xref: /openbmc/linux/sound/soc/codecs/sgtl5000.c (revision 9f380456)
1 /*
2  * sgtl5000.c  --  SGTL5000 ALSA SoC Audio driver
3  *
4  * Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/pm.h>
17 #include <linux/i2c.h>
18 #include <linux/clk.h>
19 #include <linux/regulator/driver.h>
20 #include <linux/regulator/machine.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/of_device.h>
23 #include <sound/core.h>
24 #include <sound/tlv.h>
25 #include <sound/pcm.h>
26 #include <sound/pcm_params.h>
27 #include <sound/soc.h>
28 #include <sound/soc-dapm.h>
29 #include <sound/initval.h>
30 
31 #include "sgtl5000.h"
32 
33 #define SGTL5000_DAP_REG_OFFSET	0x0100
34 #define SGTL5000_MAX_REG_OFFSET	0x013A
35 
36 /* default value of sgtl5000 registers */
37 static const u16 sgtl5000_regs[SGTL5000_MAX_REG_OFFSET] =  {
38 	[SGTL5000_CHIP_CLK_CTRL] = 0x0008,
39 	[SGTL5000_CHIP_I2S_CTRL] = 0x0010,
40 	[SGTL5000_CHIP_SSS_CTRL] = 0x0008,
41 	[SGTL5000_CHIP_DAC_VOL] = 0x3c3c,
42 	[SGTL5000_CHIP_PAD_STRENGTH] = 0x015f,
43 	[SGTL5000_CHIP_ANA_HP_CTRL] = 0x1818,
44 	[SGTL5000_CHIP_ANA_CTRL] = 0x0111,
45 	[SGTL5000_CHIP_LINE_OUT_VOL] = 0x0404,
46 	[SGTL5000_CHIP_ANA_POWER] = 0x7060,
47 	[SGTL5000_CHIP_PLL_CTRL] = 0x5000,
48 	[SGTL5000_DAP_BASS_ENHANCE] = 0x0040,
49 	[SGTL5000_DAP_BASS_ENHANCE_CTRL] = 0x051f,
50 	[SGTL5000_DAP_SURROUND] = 0x0040,
51 	[SGTL5000_DAP_EQ_BASS_BAND0] = 0x002f,
52 	[SGTL5000_DAP_EQ_BASS_BAND1] = 0x002f,
53 	[SGTL5000_DAP_EQ_BASS_BAND2] = 0x002f,
54 	[SGTL5000_DAP_EQ_BASS_BAND3] = 0x002f,
55 	[SGTL5000_DAP_EQ_BASS_BAND4] = 0x002f,
56 	[SGTL5000_DAP_MAIN_CHAN] = 0x8000,
57 	[SGTL5000_DAP_AVC_CTRL] = 0x0510,
58 	[SGTL5000_DAP_AVC_THRESHOLD] = 0x1473,
59 	[SGTL5000_DAP_AVC_ATTACK] = 0x0028,
60 	[SGTL5000_DAP_AVC_DECAY] = 0x0050,
61 };
62 
63 /* regulator supplies for sgtl5000, VDDD is an optional external supply */
64 enum sgtl5000_regulator_supplies {
65 	VDDA,
66 	VDDIO,
67 	VDDD,
68 	SGTL5000_SUPPLY_NUM
69 };
70 
71 /* vddd is optional supply */
72 static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
73 	"VDDA",
74 	"VDDIO",
75 	"VDDD"
76 };
77 
78 #define LDO_CONSUMER_NAME	"VDDD_LDO"
79 #define LDO_VOLTAGE		1200000
80 
81 static struct regulator_consumer_supply ldo_consumer[] = {
82 	REGULATOR_SUPPLY(LDO_CONSUMER_NAME, NULL),
83 };
84 
85 static struct regulator_init_data ldo_init_data = {
86 	.constraints = {
87 		.min_uV                 = 850000,
88 		.max_uV                 = 1600000,
89 		.valid_modes_mask       = REGULATOR_MODE_NORMAL,
90 		.valid_ops_mask         = REGULATOR_CHANGE_STATUS,
91 	},
92 	.num_consumer_supplies = 1,
93 	.consumer_supplies = &ldo_consumer[0],
94 };
95 
96 /*
97  * sgtl5000 internal ldo regulator,
98  * enabled when VDDD not provided
99  */
100 struct ldo_regulator {
101 	struct regulator_desc desc;
102 	struct regulator_dev *dev;
103 	int voltage;
104 	void *codec_data;
105 	bool enabled;
106 };
107 
108 /* sgtl5000 private structure in codec */
109 struct sgtl5000_priv {
110 	int sysclk;	/* sysclk rate */
111 	int master;	/* i2s master or not */
112 	int fmt;	/* i2s data format */
113 	struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
114 	struct ldo_regulator *ldo;
115 };
116 
117 /*
118  * mic_bias power on/off share the same register bits with
119  * output impedance of mic bias, when power on mic bias, we
120  * need reclaim it to impedance value.
121  * 0x0 = Powered off
122  * 0x1 = 2Kohm
123  * 0x2 = 4Kohm
124  * 0x3 = 8Kohm
125  */
126 static int mic_bias_event(struct snd_soc_dapm_widget *w,
127 	struct snd_kcontrol *kcontrol, int event)
128 {
129 	switch (event) {
130 	case SND_SOC_DAPM_POST_PMU:
131 		/* change mic bias resistor to 4Kohm */
132 		snd_soc_update_bits(w->codec, SGTL5000_CHIP_MIC_CTRL,
133 				SGTL5000_BIAS_R_MASK,
134 				SGTL5000_BIAS_R_4k << SGTL5000_BIAS_R_SHIFT);
135 		break;
136 
137 	case SND_SOC_DAPM_PRE_PMD:
138 		snd_soc_update_bits(w->codec, SGTL5000_CHIP_MIC_CTRL,
139 				SGTL5000_BIAS_R_MASK, 0);
140 		break;
141 	}
142 	return 0;
143 }
144 
145 /*
146  * As manual described, ADC/DAC only works when VAG powerup,
147  * So enabled VAG before ADC/DAC up.
148  * In power down case, we need wait 400ms when vag fully ramped down.
