
489 
490 static const struct snd_soc_dapm_route sta32x_dapm_routes[] = {
491 	{ "LEFT", NULL, "DAC" },
492 	{ "RIGHT", NULL, "DAC" },
493 	{ "SUB", NULL, "DAC" },
494 };
495 
496 /* MCLK interpolation ratio per fs */
497 static struct {
498 	int fs;
499 	int ir;
500 } interpolation_ratios[] = {
501 	{ 32000, 0 },
502 	{ 44100, 0 },
503 	{ 48000, 0 },
504 	{ 88200, 1 },
505 	{ 96000, 1 },
506 	{ 176400, 2 },
507 	{ 192000, 2 },
508 };
509 
510 /* MCLK to fs clock ratios */
511 static struct {
512 	int ratio;
513 	int mcs;
514 } mclk_ratios[3][7] = {
515 	{ { 768, 0 }, { 512, 1 }, { 384, 2 }, { 256, 3 },
516 	  { 128, 4 }, { 576, 5 }, { 0, 0 } },
517 	{ { 384, 2 }, { 256, 3 }, { 192, 4 }, { 128, 5 }, {64, 0 }, { 0, 0 } },
518 	{ { 384, 2 }, { 256, 3 }, { 192, 4 }, { 128, 5 }, {64, 0 }, { 0, 0 } },
519 };
520 
521 
522 /**
523  * sta32x_set_dai_sysclk - configure MCLK
524  * @codec_dai: the codec DAI
525  * @clk_id: the clock ID (ignored)
526  * @freq: the MCLK input frequency
527  * @dir: the clock direction (ignored)
528  *
529  * The value of MCLK is used to determine which sample rates are supported
530  * by the STA32X, based on the mclk_ratios table.
531  *
532  * This function must be called by the machine driver's 'startup' function,
533  * otherwise the list of supported sample rates will not be available in
534  * time for ALSA.
535  *
536  * For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause
537  * theoretically possible sample rates to be enabled. Call it again with a
538  * proper value set one the external clock is set (most probably you would do
539  * that from a machine's driver 'hw_param' hook.
540  */
541 static int sta32x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
542 		int clk_id, unsigned int freq, int dir)
543 {
544 	struct snd_soc_codec *codec = codec_dai->codec;
545 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
546 	int i, j, ir, fs;
547 	unsigned int rates = 0;
548 	unsigned int rate_min = -1;
549 	unsigned int rate_max = 0;
550 
551 	pr_debug("mclk=%u\n", freq);
552 	sta32x->mclk = freq;
553 
554 	if (sta32x->mclk) {
555 		for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
556 			ir = interpolation_ratios[i].ir;
557 			fs = interpolation_ratios[i].fs;
558 			for (j = 0; mclk_ratios[ir][j].ratio; j++) {
559 				if (mclk_ratios[ir][j].ratio * fs == freq) {
560 					rates |= snd_pcm_rate_to_rate_bit(fs);
561 					if (fs < rate_min)
562 						rate_min = fs;
563 					if (fs > rate_max)
564 						rate_max = fs;
565 					break;
566 				}
567 			}
568 		}
569 		/* FIXME: soc should support a rate list */
570 		rates &= ~SNDRV_PCM_RATE_KNOT;
571 
572 		if (!rates) {
573 			dev_err(codec->dev, "could not find a valid sample rate\n");
574 			return -EINVAL;
575 		}
576 	} else {
577 		/* enable all possible rates */
578 		rates = STA32X_RATES;
579 		rate_min = 32000;
580 		rate_max = 192000;
581 	}
582 
583 	codec_dai->driver->playback.rates = rates;
584 	codec_dai->driver->playback.rate_min = rate_min;
585 	codec_dai->driver->playback.rate_max = rate_max;
586 	return 0;
587 }
588 
589 /**
590  * sta32x_set_dai_fmt - configure the codec for the selected audio format
591  * @codec_dai: the codec DAI
592  * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
593  *
594  * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
595  * codec accordingly.
