xref: /openbmc/linux/sound/soc/codecs/sgtl5000.c (revision 95acd4c7)
1 /*
2  * sgtl5000.c  --  SGTL5000 ALSA SoC Audio driver
3  *
4  * Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/pm.h>
17 #include <linux/i2c.h>
18 #include <linux/clk.h>
19 #include <linux/regmap.h>
20 #include <linux/regulator/driver.h>
21 #include <linux/regulator/machine.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/of_device.h>
24 #include <sound/core.h>
25 #include <sound/tlv.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 #include <sound/soc.h>
29 #include <sound/soc-dapm.h>
30 #include <sound/initval.h>
31 
32 #include "sgtl5000.h"
33 
34 #define SGTL5000_DAP_REG_OFFSET	0x0100
35 #define SGTL5000_MAX_REG_OFFSET	0x013A
36 
37 /* default value of sgtl5000 registers */
38 static const struct reg_default sgtl5000_reg_defaults[] = {
39 	{ SGTL5000_CHIP_DIG_POWER,		0x0000 },
40 	{ SGTL5000_CHIP_CLK_CTRL,		0x0008 },
41 	{ SGTL5000_CHIP_I2S_CTRL,		0x0010 },
42 	{ SGTL5000_CHIP_SSS_CTRL,		0x0010 },
43 	{ SGTL5000_CHIP_ADCDAC_CTRL,		0x020c },
44 	{ SGTL5000_CHIP_DAC_VOL,		0x3c3c },
45 	{ SGTL5000_CHIP_PAD_STRENGTH,		0x015f },
46 	{ SGTL5000_CHIP_ANA_ADC_CTRL,		0x0000 },
47 	{ SGTL5000_CHIP_ANA_HP_CTRL,		0x1818 },
48 	{ SGTL5000_CHIP_ANA_CTRL,		0x0111 },
49 	{ SGTL5000_CHIP_LINREG_CTRL,		0x0000 },
50 	{ SGTL5000_CHIP_REF_CTRL,		0x0000 },
51 	{ SGTL5000_CHIP_MIC_CTRL,		0x0000 },
52 	{ SGTL5000_CHIP_LINE_OUT_CTRL,		0x0000 },
53 	{ SGTL5000_CHIP_LINE_OUT_VOL,		0x0404 },
54 	{ SGTL5000_CHIP_ANA_POWER,		0x7060 },
55 	{ SGTL5000_CHIP_PLL_CTRL,		0x5000 },
56 	{ SGTL5000_CHIP_CLK_TOP_CTRL,		0x0000 },
57 	{ SGTL5000_CHIP_ANA_STATUS,		0x0000 },
58 	{ SGTL5000_CHIP_SHORT_CTRL,		0x0000 },
59 	{ SGTL5000_CHIP_ANA_TEST2,		0x0000 },
60 	{ SGTL5000_DAP_CTRL,			0x0000 },
61 	{ SGTL5000_DAP_PEQ,			0x0000 },
62 	{ SGTL5000_DAP_BASS_ENHANCE,		0x0040 },
63 	{ SGTL5000_DAP_BASS_ENHANCE_CTRL,	0x051f },
64 	{ SGTL5000_DAP_AUDIO_EQ,		0x0000 },
65 	{ SGTL5000_DAP_SURROUND,		0x0040 },
66 	{ SGTL5000_DAP_EQ_BASS_BAND0,		0x002f },
67 	{ SGTL5000_DAP_EQ_BASS_BAND1,		0x002f },
68 	{ SGTL5000_DAP_EQ_BASS_BAND2,		0x002f },
69 	{ SGTL5000_DAP_EQ_BASS_BAND3,		0x002f },
70 	{ SGTL5000_DAP_EQ_BASS_BAND4,		0x002f },
71 	{ SGTL5000_DAP_MAIN_CHAN,		0x8000 },
72 	{ SGTL5000_DAP_MIX_CHAN,		0x0000 },
73 	{ SGTL5000_DAP_AVC_CTRL,		0x0510 },
74 	{ SGTL5000_DAP_AVC_THRESHOLD,		0x1473 },
75 	{ SGTL5000_DAP_AVC_ATTACK,		0x0028 },
76 	{ SGTL5000_DAP_AVC_DECAY,		0x0050 },
77 };
78 
79 /* regulator supplies for sgtl5000, VDDD is an optional external supply */
80 enum sgtl5000_regulator_supplies {
81 	VDDA,
82 	VDDIO,
83 	VDDD,
84 	SGTL5000_SUPPLY_NUM
85 };
86 
87 /* vddd is optional supply */
88 static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
89 	"VDDA",
90 	"VDDIO",
91 	"VDDD"