149  */
150 static int power_vag_event(struct snd_soc_dapm_widget *w,
151 	struct snd_kcontrol *kcontrol, int event)
152 {
153 	switch (event) {
154 	case SND_SOC_DAPM_PRE_PMU:
155 		snd_soc_update_bits(w->codec, SGTL5000_CHIP_ANA_POWER,
156 			SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
157 		break;
158 
159 	case SND_SOC_DAPM_POST_PMD:
160 		snd_soc_update_bits(w->codec, SGTL5000_CHIP_ANA_POWER,
161 			SGTL5000_VAG_POWERUP, 0);
162 		msleep(400);
163 		break;
164 	default:
165 		break;
166 	}
167 
168 	return 0;
169 }
170 
171 /* input sources for ADC */
172 static const char *adc_mux_text[] = {
173 	"MIC_IN", "LINE_IN"
174 };
175 
176 static const struct soc_enum adc_enum =
177 SOC_ENUM_SINGLE(SGTL5000_CHIP_ANA_CTRL, 2, 2, adc_mux_text);
178 
179 static const struct snd_kcontrol_new adc_mux =
180 SOC_DAPM_ENUM("Capture Mux", adc_enum);
181 
182 /* input sources for DAC */
183 static const char *dac_mux_text[] = {
184 	"DAC", "LINE_IN"
185 };
186 
187 static const struct soc_enum dac_enum =
188 SOC_ENUM_SINGLE(SGTL5000_CHIP_ANA_CTRL, 6, 2, dac_mux_text);
189 
190 static const struct snd_kcontrol_new dac_mux =
191 SOC_DAPM_ENUM("Headphone Mux", dac_enum);
192 
193 static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
194 	SND_SOC_DAPM_INPUT("LINE_IN"),
195 	SND_SOC_DAPM_INPUT("MIC_IN"),
196 
197 	SND_SOC_DAPM_OUTPUT("HP_OUT"),
198 	SND_SOC_DAPM_OUTPUT("LINE_OUT"),
199 
200 	SND_SOC_DAPM_MICBIAS_E("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
201 				mic_bias_event,
202 				SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
203 
204 	SND_SOC_DAPM_PGA("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0),
205 	SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
206 
207 	SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
208 	SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
209 
210 	/* aif for i2s input */
211 	SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
212 				0, SGTL5000_CHIP_DIG_POWER,
213 				0, 0),
214 
215 	/* aif for i2s output */
216 	SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
217 				0, SGTL5000_CHIP_DIG_POWER,
218 				1, 0),
219 
220 	SND_SOC_DAPM_SUPPLY("VAG_POWER", SGTL5000_CHIP_ANA_POWER, 7, 0,
221 			    power_vag_event,
222 			    SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
223 
224 	SND_SOC_DAPM_ADC("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0),
225 	SND_SOC_DAPM_DAC("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0),
226 };
227 
228 /* routes for sgtl5000 */
229 static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
230 	{"Capture Mux", "LINE_IN", "LINE_IN"},	/* line_in --> adc_mux */
231 	{"Capture Mux", "MIC_IN", "MIC_IN"},	/* mic_in --> adc_mux */
232 
233 	{"ADC", NULL, "VAG_POWER"},
234 	{"ADC", NULL, "Capture Mux"},		/* adc_mux --> adc */
235 	{"AIFOUT", NULL, "ADC"},		/* adc --> i2s_out */
236 
237 	{"DAC", NULL, "VAG_POWER"},
238 	{"DAC", NULL, "AIFIN"},			/* i2s-->dac,skip audio mux */
239 	{"Headphone Mux", "DAC", "DAC"},	/* dac --> hp_mux */
240 	{"LO", NULL, "DAC"},			/* dac --> line_out */
241 
242 	{"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
243 	{"HP", NULL, "Headphone Mux"},		/* hp_mux --> hp */
244 
245 	{"LINE_OUT", NULL, "LO"},
246 	{"HP_OUT", NULL, "HP"},
247 };
248 
249 /* custom function to fetch info of PCM playback volume */
250 static int dac_info_volsw(struct snd_kcontrol *kcontrol,
251 			  struct snd_ctl_elem_info *uinfo)
252 {
253 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
254 	uinfo->count = 2;
255 	uinfo->value.integer.min = 0;
256 	uinfo->value.integer.max = 0xfc - 0x3c;
257 	return 0;
258 }
259 
260 /*
261  * custom function to get of PCM playback volume
262  *
263  * dac volume register
264  * 15-------------8-7--------------0
265  * | R channel vol | L channel vol |
266  *  -------------------------------
267  *
268  * PCM volume with 0.5017 dB steps from 0 to -90 dB
269  *
270  * register values map to dB
271  * 0x3B and less = Reserved
272  * 0x3C = 0 dB
273  * 0x3D = -0.5 dB
274  * 0xF0 = -90 dB
275  * 0xFC and greater = Muted
276  *
277  * register value map to userspace value
278  *
279  * register value	0x3c(0dB)	  0xf0(-90dB)0xfc
280  *			------------------------------
281  * userspace value	0xc0			     0
282  */
283 static int dac_get_volsw(struct snd_kcontrol *kcontrol,
284 			 struct snd_ctl_elem_value *ucontrol)
285 {
286 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
287 	int reg;
288 	int l;
289 	int r;
290 
291 	reg = snd_soc_read(codec, SGTL5000_CHIP_DAC_VOL);
292 
293 	/* get left channel volume */
294 	l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
295 
296 	/* get right channel volume */
297 	r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
298 
299 	/* make sure value fall in (0x3c,0xfc) */
300 	l = clamp(l, 0x3c, 0xfc);
301 	r = clamp(r, 0x3c, 0xfc);
302 
303 	/* invert it and map to userspace value */
304 	l = 0xfc - l;
305 	r = 0xfc - r;
306 
307 	ucontrol->value.integer.value[0] = l;
308 	ucontrol->value.integer.value[1] = r;
309 
310 	return 0;
311 }
312 
313 /*
314  * custom function to put of PCM playback volume
315  *
316  * dac volume register
317  * 15-------------8-7--------------0
318  * | R channel vol | L channel vol |
319  *  -------------------------------
320  *
321  * PCM volume with 0.5017 dB steps from 0 to -90 dB
322  *
323  * register values map to dB
324  * 0x3B and less = Reserved
325  * 0x3C = 0 dB
326  * 0x3D = -0.5 dB
327  * 0xF0 = -90 dB
328  * 0xFC and greater = Muted
329  *
330  * userspace value map to register value
331  *
332  * userspace value	0xc0			     0
333  *			------------------------------
334  * register value	0x3c(0dB)	0xf0(-90dB)0xfc
335  */
