xref: /openbmc/linux/sound/soc/codecs/sgtl5000.c (revision 9cfc5c90)
1 /*
2  * sgtl5000.c  --  SGTL5000 ALSA SoC Audio driver
3  *
4  * Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/pm.h>
17 #include <linux/i2c.h>
18 #include <linux/clk.h>
19 #include <linux/log2.h>
20 #include <linux/regmap.h>
21 #include <linux/regulator/driver.h>
22 #include <linux/regulator/machine.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/of_device.h>
25 #include <sound/core.h>
26 #include <sound/tlv.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/soc.h>
30 #include <sound/soc-dapm.h>
31 #include <sound/initval.h>
32 
33 #include "sgtl5000.h"
34 
35 #define SGTL5000_DAP_REG_OFFSET	0x0100
36 #define SGTL5000_MAX_REG_OFFSET	0x013A
37 
38 /* default value of sgtl5000 registers */
39 static const struct reg_default sgtl5000_reg_defaults[] = {
40 	{ SGTL5000_CHIP_DIG_POWER,		0x0000 },
41 	{ SGTL5000_CHIP_CLK_CTRL,		0x0008 },
42 	{ SGTL5000_CHIP_I2S_CTRL,		0x0010 },
43 	{ SGTL5000_CHIP_SSS_CTRL,		0x0010 },
44 	{ SGTL5000_CHIP_ADCDAC_CTRL,		0x020c },
45 	{ SGTL5000_CHIP_DAC_VOL,		0x3c3c },
46 	{ SGTL5000_CHIP_PAD_STRENGTH,		0x015f },
47 	{ SGTL5000_CHIP_ANA_ADC_CTRL,		0x0000 },
48 	{ SGTL5000_CHIP_ANA_HP_CTRL,		0x1818 },
49 	{ SGTL5000_CHIP_ANA_CTRL,		0x0111 },
50 	{ SGTL5000_CHIP_LINREG_CTRL,		0x0000 },
51 	{ SGTL5000_CHIP_REF_CTRL,		0x0000 },
52 	{ SGTL5000_CHIP_MIC_CTRL,		0x0000 },
53 	{ SGTL5000_CHIP_LINE_OUT_CTRL,		0x0000 },
54 	{ SGTL5000_CHIP_LINE_OUT_VOL,		0x0404 },
55 	{ SGTL5000_CHIP_ANA_POWER,		0x7060 },
56 	{ SGTL5000_CHIP_PLL_CTRL,		0x5000 },
57 	{ SGTL5000_CHIP_CLK_TOP_CTRL,		0x0000 },
58 	{ SGTL5000_CHIP_ANA_STATUS,		0x0000 },
59 	{ SGTL5000_CHIP_SHORT_CTRL,		0x0000 },
60 	{ SGTL5000_CHIP_ANA_TEST2,		0x0000 },
61 	{ SGTL5000_DAP_CTRL,			0x0000 },
62 	{ SGTL5000_DAP_PEQ,			0x0000 },
63 	{ SGTL5000_DAP_BASS_ENHANCE,		0x0040 },
64 	{ SGTL5000_DAP_BASS_ENHANCE_CTRL,	0x051f },
65 	{ SGTL5000_DAP_AUDIO_EQ,		0x0000 },
66 	{ SGTL5000_DAP_SURROUND,		0x0040 },
67 	{ SGTL5000_DAP_EQ_BASS_BAND0,		0x002f },
68 	{ SGTL5000_DAP_EQ_BASS_BAND1,		0x002f },
69 	{ SGTL5000_DAP_EQ_BASS_BAND2,		0x002f },
70 	{ SGTL5000_DAP_EQ_BASS_BAND3,		0x002f },
71 	{ SGTL5000_DAP_EQ_BASS_BAND4,		0x002f },
72 	{ SGTL5000_DAP_MAIN_CHAN,		0x8000 },
73 	{ SGTL5000_DAP_MIX_CHAN,		0x0000 },
74 	{ SGTL5000_DAP_AVC_CTRL,		0x0510 },
75 	{ SGTL5000_DAP_AVC_THRESHOLD,		0x1473 },
76 	{ SGTL5000_DAP_AVC_ATTACK,		0x0028 },
77 	{ SGTL5000_DAP_AVC_DECAY,		0x0050 },
78 };
79 
80 /* regulator supplies for sgtl5000, VDDD is an optional external supply */
81 enum sgtl5000_regulator_supplies {
82 	VDDA,
83 	VDDIO,
84 	VDDD,
85 	SGTL5000_SUPPLY_NUM
86 };
87 
88 /* vddd is optional supply */
89 static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
90 	"VDDA",
91 	"VDDIO",
92 	"VDDD"
93 };
94 
95 #define LDO_CONSUMER_NAME	"VDDD_LDO"
96 #define LDO_VOLTAGE		1200000
97 
98 static struct regulator_consumer_supply ldo_consumer[] = {
99 	REGULATOR_SUPPLY(LDO_CONSUMER_NAME, NULL),
100 };
101 
102 static struct regulator_init_data ldo_init_data = {
103 	.constraints = {
104 		.min_uV                 = 1200000,
105 		.max_uV                 = 1200000,
106 		.valid_modes_mask       = REGULATOR_MODE_NORMAL,
107 		.valid_ops_mask         = REGULATOR_CHANGE_STATUS,
108 	},
109 	.num_consumer_supplies = 1,
110 	.consumer_supplies = &ldo_consumer[0],
111 };
112 
113 /*
114  * sgtl5000 internal ldo regulator,
115  * enabled when VDDD not provided
116  */
117 struct ldo_regulator {
118 	struct regulator_desc desc;
119 	struct regulator_dev *dev;
120 	int voltage;
121 	void *codec_data;
122 	bool enabled;
123 };
124 
125 enum sgtl5000_micbias_resistor {
126 	SGTL5000_MICBIAS_OFF = 0,
127 	SGTL5000_MICBIAS_2K = 2,
128 	SGTL5000_MICBIAS_4K = 4,
129 	SGTL5000_MICBIAS_8K = 8,
130 };
131 
132 /* sgtl5000 private structure in codec */
133 struct sgtl5000_priv {
134 	int sysclk;	/* sysclk rate */
135 	int master;	/* i2s master or not */
136 	int fmt;	/* i2s data format */
137 	struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
138 	struct ldo_regulator *ldo;
139 	struct regmap *regmap;
140 	struct clk *mclk;
141 	int revision;
142 	u8 micbias_resistor;
143 	u8 micbias_voltage;
144 };
145 
146 /*
147  * mic_bias power on/off share the same register bits with
148  * output impedance of mic bias, when power on mic bias, we
149  * need reclaim it to impedance value.
