xref: /openbmc/linux/sound/soc/codecs/sgtl5000.c (revision afb46f79)
1 /*
2  * sgtl5000.c  --  SGTL5000 ALSA SoC Audio driver
3  *
4  * Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/pm.h>
17 #include <linux/i2c.h>
18 #include <linux/clk.h>
19 #include <linux/regmap.h>
20 #include <linux/regulator/driver.h>
21 #include <linux/regulator/machine.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/of_device.h>
24 #include <sound/core.h>
25 #include <sound/tlv.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 #include <sound/soc.h>
29 #include <sound/soc-dapm.h>
30 #include <sound/initval.h>
31 
32 #include "sgtl5000.h"
33 
34 #define SGTL5000_DAP_REG_OFFSET	0x0100
35 #define SGTL5000_MAX_REG_OFFSET	0x013A
36 
37 /* default value of sgtl5000 registers */
38 static const struct reg_default sgtl5000_reg_defaults[] = {
39 	{ SGTL5000_CHIP_CLK_CTRL,		0x0008 },
40 	{ SGTL5000_CHIP_I2S_CTRL,		0x0010 },
41 	{ SGTL5000_CHIP_SSS_CTRL,		0x0010 },
42 	{ SGTL5000_CHIP_DAC_VOL,		0x3c3c },
43 	{ SGTL5000_CHIP_PAD_STRENGTH,		0x015f },
44 	{ SGTL5000_CHIP_ANA_HP_CTRL,		0x1818 },
45 	{ SGTL5000_CHIP_ANA_CTRL,		0x0111 },
46 	{ SGTL5000_CHIP_LINE_OUT_VOL,		0x0404 },
47 	{ SGTL5000_CHIP_ANA_POWER,		0x7060 },
48 	{ SGTL5000_CHIP_PLL_CTRL,		0x5000 },
49 	{ SGTL5000_DAP_BASS_ENHANCE,		0x0040 },
50 	{ SGTL5000_DAP_BASS_ENHANCE_CTRL,	0x051f },
51 	{ SGTL5000_DAP_SURROUND,		0x0040 },
52 	{ SGTL5000_DAP_EQ_BASS_BAND0,		0x002f },
53 	{ SGTL5000_DAP_EQ_BASS_BAND1,		0x002f },
54 	{ SGTL5000_DAP_EQ_BASS_BAND2,		0x002f },
55 	{ SGTL5000_DAP_EQ_BASS_BAND3,		0x002f },
56 	{ SGTL5000_DAP_EQ_BASS_BAND4,		0x002f },
57 	{ SGTL5000_DAP_MAIN_CHAN,		0x8000 },
58 	{ SGTL5000_DAP_AVC_CTRL,		0x0510 },
59 	{ SGTL5000_DAP_AVC_THRESHOLD,		0x1473 },
60 	{ SGTL5000_DAP_AVC_ATTACK,		0x0028 },
61 	{ SGTL5000_DAP_AVC_DECAY,		0x0050 },
62 };
63 
64 /* regulator supplies for sgtl5000, VDDD is an optional external supply */
65 enum sgtl5000_regulator_supplies {
66 	VDDA,
67 	VDDIO,
68 	VDDD,
69 	SGTL5000_SUPPLY_NUM
70 };
71 
72 /* vddd is optional supply */
73 static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
74 	"VDDA",
75 	"VDDIO",
76 	"VDDD"
77 };
78 
79 #define LDO_CONSUMER_NAME	"VDDD_LDO"
80 #define LDO_VOLTAGE		1200000
81 
82 static struct regulator_consumer_supply ldo_consumer[] = {
83 	REGULATOR_SUPPLY(LDO_CONSUMER_NAME, NULL),
84 };
85 
86 static struct regulator_init_data ldo_init_data = {
87 	.constraints = {
88 		.min_uV                 = 1200000,
89 		.max_uV                 = 1200000,
90 		.valid_modes_mask       = REGULATOR_MODE_NORMAL,
91 		.valid_ops_mask         = REGULATOR_CHANGE_STATUS,
92 	},
93 	.num_consumer_supplies = 1,
94 	.consumer_supplies = &ldo_consumer[0],
95 };
96 
97 /*
98  * sgtl5000 internal ldo regulator,
99  * enabled when VDDD not provided
100  */
101 struct ldo_regulator {
102 	struct regulator_desc desc;
103 	struct regulator_dev *dev;
104 	int voltage;
105 	void *codec_data;
106 	bool enabled;
107 };
108 
109 /* sgtl5000 private structure in codec */
110 struct sgtl5000_priv {
111 	int sysclk;	/* sysclk rate */
112 	int master;	/* i2s master or not */
113 	int fmt;	/* i2s data format */
114 	struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
115 	struct ldo_regulator *ldo;
116 	struct regmap *regmap;
117 	struct clk *mclk;
118 	int revision;
119 };
120 
121 /*
122  * mic_bias power on/off share the same register bits with
123  * output impedance of mic bias, when power on mic bias, we
124  * need reclaim it to impedance value.
125  * 0x0 = Powered off
126  * 0x1 = 2Kohm
127  * 0x2 = 4Kohm
128  * 0x3 = 8Kohm
129  */
130 static int mic_bias_event(struct snd_soc_dapm_widget *w,
131 	struct snd_kcontrol *kcontrol, int event)
132 {
133 	switch (event) {
134 	case SND_SOC_DAPM_POST_PMU:
135 		/* change mic bias resistor to 4Kohm */
136 		snd_soc_update_bits(w->codec, SGTL5000_CHIP_MIC_CTRL,
137 				SGTL5000_BIAS_R_MASK,
138 				SGTL5000_BIAS_R_4k << SGTL5000_BIAS_R_SHIFT);
139 		break;
140 
141 	case SND_SOC_DAPM_PRE_PMD:
142 		snd_soc_update_bits(w->codec, SGTL5000_CHIP_MIC_CTRL,
143 				SGTL5000_BIAS_R_MASK, 0);
144 		break;
145 	}
146 	return 0;
147 }
148 
149 /*
150  * As manual described, ADC/DAC only works when VAG powerup,
151  * So enabled VAG before ADC/DAC up.
152  * In power down case, we need wait 400ms when vag fully ramped down.
153  */
154 static int power_vag_event(struct snd_soc_dapm_widget *w,
155 	struct snd_kcontrol *kcontrol, int event)
156 {
157 	const u32 mask = SGTL5000_DAC_POWERUP | SGTL5000_ADC_POWERUP;
158 
159 	switch (event) {
160 	case SND_SOC_DAPM_POST_PMU:
161 		snd_soc_update_bits(w->codec, SGTL5000_CHIP_ANA_POWER,
162 			SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
163 		break;
164 
165 	case SND_SOC_DAPM_PRE_PMD:
166 		/*
167 		 * Don't clear VAG_POWERUP, when both DAC and ADC are
168 		 * operational to prevent inadvertently starving the
169 		 * other one of them.