336 static int dac_put_volsw(struct snd_kcontrol *kcontrol,
337 			 struct snd_ctl_elem_value *ucontrol)
338 {
339 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
340 	int reg;
341 	int l;
342 	int r;
343 
344 	l = ucontrol->value.integer.value[0];
345 	r = ucontrol->value.integer.value[1];
346 
347 	/* make sure userspace volume fall in (0, 0xfc-0x3c) */
348 	l = clamp(l, 0, 0xfc - 0x3c);
349 	r = clamp(r, 0, 0xfc - 0x3c);
350 
351 	/* invert it, get the value can be set to register */
352 	l = 0xfc - l;
353 	r = 0xfc - r;
354 
355 	/* shift to get the register value */
356 	reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
357 		r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
358 
359 	snd_soc_write(codec, SGTL5000_CHIP_DAC_VOL, reg);
360 
361 	return 0;
362 }
363 
364 static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
365 
366 /* tlv for mic gain, 0db 20db 30db 40db */
367 static const unsigned int mic_gain_tlv[] = {
368 	TLV_DB_RANGE_HEAD(2),
369 	0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
370 	1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0),
371 };
372 
373 /* tlv for hp volume, -51.5db to 12.0db, step .5db */
374 static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
375 
376 static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
377 	/* SOC_DOUBLE_S8_TLV with invert */
378 	{
379 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
380 		.name = "PCM Playback Volume",
381 		.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
382 			SNDRV_CTL_ELEM_ACCESS_READWRITE,
383 		.info = dac_info_volsw,
384 		.get = dac_get_volsw,
385 		.put = dac_put_volsw,
386 	},
387 
388 	SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
389 	SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
390 			SGTL5000_CHIP_ANA_ADC_CTRL,
391 			8, 2, 0, capture_6db_attenuate),
392 	SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
393 
394 	SOC_DOUBLE_TLV("Headphone Playback Volume",
395 			SGTL5000_CHIP_ANA_HP_CTRL,
396 			0, 8,
397 			0x7f, 1,
398 			headphone_volume),
399 	SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
400 			5, 1, 0),
401 
402 	SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
403 			0, 4, 0, mic_gain_tlv),
404 };
405 
406 /* mute the codec used by alsa core */
407 static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute)
408 {
409 	struct snd_soc_codec *codec = codec_dai->codec;
410 	u16 adcdac_ctrl = SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT;
411 
412 	snd_soc_update_bits(codec, SGTL5000_CHIP_ADCDAC_CTRL,
413 			adcdac_ctrl, mute ? adcdac_ctrl : 0);
414 
415 	return 0;
416 }
417 
418 /* set codec format */
419 static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
420 {
421 	struct snd_soc_codec *codec = codec_dai->codec;
422 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
423 	u16 i2sctl = 0;
424 
425 	sgtl5000->master = 0;
426 	/*
427 	 * i2s clock and frame master setting.
428 	 * ONLY support:
429 	 *  - clock and frame slave,
430 	 *  - clock and frame master
431 	 */
432 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
433 	case SND_SOC_DAIFMT_CBS_CFS:
434 		break;
435 	case SND_SOC_DAIFMT_CBM_CFM:
436 		i2sctl |= SGTL5000_I2S_MASTER;
437 		sgtl5000->master = 1;
438 		break;
439 	default:
440 		return -EINVAL;
441 	}
442 
443 	/* setting i2s data format */
444 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
445 	case SND_SOC_DAIFMT_DSP_A:
446 		i2sctl |= SGTL5000_I2S_MODE_PCM;
447 		break;
448 	case SND_SOC_DAIFMT_DSP_B:
449 		i2sctl |= SGTL5000_I2S_MODE_PCM;
450 		i2sctl |= SGTL5000_I2S_LRALIGN;
451 		break;
452 	case SND_SOC_DAIFMT_I2S:
453 		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ;
454 		break;
455 	case SND_SOC_DAIFMT_RIGHT_J:
456 		i2sctl |= SGTL5000_I2S_MODE_RJ;
457 		i2sctl |= SGTL5000_I2S_LRPOL;
458 		break;
459 	case SND_SOC_DAIFMT_LEFT_J:
460 		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ;
461 		i2sctl |= SGTL5000_I2S_LRALIGN;
462 		break;
463 	default:
464 		return -EINVAL;
465 	}
466 
467 	sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
468 
469 	/* Clock inversion */
470 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
471 	case SND_SOC_DAIFMT_NB_NF:
472 		break;
473 	case SND_SOC_DAIFMT_IB_NF:
474 		i2sctl |= SGTL5000_I2S_SCLK_INV;
475 		break;
476 	default:
477 		return -EINVAL;
478 	}
479 
480 	snd_soc_write(codec, SGTL5000_CHIP_I2S_CTRL, i2sctl);
481 
482 	return 0;
483 }
484 
485 /* set codec sysclk */
486 static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
487 				   int clk_id, unsigned int freq, int dir)
488 {
489 	struct snd_soc_codec *codec = codec_dai->codec;
490 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
491 
492 	switch (clk_id) {
493 	case SGTL5000_SYSCLK:
494 		sgtl5000->sysclk = freq;
495 		break;
496 	default:
497 		return -EINVAL;
498 	}
499 
500 	return 0;
501 }
502 
503 /*
504  * set clock according to i2s frame clock,
505  * sgtl5000 provide 2 clock sources.
506  * 1. sys_mclk. sample freq can only configure to
507  *	1/256, 1/384, 1/512 of sys_mclk.
508  * 2. pll. can derive any audio clocks.
509  *
510  * clock setting rules:
511  * 1. in slave mode, only sys_mclk can use.
512  * 2. as constraint by sys_mclk, sample freq should
513  *	set to 32k, 44.1k and above.
514  * 3. using sys_mclk prefer to pll to save power.
515  */
516 static int sgtl5000_set_clock(struct snd_soc_codec *codec, int frame_rate)
517 {
518 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
519 	int clk_ctl = 0;
520 	int sys_fs;	/* sample freq */
521 
522 	/*
523 	 * sample freq should be divided by frame clock,
524 	 * if frame clock lower than 44.1khz, sample feq should set to
525 	 * 32khz or 44.1khz.