150  * 0x0 = Powered off
151  * 0x1 = 2Kohm
152  * 0x2 = 4Kohm
153  * 0x3 = 8Kohm
154  */
155 static int mic_bias_event(struct snd_soc_dapm_widget *w,
156 	struct snd_kcontrol *kcontrol, int event)
157 {
158 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
159 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
160 
161 	switch (event) {
162 	case SND_SOC_DAPM_POST_PMU:
163 		/* change mic bias resistor */
164 		snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
165 			SGTL5000_BIAS_R_MASK,
166 			sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
167 		break;
168 
169 	case SND_SOC_DAPM_PRE_PMD:
170 		snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
171 				SGTL5000_BIAS_R_MASK, 0);
172 		break;
173 	}
174 	return 0;
175 }
176 
177 /*
178  * As manual described, ADC/DAC only works when VAG powerup,
179  * So enabled VAG before ADC/DAC up.
180  * In power down case, we need wait 400ms when vag fully ramped down.
181  */
182 static int power_vag_event(struct snd_soc_dapm_widget *w,
183 	struct snd_kcontrol *kcontrol, int event)
184 {
185 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
186 	const u32 mask = SGTL5000_DAC_POWERUP | SGTL5000_ADC_POWERUP;
187 
188 	switch (event) {
189 	case SND_SOC_DAPM_POST_PMU:
190 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
191 			SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
192 		break;
193 
194 	case SND_SOC_DAPM_PRE_PMD:
195 		/*
196 		 * Don't clear VAG_POWERUP, when both DAC and ADC are
197 		 * operational to prevent inadvertently starving the
198 		 * other one of them.
199 		 */
200 		if ((snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER) &
201 				mask) != mask) {
202 			snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
203 				SGTL5000_VAG_POWERUP, 0);
204 			msleep(400);
205 		}
206 		break;
207 	default:
208 		break;
209 	}
210 
211 	return 0;
212 }
213 
214 /* input sources for ADC */
215 static const char *adc_mux_text[] = {
216 	"MIC_IN", "LINE_IN"
217 };
218 
219 static SOC_ENUM_SINGLE_DECL(adc_enum,
220 			    SGTL5000_CHIP_ANA_CTRL, 2,
221 			    adc_mux_text);
222 
223 static const struct snd_kcontrol_new adc_mux =
224 SOC_DAPM_ENUM("Capture Mux", adc_enum);
225 
226 /* input sources for DAC */
227 static const char *dac_mux_text[] = {
228 	"DAC", "LINE_IN"
229 };
230 
231 static SOC_ENUM_SINGLE_DECL(dac_enum,
232 			    SGTL5000_CHIP_ANA_CTRL, 6,
233 			    dac_mux_text);
234 
235 static const struct snd_kcontrol_new dac_mux =
236 SOC_DAPM_ENUM("Headphone Mux", dac_enum);
237 
238 static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
239 	SND_SOC_DAPM_INPUT("LINE_IN"),
240 	SND_SOC_DAPM_INPUT("MIC_IN"),
241 
242 	SND_SOC_DAPM_OUTPUT("HP_OUT"),
243 	SND_SOC_DAPM_OUTPUT("LINE_OUT"),
244 
245 	SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
246 			    mic_bias_event,
247 			    SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
248 
249 	SND_SOC_DAPM_PGA("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0),
250 	SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
251 
252 	SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
253 	SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
254 
255 	/* aif for i2s input */
256 	SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
257 				0, SGTL5000_CHIP_DIG_POWER,
258 				0, 0),
259 
260 	/* aif for i2s output */
261 	SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
262 				0, SGTL5000_CHIP_DIG_POWER,
263 				1, 0),
264 
265 	SND_SOC_DAPM_ADC("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0),
266 	SND_SOC_DAPM_DAC("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0),
267 
268 	SND_SOC_DAPM_PRE("VAG_POWER_PRE", power_vag_event),
269 	SND_SOC_DAPM_POST("VAG_POWER_POST", power_vag_event),
270 };
271 
272 /* routes for sgtl5000 */
273 static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
274 	{"Capture Mux", "LINE_IN", "LINE_IN"},	/* line_in --> adc_mux */
275 	{"Capture Mux", "MIC_IN", "MIC_IN"},	/* mic_in --> adc_mux */
276 
277 	{"ADC", NULL, "Capture Mux"},		/* adc_mux --> adc */
278 	{"AIFOUT", NULL, "ADC"},		/* adc --> i2s_out */
279 
280 	{"DAC", NULL, "AIFIN"},			/* i2s-->dac,skip audio mux */
281 	{"Headphone Mux", "DAC", "DAC"},	/* dac --> hp_mux */
282 	{"LO", NULL, "DAC"},			/* dac --> line_out */
283 
284 	{"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
285 	{"HP", NULL, "Headphone Mux"},		/* hp_mux --> hp */
286 
287 	{"LINE_OUT", NULL, "LO"},
288 	{"HP_OUT", NULL, "HP"},
289 };
290 
291 /* custom function to fetch info of PCM playback volume */
292 static int dac_info_volsw(struct snd_kcontrol *kcontrol,
293 			  struct snd_ctl_elem_info *uinfo)
294 {
295 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
296 	uinfo->count = 2;
297 	uinfo->value.integer.min = 0;
298 	uinfo->value.integer.max = 0xfc - 0x3c;
299 	return 0;
300 }
301 
302 /*
303  * custom function to get of PCM playback volume
304  *
305  * dac volume register
306  * 15-------------8-7--------------0
307  * | R channel vol | L channel vol |
308  *  -------------------------------
309  *
310  * PCM volume with 0.5017 dB steps from 0 to -90 dB
311  *
312  * register values map to dB
313  * 0x3B and less = Reserved
314  * 0x3C = 0 dB
315  * 0x3D = -0.5 dB
316  * 0xF0 = -90 dB
317  * 0xFC and greater = Muted
318  *
319  * register value map to userspace value
320  *
321  * register value	0x3c(0dB)	  0xf0(-90dB)0xfc
322  *			------------------------------
323  * userspace value	0xc0			     0
324  */
325 static int dac_get_volsw(struct snd_kcontrol *kcontrol,
326 			 struct snd_ctl_elem_value *ucontrol)
327 {
328 	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
329 	int reg;
330 	int l;
331 	int r;
332 
333 	reg = snd_soc_read(codec, SGTL5000_CHIP_DAC_VOL);
334 
335 	/* get left channel volume */
336 	l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
337 
338 	/* get right channel volume */
339 	r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
340 
341 	/* make sure value fall in (0x3c,0xfc) */
342 	l = clamp(l, 0x3c, 0xfc);
343 	r = clamp(r, 0x3c, 0xfc);
344 
345 	/* invert it and map to userspace value */
346 	l = 0xfc - l;
347 	r = 0xfc - r;
348 
349 	ucontrol->value.integer.value[0] = l;
350 	ucontrol->value.integer.value[1] = r;
351 
352 	return 0;
353 }
354 
355 /*
356  * custom function to put of PCM playback volume