170 		 */
171 		if ((snd_soc_read(w->codec, SGTL5000_CHIP_ANA_POWER) &
172 				mask) != mask) {
173 			snd_soc_update_bits(w->codec, SGTL5000_CHIP_ANA_POWER,
174 				SGTL5000_VAG_POWERUP, 0);
175 			msleep(400);
176 		}
177 		break;
178 	default:
179 		break;
180 	}
181 
182 	return 0;
183 }
184 
185 /* input sources for ADC */
186 static const char *adc_mux_text[] = {
187 	"MIC_IN", "LINE_IN"
188 };
189 
190 static SOC_ENUM_SINGLE_DECL(adc_enum,
191 			    SGTL5000_CHIP_ANA_CTRL, 2,
192 			    adc_mux_text);
193 
194 static const struct snd_kcontrol_new adc_mux =
195 SOC_DAPM_ENUM("Capture Mux", adc_enum);
196 
197 /* input sources for DAC */
198 static const char *dac_mux_text[] = {
199 	"DAC", "LINE_IN"
200 };
201 
202 static SOC_ENUM_SINGLE_DECL(dac_enum,
203 			    SGTL5000_CHIP_ANA_CTRL, 6,
204 			    dac_mux_text);
205 
206 static const struct snd_kcontrol_new dac_mux =
207 SOC_DAPM_ENUM("Headphone Mux", dac_enum);
208 
209 static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
210 	SND_SOC_DAPM_INPUT("LINE_IN"),
211 	SND_SOC_DAPM_INPUT("MIC_IN"),
212 
213 	SND_SOC_DAPM_OUTPUT("HP_OUT"),
214 	SND_SOC_DAPM_OUTPUT("LINE_OUT"),
215 
216 	SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
217 			    mic_bias_event,
218 			    SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
219 
220 	SND_SOC_DAPM_PGA("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0),
221 	SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
222 
223 	SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
224 	SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
225 
226 	/* aif for i2s input */
227 	SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
228 				0, SGTL5000_CHIP_DIG_POWER,
229 				0, 0),
230 
231 	/* aif for i2s output */
232 	SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
233 				0, SGTL5000_CHIP_DIG_POWER,
234 				1, 0),
235 
236 	SND_SOC_DAPM_ADC("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0),
237 	SND_SOC_DAPM_DAC("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0),
238 
239 	SND_SOC_DAPM_PRE("VAG_POWER_PRE", power_vag_event),
240 	SND_SOC_DAPM_POST("VAG_POWER_POST", power_vag_event),
241 };
242 
243 /* routes for sgtl5000 */
244 static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
245 	{"Capture Mux", "LINE_IN", "LINE_IN"},	/* line_in --> adc_mux */
246 	{"Capture Mux", "MIC_IN", "MIC_IN"},	/* mic_in --> adc_mux */
247 
248 	{"ADC", NULL, "Capture Mux"},		/* adc_mux --> adc */
249 	{"AIFOUT", NULL, "ADC"},		/* adc --> i2s_out */
250 
251 	{"DAC", NULL, "AIFIN"},			/* i2s-->dac,skip audio mux */
252 	{"Headphone Mux", "DAC", "DAC"},	/* dac --> hp_mux */
253 	{"LO", NULL, "DAC"},			/* dac --> line_out */
254 
255 	{"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
256 	{"HP", NULL, "Headphone Mux"},		/* hp_mux --> hp */
257 
258 	{"LINE_OUT", NULL, "LO"},
259 	{"HP_OUT", NULL, "HP"},
260 };
261 
262 /* custom function to fetch info of PCM playback volume */
263 static int dac_info_volsw(struct snd_kcontrol *kcontrol,
264 			  struct snd_ctl_elem_info *uinfo)
265 {
266 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
267 	uinfo->count = 2;
268 	uinfo->value.integer.min = 0;
269 	uinfo->value.integer.max = 0xfc - 0x3c;
270 	return 0;
271 }
272 
273 /*
274  * custom function to get of PCM playback volume
275  *
276  * dac volume register
277  * 15-------------8-7--------------0
278  * | R channel vol | L channel vol |
279  *  -------------------------------
280  *
281  * PCM volume with 0.5017 dB steps from 0 to -90 dB
282  *
283  * register values map to dB
284  * 0x3B and less = Reserved
285  * 0x3C = 0 dB
286  * 0x3D = -0.5 dB
287  * 0xF0 = -90 dB
288  * 0xFC and greater = Muted
289  *
290  * register value map to userspace value
291  *
292  * register value	0x3c(0dB)	  0xf0(-90dB)0xfc
293  *			------------------------------
294  * userspace value	0xc0			     0
295  */
296 static int dac_get_volsw(struct snd_kcontrol *kcontrol,
297 			 struct snd_ctl_elem_value *ucontrol)
298 {
299 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
300 	int reg;
301 	int l;
302 	int r;
303 
304 	reg = snd_soc_read(codec, SGTL5000_CHIP_DAC_VOL);
305 
306 	/* get left channel volume */
307 	l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
308 
309 	/* get right channel volume */
310 	r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
311 
312 	/* make sure value fall in (0x3c,0xfc) */
313 	l = clamp(l, 0x3c, 0xfc);
314 	r = clamp(r, 0x3c, 0xfc);
315 
316 	/* invert it and map to userspace value */
317 	l = 0xfc - l;
318 	r = 0xfc - r;
319 
320 	ucontrol->value.integer.value[0] = l;
321 	ucontrol->value.integer.value[1] = r;
322 
323 	return 0;
324 }
325 
326 /*
327  * custom function to put of PCM playback volume
328  *
329  * dac volume register
330  * 15-------------8-7--------------0
331  * | R channel vol | L channel vol |
332  *  -------------------------------
333  *
334  * PCM volume with 0.5017 dB steps from 0 to -90 dB
335  *
336  * register values map to dB
337  * 0x3B and less = Reserved
338  * 0x3C = 0 dB
339  * 0x3D = -0.5 dB
340  * 0xF0 = -90 dB
341  * 0xFC and greater = Muted
342  *
343  * userspace value map to register value
344  *
345  * userspace value	0xc0			     0
346  *			------------------------------
347  * register value	0x3c(0dB)	0xf0(-90dB)0xfc
348  */
349 static int dac_put_volsw(struct snd_kcontrol *kcontrol,
350 			 struct snd_ctl_elem_value *ucontrol)
351 {
352 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
353 	int reg;
354 	int l;
355 	int r;
356 
357 	l = ucontrol->value.integer.value[0];
358 	r = ucontrol->value.integer.value[1];
359 
360 	/* make sure userspace volume fall in (0, 0xfc-0x3c) */
361 	l = clamp(l, 0, 0xfc - 0x3c);
362 	r = clamp(r, 0, 0xfc - 0x3c);
363 
364 	/* invert it, get the value can be set to register */
365 	l = 0xfc - l;
366 	r = 0xfc - r;
367 
368 	/* shift to get the register value */
369 	reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
370 		r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
371 
372 	snd_soc_write(codec, SGTL5000_CHIP_DAC_VOL, reg);
373 
374 	return 0;
375 }
376 
377 static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
378 
379 /* tlv for mic gain, 0db 20db 30db 40db */
380 static const unsigned int mic_gain_tlv[] = {
381 	TLV_DB_RANGE_HEAD(2),
382 	0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
383 	1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0),
384 };
385 
386 /* tlv for hp volume, -51.5db to 12.0db, step .5db */
387 static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
388 
389 static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
390 	/* SOC_DOUBLE_S8_TLV with invert */
391 	{
392 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
393 		.name = "PCM Playback Volume",
394 		.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
395 			SNDRV_CTL_ELEM_ACCESS_READWRITE,
396 		.info = dac_info_volsw,
397 		.get = dac_get_volsw,
398 		.put = dac_put_volsw,
399 	},
400 
401 	SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
402 	SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
403 			SGTL5000_CHIP_ANA_ADC_CTRL,
404 			8, 1, 0, capture_6db_attenuate),
405 	SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
406 
407 	SOC_DOUBLE_TLV("Headphone Playback Volume",
408 			SGTL5000_CHIP_ANA_HP_CTRL,
409 			0, 8,
410 			0x7f, 1,
411 			headphone_volume),
412 	SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
413 			5, 1, 0),
414 
415 	SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
416 			0, 3, 0, mic_gain_tlv),
417 };
418 
419 /* mute the codec used by alsa core */
420 static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute)
421 {
422 	struct snd_soc_codec *codec = codec_dai->codec;
423 	u16 adcdac_ctrl = SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT;
424 
425 	snd_soc_update_bits(codec, SGTL5000_CHIP_ADCDAC_CTRL,
426 			adcdac_ctrl, mute ? adcdac_ctrl : 0);
427 
428 	return 0;
429 }
430 
431 /* set codec format */
432 static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
433 {
434 	struct snd_soc_codec *codec = codec_dai->codec;
435 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
436 	u16 i2sctl = 0;
437 
438 	sgtl5000->master = 0;
439 	/*
440 	 * i2s clock and frame master setting.