526 	 */
527 	switch (frame_rate) {
528 	case 8000:
529 	case 16000:
530 		sys_fs = 32000;
531 		break;
532 	case 11025:
533 	case 22050:
534 		sys_fs = 44100;
535 		break;
536 	default:
537 		sys_fs = frame_rate;
538 		break;
539 	}
540 
541 	/* set divided factor of frame clock */
542 	switch (sys_fs / frame_rate) {
543 	case 4:
544 		clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
545 		break;
546 	case 2:
547 		clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
548 		break;
549 	case 1:
550 		clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
551 		break;
552 	default:
553 		return -EINVAL;
554 	}
555 
556 	/* set the sys_fs according to frame rate */
557 	switch (sys_fs) {
558 	case 32000:
559 		clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
560 		break;
561 	case 44100:
562 		clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
563 		break;
564 	case 48000:
565 		clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
566 		break;
567 	case 96000:
568 		clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
569 		break;
570 	default:
571 		dev_err(codec->dev, "frame rate %d not supported\n",
572 			frame_rate);
573 		return -EINVAL;
574 	}
575 
576 	/*
577 	 * calculate the divider of mclk/sample_freq,
578 	 * factor of freq =96k can only be 256, since mclk in range (12m,27m)
579 	 */
580 	switch (sgtl5000->sysclk / sys_fs) {
581 	case 256:
582 		clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
583 			SGTL5000_MCLK_FREQ_SHIFT;
584 		break;
585 	case 384:
586 		clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
587 			SGTL5000_MCLK_FREQ_SHIFT;
588 		break;
589 	case 512:
590 		clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
591 			SGTL5000_MCLK_FREQ_SHIFT;
592 		break;
593 	default:
594 		/* if mclk not satisify the divider, use pll */
595 		if (sgtl5000->master) {
596 			clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
597 				SGTL5000_MCLK_FREQ_SHIFT;
598 		} else {
599 			dev_err(codec->dev,
600 				"PLL not supported in slave mode\n");
601 			return -EINVAL;
602 		}
603 	}
604 
605 	/* if using pll, please check manual 6.4.2 for detail */
606 	if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
607 		u64 out, t;
608 		int div2;
609 		int pll_ctl;
610 		unsigned int in, int_div, frac_div;
611 
612 		if (sgtl5000->sysclk > 17000000) {
613 			div2 = 1;
614 			in = sgtl5000->sysclk / 2;
615 		} else {
616 			div2 = 0;
617 			in = sgtl5000->sysclk;
618 		}
619 		if (sys_fs == 44100)
620 			out = 180633600;
621 		else
622 			out = 196608000;
623 		t = do_div(out, in);
624 		int_div = out;
625 		t *= 2048;
626 		do_div(t, in);
627 		frac_div = t;
628 		pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
629 		    frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
630 
631 		snd_soc_write(codec, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
632 		if (div2)
633 			snd_soc_update_bits(codec,
634 				SGTL5000_CHIP_CLK_TOP_CTRL,
635 				SGTL5000_INPUT_FREQ_DIV2,
636 				SGTL5000_INPUT_FREQ_DIV2);
637 		else
638 			snd_soc_update_bits(codec,
639 				SGTL5000_CHIP_CLK_TOP_CTRL,
640 				SGTL5000_INPUT_FREQ_DIV2,
641 				0);
642 
643 		/* power up pll */
644 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
645 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
646 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
647 	} else {
648 		/* power down pll */
649 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
650 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
651 			0);
652 	}
653 
654 	/* if using pll, clk_ctrl must be set after pll power up */
655 	snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
656 
657 	return 0;
658 }
659 
660 /*
661  * Set PCM DAI bit size and sample rate.
662  * input: params_rate, params_fmt
663  */
664 static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
665 				  struct snd_pcm_hw_params *params,
666 				  struct snd_soc_dai *dai)
667 {
668 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
669 	struct snd_soc_codec *codec = rtd->codec;
670 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
671 	int channels = params_channels(params);
672 	int i2s_ctl = 0;
673 	int stereo;
674 	int ret;
675 
676 	/* sysclk should already set */
677 	if (!sgtl5000->sysclk) {
678 		dev_err(codec->dev, "%s: set sysclk first!\n", __func__);
679 		return -EFAULT;
680 	}
681 
682 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
683 		stereo = SGTL5000_DAC_STEREO;
684 	else
685 		stereo = SGTL5000_ADC_STEREO;
686 
687 	/* set mono to save power */
688 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, stereo,
689 			channels == 1 ? 0 : stereo);
690 
691 	/* set codec clock base on lrclk */
692 	ret = sgtl5000_set_clock(codec, params_rate(params));
693 	if (ret)
694 		return ret;
695 
696 	/* set i2s data format */
697 	switch (params_format(params)) {
698 	case SNDRV_PCM_FORMAT_S16_LE:
699 		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
700 			return -EINVAL;
701 		i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
702 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
703 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
704 		break;
705 	case SNDRV_PCM_FORMAT_S20_3LE:
706 		i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
707 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
708 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
709 		break;
710 	case SNDRV_PCM_FORMAT_S24_LE:
711 		i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
712 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
713 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
714 		break;
715 	case SNDRV_PCM_FORMAT_S32_LE:
716 		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
717 			return -EINVAL;
718 		i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
719 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
720 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
721 		break;
722 	default:
723 		return -EINVAL;
724 	}
725 
726 	snd_soc_update_bits(codec, SGTL5000_CHIP_I2S_CTRL,
727 			    SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
728 			    i2s_ctl);
729 
730 	return 0;
731 }
732 
733 #ifdef CONFIG_REGULATOR
734 static int ldo_regulator_is_enabled(struct regulator_dev *dev)
735 {
736 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
737 
738 	return ldo->enabled;
739 }
740 
741 static int ldo_regulator_enable(struct regulator_dev *dev)