357  *
358  * dac volume register
359  * 15-------------8-7--------------0
360  * | R channel vol | L channel vol |
361  *  -------------------------------
362  *
363  * PCM volume with 0.5017 dB steps from 0 to -90 dB
364  *
365  * register values map to dB
366  * 0x3B and less = Reserved
367  * 0x3C = 0 dB
368  * 0x3D = -0.5 dB
369  * 0xF0 = -90 dB
370  * 0xFC and greater = Muted
371  *
372  * userspace value map to register value
373  *
374  * userspace value	0xc0			     0
375  *			------------------------------
376  * register value	0x3c(0dB)	0xf0(-90dB)0xfc
377  */
378 static int dac_put_volsw(struct snd_kcontrol *kcontrol,
379 			 struct snd_ctl_elem_value *ucontrol)
380 {
381 	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
382 	int reg;
383 	int l;
384 	int r;
385 
386 	l = ucontrol->value.integer.value[0];
387 	r = ucontrol->value.integer.value[1];
388 
389 	/* make sure userspace volume fall in (0, 0xfc-0x3c) */
390 	l = clamp(l, 0, 0xfc - 0x3c);
391 	r = clamp(r, 0, 0xfc - 0x3c);
392 
393 	/* invert it, get the value can be set to register */
394 	l = 0xfc - l;
395 	r = 0xfc - r;
396 
397 	/* shift to get the register value */
398 	reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
399 		r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
400 
401 	snd_soc_write(codec, SGTL5000_CHIP_DAC_VOL, reg);
402 
403 	return 0;
404 }
405 
406 static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
407 
408 /* tlv for mic gain, 0db 20db 30db 40db */
409 static const DECLARE_TLV_DB_RANGE(mic_gain_tlv,
410 	0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
411 	1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0)
412 );
413 
414 /* tlv for hp volume, -51.5db to 12.0db, step .5db */
415 static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
416 
417 static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
418 	/* SOC_DOUBLE_S8_TLV with invert */
419 	{
420 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
421 		.name = "PCM Playback Volume",
422 		.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
423 			SNDRV_CTL_ELEM_ACCESS_READWRITE,
424 		.info = dac_info_volsw,
425 		.get = dac_get_volsw,
426 		.put = dac_put_volsw,
427 	},
428 
429 	SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
430 	SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
431 			SGTL5000_CHIP_ANA_ADC_CTRL,
432 			8, 1, 0, capture_6db_attenuate),
433 	SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
434 
435 	SOC_DOUBLE_TLV("Headphone Playback Volume",
436 			SGTL5000_CHIP_ANA_HP_CTRL,
437 			0, 8,
438 			0x7f, 1,
439 			headphone_volume),
440 	SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
441 			5, 1, 0),
442 
443 	SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
444 			0, 3, 0, mic_gain_tlv),
445 };
446 
447 /* mute the codec used by alsa core */
448 static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute)
449 {
450 	struct snd_soc_codec *codec = codec_dai->codec;
451 	u16 adcdac_ctrl = SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT;
452 
453 	snd_soc_update_bits(codec, SGTL5000_CHIP_ADCDAC_CTRL,
454 			adcdac_ctrl, mute ? adcdac_ctrl : 0);
455 
456 	return 0;
457 }
458 
459 /* set codec format */
460 static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
461 {
462 	struct snd_soc_codec *codec = codec_dai->codec;
463 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
464 	u16 i2sctl = 0;
465 
466 	sgtl5000->master = 0;
467 	/*
468 	 * i2s clock and frame master setting.
469 	 * ONLY support:
470 	 *  - clock and frame slave,
471 	 *  - clock and frame master
472 	 */
473 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
474 	case SND_SOC_DAIFMT_CBS_CFS:
475 		break;
476 	case SND_SOC_DAIFMT_CBM_CFM:
477 		i2sctl |= SGTL5000_I2S_MASTER;
478 		sgtl5000->master = 1;
479 		break;
480 	default:
481 		return -EINVAL;
482 	}
483 
484 	/* setting i2s data format */
485 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
486 	case SND_SOC_DAIFMT_DSP_A:
487 		i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
488 		break;
489 	case SND_SOC_DAIFMT_DSP_B:
490 		i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
491 		i2sctl |= SGTL5000_I2S_LRALIGN;
492 		break;
493 	case SND_SOC_DAIFMT_I2S:
494 		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
495 		break;
496 	case SND_SOC_DAIFMT_RIGHT_J:
497 		i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT;
498 		i2sctl |= SGTL5000_I2S_LRPOL;
499 		break;
500 	case SND_SOC_DAIFMT_LEFT_J:
501 		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
502 		i2sctl |= SGTL5000_I2S_LRALIGN;
503 		break;
504 	default:
505 		return -EINVAL;
506 	}
507 
508 	sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
509 
510 	/* Clock inversion */
511 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
512 	case SND_SOC_DAIFMT_NB_NF:
513 		break;
514 	case SND_SOC_DAIFMT_IB_NF:
515 		i2sctl |= SGTL5000_I2S_SCLK_INV;
516 		break;
517 	default:
518 		return -EINVAL;
519 	}
520 
521 	snd_soc_write(codec, SGTL5000_CHIP_I2S_CTRL, i2sctl);
522 
523 	return 0;
524 }
525 
526 /* set codec sysclk */
527 static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
528 				   int clk_id, unsigned int freq, int dir)
529 {
530 	struct snd_soc_codec *codec = codec_dai->codec;
531 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
532 
533 	switch (clk_id) {
534 	case SGTL5000_SYSCLK:
535 		sgtl5000->sysclk = freq;
536 		break;
537 	default:
538 		return -EINVAL;
539 	}
540 
541 	return 0;
542 }
543 
544 /*
545  * set clock according to i2s frame clock,
546  * sgtl5000 provides 2 clock sources:
547  * 1. sys_mclk: sample freq can only be configured to
548  *	1/256, 1/384, 1/512 of sys_mclk.
549  * 2. pll: can derive any audio clocks.
550  *
551  * clock setting rules:
552  * 1. in slave mode, only sys_mclk can be used
553  * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz
554  * and above.
555  * 3. usage of sys_mclk is preferred over pll to save power.
556  */
557 static int sgtl5000_set_clock(struct snd_soc_codec *codec, int frame_rate)
558 {
559 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
560 	int clk_ctl = 0;
561 	int sys_fs;	/* sample freq */
562 
563 	/*
564 	 * sample freq should be divided by frame clock,
565 	 * if frame clock is lower than 44.1 kHz, sample freq should be set to
566 	 * 32 kHz or 44.1 kHz.