596  */
597 static int sta32x_set_dai_fmt(struct snd_soc_dai *codec_dai,
598 			      unsigned int fmt)
599 {
600 	struct snd_soc_codec *codec = codec_dai->codec;
601 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
602 	u8 confb = snd_soc_read(codec, STA32X_CONFB);
603 
604 	pr_debug("\n");
605 	confb &= ~(STA32X_CONFB_C1IM | STA32X_CONFB_C2IM);
606 
607 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
608 	case SND_SOC_DAIFMT_CBS_CFS:
609 		break;
610 	default:
611 		return -EINVAL;
612 	}
613 
614 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
615 	case SND_SOC_DAIFMT_I2S:
616 	case SND_SOC_DAIFMT_RIGHT_J:
617 	case SND_SOC_DAIFMT_LEFT_J:
618 		sta32x->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
619 		break;
620 	default:
621 		return -EINVAL;
622 	}
623 
624 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
625 	case SND_SOC_DAIFMT_NB_NF:
626 		confb |= STA32X_CONFB_C2IM;
627 		break;
628 	case SND_SOC_DAIFMT_NB_IF:
629 		confb |= STA32X_CONFB_C1IM;
630 		break;
631 	default:
632 		return -EINVAL;
633 	}
634 
635 	snd_soc_write(codec, STA32X_CONFB, confb);
636 	return 0;
637 }
638 
639 /**
640  * sta32x_hw_params - program the STA32X with the given hardware parameters.
641  * @substream: the audio stream
642  * @params: the hardware parameters to set
643  * @dai: the SOC DAI (ignored)
644  *
645  * This function programs the hardware with the values provided.
646  * Specifically, the sample rate and the data format.
647  */
648 static int sta32x_hw_params(struct snd_pcm_substream *substream,
649 			    struct snd_pcm_hw_params *params,
650 			    struct snd_soc_dai *dai)
651 {
652 	struct snd_soc_codec *codec = dai->codec;
653 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
654 	unsigned int rate;
655 	int i, mcs = -1, ir = -1;
656 	u8 confa, confb;
657 
658 	rate = params_rate(params);
659 	pr_debug("rate: %u\n", rate);
660 	for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++)
661 		if (interpolation_ratios[i].fs == rate) {
662 			ir = interpolation_ratios[i].ir;
663 			break;
664 		}
665 	if (ir < 0)
666 		return -EINVAL;
667 	for (i = 0; mclk_ratios[ir][i].ratio; i++)
668 		if (mclk_ratios[ir][i].ratio * rate == sta32x->mclk) {
669 			mcs = mclk_ratios[ir][i].mcs;
670 			break;
671 		}
672 	if (mcs < 0)
673 		return -EINVAL;
674 
675 	confa = snd_soc_read(codec, STA32X_CONFA);
676 	confa &= ~(STA32X_CONFA_MCS_MASK | STA32X_CONFA_IR_MASK);
677 	confa |= (ir << STA32X_CONFA_IR_SHIFT) | (mcs << STA32X_CONFA_MCS_SHIFT);
678 
679 	confb = snd_soc_read(codec, STA32X_CONFB);
680 	confb &= ~(STA32X_CONFB_SAI_MASK | STA32X_CONFB_SAIFB);
681 	switch (params_format(params)) {
682 	case SNDRV_PCM_FORMAT_S24_LE:
683 	case SNDRV_PCM_FORMAT_S24_BE:
684 	case SNDRV_PCM_FORMAT_S24_3LE:
685 	case SNDRV_PCM_FORMAT_S24_3BE:
686 		pr_debug("24bit\n");
687 		/* fall through */
688 	case SNDRV_PCM_FORMAT_S32_LE:
689 	case SNDRV_PCM_FORMAT_S32_BE:
690 		pr_debug("24bit or 32bit\n");
691 		switch (sta32x->format) {
692 		case SND_SOC_DAIFMT_I2S:
693 			confb |= 0x0;
694 			break;
695 		case SND_SOC_DAIFMT_LEFT_J:
696 			confb |= 0x1;
697 			break;
698 		case SND_SOC_DAIFMT_RIGHT_J:
699 			confb |= 0x2;
700 			break;
701 		}
702 
703 		break;
704 	case SNDRV_PCM_FORMAT_S20_3LE:
705 	case SNDRV_PCM_FORMAT_S20_3BE:
706 		pr_debug("20bit\n");
707 		switch (sta32x->format) {
708 		case SND_SOC_DAIFMT_I2S:
709 			confb |= 0x4;
710 			break;
711 		case SND_SOC_DAIFMT_LEFT_J:
712 			confb |= 0x5;
713 			break;
714 		case SND_SOC_DAIFMT_RIGHT_J:
715 			confb |= 0x6;
716 			break;
717 		}
718 
719 		break;
720 	case SNDRV_PCM_FORMAT_S18_3LE:
721 	case SNDRV_PCM_FORMAT_S18_3BE:
722 		pr_debug("18bit\n");
723 		switch (sta32x->format) {
724 		case SND_SOC_DAIFMT_I2S:
725 			confb |= 0x8;
726 			break;
727 		case SND_SOC_DAIFMT_LEFT_J:
728 			confb |= 0x9;
729 			break;
730 		case SND_SOC_DAIFMT_RIGHT_J:
731 			confb |= 0xa;
732 			break;
733 		}
734 
735 		break;