742 {
743 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
744 	struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data;
745 	int reg;
746 
747 	if (ldo_regulator_is_enabled(dev))
748 		return 0;
749 
750 	/* set regulator value firstly */
751 	reg = (1600 - ldo->voltage / 1000) / 50;
752 	reg = clamp(reg, 0x0, 0xf);
753 
754 	/* amend the voltage value, unit: uV */
755 	ldo->voltage = (1600 - reg * 50) * 1000;
756 
757 	/* set voltage to register */
758 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
759 				SGTL5000_LINREG_VDDD_MASK, reg);
760 
761 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
762 				SGTL5000_LINEREG_D_POWERUP,
763 				SGTL5000_LINEREG_D_POWERUP);
764 
765 	/* when internal ldo enabled, simple digital power can be disabled */
766 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
767 				SGTL5000_LINREG_SIMPLE_POWERUP,
768 				0);
769 
770 	ldo->enabled = 1;
771 	return 0;
772 }
773 
774 static int ldo_regulator_disable(struct regulator_dev *dev)
775 {
776 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
777 	struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data;
778 
779 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
780 				SGTL5000_LINEREG_D_POWERUP,
781 				0);
782 
783 	/* clear voltage info */
784 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
785 				SGTL5000_LINREG_VDDD_MASK, 0);
786 
787 	ldo->enabled = 0;
788 
789 	return 0;
790 }
791 
792 static int ldo_regulator_get_voltage(struct regulator_dev *dev)
793 {
794 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
795 
796 	return ldo->voltage;
797 }
798 
799 static struct regulator_ops ldo_regulator_ops = {
800 	.is_enabled = ldo_regulator_is_enabled,
801 	.enable = ldo_regulator_enable,
802 	.disable = ldo_regulator_disable,
803 	.get_voltage = ldo_regulator_get_voltage,
804 };
805 
806 static int ldo_regulator_register(struct snd_soc_codec *codec,
807 				struct regulator_init_data *init_data,
808 				int voltage)
809 {
810 	struct ldo_regulator *ldo;
811 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
812 
813 	ldo = kzalloc(sizeof(struct ldo_regulator), GFP_KERNEL);
814 
815 	if (!ldo) {
816 		dev_err(codec->dev, "failed to allocate ldo_regulator\n");
817 		return -ENOMEM;
818 	}
819 
820 	ldo->desc.name = kstrdup(dev_name(codec->dev), GFP_KERNEL);
821 	if (!ldo->desc.name) {
822 		kfree(ldo);
823 		dev_err(codec->dev, "failed to allocate decs name memory\n");
824 		return -ENOMEM;
825 	}
826 
827 	ldo->desc.type  = REGULATOR_VOLTAGE;
828 	ldo->desc.owner = THIS_MODULE;
829 	ldo->desc.ops   = &ldo_regulator_ops;
830 	ldo->desc.n_voltages = 1;
831 
832 	ldo->codec_data = codec;
833 	ldo->voltage = voltage;
834 
835 	ldo->dev = regulator_register(&ldo->desc, codec->dev,
836 					  init_data, ldo, NULL);
837 	if (IS_ERR(ldo->dev)) {
838 		int ret = PTR_ERR(ldo->dev);
839 
840 		dev_err(codec->dev, "failed to register regulator\n");
841 		kfree(ldo->desc.name);
842 		kfree(ldo);
843 
844 		return ret;
845 	}
846 	sgtl5000->ldo = ldo;
847 
848 	return 0;
849 }
850 
851 static int ldo_regulator_remove(struct snd_soc_codec *codec)
852 {
853 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
854 	struct ldo_regulator *ldo = sgtl5000->ldo;
855 
856 	if (!ldo)
857 		return 0;
858 
859 	regulator_unregister(ldo->dev);
860 	kfree(ldo->desc.name);
861 	kfree(ldo);
862 
863 	return 0;
864 }
865 #else
866 static int ldo_regulator_register(struct snd_soc_codec *codec,
867 				struct regulator_init_data *init_data,
868 				int voltage)
869 {
870 	dev_err(codec->dev, "this setup needs regulator support in the kernel\n");
871 	return -EINVAL;
872 }
873 
874 static int ldo_regulator_remove(struct snd_soc_codec *codec)
875 {
876 	return 0;
877 }
878 #endif
879 
880 /*
881  * set dac bias
882  * common state changes:
883  * startup:
884  * off --> standby --> prepare --> on
885  * standby --> prepare --> on
886  *
887  * stop:
888  * on --> prepare --> standby
889  */
890 static int sgtl5000_set_bias_level(struct snd_soc_codec *codec,
891 				   enum snd_soc_bias_level level)
892 {
893 	int ret;
894 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
895 
896 	switch (level) {
897 	case SND_SOC_BIAS_ON:
898 	case SND_SOC_BIAS_PREPARE:
899 		break;
900 	case SND_SOC_BIAS_STANDBY:
901 		if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
902 			ret = regulator_bulk_enable(
903 						ARRAY_SIZE(sgtl5000->supplies),
904 						sgtl5000->supplies);
905 			if (ret)
906 				return ret;
907 			udelay(10);
908 		}
909 
910 		break;
911 	case SND_SOC_BIAS_OFF:
912 		regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
913 					sgtl5000->supplies);
914 		break;
915 	}
916 
917 	codec->dapm.bias_level = level;
918 	return 0;
919 }
920 
921 #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
922 			SNDRV_PCM_FMTBIT_S20_3LE |\
923 			SNDRV_PCM_FMTBIT_S24_LE |\
924 			SNDRV_PCM_FMTBIT_S32_LE)
925 
926 static const struct snd_soc_dai_ops sgtl5000_ops = {
927 	.hw_params = sgtl5000_pcm_hw_params,
928 	.digital_mute = sgtl5000_digital_mute,
929 	.set_fmt = sgtl5000_set_dai_fmt,
930 	.set_sysclk = sgtl5000_set_dai_sysclk,
931 };
932 
933 static struct snd_soc_dai_driver sgtl5000_dai = {
934 	.name = "sgtl5000",
935 	.playback = {
936 		.stream_name = "Playback",
937 		.channels_min = 1,
938 		.channels_max = 2,
939 		/*
940 		 * only support 8~48K + 96K,
941 		 * TODO modify hw_param to support more
942 		 */
943 		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
944 		.formats = SGTL5000_FORMATS,
945 	},
946 	.capture = {
947 		.stream_name = "Capture",
948 		.channels_min = 1,
949 		.channels_max = 2,
950 		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
951 		.formats = SGTL5000_FORMATS,
952 	},
953 	.ops = &sgtl5000_ops,
954 	.symmetric_rates = 1,
955 };
956 
957 static int sgtl5000_volatile_register(struct snd_soc_codec *codec,
958 					unsigned int reg)
959 {
960 	switch (reg) {
961 	case SGTL5000_CHIP_ID:
962 	case SGTL5000_CHIP_ADCDAC_CTRL:
963 	case SGTL5000_CHIP_ANA_STATUS:
964 		return 1;
965 	}
966 
967 	return 0;
968 }
969 
970 #ifdef CONFIG_SUSPEND
971 static int sgtl5000_suspend(struct snd_soc_codec *codec)
972 {
973 	sgtl5000_set_bias_level(codec, SND_SOC_BIAS_OFF);
974 
975 	return 0;
976 }
977 
978 /*
979  * restore all sgtl5000 registers,
980  * since a big hole between dap and regular registers,
981  * we will restore them respectively.