441 	 * ONLY support:
442 	 *  - clock and frame slave,
443 	 *  - clock and frame master
444 	 */
445 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
446 	case SND_SOC_DAIFMT_CBS_CFS:
447 		break;
448 	case SND_SOC_DAIFMT_CBM_CFM:
449 		i2sctl |= SGTL5000_I2S_MASTER;
450 		sgtl5000->master = 1;
451 		break;
452 	default:
453 		return -EINVAL;
454 	}
455 
456 	/* setting i2s data format */
457 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
458 	case SND_SOC_DAIFMT_DSP_A:
459 		i2sctl |= SGTL5000_I2S_MODE_PCM;
460 		break;
461 	case SND_SOC_DAIFMT_DSP_B:
462 		i2sctl |= SGTL5000_I2S_MODE_PCM;
463 		i2sctl |= SGTL5000_I2S_LRALIGN;
464 		break;
465 	case SND_SOC_DAIFMT_I2S:
466 		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ;
467 		break;
468 	case SND_SOC_DAIFMT_RIGHT_J:
469 		i2sctl |= SGTL5000_I2S_MODE_RJ;
470 		i2sctl |= SGTL5000_I2S_LRPOL;
471 		break;
472 	case SND_SOC_DAIFMT_LEFT_J:
473 		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ;
474 		i2sctl |= SGTL5000_I2S_LRALIGN;
475 		break;
476 	default:
477 		return -EINVAL;
478 	}
479 
480 	sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
481 
482 	/* Clock inversion */
483 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
484 	case SND_SOC_DAIFMT_NB_NF:
485 		break;
486 	case SND_SOC_DAIFMT_IB_NF:
487 		i2sctl |= SGTL5000_I2S_SCLK_INV;
488 		break;
489 	default:
490 		return -EINVAL;
491 	}
492 
493 	snd_soc_write(codec, SGTL5000_CHIP_I2S_CTRL, i2sctl);
494 
495 	return 0;
496 }
497 
498 /* set codec sysclk */
499 static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
500 				   int clk_id, unsigned int freq, int dir)
501 {
502 	struct snd_soc_codec *codec = codec_dai->codec;
503 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
504 
505 	switch (clk_id) {
506 	case SGTL5000_SYSCLK:
507 		sgtl5000->sysclk = freq;
508 		break;
509 	default:
510 		return -EINVAL;
511 	}
512 
513 	return 0;
514 }
515 
516 /*
517  * set clock according to i2s frame clock,
518  * sgtl5000 provide 2 clock sources.
519  * 1. sys_mclk. sample freq can only configure to
520  *	1/256, 1/384, 1/512 of sys_mclk.
521  * 2. pll. can derive any audio clocks.
522  *
523  * clock setting rules:
524  * 1. in slave mode, only sys_mclk can use.
525  * 2. as constraint by sys_mclk, sample freq should
526  *	set to 32k, 44.1k and above.
527  * 3. using sys_mclk prefer to pll to save power.
528  */
529 static int sgtl5000_set_clock(struct snd_soc_codec *codec, int frame_rate)
530 {
531 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
532 	int clk_ctl = 0;
533 	int sys_fs;	/* sample freq */
534 
535 	/*
536 	 * sample freq should be divided by frame clock,
537 	 * if frame clock lower than 44.1khz, sample feq should set to
538 	 * 32khz or 44.1khz.
539 	 */
540 	switch (frame_rate) {
541 	case 8000:
542 	case 16000:
543 		sys_fs = 32000;
544 		break;
545 	case 11025:
546 	case 22050:
547 		sys_fs = 44100;
548 		break;
549 	default:
550 		sys_fs = frame_rate;
551 		break;
552 	}
553 
554 	/* set divided factor of frame clock */
555 	switch (sys_fs / frame_rate) {
556 	case 4:
557 		clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
558 		break;
559 	case 2:
560 		clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
561 		break;
562 	case 1:
563 		clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
564 		break;
565 	default:
566 		return -EINVAL;
567 	}
568 
569 	/* set the sys_fs according to frame rate */
570 	switch (sys_fs) {
571 	case 32000:
572 		clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
573 		break;
574 	case 44100:
575 		clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
576 		break;
577 	case 48000:
578 		clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
579 		break;
580 	case 96000:
581 		clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
582 		break;
583 	default:
584 		dev_err(codec->dev, "frame rate %d not supported\n",
585 			frame_rate);
586 		return -EINVAL;
587 	}
588 
589 	/*
590 	 * calculate the divider of mclk/sample_freq,
591 	 * factor of freq =96k can only be 256, since mclk in range (12m,27m)
592 	 */
593 	switch (sgtl5000->sysclk / sys_fs) {
594 	case 256:
595 		clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
596 			SGTL5000_MCLK_FREQ_SHIFT;
597 		break;
598 	case 384:
599 		clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
600 			SGTL5000_MCLK_FREQ_SHIFT;
601 		break;
602 	case 512:
603 		clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
604 			SGTL5000_MCLK_FREQ_SHIFT;
605 		break;
606 	default:
607 		/* if mclk not satisify the divider, use pll */
608 		if (sgtl5000->master) {
609 			clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
610 				SGTL5000_MCLK_FREQ_SHIFT;
611 		} else {
612 			dev_err(codec->dev,
613 				"PLL not supported in slave mode\n");
614 			return -EINVAL;
615 		}
616 	}
617 
618 	/* if using pll, please check manual 6.4.2 for detail */
619 	if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
620 		u64 out, t;
621 		int div2;
622 		int pll_ctl;
623 		unsigned int in, int_div, frac_div;
624 
625 		if (sgtl5000->sysclk > 17000000) {
626 			div2 = 1;
627 			in = sgtl5000->sysclk / 2;
628 		} else {
629 			div2 = 0;
630 			in = sgtl5000->sysclk;
631 		}
632 		if (sys_fs == 44100)
633 			out = 180633600;
634 		else
635 			out = 196608000;
636 		t = do_div(out, in);
637 		int_div = out;
638 		t *= 2048;
639 		do_div(t, in);
640 		frac_div = t;
641 		pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
642 		    frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
643 
644 		snd_soc_write(codec, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
645 		if (div2)
646 			snd_soc_update_bits(codec,
647 				SGTL5000_CHIP_CLK_TOP_CTRL,
648 				SGTL5000_INPUT_FREQ_DIV2,
649 				SGTL5000_INPUT_FREQ_DIV2);
650 		else
651 			snd_soc_update_bits(codec,
652 				SGTL5000_CHIP_CLK_TOP_CTRL,
653 				SGTL5000_INPUT_FREQ_DIV2,
654 				0);
655 
656 		/* power up pll */
657 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
658 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
659 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
660 
661 		/* if using pll, clk_ctrl must be set after pll power up */
662 		snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
663 	} else {
664 		/* otherwise, clk_ctrl must be set before pll power down */
665 		snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
666 
667 		/* power down pll */
668 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
669 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
670 			0);
671 	}
672 
673 	return 0;
674 }
675 
676 /*
677  * Set PCM DAI bit size and sample rate.