736 	case SNDRV_PCM_FORMAT_S16_LE:
737 	case SNDRV_PCM_FORMAT_S16_BE:
738 		pr_debug("16bit\n");
739 		switch (sta32x->format) {
740 		case SND_SOC_DAIFMT_I2S:
741 			confb |= 0x0;
742 			break;
743 		case SND_SOC_DAIFMT_LEFT_J:
744 			confb |= 0xd;
745 			break;
746 		case SND_SOC_DAIFMT_RIGHT_J:
747 			confb |= 0xe;
748 			break;
749 		}
750 
751 		break;
752 	default:
753 		return -EINVAL;
754 	}
755 
756 	snd_soc_write(codec, STA32X_CONFA, confa);
757 	snd_soc_write(codec, STA32X_CONFB, confb);
758 	return 0;
759 }
760 
761 /**
762  * sta32x_set_bias_level - DAPM callback
763  * @codec: the codec device
764  * @level: DAPM power level
765  *
766  * This is called by ALSA to put the codec into low power mode
767  * or to wake it up.  If the codec is powered off completely
768  * all registers must be restored after power on.
769  */
770 static int sta32x_set_bias_level(struct snd_soc_codec *codec,
771 				 enum snd_soc_bias_level level)
772 {
773 	int ret;
774 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
775 
776 	pr_debug("level = %d\n", level);
777 	switch (level) {
778 	case SND_SOC_BIAS_ON:
779 		break;
780 
781 	case SND_SOC_BIAS_PREPARE:
782 		/* Full power on */
783 		snd_soc_update_bits(codec, STA32X_CONFF,
784 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
785 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
786 		break;
787 
788 	case SND_SOC_BIAS_STANDBY:
789 		if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
790 			ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
791 						    sta32x->supplies);
792 			if (ret != 0) {
793 				dev_err(codec->dev,
794 					"Failed to enable supplies: %d\n", ret);
795 				return ret;
796 			}
797 
798 			sta32x_cache_sync(codec);
799 			sta32x_watchdog_start(sta32x);
800 		}
801 
802 		/* Power up to mute */
803 		/* FIXME */
804 		snd_soc_update_bits(codec, STA32X_CONFF,
805 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
806 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
807 
808 		break;
809 
810 	case SND_SOC_BIAS_OFF:
811 		/* The chip runs through the power down sequence for us. */
812 		snd_soc_update_bits(codec, STA32X_CONFF,
813 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
814 				    STA32X_CONFF_PWDN);
815 		msleep(300);
816 		sta32x_watchdog_stop(sta32x);
817 		regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies),
818 				       sta32x->supplies);
819 		break;
820 	}
821 	codec->dapm.bias_level = level;
822 	return 0;
823 }
824 
825 static const struct snd_soc_dai_ops sta32x_dai_ops = {
826 	.hw_params	= sta32x_hw_params,
827 	.set_sysclk	= sta32x_set_dai_sysclk,
828 	.set_fmt	= sta32x_set_dai_fmt,
829 };
830 
831 static struct snd_soc_dai_driver sta32x_dai = {
832 	.name = "STA32X",
833 	.playback = {
834 		.stream_name = "Playback",
835 		.channels_min = 2,
836 		.channels_max = 2,
837 		.rates = STA32X_RATES,
838 		.formats = STA32X_FORMATS,
839 	},
840 	.ops = &sta32x_dai_ops,
841 };
842 
843 #ifdef CONFIG_PM
844 static int sta32x_suspend(struct snd_soc_codec *codec)
845 {
846 	sta32x_set_bias_level(codec, SND_SOC_BIAS_OFF);
847 	return 0;
848 }
849 
850 static int sta32x_resume(struct snd_soc_codec *codec)
851 {
852 	sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
853 	return 0;
854 }
855 #else
856 #define sta32x_suspend NULL
857 #define sta32x_resume NULL
858 #endif
859 
860 static int sta32x_probe(struct snd_soc_codec *codec)
861 {
862 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
863 	int i, ret = 0, thermal = 0;
864 
865 	sta32x->codec = codec;
866 	sta32x->pdata = dev_get_platdata(codec->dev);
867 
868 	ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
869 				    sta32x->supplies);
870 	if (ret != 0) {
871 		dev_err(codec->dev, "Failed to enable supplies: %d\n", ret);
872 		return ret;
873 	}
874 
875 	/* Chip documentation explicitly requires that the reset values
876 	 * of reserved register bits are left untouched.