92 };
93 
94 #define LDO_CONSUMER_NAME	"VDDD_LDO"
95 #define LDO_VOLTAGE		1200000
96 
97 static struct regulator_consumer_supply ldo_consumer[] = {
98 	REGULATOR_SUPPLY(LDO_CONSUMER_NAME, NULL),
99 };
100 
101 static struct regulator_init_data ldo_init_data = {
102 	.constraints = {
103 		.min_uV                 = 1200000,
104 		.max_uV                 = 1200000,
105 		.valid_modes_mask       = REGULATOR_MODE_NORMAL,
106 		.valid_ops_mask         = REGULATOR_CHANGE_STATUS,
107 	},
108 	.num_consumer_supplies = 1,
109 	.consumer_supplies = &ldo_consumer[0],
110 };
111 
112 /*
113  * sgtl5000 internal ldo regulator,
114  * enabled when VDDD not provided
115  */
116 struct ldo_regulator {
117 	struct regulator_desc desc;
118 	struct regulator_dev *dev;
119 	int voltage;
120 	void *codec_data;
121 	bool enabled;
122 };
123 
124 /* sgtl5000 private structure in codec */
125 struct sgtl5000_priv {
126 	int sysclk;	/* sysclk rate */
127 	int master;	/* i2s master or not */
128 	int fmt;	/* i2s data format */
129 	struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
130 	struct ldo_regulator *ldo;
131 	struct regmap *regmap;
132 	struct clk *mclk;
133 	int revision;
134 };
135 
136 /*
137  * mic_bias power on/off share the same register bits with
138  * output impedance of mic bias, when power on mic bias, we
139  * need reclaim it to impedance value.
140  * 0x0 = Powered off
141  * 0x1 = 2Kohm
142  * 0x2 = 4Kohm
143  * 0x3 = 8Kohm
144  */
145 static int mic_bias_event(struct snd_soc_dapm_widget *w,
146 	struct snd_kcontrol *kcontrol, int event)
147 {
148 	switch (event) {
149 	case SND_SOC_DAPM_POST_PMU:
150 		/* change mic bias resistor to 4Kohm */
151 		snd_soc_update_bits(w->codec, SGTL5000_CHIP_MIC_CTRL,
152 				SGTL5000_BIAS_R_MASK,
153 				SGTL5000_BIAS_R_4k << SGTL5000_BIAS_R_SHIFT);
154 		break;
155 
156 	case SND_SOC_DAPM_PRE_PMD:
157 		snd_soc_update_bits(w->codec, SGTL5000_CHIP_MIC_CTRL,
158 				SGTL5000_BIAS_R_MASK, 0);
159 		break;
160 	}
161 	return 0;
162 }
163 
164 /*
165  * As manual described, ADC/DAC only works when VAG powerup,
166  * So enabled VAG before ADC/DAC up.
167  * In power down case, we need wait 400ms when vag fully ramped down.
168  */
169 static int power_vag_event(struct snd_soc_dapm_widget *w,
170 	struct snd_kcontrol *kcontrol, int event)
171 {
172 	const u32 mask = SGTL5000_DAC_POWERUP | SGTL5000_ADC_POWERUP;
173 
174 	switch (event) {
175 	case SND_SOC_DAPM_POST_PMU:
176 		snd_soc_update_bits(w->codec, SGTL5000_CHIP_ANA_POWER,
177 			SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
178 		break;
179 
180 	case SND_SOC_DAPM_PRE_PMD:
181 		/*
182 		 * Don't clear VAG_POWERUP, when both DAC and ADC are
183 		 * operational to prevent inadvertently starving the
184 		 * other one of them.