678  * input: params_rate, params_fmt
679  */
680 static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
681 				  struct snd_pcm_hw_params *params,
682 				  struct snd_soc_dai *dai)
683 {
684 	struct snd_soc_codec *codec = dai->codec;
685 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
686 	int channels = params_channels(params);
687 	int i2s_ctl = 0;
688 	int stereo;
689 	int ret;
690 
691 	/* sysclk should already set */
692 	if (!sgtl5000->sysclk) {
693 		dev_err(codec->dev, "%s: set sysclk first!\n", __func__);
694 		return -EFAULT;
695 	}
696 
697 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
698 		stereo = SGTL5000_DAC_STEREO;
699 	else
700 		stereo = SGTL5000_ADC_STEREO;
701 
702 	/* set mono to save power */
703 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, stereo,
704 			channels == 1 ? 0 : stereo);
705 
706 	/* set codec clock base on lrclk */
707 	ret = sgtl5000_set_clock(codec, params_rate(params));
708 	if (ret)
709 		return ret;
710 
711 	/* set i2s data format */
712 	switch (params_format(params)) {
713 	case SNDRV_PCM_FORMAT_S16_LE:
714 		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
715 			return -EINVAL;
716 		i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
717 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
718 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
719 		break;
720 	case SNDRV_PCM_FORMAT_S20_3LE:
721 		i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
722 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
723 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
724 		break;
725 	case SNDRV_PCM_FORMAT_S24_LE:
726 		i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
727 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
728 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
729 		break;
730 	case SNDRV_PCM_FORMAT_S32_LE:
731 		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
732 			return -EINVAL;
733 		i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
734 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
735 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
736 		break;
737 	default:
738 		return -EINVAL;
739 	}
740 
741 	snd_soc_update_bits(codec, SGTL5000_CHIP_I2S_CTRL,
742 			    SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
743 			    i2s_ctl);
744 
745 	return 0;
746 }
747 
748 #ifdef CONFIG_REGULATOR
749 static int ldo_regulator_is_enabled(struct regulator_dev *dev)
750 {
751 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
752 
753 	return ldo->enabled;
754 }
755 
756 static int ldo_regulator_enable(struct regulator_dev *dev)
757 {
758 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
759 	struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data;
760 	int reg;
761 
762 	if (ldo_regulator_is_enabled(dev))
763 		return 0;
764 
765 	/* set regulator value firstly */
766 	reg = (1600 - ldo->voltage / 1000) / 50;
767 	reg = clamp(reg, 0x0, 0xf);
768 
769 	/* amend the voltage value, unit: uV */
770 	ldo->voltage = (1600 - reg * 50) * 1000;
771 
772 	/* set voltage to register */
773 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
774 				SGTL5000_LINREG_VDDD_MASK, reg);
775 
776 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
777 				SGTL5000_LINEREG_D_POWERUP,
778 				SGTL5000_LINEREG_D_POWERUP);
779 
780 	/* when internal ldo enabled, simple digital power can be disabled */
781 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
782 				SGTL5000_LINREG_SIMPLE_POWERUP,
783 				0);
784 
785 	ldo->enabled = 1;
786 	return 0;
787 }
788 
789 static int ldo_regulator_disable(struct regulator_dev *dev)
790 {
791 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
792 	struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data;
793 
794 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
795 				SGTL5000_LINEREG_D_POWERUP,
796 				0);
797 
798 	/* clear voltage info */
799 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
800 				SGTL5000_LINREG_VDDD_MASK, 0);
801 
802 	ldo->enabled = 0;
803 
804 	return 0;
805 }
806 
807 static int ldo_regulator_get_voltage(struct regulator_dev *dev)
808 {
809 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
810 
811 	return ldo->voltage;
812 }
813 
814 static struct regulator_ops ldo_regulator_ops = {
815 	.is_enabled = ldo_regulator_is_enabled,
816 	.enable = ldo_regulator_enable,
817 	.disable = ldo_regulator_disable,
818 	.get_voltage = ldo_regulator_get_voltage,
819 };
820 
821 static int ldo_regulator_register(struct snd_soc_codec *codec,
822 				struct regulator_init_data *init_data,
823 				int voltage)
824 {
825 	struct ldo_regulator *ldo;
826 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
827 	struct regulator_config config = { };
828 
829 	ldo = kzalloc(sizeof(struct ldo_regulator), GFP_KERNEL);
830 
831 	if (!ldo) {
832 		dev_err(codec->dev, "failed to allocate ldo_regulator\n");
833 		return -ENOMEM;
834 	}
835 
836 	ldo->desc.name = kstrdup(dev_name(codec->dev), GFP_KERNEL);
837 	if (!ldo->desc.name) {
838 		kfree(ldo);
839 		dev_err(codec->dev, "failed to allocate decs name memory\n");
840 		return -ENOMEM;
841 	}
842 
843 	ldo->desc.type  = REGULATOR_VOLTAGE;
844 	ldo->desc.owner = THIS_MODULE;
845 	ldo->desc.ops   = &ldo_regulator_ops;
846 	ldo->desc.n_voltages = 1;
847 
848 	ldo->codec_data = codec;
849 	ldo->voltage = voltage;
850 
851 	config.dev = codec->dev;
852 	config.driver_data = ldo;
853 	config.init_data = init_data;
854 
855 	ldo->dev = regulator_register(&ldo->desc, &config);
856 	if (IS_ERR(ldo->dev)) {
857 		int ret = PTR_ERR(ldo->dev);
858 
859 		dev_err(codec->dev, "failed to register regulator\n");
860 		kfree(ldo->desc.name);
861 		kfree(ldo);
862 
863 		return ret;
864 	}
865 	sgtl5000->ldo = ldo;
866 
867 	return 0;
868 }
869 