877 	 * Write the register default value to cache for reserved registers,
878 	 * so the write to the these registers are suppressed by the cache
879 	 * restore code when it skips writes of default registers.
880 	 */
881 	regcache_cache_only(sta32x->regmap, true);
882 	snd_soc_write(codec, STA32X_CONFC, 0xc2);
883 	snd_soc_write(codec, STA32X_CONFE, 0xc2);
884 	snd_soc_write(codec, STA32X_CONFF, 0x5c);
885 	snd_soc_write(codec, STA32X_MMUTE, 0x10);
886 	snd_soc_write(codec, STA32X_AUTO1, 0x60);
887 	snd_soc_write(codec, STA32X_AUTO3, 0x00);
888 	snd_soc_write(codec, STA32X_C3CFG, 0x40);
889 	regcache_cache_only(sta32x->regmap, false);
890 
891 	/* set thermal warning adjustment and recovery */
892 	if (!(sta32x->pdata->thermal_conf & STA32X_THERMAL_ADJUSTMENT_ENABLE))
893 		thermal |= STA32X_CONFA_TWAB;
894 	if (!(sta32x->pdata->thermal_conf & STA32X_THERMAL_RECOVERY_ENABLE))
895 		thermal |= STA32X_CONFA_TWRB;
896 	snd_soc_update_bits(codec, STA32X_CONFA,
897 			    STA32X_CONFA_TWAB | STA32X_CONFA_TWRB,
898 			    thermal);
899 
900 	/* select output configuration  */
901 	snd_soc_update_bits(codec, STA32X_CONFF,
902 			    STA32X_CONFF_OCFG_MASK,
903 			    sta32x->pdata->output_conf
904 			    << STA32X_CONFF_OCFG_SHIFT);
905 
906 	/* channel to output mapping */
907 	snd_soc_update_bits(codec, STA32X_C1CFG,
908 			    STA32X_CxCFG_OM_MASK,
909 			    sta32x->pdata->ch1_output_mapping
910 			    << STA32X_CxCFG_OM_SHIFT);
911 	snd_soc_update_bits(codec, STA32X_C2CFG,
912 			    STA32X_CxCFG_OM_MASK,
913 			    sta32x->pdata->ch2_output_mapping
914 			    << STA32X_CxCFG_OM_SHIFT);
915 	snd_soc_update_bits(codec, STA32X_C3CFG,
916 			    STA32X_CxCFG_OM_MASK,
917 			    sta32x->pdata->ch3_output_mapping
918 			    << STA32X_CxCFG_OM_SHIFT);
919 
920 	/* initialize coefficient shadow RAM with reset values */
921 	for (i = 4; i <= 49; i += 5)
922 		sta32x->coef_shadow[i] = 0x400000;
923 	for (i = 50; i <= 54; i++)
924 		sta32x->coef_shadow[i] = 0x7fffff;
925 	sta32x->coef_shadow[55] = 0x5a9df7;
926 	sta32x->coef_shadow[56] = 0x7fffff;
927 	sta32x->coef_shadow[59] = 0x7fffff;
928 	sta32x->coef_shadow[60] = 0x400000;
929 	sta32x->coef_shadow[61] = 0x400000;
930 
931 	if (sta32x->pdata->needs_esd_watchdog)
932 		INIT_DELAYED_WORK(&sta32x->watchdog_work, sta32x_watchdog);
933 
934 	sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
935 	/* Bias level configuration will have done an extra enable */
936 	regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
937 
938 	return 0;
939 }
940 
941 static int sta32x_remove(struct snd_soc_codec *codec)
942 {
943 	struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
944 
945 	sta32x_watchdog_stop(sta32x);
946 	sta32x_set_bias_level(codec, SND_SOC_BIAS_OFF);
947 	regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
948 
949 	return 0;
950 }
951 
952 static bool sta32x_reg_is_volatile(struct device *dev, unsigned int reg)
953 {