982  */
983 static int sgtl5000_restore_regs(struct snd_soc_codec *codec)
984 {
985 	u16 *cache = codec->reg_cache;
986 	u16 reg;
987 
988 	/* restore regular registers */
989 	for (reg = 0; reg <= SGTL5000_CHIP_SHORT_CTRL; reg += 2) {
990 
991 		/* These regs should restore in particular order */
992 		if (reg == SGTL5000_CHIP_ANA_POWER ||
993 			reg == SGTL5000_CHIP_CLK_CTRL ||
994 			reg == SGTL5000_CHIP_LINREG_CTRL ||
995 			reg == SGTL5000_CHIP_LINE_OUT_CTRL ||
996 			reg == SGTL5000_CHIP_REF_CTRL)
997 			continue;
998 
999 		snd_soc_write(codec, reg, cache[reg]);
1000 	}
1001 
1002 	/* restore dap registers */
1003 	for (reg = SGTL5000_DAP_REG_OFFSET; reg < SGTL5000_MAX_REG_OFFSET; reg += 2)
1004 		snd_soc_write(codec, reg, cache[reg]);
1005 
1006 	/*
1007 	 * restore these regs according to the power setting sequence in
1008 	 * sgtl5000_set_power_regs() and clock setting sequence in
1009 	 * sgtl5000_set_clock().
1010 	 *
1011 	 * The order of restore is:
1012 	 * 1. SGTL5000_CHIP_CLK_CTRL MCLK_FREQ bits (1:0) should be restore after
1013 	 *    SGTL5000_CHIP_ANA_POWER PLL bits set
1014 	 * 2. SGTL5000_CHIP_LINREG_CTRL should be set before
1015 	 *    SGTL5000_CHIP_ANA_POWER LINREG_D restored
1016 	 * 3. SGTL5000_CHIP_REF_CTRL controls Analog Ground Voltage,
1017 	 *    prefer to resotre it after SGTL5000_CHIP_ANA_POWER restored
1018 	 */
1019 	snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL,
1020 			cache[SGTL5000_CHIP_LINREG_CTRL]);
1021 
1022 	snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER,
1023 			cache[SGTL5000_CHIP_ANA_POWER]);
1024 
1025 	snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL,
1026 			cache[SGTL5000_CHIP_CLK_CTRL]);
1027 
1028 	snd_soc_write(codec, SGTL5000_CHIP_REF_CTRL,
1029 			cache[SGTL5000_CHIP_REF_CTRL]);
1030 
1031 	snd_soc_write(codec, SGTL5000_CHIP_LINE_OUT_CTRL,
1032 			cache[SGTL5000_CHIP_LINE_OUT_CTRL]);
1033 	return 0;
1034 }
1035 
1036 static int sgtl5000_resume(struct snd_soc_codec *codec)
1037 {
1038 	/* Bring the codec back up to standby to enable regulators */
1039 	sgtl5000_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1040 
1041 	/* Restore registers by cached in memory */
1042 	sgtl5000_restore_regs(codec);
1043 	return 0;
1044 }
1045 #else
1046 #define sgtl5000_suspend NULL
1047 #define sgtl5000_resume  NULL
1048 #endif	/* CONFIG_SUSPEND */
1049 
1050 /*
1051  * sgtl5000 has 3 internal power supplies:
1052  * 1. VAG, normally set to vdda/2
1053  * 2. chargepump, set to different value
1054  *	according to voltage of vdda and vddio
1055  * 3. line out VAG, normally set to vddio/2
1056  *
1057  * and should be set according to:
1058  * 1. vddd provided by external or not
1059  * 2. vdda and vddio voltage value. > 3.1v or not
1060  * 3. chip revision >=0x11 or not. If >=0x11, not use external vddd.
1061  */
1062 static int sgtl5000_set_power_regs(struct snd_soc_codec *codec)
1063 {
1064 	int vddd;
1065 	int vdda;
1066 	int vddio;
1067 	u16 ana_pwr;
1068 	u16 lreg_ctrl;
1069 	int vag;
1070 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1071 
1072 	vdda  = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
1073 	vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
1074 	vddd  = regulator_get_voltage(sgtl5000->supplies[VDDD].consumer);
1075 
1076 	vdda  = vdda / 1000;
1077 	vddio = vddio / 1000;
1078 	vddd  = vddd / 1000;
1079 
1080 	if (vdda <= 0 || vddio <= 0 || vddd < 0) {
1081 		dev_err(codec->dev, "regulator voltage not set correctly\n");
1082 
1083 		return -EINVAL;
1084 	}
1085 
1086 	/* according to datasheet, maximum voltage of supplies */
1087 	if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
1088 		dev_err(codec->dev,
1089 			"exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
1090 			vdda, vddio, vddd);
1091 
1092 		return -EINVAL;
1093 	}
1094 
1095 	/* reset value */
1096 	ana_pwr = snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER);
1097 	ana_pwr |= SGTL5000_DAC_STEREO |
1098 			SGTL5000_ADC_STEREO |
1099 			SGTL5000_REFTOP_POWERUP;
1100 	lreg_ctrl = snd_soc_read(codec, SGTL5000_CHIP_LINREG_CTRL);
1101 
1102 	if (vddio < 3100 && vdda < 3100) {
1103 		/* enable internal oscillator used for charge pump */
1104 		snd_soc_update_bits(codec, SGTL5000_CHIP_CLK_TOP_CTRL,
1105 					SGTL5000_INT_OSC_EN,
1106 					SGTL5000_INT_OSC_EN);
1107 		/* Enable VDDC charge pump */
1108 		ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
1109 	} else if (vddio >= 3100 && vdda >= 3100) {
1110 		/*
1111 		 * if vddio and vddd > 3.1v,
1112 		 * charge pump should be clean before set ana_pwr
1113 		 */
1114 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1115 				SGTL5000_VDDC_CHRGPMP_POWERUP, 0);
1116 
1117 		/* VDDC use VDDIO rail */
1118 		lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
1119 		lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
1120 			    SGTL5000_VDDC_MAN_ASSN_SHIFT;
1121 	}
1122 
1123 	snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
1124 
1125 	snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1126 
1127 	/* set voltage to register */
1128 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
1129 				SGTL5000_LINREG_VDDD_MASK, 0x8);
1130 
1131 	/*
1132 	 * if vddd linear reg has been enabled,
1133 	 * simple digital supply should be clear to get
1134 	 * proper VDDD voltage.