870 static int ldo_regulator_remove(struct snd_soc_codec *codec)
871 {
872 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
873 	struct ldo_regulator *ldo = sgtl5000->ldo;
874 
875 	if (!ldo)
876 		return 0;
877 
878 	regulator_unregister(ldo->dev);
879 	kfree(ldo->desc.name);
880 	kfree(ldo);
881 
882 	return 0;
883 }
884 #else
885 static int ldo_regulator_register(struct snd_soc_codec *codec,
886 				struct regulator_init_data *init_data,
887 				int voltage)
888 {
889 	dev_err(codec->dev, "this setup needs regulator support in the kernel\n");
890 	return -EINVAL;
891 }
892 
893 static int ldo_regulator_remove(struct snd_soc_codec *codec)
894 {
895 	return 0;
896 }
897 #endif
898 
899 /*
900  * set dac bias
901  * common state changes:
902  * startup:
903  * off --> standby --> prepare --> on
904  * standby --> prepare --> on
905  *
906  * stop:
907  * on --> prepare --> standby
908  */
909 static int sgtl5000_set_bias_level(struct snd_soc_codec *codec,
910 				   enum snd_soc_bias_level level)
911 {
912 	int ret;
913 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
914 
915 	switch (level) {
916 	case SND_SOC_BIAS_ON:
917 	case SND_SOC_BIAS_PREPARE:
918 		break;
919 	case SND_SOC_BIAS_STANDBY:
920 		if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
921 			ret = regulator_bulk_enable(
922 						ARRAY_SIZE(sgtl5000->supplies),
923 						sgtl5000->supplies);
924 			if (ret)
925 				return ret;
926 			udelay(10);
927 
928 			regcache_cache_only(sgtl5000->regmap, false);
929 
930 			ret = regcache_sync(sgtl5000->regmap);
931 			if (ret != 0) {
932 				dev_err(codec->dev,
933 					"Failed to restore cache: %d\n", ret);
934 
935 				regcache_cache_only(sgtl5000->regmap, true);
936 				regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
937 						       sgtl5000->supplies);
938 
939 				return ret;
940 			}
941 		}
942 
943 		break;
944 	case SND_SOC_BIAS_OFF:
945 		regcache_cache_only(sgtl5000->regmap, true);
946 		regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
947 					sgtl5000->supplies);
948 		break;
949 	}
950 
951 	codec->dapm.bias_level = level;
952 	return 0;
953 }
954 
955 #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
956 			SNDRV_PCM_FMTBIT_S20_3LE |\
957 			SNDRV_PCM_FMTBIT_S24_LE |\
958 			SNDRV_PCM_FMTBIT_S32_LE)
959 
960 static const struct snd_soc_dai_ops sgtl5000_ops = {
961 	.hw_params = sgtl5000_pcm_hw_params,
962 	.digital_mute = sgtl5000_digital_mute,
963 	.set_fmt = sgtl5000_set_dai_fmt,
964 	.set_sysclk = sgtl5000_set_dai_sysclk,
965 };
966 
967 static struct snd_soc_dai_driver sgtl5000_dai = {
968 	.name = "sgtl5000",
969 	.playback = {
970 		.stream_name = "Playback",
971 		.channels_min = 1,
972 		.channels_max = 2,
973 		/*
974 		 * only support 8~48K + 96K,
975 		 * TODO modify hw_param to support more
976 		 */
977 		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
978 		.formats = SGTL5000_FORMATS,
979 	},
980 	.capture = {
981 		.stream_name = "Capture",
982 		.channels_min = 1,
983 		.channels_max = 2,
984 		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
985 		.formats = SGTL5000_FORMATS,
986 	},
987 	.ops = &sgtl5000_ops,
988 	.symmetric_rates = 1,
989 };
990 
991 static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
992 {
993 	switch (reg) {
994 	case SGTL5000_CHIP_ID:
995 	case SGTL5000_CHIP_ADCDAC_CTRL:
996 	case SGTL5000_CHIP_ANA_STATUS:
997 		return true;
998 	}
999 
1000 	return false;
1001 }
1002 
1003 static bool sgtl5000_readable(struct device *dev, unsigned int reg)
1004 {
1005 	switch (reg) {
1006 	case SGTL5000_CHIP_ID:
1007 	case SGTL5000_CHIP_DIG_POWER:
1008 	case SGTL5000_CHIP_CLK_CTRL:
1009 	case SGTL5000_CHIP_I2S_CTRL:
1010 	case SGTL5000_CHIP_SSS_CTRL:
1011 	case SGTL5000_CHIP_ADCDAC_CTRL:
1012 	case SGTL5000_CHIP_DAC_VOL:
1013 	case SGTL5000_CHIP_PAD_STRENGTH:
1014 	case SGTL5000_CHIP_ANA_ADC_CTRL:
1015 	case SGTL5000_CHIP_ANA_HP_CTRL:
1016 	case SGTL5000_CHIP_ANA_CTRL:
1017 	case SGTL5000_CHIP_LINREG_CTRL:
1018 	case SGTL5000_CHIP_REF_CTRL:
1019 	case SGTL5000_CHIP_MIC_CTRL:
1020 	case SGTL5000_CHIP_LINE_OUT_CTRL:
1021 	case SGTL5000_CHIP_LINE_OUT_VOL:
1022 	case SGTL5000_CHIP_ANA_POWER:
1023 	case SGTL5000_CHIP_PLL_CTRL:
1024 	case SGTL5000_CHIP_CLK_TOP_CTRL:
1025 	case SGTL5000_CHIP_ANA_STATUS:
1026 	case SGTL5000_CHIP_SHORT_CTRL:
1027 	case SGTL5000_CHIP_ANA_TEST2:
1028 	case SGTL5000_DAP_CTRL:
1029 	case SGTL5000_DAP_PEQ:
1030 	case SGTL5000_DAP_BASS_ENHANCE:
1031 	case SGTL5000_DAP_BASS_ENHANCE_CTRL:
1032 	case SGTL5000_DAP_AUDIO_EQ:
1033 	case SGTL5000_DAP_SURROUND:
1034 	case SGTL5000_DAP_FLT_COEF_ACCESS:
1035 	case SGTL5000_DAP_COEF_WR_B0_MSB:
1036 	case SGTL5000_DAP_COEF_WR_B0_LSB:
1037 	case SGTL5000_DAP_EQ_BASS_BAND0:
1038 	case SGTL5000_DAP_EQ_BASS_BAND1:
1039 	case SGTL5000_DAP_EQ_BASS_BAND2:
1040 	case SGTL5000_DAP_EQ_BASS_BAND3:
1041 	case SGTL5000_DAP_EQ_BASS_BAND4:
1042 	case SGTL5000_DAP_MAIN_CHAN:
1043 	case SGTL5000_DAP_MIX_CHAN:
1044 	case SGTL5000_DAP_AVC_CTRL:
1045 	case SGTL5000_DAP_AVC_THRESHOLD:
1046 	case SGTL5000_DAP_AVC_ATTACK:
1047 	case SGTL5000_DAP_AVC_DECAY:
1048 	case SGTL5000_DAP_COEF_WR_B1_MSB:
1049 	case SGTL5000_DAP_COEF_WR_B1_LSB:
1050 	case SGTL5000_DAP_COEF_WR_B2_MSB:
1051 	case SGTL5000_DAP_COEF_WR_B2_LSB:
1052 	case SGTL5000_DAP_COEF_WR_A1_MSB:
1053 	case SGTL5000_DAP_COEF_WR_A1_LSB:
1054 	case SGTL5000_DAP_COEF_WR_A2_MSB:
1055 	case SGTL5000_DAP_COEF_WR_A2_LSB:
1056 		return true;
1057 
1058 	default:
1059 		return false;
1060 	}
1061 }
1062 
1063 #ifdef CONFIG_SUSPEND
1064 static int sgtl5000_suspend(struct snd_soc_codec *codec)
1065 {
1066 	sgtl5000_set_bias_level(codec, SND_SOC_BIAS_OFF);
1067 
1068 	return 0;
1069 }
1070 
1071 /*
1072  * restore all sgtl5000 registers,
1073  * since a big hole between dap and regular registers,
1074  * we will restore them respectively.