567 	 */
568 	switch (frame_rate) {
569 	case 8000:
570 	case 16000:
571 		sys_fs = 32000;
572 		break;
573 	case 11025:
574 	case 22050:
575 		sys_fs = 44100;
576 		break;
577 	default:
578 		sys_fs = frame_rate;
579 		break;
580 	}
581 
582 	/* set divided factor of frame clock */
583 	switch (sys_fs / frame_rate) {
584 	case 4:
585 		clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
586 		break;
587 	case 2:
588 		clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
589 		break;
590 	case 1:
591 		clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
592 		break;
593 	default:
594 		return -EINVAL;
595 	}
596 
597 	/* set the sys_fs according to frame rate */
598 	switch (sys_fs) {
599 	case 32000:
600 		clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
601 		break;
602 	case 44100:
603 		clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
604 		break;
605 	case 48000:
606 		clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
607 		break;
608 	case 96000:
609 		clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
610 		break;
611 	default:
612 		dev_err(codec->dev, "frame rate %d not supported\n",
613 			frame_rate);
614 		return -EINVAL;
615 	}
616 
617 	/*
618 	 * calculate the divider of mclk/sample_freq,
619 	 * factor of freq = 96 kHz can only be 256, since mclk is in the range
620 	 * of 8 MHz - 27 MHz
621 	 */
622 	switch (sgtl5000->sysclk / frame_rate) {
623 	case 256:
624 		clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
625 			SGTL5000_MCLK_FREQ_SHIFT;
626 		break;
627 	case 384:
628 		clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
629 			SGTL5000_MCLK_FREQ_SHIFT;
630 		break;
631 	case 512:
632 		clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
633 			SGTL5000_MCLK_FREQ_SHIFT;
634 		break;
635 	default:
636 		/* if mclk does not satisfy the divider, use pll */
637 		if (sgtl5000->master) {
638 			clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
639 				SGTL5000_MCLK_FREQ_SHIFT;
640 		} else {
641 			dev_err(codec->dev,
642 				"PLL not supported in slave mode\n");
643 			dev_err(codec->dev, "%d ratio is not supported. "
644 				"SYS_MCLK needs to be 256, 384 or 512 * fs\n",
645 				sgtl5000->sysclk / frame_rate);
646 			return -EINVAL;
647 		}
648 	}
649 
650 	/* if using pll, please check manual 6.4.2 for detail */
651 	if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
652 		u64 out, t;
653 		int div2;
654 		int pll_ctl;
655 		unsigned int in, int_div, frac_div;
656 
657 		if (sgtl5000->sysclk > 17000000) {
658 			div2 = 1;
659 			in = sgtl5000->sysclk / 2;
660 		} else {
661 			div2 = 0;
662 			in = sgtl5000->sysclk;
663 		}
664 		if (sys_fs == 44100)
665 			out = 180633600;
666 		else
667 			out = 196608000;
668 		t = do_div(out, in);
669 		int_div = out;
670 		t *= 2048;
671 		do_div(t, in);
672 		frac_div = t;
673 		pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
674 		    frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
675 
676 		snd_soc_write(codec, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
677 		if (div2)
678 			snd_soc_update_bits(codec,
679 				SGTL5000_CHIP_CLK_TOP_CTRL,
680 				SGTL5000_INPUT_FREQ_DIV2,
681 				SGTL5000_INPUT_FREQ_DIV2);
682 		else
683 			snd_soc_update_bits(codec,
684 				SGTL5000_CHIP_CLK_TOP_CTRL,
685 				SGTL5000_INPUT_FREQ_DIV2,
686 				0);
687 
688 		/* power up pll */
689 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
690 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
691 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
692 
693 		/* if using pll, clk_ctrl must be set after pll power up */
694 		snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
695 	} else {
696 		/* otherwise, clk_ctrl must be set before pll power down */
697 		snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
698 
699 		/* power down pll */
700 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
701 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
702 			0);
703 	}
704 
705 	return 0;
706 }
707 
708 /*
709  * Set PCM DAI bit size and sample rate.
710  * input: params_rate, params_fmt
711  */
712 static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
713 				  struct snd_pcm_hw_params *params,
714 				  struct snd_soc_dai *dai)
715 {
716 	struct snd_soc_codec *codec = dai->codec;
717 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
718 	int channels = params_channels(params);
719 	int i2s_ctl = 0;
720 	int stereo;
721 	int ret;
722 
723 	/* sysclk should already set */
724 	if (!sgtl5000->sysclk) {
725 		dev_err(codec->dev, "%s: set sysclk first!\n", __func__);
726 		return -EFAULT;
727 	}
728 
729 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
730 		stereo = SGTL5000_DAC_STEREO;
731 	else
732 		stereo = SGTL5000_ADC_STEREO;
733 
734 	/* set mono to save power */
735 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, stereo,
736 			channels == 1 ? 0 : stereo);
737 
738 	/* set codec clock base on lrclk */
739 	ret = sgtl5000_set_clock(codec, params_rate(params));
740 	if (ret)
741 		return ret;
742 
743 	/* set i2s data format */
744 	switch (params_width(params)) {
745 	case 16:
746 		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
747 			return -EINVAL;
748 		i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
749 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
750 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
751 		break;
752 	case 20:
753 		i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
754 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
755 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
756 		break;
757 	case 24:
758 		i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
759 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
760 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
761 		break;
762 	case 32:
763 		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
764 			return -EINVAL;
765 		i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
766 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
767 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
768 		break;
769 	default:
770 		return -EINVAL;
771 	}
772 
773 	snd_soc_update_bits(codec, SGTL5000_CHIP_I2S_CTRL,