1135 	 */
1136 	if (ana_pwr & SGTL5000_LINEREG_D_POWERUP)
1137 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1138 				SGTL5000_LINREG_SIMPLE_POWERUP,
1139 				0);
1140 	else
1141 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1142 				SGTL5000_LINREG_SIMPLE_POWERUP |
1143 				SGTL5000_STARTUP_POWERUP,
1144 				0);
1145 
1146 	/*
1147 	 * set ADC/DAC VAG to vdda / 2,
1148 	 * should stay in range (0.8v, 1.575v)
1149 	 */
1150 	vag = vdda / 2;
1151 	if (vag <= SGTL5000_ANA_GND_BASE)
1152 		vag = 0;
1153 	else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
1154 		 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
1155 		vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
1156 	else
1157 		vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
1158 
1159 	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1160 			SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1161 
1162 	/* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
1163 	vag = vddio / 2;
1164 	if (vag <= SGTL5000_LINE_OUT_GND_BASE)
1165 		vag = 0;
1166 	else if (vag >= SGTL5000_LINE_OUT_GND_BASE +
1167 		SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
1168 		vag = SGTL5000_LINE_OUT_GND_MAX;
1169 	else
1170 		vag = (vag - SGTL5000_LINE_OUT_GND_BASE) /
1171 		    SGTL5000_LINE_OUT_GND_STP;
1172 
1173 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_CTRL,
1174 			SGTL5000_LINE_OUT_CURRENT_MASK |
1175 			SGTL5000_LINE_OUT_GND_MASK,
1176 			vag << SGTL5000_LINE_OUT_GND_SHIFT |
1177 			SGTL5000_LINE_OUT_CURRENT_360u <<
1178 				SGTL5000_LINE_OUT_CURRENT_SHIFT);
1179 
1180 	return 0;
1181 }
1182 
1183 static int sgtl5000_replace_vddd_with_ldo(struct snd_soc_codec *codec)
1184 {
1185 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1186 	int ret;
1187 
1188 	/* set internal ldo to 1.2v */
1189 	ret = ldo_regulator_register(codec, &ldo_init_data, LDO_VOLTAGE);
1190 	if (ret) {
1191 		dev_err(codec->dev,
1192 			"Failed to register vddd internal supplies: %d\n", ret);
1193 		return ret;
1194 	}
1195 
1196 	sgtl5000->supplies[VDDD].supply = LDO_CONSUMER_NAME;
1197 
1198 	ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sgtl5000->supplies),
1199 			sgtl5000->supplies);
1200 
1201 	if (ret) {
1202 		ldo_regulator_remove(codec);
1203 		dev_err(codec->dev, "Failed to request supplies: %d\n", ret);
1204 		return ret;
1205 	}
1206 
1207 	dev_info(codec->dev, "Using internal LDO instead of VDDD\n");
1208 	return 0;
1209 }
1210 
1211 static int sgtl5000_enable_regulators(struct snd_soc_codec *codec)
1212 {
1213 	u16 reg;
1214 	int ret;
1215 	int rev;
1216 	int i;
1217 	int external_vddd = 0;
1218 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1219 
1220 	for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
1221 		sgtl5000->supplies[i].supply = supply_names[i];
1222 
1223 	ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sgtl5000->supplies),
1224 				sgtl5000->supplies);
1225 	if (!ret)
1226 		external_vddd = 1;
1227 	else {
1228 		ret = sgtl5000_replace_vddd_with_ldo(codec);
1229 		if (ret)
1230 			return ret;
1231 	}
1232 
1233 	ret = regulator_bulk_enable(ARRAY_SIZE(sgtl5000->supplies),
1234 					sgtl5000->supplies);
1235 	if (ret)
1236 		goto err_regulator_free;
1237 
1238 	/* wait for all power rails bring up */
1239 	udelay(10);
1240 
1241 	/* read chip information */
1242 	reg = snd_soc_read(codec, SGTL5000_CHIP_ID);
1243 	if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
1244 	    SGTL5000_PARTID_PART_ID) {
1245 		dev_err(codec->dev,
1246 			"Device with ID register %x is not a sgtl5000\n", reg);
1247 		ret = -ENODEV;
1248 		goto err_regulator_disable;
1249 	}
1250 
1251 	rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
1252 	dev_info(codec->dev, "sgtl5000 revision 0x%x\n", rev);
1253 
1254 	/*
1255 	 * workaround for revision 0x11 and later,
1256 	 * roll back to use internal LDO
1257 	 */
1258 	if (external_vddd && rev >= 0x11) {
1259 		/* disable all regulator first */
1260 		regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
1261 					sgtl5000->supplies);
1262 		/* free VDDD regulator */
1263 		regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1264 					sgtl5000->supplies);
1265 
1266 		ret = sgtl5000_replace_vddd_with_ldo(codec);
1267 		if (ret)
1268 			return ret;
1269 
1270 		ret = regulator_bulk_enable(ARRAY_SIZE(sgtl5000->supplies),
1271 						sgtl5000->supplies);
1272 		if (ret)
1273 			goto err_regulator_free;
1274 
1275 		/* wait for all power rails bring up */
1276 		udelay(10);
1277 	}
1278 
1279 	return 0;
1280 
1281 err_regulator_disable:
1282 	regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
1283 				sgtl5000->supplies);
1284 err_regulator_free:
1285 	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1286 				sgtl5000->supplies);
1287 	if (external_vddd)
1288 		ldo_regulator_remove(codec);
1289 	return ret;
1290 
1291 }
1292 
1293 static int sgtl5000_probe(struct snd_soc_codec *codec)
1294 {
1295 	int ret;
1296 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1297 
1298 	/* setup i2c data ops */
1299 	ret = snd_soc_codec_set_cache_io(codec, 16, 16, SND_SOC_I2C);
1300 	if (ret < 0) {
1301 		dev_err(codec->dev, "Failed to set cache I/O: %d\n", ret);
1302 		return ret;
1303 	}
1304 
1305 	ret = sgtl5000_enable_regulators(codec);
1306 	if (ret)
1307 		return ret;
1308 
1309 	/* power up sgtl5000 */
1310 	ret = sgtl5000_set_power_regs(codec);
1311 	if (ret)
1312 		goto err;
1313 
1314 	/* enable small pop, introduce 400ms delay in turning off */
1315 	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1316 				SGTL5000_SMALL_POP,
1317 				SGTL5000_SMALL_POP);
1318 
1319 	/* disable short cut detector */
1320 	snd_soc_write(codec, SGTL5000_CHIP_SHORT_CTRL, 0);
1321 
1322 	/*
1323 	 * set i2s as default input of sound switch
1324 	 * TODO: add sound switch to control and dapm widge.