1075  */
1076 static int sgtl5000_restore_regs(struct snd_soc_codec *codec)
1077 {
1078 	u16 *cache = codec->reg_cache;
1079 	u16 reg;
1080 
1081 	/* restore regular registers */
1082 	for (reg = 0; reg <= SGTL5000_CHIP_SHORT_CTRL; reg += 2) {
1083 
1084 		/* These regs should restore in particular order */
1085 		if (reg == SGTL5000_CHIP_ANA_POWER ||
1086 			reg == SGTL5000_CHIP_CLK_CTRL ||
1087 			reg == SGTL5000_CHIP_LINREG_CTRL ||
1088 			reg == SGTL5000_CHIP_LINE_OUT_CTRL ||
1089 			reg == SGTL5000_CHIP_REF_CTRL)
1090 			continue;
1091 
1092 		snd_soc_write(codec, reg, cache[reg]);
1093 	}
1094 
1095 	/* restore dap registers */
1096 	for (reg = SGTL5000_DAP_REG_OFFSET; reg < SGTL5000_MAX_REG_OFFSET; reg += 2)
1097 		snd_soc_write(codec, reg, cache[reg]);
1098 
1099 	/*
1100 	 * restore these regs according to the power setting sequence in
1101 	 * sgtl5000_set_power_regs() and clock setting sequence in
1102 	 * sgtl5000_set_clock().
1103 	 *
1104 	 * The order of restore is:
1105 	 * 1. SGTL5000_CHIP_CLK_CTRL MCLK_FREQ bits (1:0) should be restore after
1106 	 *    SGTL5000_CHIP_ANA_POWER PLL bits set
1107 	 * 2. SGTL5000_CHIP_LINREG_CTRL should be set before
1108 	 *    SGTL5000_CHIP_ANA_POWER LINREG_D restored
1109 	 * 3. SGTL5000_CHIP_REF_CTRL controls Analog Ground Voltage,
1110 	 *    prefer to resotre it after SGTL5000_CHIP_ANA_POWER restored
1111 	 */
1112 	snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL,
1113 			cache[SGTL5000_CHIP_LINREG_CTRL]);
1114 
1115 	snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER,
1116 			cache[SGTL5000_CHIP_ANA_POWER]);
1117 
1118 	snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL,
1119 			cache[SGTL5000_CHIP_CLK_CTRL]);
1120 
1121 	snd_soc_write(codec, SGTL5000_CHIP_REF_CTRL,
1122 			cache[SGTL5000_CHIP_REF_CTRL]);
1123 
1124 	snd_soc_write(codec, SGTL5000_CHIP_LINE_OUT_CTRL,
1125 			cache[SGTL5000_CHIP_LINE_OUT_CTRL]);
1126 	return 0;
1127 }
1128 
1129 static int sgtl5000_resume(struct snd_soc_codec *codec)
1130 {
1131 	/* Bring the codec back up to standby to enable regulators */
1132 	sgtl5000_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1133 
1134 	/* Restore registers by cached in memory */
1135 	sgtl5000_restore_regs(codec);
1136 	return 0;
1137 }
1138 #else
1139 #define sgtl5000_suspend NULL
1140 #define sgtl5000_resume  NULL
1141 #endif	/* CONFIG_SUSPEND */
1142 
1143 /*
1144  * sgtl5000 has 3 internal power supplies:
1145  * 1. VAG, normally set to vdda/2
1146  * 2. chargepump, set to different value
1147  *	according to voltage of vdda and vddio
1148  * 3. line out VAG, normally set to vddio/2
1149  *
1150  * and should be set according to:
1151  * 1. vddd provided by external or not
1152  * 2. vdda and vddio voltage value. > 3.1v or not
1153  * 3. chip revision >=0x11 or not. If >=0x11, not use external vddd.
1154  */
1155 static int sgtl5000_set_power_regs(struct snd_soc_codec *codec)
1156 {
1157 	int vddd;
1158 	int vdda;
1159 	int vddio;
1160 	u16 ana_pwr;
1161 	u16 lreg_ctrl;
1162 	int vag;
1163 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1164 
1165 	vdda  = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
1166 	vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
1167 	vddd  = regulator_get_voltage(sgtl5000->supplies[VDDD].consumer);
1168 
1169 	vdda  = vdda / 1000;
1170 	vddio = vddio / 1000;
1171 	vddd  = vddd / 1000;
1172 
1173 	if (vdda <= 0 || vddio <= 0 || vddd < 0) {
1174 		dev_err(codec->dev, "regulator voltage not set correctly\n");
1175 
1176 		return -EINVAL;
1177 	}
1178 
1179 	/* according to datasheet, maximum voltage of supplies */
1180 	if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
1181 		dev_err(codec->dev,
1182 			"exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
1183 			vdda, vddio, vddd);
1184 
1185 		return -EINVAL;
1186 	}
1187 
1188 	/* reset value */
1189 	ana_pwr = snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER);
1190 	ana_pwr |= SGTL5000_DAC_STEREO |
1191 			SGTL5000_ADC_STEREO |
1192 			SGTL5000_REFTOP_POWERUP;
1193 	lreg_ctrl = snd_soc_read(codec, SGTL5000_CHIP_LINREG_CTRL);
1194 
1195 	if (vddio < 3100 && vdda < 3100) {
1196 		/* enable internal oscillator used for charge pump */
1197 		snd_soc_update_bits(codec, SGTL5000_CHIP_CLK_TOP_CTRL,
1198 					SGTL5000_INT_OSC_EN,
1199 					SGTL5000_INT_OSC_EN);
1200 		/* Enable VDDC charge pump */
1201 		ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
1202 	} else if (vddio >= 3100 && vdda >= 3100) {
1203 		/*
1204 		 * if vddio and vddd > 3.1v,
1205 		 * charge pump should be clean before set ana_pwr
1206 		 */
1207 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1208 				SGTL5000_VDDC_CHRGPMP_POWERUP, 0);
1209 
1210 		/* VDDC use VDDIO rail */
1211 		lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
1212 		lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
1213 			    SGTL5000_VDDC_MAN_ASSN_SHIFT;
1214 	}
1215 
1216 	snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
1217 
1218 	snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1219 
1220 	/* set voltage to register */
1221 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
1222 				SGTL5000_LINREG_VDDD_MASK, 0x8);
1223 
1224 	/*
1225 	 * if vddd linear reg has been enabled,
1226 	 * simple digital supply should be clear to get
1227 	 * proper VDDD voltage.