774 			    SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
775 			    i2s_ctl);
776 
777 	return 0;
778 }
779 
780 #ifdef CONFIG_REGULATOR
781 static int ldo_regulator_is_enabled(struct regulator_dev *dev)
782 {
783 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
784 
785 	return ldo->enabled;
786 }
787 
788 static int ldo_regulator_enable(struct regulator_dev *dev)
789 {
790 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
791 	struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data;
792 	int reg;
793 
794 	if (ldo_regulator_is_enabled(dev))
795 		return 0;
796 
797 	/* set regulator value firstly */
798 	reg = (1600 - ldo->voltage / 1000) / 50;
799 	reg = clamp(reg, 0x0, 0xf);
800 
801 	/* amend the voltage value, unit: uV */
802 	ldo->voltage = (1600 - reg * 50) * 1000;
803 
804 	/* set voltage to register */
805 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
806 				SGTL5000_LINREG_VDDD_MASK, reg);
807 
808 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
809 				SGTL5000_LINEREG_D_POWERUP,
810 				SGTL5000_LINEREG_D_POWERUP);
811 
812 	/* when internal ldo is enabled, simple digital power can be disabled */
813 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
814 				SGTL5000_LINREG_SIMPLE_POWERUP,
815 				0);
816 
817 	ldo->enabled = 1;
818 	return 0;
819 }
820 
821 static int ldo_regulator_disable(struct regulator_dev *dev)
822 {
823 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
824 	struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data;
825 
826 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
827 				SGTL5000_LINEREG_D_POWERUP,
828 				0);
829 
830 	/* clear voltage info */
831 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
832 				SGTL5000_LINREG_VDDD_MASK, 0);
833 
834 	ldo->enabled = 0;
835 
836 	return 0;
837 }
838 
839 static int ldo_regulator_get_voltage(struct regulator_dev *dev)
840 {
841 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
842 
843 	return ldo->voltage;
844 }
845 
846 static struct regulator_ops ldo_regulator_ops = {
847 	.is_enabled = ldo_regulator_is_enabled,
848 	.enable = ldo_regulator_enable,
849 	.disable = ldo_regulator_disable,
850 	.get_voltage = ldo_regulator_get_voltage,
851 };
852 
853 static int ldo_regulator_register(struct snd_soc_codec *codec,
854 				struct regulator_init_data *init_data,
855 				int voltage)
856 {
857 	struct ldo_regulator *ldo;
858 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
859 	struct regulator_config config = { };
860 
861 	ldo = kzalloc(sizeof(struct ldo_regulator), GFP_KERNEL);
862 
863 	if (!ldo)
864 		return -ENOMEM;
865 
866 	ldo->desc.name = kstrdup(dev_name(codec->dev), GFP_KERNEL);
867 	if (!ldo->desc.name) {
868 		kfree(ldo);
869 		dev_err(codec->dev, "failed to allocate decs name memory\n");
870 		return -ENOMEM;
871 	}
872 
873 	ldo->desc.type  = REGULATOR_VOLTAGE;
874 	ldo->desc.owner = THIS_MODULE;
875 	ldo->desc.ops   = &ldo_regulator_ops;
876 	ldo->desc.n_voltages = 1;
877 
878 	ldo->codec_data = codec;
879 	ldo->voltage = voltage;
880 
881 	config.dev = codec->dev;
882 	config.driver_data = ldo;
883 	config.init_data = init_data;
884 
885 	ldo->dev = regulator_register(&ldo->desc, &config);
886 	if (IS_ERR(ldo->dev)) {
887 		int ret = PTR_ERR(ldo->dev);
888 
889 		dev_err(codec->dev, "failed to register regulator\n");
890 		kfree(ldo->desc.name);
891 		kfree(ldo);
892 
893 		return ret;
894 	}
895 	sgtl5000->ldo = ldo;
896 
897 	return 0;
898 }
899 
900 static int ldo_regulator_remove(struct snd_soc_codec *codec)
901 {
902 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
903 	struct ldo_regulator *ldo = sgtl5000->ldo;
904 
905 	if (!ldo)
906 		return 0;
907 
908 	regulator_unregister(ldo->dev);
909 	kfree(ldo->desc.name);
910 	kfree(ldo);
911 
912 	return 0;
913 }
914 #else
915 static int ldo_regulator_register(struct snd_soc_codec *codec,
916 				struct regulator_init_data *init_data,
917 				int voltage)
918 {
919 	dev_err(codec->dev, "this setup needs regulator support in the kernel\n");
920 	return -EINVAL;
921 }
922 
923 static int ldo_regulator_remove(struct snd_soc_codec *codec)
924 {
925 	return 0;
926 }
927 #endif
928 
929 /*
930  * set dac bias
931  * common state changes:
932  * startup:
933  * off --> standby --> prepare --> on
934  * standby --> prepare --> on
935  *
936  * stop:
937  * on --> prepare --> standby
938  */
939 static int sgtl5000_set_bias_level(struct snd_soc_codec *codec,
940 				   enum snd_soc_bias_level level)
941 {
942 	int ret;
943 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
944 
945 	switch (level) {
946 	case SND_SOC_BIAS_ON:
947 	case SND_SOC_BIAS_PREPARE:
948 		break;
949 	case SND_SOC_BIAS_STANDBY:
950 		if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) {
951 			ret = regulator_bulk_enable(
952 						ARRAY_SIZE(sgtl5000->supplies),
953 						sgtl5000->supplies);
954 			if (ret)
955 				return ret;
956 			udelay(10);
957 
958 			regcache_cache_only(sgtl5000->regmap, false);
959 
960 			ret = regcache_sync(sgtl5000->regmap);
961 			if (ret != 0) {
962 				dev_err(codec->dev,
963 					"Failed to restore cache: %d\n", ret);
964 
965 				regcache_cache_only(sgtl5000->regmap, true);
966 				regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
967 						       sgtl5000->supplies);
968 
969 				return ret;
970 			}
971 		}
972 
973 		break;
974 	case SND_SOC_BIAS_OFF:
975 		regcache_cache_only(sgtl5000->regmap, true);
976 		regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
977 					sgtl5000->supplies);
978 		break;
979 	}
980 
981 	return 0;
982 }
983 
984 #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
985 			SNDRV_PCM_FMTBIT_S20_3LE |\
986 			SNDRV_PCM_FMTBIT_S24_LE |\
987 			SNDRV_PCM_FMTBIT_S32_LE)
988 
989 static const struct snd_soc_dai_ops sgtl5000_ops = {
990 	.hw_params = sgtl5000_pcm_hw_params,
991 	.digital_mute = sgtl5000_digital_mute,
992 	.set_fmt = sgtl5000_set_dai_fmt,
993 	.set_sysclk = sgtl5000_set_dai_sysclk,
994 };
995 
996 static struct snd_soc_dai_driver sgtl5000_dai = {
997 	.name = "sgtl5000",
998 	.playback = {
999 		.stream_name = "Playback",
1000 		.channels_min = 1,
1001 		.channels_max = 2,
1002 		/*