954 	switch (reg) {
955 	case STA32X_CONFA ... STA32X_L2ATRT:
956 	case STA32X_MPCC1 ... STA32X_FDRC2:
957 		return 0;
958 	}
959 	return 1;
960 }
961 
962 static const struct snd_soc_codec_driver sta32x_codec = {
963 	.probe =		sta32x_probe,
964 	.remove =		sta32x_remove,
965 	.suspend =		sta32x_suspend,
966 	.resume =		sta32x_resume,
967 	.set_bias_level =	sta32x_set_bias_level,
968 	.controls =		sta32x_snd_controls,
969 	.num_controls =		ARRAY_SIZE(sta32x_snd_controls),
970 	.dapm_widgets =		sta32x_dapm_widgets,
971 	.num_dapm_widgets =	ARRAY_SIZE(sta32x_dapm_widgets),
972 	.dapm_routes =		sta32x_dapm_routes,
973 	.num_dapm_routes =	ARRAY_SIZE(sta32x_dapm_routes),
974 };
975 
976 static const struct regmap_config sta32x_regmap = {
977 	.reg_bits =		8,
978 	.val_bits =		8,
979 	.max_register =		STA32X_FDRC2,
980 	.reg_defaults =		sta32x_regs,
981 	.num_reg_defaults =	ARRAY_SIZE(sta32x_regs),
982 	.cache_type =		REGCACHE_RBTREE,
983 	.volatile_reg =		sta32x_reg_is_volatile,
984 };
985 
986 static int sta32x_i2c_probe(struct i2c_client *i2c,
987 			    const struct i2c_device_id *id)
988 {
989 	struct sta32x_priv *sta32x;
990 	int ret, i;
991 
992 	sta32x = devm_kzalloc(&i2c->dev, sizeof(struct sta32x_priv),
993 			      GFP_KERNEL);
994 	if (!sta32x)
995 		return -ENOMEM;
996 
997 	/* regulators */
998 	for (i = 0; i < ARRAY_SIZE(sta32x->supplies); i++)
999 		sta32x->supplies[i].supply = sta32x_supply_names[i];
1000 
1001 	ret = devm_regulator_bulk_get(&i2c->dev, ARRAY_SIZE(sta32x->supplies),
1002 				      sta32x->supplies);
1003 	if (ret != 0) {
1004 		dev_err(&i2c->dev, "Failed to request supplies: %d\n", ret);
1005 		return ret;
1006 	}
1007 
1008 	sta32x->regmap = devm_regmap_init_i2c(i2c, &sta32x_regmap);
1009 	if (IS_ERR(sta32x->regmap)) {
1010 		ret = PTR_ERR(sta32x->regmap);
1011 		dev_err(&i2c->dev, "Failed to init regmap: %d\n", ret);
1012 		return ret;
1013 	}
1014 
1015 	i2c_set_clientdata(i2c, sta32x);
1016 
1017 	ret = snd_soc_register_codec(&i2c->dev, &sta32x_codec, &sta32x_dai, 1);
1018 	if (ret != 0)
1019 		dev_err(&i2c->dev, "Failed to register codec (%d)\n", ret);
1020 
1021 	return ret;
1022 }
1023 
1024 static int sta32x_i2c_remove(struct i2c_client *client)
1025 {
1026 	snd_soc_unregister_codec(&client->dev);
1027 	return 0;
1028 }
1029 
1030 static const struct i2c_device_id sta32x_i2c_id[] = {
1031 	{ "sta326", 0 },
1032 	{ "sta328", 0 },
1033 	{ "sta329", 0 },
1034 	{ }
1035 };
1036 MODULE_DEVICE_TABLE(i2c, sta32x_i2c_id);
1037 
1038 static struct i2c_driver sta32x_i2c_driver = {
1039 	.driver = {
1040 		.name = "sta32x",
1041 		.owner = THIS_MODULE,
1042 	},
1043 	.probe =    sta32x_i2c_probe,
1044 	.remove =   sta32x_i2c_remove,
1045 	.id_table = sta32x_i2c_id,
1046 };
1047 
1048 module_i2c_driver(sta32x_i2c_driver);
1049 
1050 MODULE_DESCRIPTION("ASoC STA32X driver");
1051 MODULE_AUTHOR("Johannes Stezenbach <js@sig21.net>");
1052 MODULE_LICENSE("GPL");
1053