1228 	 */
1229 	if (ana_pwr & SGTL5000_LINEREG_D_POWERUP)
1230 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1231 				SGTL5000_LINREG_SIMPLE_POWERUP,
1232 				0);
1233 	else
1234 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1235 				SGTL5000_LINREG_SIMPLE_POWERUP |
1236 				SGTL5000_STARTUP_POWERUP,
1237 				0);
1238 
1239 	/*
1240 	 * set ADC/DAC VAG to vdda / 2,
1241 	 * should stay in range (0.8v, 1.575v)
1242 	 */
1243 	vag = vdda / 2;
1244 	if (vag <= SGTL5000_ANA_GND_BASE)
1245 		vag = 0;
1246 	else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
1247 		 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
1248 		vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
1249 	else
1250 		vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
1251 
1252 	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1253 			SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1254 
1255 	/* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
1256 	vag = vddio / 2;
1257 	if (vag <= SGTL5000_LINE_OUT_GND_BASE)
1258 		vag = 0;
1259 	else if (vag >= SGTL5000_LINE_OUT_GND_BASE +
1260 		SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
1261 		vag = SGTL5000_LINE_OUT_GND_MAX;
1262 	else
1263 		vag = (vag - SGTL5000_LINE_OUT_GND_BASE) /
1264 		    SGTL5000_LINE_OUT_GND_STP;
1265 
1266 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_CTRL,
1267 			SGTL5000_LINE_OUT_CURRENT_MASK |
1268 			SGTL5000_LINE_OUT_GND_MASK,
1269 			vag << SGTL5000_LINE_OUT_GND_SHIFT |
1270 			SGTL5000_LINE_OUT_CURRENT_360u <<
1271 				SGTL5000_LINE_OUT_CURRENT_SHIFT);
1272 
1273 	return 0;
1274 }
1275 
1276 static int sgtl5000_replace_vddd_with_ldo(struct snd_soc_codec *codec)
1277 {
1278 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1279 	int ret;
1280 
1281 	/* set internal ldo to 1.2v */
1282 	ret = ldo_regulator_register(codec, &ldo_init_data, LDO_VOLTAGE);
1283 	if (ret) {
1284 		dev_err(codec->dev,
1285 			"Failed to register vddd internal supplies: %d\n", ret);
1286 		return ret;
1287 	}
1288 
1289 	sgtl5000->supplies[VDDD].supply = LDO_CONSUMER_NAME;
1290 
1291 	dev_info(codec->dev, "Using internal LDO instead of VDDD\n");
1292 	return 0;
1293 }
1294 
1295 static int sgtl5000_enable_regulators(struct snd_soc_codec *codec)
1296 {
1297 	int ret;
1298 	int i;
1299 	int external_vddd = 0;
1300 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1301 	struct regulator *vddd;
1302 
1303 	for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
1304 		sgtl5000->supplies[i].supply = supply_names[i];
1305 
1306 	/* External VDDD only works before revision 0x11 */
1307 	if (sgtl5000->revision < 0x11) {
1308 		vddd = regulator_get_optional(codec->dev, "VDDD");
1309 		if (IS_ERR(vddd)) {
1310 			/* See if it's just not registered yet */
1311 			if (PTR_ERR(vddd) == -EPROBE_DEFER)
1312 				return -EPROBE_DEFER;
1313 		} else {
1314 			external_vddd = 1;
1315 			regulator_put(vddd);
1316 		}
1317 	}
1318 
1319 	if (!external_vddd) {
1320 		ret = sgtl5000_replace_vddd_with_ldo(codec);
1321 		if (ret)
1322 			return ret;
1323 	}
1324 
1325 	ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sgtl5000->supplies),
1326 				 sgtl5000->supplies);
1327 	if (ret)
1328 		goto err_ldo_remove;
1329 
1330 	ret = regulator_bulk_enable(ARRAY_SIZE(sgtl5000->supplies),
1331 					sgtl5000->supplies);
1332 	if (ret)
1333 		goto err_regulator_free;
1334 
1335 	/* wait for all power rails bring up */
1336 	udelay(10);
1337 
1338 	return 0;
1339 
1340 err_regulator_free:
1341 	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1342 				sgtl5000->supplies);
1343 err_ldo_remove:
1344 	if (!external_vddd)
1345 		ldo_regulator_remove(codec);
1346 	return ret;
1347 
1348 }
1349 
1350 static int sgtl5000_probe(struct snd_soc_codec *codec)
1351 {
1352 	int ret;
1353 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1354 
1355 	ret = sgtl5000_enable_regulators(codec);
1356 	if (ret)
1357 		return ret;
1358 
1359 	/* power up sgtl5000 */
1360 	ret = sgtl5000_set_power_regs(codec);
1361 	if (ret)
1362 		goto err;
1363 
1364 	/* enable small pop, introduce 400ms delay in turning off */
1365 	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1366 				SGTL5000_SMALL_POP,
1367 				SGTL5000_SMALL_POP);
1368 
1369 	/* disable short cut detector */
1370 	snd_soc_write(codec, SGTL5000_CHIP_SHORT_CTRL, 0);
1371 
1372 	/*
1373 	 * set i2s as default input of sound switch
1374 	 * TODO: add sound switch to control and dapm widge.
1375 	 */
1376 	snd_soc_write(codec, SGTL5000_CHIP_SSS_CTRL,
1377 			SGTL5000_DAC_SEL_I2S_IN << SGTL5000_DAC_SEL_SHIFT);
1378 	snd_soc_write(codec, SGTL5000_CHIP_DIG_POWER,
1379 			SGTL5000_ADC_EN | SGTL5000_DAC_EN);
1380 
1381 	/* enable dac volume ramp by default */
1382 	snd_soc_write(codec, SGTL5000_CHIP_ADCDAC_CTRL,
1383 			SGTL5000_DAC_VOL_RAMP_EN |
1384 			SGTL5000_DAC_MUTE_RIGHT |
1385 			SGTL5000_DAC_MUTE_LEFT);
1386 
1387 	snd_soc_write(codec, SGTL5000_CHIP_PAD_STRENGTH, 0x015f);
1388 
1389 	snd_soc_write(codec, SGTL5000_CHIP_ANA_CTRL,
1390 			SGTL5000_HP_ZCD_EN |
1391 			SGTL5000_ADC_ZCD_EN);
1392 
1393 	snd_soc_write(codec, SGTL5000_CHIP_MIC_CTRL, 2);
1394 
1395 	/*
1396 	 * disable DAP
1397 	 * TODO:
1398 	 * Enable DAP in kcontrol and dapm.