1003 		 * only support 8~48K + 96K,
1004 		 * TODO modify hw_param to support more
1005 		 */
1006 		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1007 		.formats = SGTL5000_FORMATS,
1008 	},
1009 	.capture = {
1010 		.stream_name = "Capture",
1011 		.channels_min = 1,
1012 		.channels_max = 2,
1013 		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1014 		.formats = SGTL5000_FORMATS,
1015 	},
1016 	.ops = &sgtl5000_ops,
1017 	.symmetric_rates = 1,
1018 };
1019 
1020 static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
1021 {
1022 	switch (reg) {
1023 	case SGTL5000_CHIP_ID:
1024 	case SGTL5000_CHIP_ADCDAC_CTRL:
1025 	case SGTL5000_CHIP_ANA_STATUS:
1026 		return true;
1027 	}
1028 
1029 	return false;
1030 }
1031 
1032 static bool sgtl5000_readable(struct device *dev, unsigned int reg)
1033 {
1034 	switch (reg) {
1035 	case SGTL5000_CHIP_ID:
1036 	case SGTL5000_CHIP_DIG_POWER:
1037 	case SGTL5000_CHIP_CLK_CTRL:
1038 	case SGTL5000_CHIP_I2S_CTRL:
1039 	case SGTL5000_CHIP_SSS_CTRL:
1040 	case SGTL5000_CHIP_ADCDAC_CTRL:
1041 	case SGTL5000_CHIP_DAC_VOL:
1042 	case SGTL5000_CHIP_PAD_STRENGTH:
1043 	case SGTL5000_CHIP_ANA_ADC_CTRL:
1044 	case SGTL5000_CHIP_ANA_HP_CTRL:
1045 	case SGTL5000_CHIP_ANA_CTRL:
1046 	case SGTL5000_CHIP_LINREG_CTRL:
1047 	case SGTL5000_CHIP_REF_CTRL:
1048 	case SGTL5000_CHIP_MIC_CTRL:
1049 	case SGTL5000_CHIP_LINE_OUT_CTRL:
1050 	case SGTL5000_CHIP_LINE_OUT_VOL:
1051 	case SGTL5000_CHIP_ANA_POWER:
1052 	case SGTL5000_CHIP_PLL_CTRL:
1053 	case SGTL5000_CHIP_CLK_TOP_CTRL:
1054 	case SGTL5000_CHIP_ANA_STATUS:
1055 	case SGTL5000_CHIP_SHORT_CTRL:
1056 	case SGTL5000_CHIP_ANA_TEST2:
1057 	case SGTL5000_DAP_CTRL:
1058 	case SGTL5000_DAP_PEQ:
1059 	case SGTL5000_DAP_BASS_ENHANCE:
1060 	case SGTL5000_DAP_BASS_ENHANCE_CTRL:
1061 	case SGTL5000_DAP_AUDIO_EQ:
1062 	case SGTL5000_DAP_SURROUND:
1063 	case SGTL5000_DAP_FLT_COEF_ACCESS:
1064 	case SGTL5000_DAP_COEF_WR_B0_MSB:
1065 	case SGTL5000_DAP_COEF_WR_B0_LSB:
1066 	case SGTL5000_DAP_EQ_BASS_BAND0:
1067 	case SGTL5000_DAP_EQ_BASS_BAND1:
1068 	case SGTL5000_DAP_EQ_BASS_BAND2:
1069 	case SGTL5000_DAP_EQ_BASS_BAND3:
1070 	case SGTL5000_DAP_EQ_BASS_BAND4:
1071 	case SGTL5000_DAP_MAIN_CHAN:
1072 	case SGTL5000_DAP_MIX_CHAN:
1073 	case SGTL5000_DAP_AVC_CTRL:
1074 	case SGTL5000_DAP_AVC_THRESHOLD:
1075 	case SGTL5000_DAP_AVC_ATTACK:
1076 	case SGTL5000_DAP_AVC_DECAY:
1077 	case SGTL5000_DAP_COEF_WR_B1_MSB:
1078 	case SGTL5000_DAP_COEF_WR_B1_LSB:
1079 	case SGTL5000_DAP_COEF_WR_B2_MSB:
1080 	case SGTL5000_DAP_COEF_WR_B2_LSB:
1081 	case SGTL5000_DAP_COEF_WR_A1_MSB:
1082 	case SGTL5000_DAP_COEF_WR_A1_LSB:
1083 	case SGTL5000_DAP_COEF_WR_A2_MSB:
1084 	case SGTL5000_DAP_COEF_WR_A2_LSB:
1085 		return true;
1086 
1087 	default:
1088 		return false;
1089 	}
1090 }
1091 
1092 /*
1093  * This precalculated table contains all (vag_val * 100 / lo_calcntrl) results
1094  * to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL
1095  * The calculatation was done for all possible register values which
1096  * is the array index and the following formula: 10^((idx−15)/40) * 100
1097  */
1098 static const u8 vol_quot_table[] = {
1099 	42, 45, 47, 50, 53, 56, 60, 63,
1100 	67, 71, 75, 79, 84, 89, 94, 100,
1101 	106, 112, 119, 126, 133, 141, 150, 158,
1102 	168, 178, 188, 200, 211, 224, 237, 251
1103 };
1104 
1105 /*
1106  * sgtl5000 has 3 internal power supplies:
1107  * 1. VAG, normally set to vdda/2
1108  * 2. charge pump, set to different value
1109  *	according to voltage of vdda and vddio
1110  * 3. line out VAG, normally set to vddio/2
1111  *
1112  * and should be set according to:
1113  * 1. vddd provided by external or not
1114  * 2. vdda and vddio voltage value. > 3.1v or not
1115  * 3. chip revision >=0x11 or not. If >=0x11, not use external vddd.
1116  */
1117 static int sgtl5000_set_power_regs(struct snd_soc_codec *codec)
1118 {
1119 	int vddd;
1120 	int vdda;
1121 	int vddio;
1122 	u16 ana_pwr;
1123 	u16 lreg_ctrl;
1124 	int vag;
1125 	int lo_vag;
1126 	int vol_quot;
1127 	int lo_vol;
1128 	size_t i;
1129 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1130 
1131 	vdda  = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
1132 	vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
1133 	vddd  = regulator_get_voltage(sgtl5000->supplies[VDDD].consumer);
1134 
1135 	vdda  = vdda / 1000;
1136 	vddio = vddio / 1000;
1137 	vddd  = vddd / 1000;
1138 
1139 	if (vdda <= 0 || vddio <= 0 || vddd < 0) {
1140 		dev_err(codec->dev, "regulator voltage not set correctly\n");
1141 
1142 		return -EINVAL;
1143 	}
1144 
1145 	/* according to datasheet, maximum voltage of supplies */
1146 	if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
1147 		dev_err(codec->dev,
1148 			"exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
1149 			vdda, vddio, vddd);
1150 
1151 		return -EINVAL;
1152 	}
1153 
1154 	/* reset value */
1155 	ana_pwr = snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER);
1156 	ana_pwr |= SGTL5000_DAC_STEREO |
1157 			SGTL5000_ADC_STEREO |
1158 			SGTL5000_REFTOP_POWERUP;
1159 	lreg_ctrl = snd_soc_read(codec, SGTL5000_CHIP_LINREG_CTRL);
1160 
1161 	if (vddio < 3100 && vdda < 3100) {
1162 		/* enable internal oscillator used for charge pump */
1163 		snd_soc_update_bits(codec, SGTL5000_CHIP_CLK_TOP_CTRL,
1164 					SGTL5000_INT_OSC_EN,
1165 					SGTL5000_INT_OSC_EN);
1166 		/* Enable VDDC charge pump */
1167 		ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
1168 	} else if (vddio >= 3100 && vdda >= 3100) {
1169 		ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP;
1170 		/* VDDC use VDDIO rail */
1171 		lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
1172 		lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
1173 			    SGTL5000_VDDC_MAN_ASSN_SHIFT;
1174 	}
1175 
1176 	snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
1177 
1178 	snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1179 
1180 	/* set voltage to register */
1181 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
1182 				SGTL5000_LINREG_VDDD_MASK, 0x8);
1183 
1184 	/*
1185 	 * if vddd linear reg has been enabled,
1186 	 * simple digital supply should be clear to get
1187 	 * proper VDDD voltage.