1325 	 */
1326 	snd_soc_write(codec, SGTL5000_CHIP_SSS_CTRL,
1327 			SGTL5000_DAC_SEL_I2S_IN << SGTL5000_DAC_SEL_SHIFT);
1328 	snd_soc_write(codec, SGTL5000_CHIP_DIG_POWER,
1329 			SGTL5000_ADC_EN | SGTL5000_DAC_EN);
1330 
1331 	/* enable dac volume ramp by default */
1332 	snd_soc_write(codec, SGTL5000_CHIP_ADCDAC_CTRL,
1333 			SGTL5000_DAC_VOL_RAMP_EN |
1334 			SGTL5000_DAC_MUTE_RIGHT |
1335 			SGTL5000_DAC_MUTE_LEFT);
1336 
1337 	snd_soc_write(codec, SGTL5000_CHIP_PAD_STRENGTH, 0x015f);
1338 
1339 	snd_soc_write(codec, SGTL5000_CHIP_ANA_CTRL,
1340 			SGTL5000_HP_ZCD_EN |
1341 			SGTL5000_ADC_ZCD_EN);
1342 
1343 	snd_soc_write(codec, SGTL5000_CHIP_MIC_CTRL, 0);
1344 
1345 	/*
1346 	 * disable DAP
1347 	 * TODO:
1348 	 * Enable DAP in kcontrol and dapm.
1349 	 */
1350 	snd_soc_write(codec, SGTL5000_DAP_CTRL, 0);
1351 
1352 	/* leading to standby state */
1353 	ret = sgtl5000_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1354 	if (ret)
1355 		goto err;
1356 
1357 	snd_soc_dapm_new_widgets(&codec->dapm);
1358 
1359 	return 0;
1360 
1361 err:
1362 	regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
1363 						sgtl5000->supplies);
1364 	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1365 				sgtl5000->supplies);
1366 	ldo_regulator_remove(codec);
1367 
1368 	return ret;
1369 }
1370 
1371 static int sgtl5000_remove(struct snd_soc_codec *codec)
1372 {
1373 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1374 
1375 	sgtl5000_set_bias_level(codec, SND_SOC_BIAS_OFF);
1376 
1377 	regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
1378 						sgtl5000->supplies);
1379 	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1380 				sgtl5000->supplies);
1381 	ldo_regulator_remove(codec);
1382 
1383 	return 0;
1384 }
1385 
1386 static struct snd_soc_codec_driver sgtl5000_driver = {
1387 	.probe = sgtl5000_probe,
1388 	.remove = sgtl5000_remove,
1389 	.suspend = sgtl5000_suspend,
1390 	.resume = sgtl5000_resume,
1391 	.set_bias_level = sgtl5000_set_bias_level,
1392 	.reg_cache_size = ARRAY_SIZE(sgtl5000_regs),
1393 	.reg_word_size = sizeof(u16),
1394 	.reg_cache_step = 2,
1395 	.reg_cache_default = sgtl5000_regs,
1396 	.volatile_register = sgtl5000_volatile_register,
1397 	.controls = sgtl5000_snd_controls,
1398 	.num_controls = ARRAY_SIZE(sgtl5000_snd_controls),
1399 	.dapm_widgets = sgtl5000_dapm_widgets,
1400 	.num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets),
1401 	.dapm_routes = sgtl5000_dapm_routes,
1402 	.num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes),
1403 };
1404 
1405 static __devinit int sgtl5000_i2c_probe(struct i2c_client *client,
1406 					const struct i2c_device_id *id)
1407 {
1408 	struct sgtl5000_priv *sgtl5000;
1409 	int ret;
1410 
1411 	sgtl5000 = devm_kzalloc(&client->dev, sizeof(struct sgtl5000_priv),
1412 								GFP_KERNEL);
1413 	if (!sgtl5000)
1414 		return -ENOMEM;
1415 
1416 	i2c_set_clientdata(client, sgtl5000);
1417 
1418 	ret = snd_soc_register_codec(&client->dev,
1419 			&sgtl5000_driver, &sgtl5000_dai, 1);
1420 	return ret;
1421 }
1422 
1423 static __devexit int sgtl5000_i2c_remove(struct i2c_client *client)
1424 {
1425 	snd_soc_unregister_codec(&client->dev);
1426 
1427 	return 0;
1428 }
1429 
1430 static const struct i2c_device_id sgtl5000_id[] = {
1431 	{"sgtl5000", 0},
1432 	{},
1433 };
1434 
1435 MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
1436 
1437 static const struct of_device_id sgtl5000_dt_ids[] = {
1438 	{ .compatible = "fsl,sgtl5000", },
1439 	{ /* sentinel */ }
1440 };
1441 MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1442 
1443 static struct i2c_driver sgtl5000_i2c_driver = {
1444 	.driver = {
1445 		   .name = "sgtl5000",
1446 		   .owner = THIS_MODULE,
1447 		   .of_match_table = sgtl5000_dt_ids,
1448 		   },
1449 	.probe = sgtl5000_i2c_probe,
1450 	.remove = __devexit_p(sgtl5000_i2c_remove),
1451 	.id_table = sgtl5000_id,
1452 };
1453 
1454 static int __init sgtl5000_modinit(void)
1455 {
1456 	return i2c_add_driver(&sgtl5000_i2c_driver);
1457 }
1458 module_init(sgtl5000_modinit);
1459 
1460 static void __exit sgtl5000_exit(void)
1461 {
1462 	i2c_del_driver(&sgtl5000_i2c_driver);
1463 }
1464 module_exit(sgtl5000_exit);
1465 
1466 MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1467 MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1468 MODULE_LICENSE("GPL");
1469