1399 	 */
1400 	snd_soc_write(codec, SGTL5000_DAP_CTRL, 0);
1401 
1402 	/* leading to standby state */
1403 	ret = sgtl5000_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1404 	if (ret)
1405 		goto err;
1406 
1407 	return 0;
1408 
1409 err:
1410 	regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
1411 						sgtl5000->supplies);
1412 	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1413 				sgtl5000->supplies);
1414 	ldo_regulator_remove(codec);
1415 
1416 	return ret;
1417 }
1418 
1419 static int sgtl5000_remove(struct snd_soc_codec *codec)
1420 {
1421 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1422 
1423 	sgtl5000_set_bias_level(codec, SND_SOC_BIAS_OFF);
1424 
1425 	regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
1426 						sgtl5000->supplies);
1427 	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1428 				sgtl5000->supplies);
1429 	ldo_regulator_remove(codec);
1430 
1431 	return 0;
1432 }
1433 
1434 static struct snd_soc_codec_driver sgtl5000_driver = {
1435 	.probe = sgtl5000_probe,
1436 	.remove = sgtl5000_remove,
1437 	.suspend = sgtl5000_suspend,
1438 	.resume = sgtl5000_resume,
1439 	.set_bias_level = sgtl5000_set_bias_level,
1440 	.controls = sgtl5000_snd_controls,
1441 	.num_controls = ARRAY_SIZE(sgtl5000_snd_controls),
1442 	.dapm_widgets = sgtl5000_dapm_widgets,
1443 	.num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets),
1444 	.dapm_routes = sgtl5000_dapm_routes,
1445 	.num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes),
1446 };
1447 
1448 static const struct regmap_config sgtl5000_regmap = {
1449 	.reg_bits = 16,
1450 	.val_bits = 16,
1451 	.reg_stride = 2,
1452 
1453 	.max_register = SGTL5000_MAX_REG_OFFSET,
1454 	.volatile_reg = sgtl5000_volatile,
1455 	.readable_reg = sgtl5000_readable,
1456 
1457 	.cache_type = REGCACHE_RBTREE,
1458 	.reg_defaults = sgtl5000_reg_defaults,
1459 	.num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
1460 };
1461 
1462 /*
1463  * Write all the default values from sgtl5000_reg_defaults[] array into the
1464  * sgtl5000 registers, to make sure we always start with the sane registers
1465  * values as stated in the datasheet.
1466  *
1467  * Since sgtl5000 does not have a reset line, nor a reset command in software,
1468  * we follow this approach to guarantee we always start from the default values
1469  * and avoid problems like, not being able to probe after an audio playback
1470  * followed by a system reset or a 'reboot' command in Linux
1471  */
1472 static int sgtl5000_fill_defaults(struct sgtl5000_priv *sgtl5000)
1473 {
1474 	int i, ret, val, index;
1475 
1476 	for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
1477 		val = sgtl5000_reg_defaults[i].def;
1478 		index = sgtl5000_reg_defaults[i].reg;
1479 		ret = regmap_write(sgtl5000->regmap, index, val);
1480 		if (ret)
1481 			return ret;
1482 	}
1483 
1484 	return 0;
1485 }
1486 
1487 static int sgtl5000_i2c_probe(struct i2c_client *client,
1488 			      const struct i2c_device_id *id)
1489 {
1490 	struct sgtl5000_priv *sgtl5000;
1491 	int ret, reg, rev;
1492 
1493 	sgtl5000 = devm_kzalloc(&client->dev, sizeof(struct sgtl5000_priv),
1494 								GFP_KERNEL);
1495 	if (!sgtl5000)
1496 		return -ENOMEM;
1497 
1498 	sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
1499 	if (IS_ERR(sgtl5000->regmap)) {
1500 		ret = PTR_ERR(sgtl5000->regmap);
1501 		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1502 		return ret;
1503 	}
1504 
1505 	sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
1506 	if (IS_ERR(sgtl5000->mclk)) {
1507 		ret = PTR_ERR(sgtl5000->mclk);
1508 		dev_err(&client->dev, "Failed to get mclock: %d\n", ret);
1509 		/* Defer the probe to see if the clk will be provided later */
1510 		if (ret == -ENOENT)
1511 			return -EPROBE_DEFER;
1512 		return ret;
1513 	}
1514 
1515 	ret = clk_prepare_enable(sgtl5000->mclk);
1516 	if (ret)
1517 		return ret;
1518 
1519 	/* read chip information */
1520 	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
1521 	if (ret)
1522 		goto disable_clk;
1523 
1524 	if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
1525 	    SGTL5000_PARTID_PART_ID) {
1526 		dev_err(&client->dev,
1527 			"Device with ID register %x is not a sgtl5000\n", reg);
1528 		ret = -ENODEV;
1529 		goto disable_clk;
1530 	}
1531 
1532 	rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
1533 	dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
1534 	sgtl5000->revision = rev;
1535 
1536 	i2c_set_clientdata(client, sgtl5000);
1537 
1538 	/* Ensure sgtl5000 will start with sane register values */
1539 	ret = sgtl5000_fill_defaults(sgtl5000);
1540 	if (ret)
1541 		goto disable_clk;
1542 
1543 	ret = snd_soc_register_codec(&client->dev,
1544 			&sgtl5000_driver, &sgtl5000_dai, 1);
1545 	if (ret)
1546 		goto disable_clk;
1547 
1548 	return 0;
1549 
1550 disable_clk:
1551 	clk_disable_unprepare(sgtl5000->mclk);
1552 	return ret;
1553 }
1554 
1555 static int sgtl5000_i2c_remove(struct i2c_client *client)
1556 {
1557 	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1558 
1559 	snd_soc_unregister_codec(&client->dev);
1560 	clk_disable_unprepare(sgtl5000->mclk);
1561 	return 0;
1562 }
1563 
1564 static const struct i2c_device_id sgtl5000_id[] = {
1565 	{"sgtl5000", 0},
1566 	{},
1567 };
1568 
1569 MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
1570 
1571 static const struct of_device_id sgtl5000_dt_ids[] = {
1572 	{ .compatible = "fsl,sgtl5000", },
1573 	{ /* sentinel */ }
1574 };
1575 MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1576 
1577 static struct i2c_driver sgtl5000_i2c_driver = {
1578 	.driver = {
1579 		   .name = "sgtl5000",
1580 		   .owner = THIS_MODULE,
1581 		   .of_match_table = sgtl5000_dt_ids,
1582 		   },
1583 	.probe = sgtl5000_i2c_probe,
1584 	.remove = sgtl5000_i2c_remove,
1585 	.id_table = sgtl5000_id,
1586 };
1587 
1588 module_i2c_driver(sgtl5000_i2c_driver);
1589 
1590 MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1591 MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1592 MODULE_LICENSE("GPL");
1593