1188 	 */
1189 	if (ana_pwr & SGTL5000_LINEREG_D_POWERUP)
1190 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1191 				SGTL5000_LINREG_SIMPLE_POWERUP,
1192 				0);
1193 	else
1194 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1195 				SGTL5000_LINREG_SIMPLE_POWERUP |
1196 				SGTL5000_STARTUP_POWERUP,
1197 				0);
1198 
1199 	/*
1200 	 * set ADC/DAC VAG to vdda / 2,
1201 	 * should stay in range (0.8v, 1.575v)
1202 	 */
1203 	vag = vdda / 2;
1204 	if (vag <= SGTL5000_ANA_GND_BASE)
1205 		vag = 0;
1206 	else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
1207 		 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
1208 		vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
1209 	else
1210 		vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
1211 
1212 	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1213 			SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1214 
1215 	/* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
1216 	lo_vag = vddio / 2;
1217 	if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE)
1218 		lo_vag = 0;
1219 	else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE +
1220 		SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
1221 		lo_vag = SGTL5000_LINE_OUT_GND_MAX;
1222 	else
1223 		lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) /
1224 		    SGTL5000_LINE_OUT_GND_STP;
1225 
1226 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_CTRL,
1227 			SGTL5000_LINE_OUT_CURRENT_MASK |
1228 			SGTL5000_LINE_OUT_GND_MASK,
1229 			lo_vag << SGTL5000_LINE_OUT_GND_SHIFT |
1230 			SGTL5000_LINE_OUT_CURRENT_360u <<
1231 				SGTL5000_LINE_OUT_CURRENT_SHIFT);
1232 
1233 	/*
1234 	 * Set lineout output level in range (0..31)
1235 	 * the same value is used for right and left channel
1236 	 *
1237 	 * Searching for a suitable index solving this formula:
1238 	 * idx = 40 * log10(vag_val / lo_cagcntrl) + 15
1239 	 */
1240 	vol_quot = (vag * 100) / lo_vag;
1241 	lo_vol = 0;
1242 	for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) {
1243 		if (vol_quot >= vol_quot_table[i])
1244 			lo_vol = i;
1245 		else
1246 			break;
1247 	}
1248 
1249 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_VOL,
1250 		SGTL5000_LINE_OUT_VOL_RIGHT_MASK |
1251 		SGTL5000_LINE_OUT_VOL_LEFT_MASK,
1252 		lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT |
1253 		lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT);
1254 
1255 	return 0;
1256 }
1257 
1258 static int sgtl5000_replace_vddd_with_ldo(struct snd_soc_codec *codec)
1259 {
1260 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1261 	int ret;
1262 
1263 	/* set internal ldo to 1.2v */
1264 	ret = ldo_regulator_register(codec, &ldo_init_data, LDO_VOLTAGE);
1265 	if (ret) {
1266 		dev_err(codec->dev,
1267 			"Failed to register vddd internal supplies: %d\n", ret);
1268 		return ret;
1269 	}
1270 
1271 	sgtl5000->supplies[VDDD].supply = LDO_CONSUMER_NAME;
1272 
1273 	dev_info(codec->dev, "Using internal LDO instead of VDDD\n");
1274 	return 0;
1275 }
1276 
1277 static int sgtl5000_enable_regulators(struct snd_soc_codec *codec)
1278 {
1279 	int ret;
1280 	int i;
1281 	int external_vddd = 0;
1282 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1283 	struct regulator *vddd;
1284 
1285 	for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
1286 		sgtl5000->supplies[i].supply = supply_names[i];
1287 
1288 	/* External VDDD only works before revision 0x11 */
1289 	if (sgtl5000->revision < 0x11) {
1290 		vddd = regulator_get_optional(codec->dev, "VDDD");
1291 		if (IS_ERR(vddd)) {
1292 			/* See if it's just not registered yet */
1293 			if (PTR_ERR(vddd) == -EPROBE_DEFER)
1294 				return -EPROBE_DEFER;
1295 		} else {
1296 			external_vddd = 1;
1297 			regulator_put(vddd);
1298 		}
1299 	}
1300 
1301 	if (!external_vddd) {
1302 		ret = sgtl5000_replace_vddd_with_ldo(codec);
1303 		if (ret)
1304 			return ret;
1305 	}
1306 
1307 	ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sgtl5000->supplies),
1308 				 sgtl5000->supplies);
1309 	if (ret)
1310 		goto err_ldo_remove;
1311 
1312 	ret = regulator_bulk_enable(ARRAY_SIZE(sgtl5000->supplies),
1313 					sgtl5000->supplies);
1314 	if (ret)
1315 		goto err_regulator_free;
1316 
1317 	/* wait for all power rails bring up */
1318 	udelay(10);
1319 
1320 	return 0;
1321 
1322 err_regulator_free:
1323 	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1324 				sgtl5000->supplies);
1325 err_ldo_remove:
1326 	if (!external_vddd)
1327 		ldo_regulator_remove(codec);
1328 	return ret;
1329 
1330 }
1331 
1332 static int sgtl5000_probe(struct snd_soc_codec *codec)
1333 {
1334 	int ret;
1335 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1336 
1337 	ret = sgtl5000_enable_regulators(codec);
1338 	if (ret)
1339 		return ret;
1340 
1341 	/* power up sgtl5000 */
1342 	ret = sgtl5000_set_power_regs(codec);
1343 	if (ret)
1344 		goto err;
1345 
1346 	/* enable small pop, introduce 400ms delay in turning off */
1347 	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1348 				SGTL5000_SMALL_POP, 1);
1349 
1350 	/* disable short cut detector */
1351 	snd_soc_write(codec, SGTL5000_CHIP_SHORT_CTRL, 0);
1352 
1353 	/*
1354 	 * set i2s as default input of sound switch
1355 	 * TODO: add sound switch to control and dapm widge.
1356 	 */
1357 	snd_soc_write(codec, SGTL5000_CHIP_SSS_CTRL,
1358 			SGTL5000_DAC_SEL_I2S_IN << SGTL5000_DAC_SEL_SHIFT);
1359 	snd_soc_write(codec, SGTL5000_CHIP_DIG_POWER,
1360 			SGTL5000_ADC_EN | SGTL5000_DAC_EN);
1361 
1362 	/* enable dac volume ramp by default */
1363 	snd_soc_write(codec, SGTL5000_CHIP_ADCDAC_CTRL,
1364 			SGTL5000_DAC_VOL_RAMP_EN |
1365 			SGTL5000_DAC_MUTE_RIGHT |
1366 			SGTL5000_DAC_MUTE_LEFT);
1367 
1368 	snd_soc_write(codec, SGTL5000_CHIP_PAD_STRENGTH, 0x015f);
1369 
1370 	snd_soc_write(codec, SGTL5000_CHIP_ANA_CTRL,
1371 			SGTL5000_HP_ZCD_EN |
1372 			SGTL5000_ADC_ZCD_EN);
1373 
1374 	snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
1375 			SGTL5000_BIAS_R_MASK,
1376 			sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
1377 
1378 	snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
1379 			SGTL5000_BIAS_VOLT_MASK,
1380 			sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT);
1381 	/*
1382 	 * disable DAP
1383 	 * TODO:
1384 	 * Enable DAP in kcontrol and dapm.
1385 	 */
1386 	snd_soc_write(codec, SGTL5000_DAP_CTRL, 0);
1387 
1388 	return 0;
1389 
1390 err:
1391 	regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
1392 						sgtl5000->supplies);
1393 	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1394 				sgtl5000->supplies);
1395 	ldo_regulator_remove(codec);
1396 
1397 	return ret;
1398 }
1399 
1400 static int sgtl5000_remove(struct snd_soc_codec *codec)
1401 {
1402 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1403 
1404 	regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
1405 						sgtl5000->supplies);
1406 	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1407 				sgtl5000->supplies);
1408 	ldo_regulator_remove(codec);
1409 
1410 	return 0;
1411 }
1412 
1413 static struct snd_soc_codec_driver sgtl5000_driver = {
1414 	.probe = sgtl5000_probe,
1415 	.remove = sgtl5000_remove,
1416 	.set_bias_level = sgtl5000_set_bias_level,
1417 	.suspend_bias_off = true,
1418 	.controls = sgtl5000_snd_controls,
1419 	.num_controls = ARRAY_SIZE(sgtl5000_snd_controls),
1420 	.dapm_widgets = sgtl5000_dapm_widgets,
1421 	.num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets),
1422 	.dapm_routes = sgtl5000_dapm_routes,
1423 	.num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes),
1424 };
1425 
1426 static const struct regmap_config sgtl5000_regmap = {
1427 	.reg_bits = 16,
1428 	.val_bits = 16,
1429 	.reg_stride = 2,
1430 
1431 	.max_register = SGTL5000_MAX_REG_OFFSET,
1432 	.volatile_reg = sgtl5000_volatile,
1433 	.readable_reg = sgtl5000_readable,
1434 
1435 	.cache_type = REGCACHE_RBTREE,
1436 	.reg_defaults = sgtl5000_reg_defaults,
1437 	.num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
1438 };
1439 
1440 /*
1441  * Write all the default values from sgtl5000_reg_defaults[] array into the
1442  * sgtl5000 registers, to make sure we always start with the sane registers
1443  * values as stated in the datasheet.
1444  *
1445  * Since sgtl5000 does not have a reset line, nor a reset command in software,
1446  * we follow this approach to guarantee we always start from the default values
1447  * and avoid problems like, not being able to probe after an audio playback
1448  * followed by a system reset or a 'reboot' command in Linux
1449  */
1450 static int sgtl5000_fill_defaults(struct sgtl5000_priv *sgtl5000)
1451 {
1452 	int i, ret, val, index;
1453 
1454 	for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
1455 		val = sgtl5000_reg_defaults[i].def;
1456 		index = sgtl5000_reg_defaults[i].reg;
1457 		ret = regmap_write(sgtl5000->regmap, index, val);
1458 		if (ret)
1459 			return ret;
1460 	}
1461 
1462 	return 0;
1463 }
1464 
1465 static int sgtl5000_i2c_probe(struct i2c_client *client,
1466 			      const struct i2c_device_id *id)
1467 {
1468 	struct sgtl5000_priv *sgtl5000;
1469 	int ret, reg, rev;
1470 	struct device_node *np = client->dev.of_node;
1471 	u32 value;
1472 
1473 	sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL);
1474 	if (!sgtl5000)
1475 		return -ENOMEM;
1476 
1477 	sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
1478 	if (IS_ERR(sgtl5000->regmap)) {
1479 		ret = PTR_ERR(sgtl5000->regmap);
1480 		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1481 		return ret;
1482 	}
1483 
1484 	sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
1485 	if (IS_ERR(sgtl5000->mclk)) {
1486 		ret = PTR_ERR(sgtl5000->mclk);
1487 		dev_err(&client->dev, "Failed to get mclock: %d\n", ret);
1488 		/* Defer the probe to see if the clk will be provided later */
1489 		if (ret == -ENOENT)
1490 			return -EPROBE_DEFER;
1491 		return ret;
1492 	}
1493 
1494 	ret = clk_prepare_enable(sgtl5000->mclk);
1495 	if (ret)
1496 		return ret;
1497 
1498 	/* Need 8 clocks before I2C accesses */
1499 	udelay(1);
1500 
1501 	/* read chip information */
1502 	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
1503 	if (ret)
1504 		goto disable_clk;
1505 
1506 	if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
1507 	    SGTL5000_PARTID_PART_ID) {
1508 		dev_err(&client->dev,
1509 			"Device with ID register %x is not a sgtl5000\n", reg);
1510 		ret = -ENODEV;
1511 		goto disable_clk;
1512 	}
1513 
1514 	rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
1515 	dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
1516 	sgtl5000->revision = rev;
1517 
1518 	if (np) {
1519 		if (!of_property_read_u32(np,
1520 			"micbias-resistor-k-ohms", &value)) {
1521 			switch (value) {
1522 			case SGTL5000_MICBIAS_OFF:
1523 				sgtl5000->micbias_resistor = 0;
1524 				break;
1525 			case SGTL5000_MICBIAS_2K:
1526 				sgtl5000->micbias_resistor = 1;
1527 				break;
1528 			case SGTL5000_MICBIAS_4K:
1529 				sgtl5000->micbias_resistor = 2;
1530 				break;
1531 			case SGTL5000_MICBIAS_8K:
1532 				sgtl5000->micbias_resistor = 3;
1533 				break;
1534 			default:
1535 				sgtl5000->micbias_resistor = 2;
1536 				dev_err(&client->dev,
1537 					"Unsuitable MicBias resistor\n");
1538 			}
1539 		} else {
1540 			/* default is 4Kohms */
1541 			sgtl5000->micbias_resistor = 2;
1542 		}
1543 		if (!of_property_read_u32(np,
1544 			"micbias-voltage-m-volts", &value)) {
1545 			/* 1250mV => 0 */
1546 			/* steps of 250mV */
1547 			if ((value >= 1250) && (value <= 3000))
1548 				sgtl5000->micbias_voltage = (value / 250) - 5;
1549 			else {
1550 				sgtl5000->micbias_voltage = 0;
1551 				dev_err(&client->dev,
1552 					"Unsuitable MicBias voltage\n");
1553 			}
1554 		} else {
1555 			sgtl5000->micbias_voltage = 0;
1556 		}
1557 	}
1558 
1559 	i2c_set_clientdata(client, sgtl5000);
1560 
1561 	/* Ensure sgtl5000 will start with sane register values */
1562 	ret = sgtl5000_fill_defaults(sgtl5000);
1563 	if (ret)
1564 		goto disable_clk;
1565 
1566 	ret = snd_soc_register_codec(&client->dev,
1567 			&sgtl5000_driver, &sgtl5000_dai, 1);
1568 	if (ret)
1569 		goto disable_clk;
1570 
1571 	return 0;
1572 
1573 disable_clk:
1574 	clk_disable_unprepare(sgtl5000->mclk);
1575 	return ret;
1576 }
1577 
1578 static int sgtl5000_i2c_remove(struct i2c_client *client)
1579 {
1580 	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1581 
1582 	snd_soc_unregister_codec(&client->dev);
1583 	clk_disable_unprepare(sgtl5000->mclk);
1584 	return 0;
1585 }
1586 
1587 static const struct i2c_device_id sgtl5000_id[] = {
1588 	{"sgtl5000", 0},
1589 	{},
1590 };
1591 
1592 MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
1593 
1594 static const struct of_device_id sgtl5000_dt_ids[] = {
1595 	{ .compatible = "fsl,sgtl5000", },
1596 	{ /* sentinel */ }
1597 };
1598 MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1599 
1600 static struct i2c_driver sgtl5000_i2c_driver = {
1601 	.driver = {
1602 		   .name = "sgtl5000",
1603 		   .of_match_table = sgtl5000_dt_ids,
1604 		   },
1605 	.probe = sgtl5000_i2c_probe,
1606 	.remove = sgtl5000_i2c_remove,
1607 	.id_table = sgtl5000_id,
1608 };
1609 
1610 module_i2c_driver(sgtl5000_i2c_driver);
1611 
1612 MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1613 MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1614 MODULE_LICENSE("GPL");
1615