185 		 */
186 		if ((snd_soc_read(w->codec, SGTL5000_CHIP_ANA_POWER) &
187 				mask) != mask) {
188 			snd_soc_update_bits(w->codec, SGTL5000_CHIP_ANA_POWER,
189 				SGTL5000_VAG_POWERUP, 0);
190 			msleep(400);
191 		}
192 		break;
193 	default:
194 		break;
195 	}
196 
197 	return 0;
198 }
199 
200 /* input sources for ADC */
201 static const char *adc_mux_text[] = {
202 	"MIC_IN", "LINE_IN"
203 };
204 
205 static SOC_ENUM_SINGLE_DECL(adc_enum,
206 			    SGTL5000_CHIP_ANA_CTRL, 2,
207 			    adc_mux_text);
208 
209 static const struct snd_kcontrol_new adc_mux =
210 SOC_DAPM_ENUM("Capture Mux", adc_enum);
211 
212 /* input sources for DAC */
213 static const char *dac_mux_text[] = {
214 	"DAC", "LINE_IN"
215 };
216 
217 static SOC_ENUM_SINGLE_DECL(dac_enum,
218 			    SGTL5000_CHIP_ANA_CTRL, 6,
219 			    dac_mux_text);
220 
221 static const struct snd_kcontrol_new dac_mux =
222 SOC_DAPM_ENUM("Headphone Mux", dac_enum);
223 
224 static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
225 	SND_SOC_DAPM_INPUT("LINE_IN"),
226 	SND_SOC_DAPM_INPUT("MIC_IN"),
227 
228 	SND_SOC_DAPM_OUTPUT("HP_OUT"),
229 	SND_SOC_DAPM_OUTPUT("LINE_OUT"),
230 
231 	SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
232 			    mic_bias_event,
233 			    SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
234 
235 	SND_SOC_DAPM_PGA("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0),
236 	SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
237 
238 	SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
239 	SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
240 
241 	/* aif for i2s input */
242 	SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
243 				0, SGTL5000_CHIP_DIG_POWER,
244 				0, 0),
245 
246 	/* aif for i2s output */
247 	SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
248 				0, SGTL5000_CHIP_DIG_POWER,
249 				1, 0),
250 
251 	SND_SOC_DAPM_ADC("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0),
252 	SND_SOC_DAPM_DAC("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0),
253 
254 	SND_SOC_DAPM_PRE("VAG_POWER_PRE", power_vag_event),
255 	SND_SOC_DAPM_POST("VAG_POWER_POST", power_vag_event),
256 };
257 
258 /* routes for sgtl5000 */
259 static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
260 	{"Capture Mux", "LINE_IN", "LINE_IN"},	/* line_in --> adc_mux */
261 	{"Capture Mux", "MIC_IN", "MIC_IN"},	/* mic_in --> adc_mux */
262 
263 	{"ADC", NULL, "Capture Mux"},		/* adc_mux --> adc */
264 	{"AIFOUT", NULL, "ADC"},		/* adc --> i2s_out */
265 
266 	{"DAC", NULL, "AIFIN"},			/* i2s-->dac,skip audio mux */
267 	{"Headphone Mux", "DAC", "DAC"},	/* dac --> hp_mux */
268 	{"LO", NULL, "DAC"},			/* dac --> line_out */
269 
270 	{"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
271 	{"HP", NULL, "Headphone Mux"},		/* hp_mux --> hp */
272 
273 	{"LINE_OUT", NULL, "LO"},
274 	{"HP_OUT", NULL, "HP"},
275 };
276 
277 /* custom function to fetch info of PCM playback volume */
278 static int dac_info_volsw(struct snd_kcontrol *kcontrol,
279 			  struct snd_ctl_elem_info *uinfo)
280 {
281 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
282 	uinfo->count = 2;
283 	uinfo->value.integer.min = 0;
284 	uinfo->value.integer.max = 0xfc - 0x3c;
285 	return 0;
286 }
287 
288 /*
289  * custom function to get of PCM playback volume
290  *
291  * dac volume register
292  * 15-------------8-7--------------0
293  * | R channel vol | L channel vol |
294  *  -------------------------------
295  *
296  * PCM volume with 0.5017 dB steps from 0 to -90 dB
297  *
298  * register values map to dB
299  * 0x3B and less = Reserved
300  * 0x3C = 0 dB
301  * 0x3D = -0.5 dB
302  * 0xF0 = -90 dB
303  * 0xFC and greater = Muted
304  *
305  * register value map to userspace value
306  *
307  * register value	0x3c(0dB)	  0xf0(-90dB)0xfc
308  *			------------------------------
309  * userspace value	0xc0			     0
310  */
311 static int dac_get_volsw(struct snd_kcontrol *kcontrol,
312 			 struct snd_ctl_elem_value *ucontrol)
313 {
314 	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
315 	int reg;
316 	int l;
317 	int r;
318 
319 	reg = snd_soc_read(codec, SGTL5000_CHIP_DAC_VOL);
320 
321 	/* get left channel volume */
322 	l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
323 
324 	/* get right channel volume */
325 	r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
326 
327 	/* make sure value fall in (0x3c,0xfc) */
328 	l = clamp(l, 0x3c, 0xfc);
329 	r = clamp(r, 0x3c, 0xfc);
330 
331 	/* invert it and map to userspace value */
332 	l = 0xfc - l;
333 	r = 0xfc - r;
334 
335 	ucontrol->value.integer.value[0] = l;
336 	ucontrol->value.integer.value[1] = r;
337 
338 	return 0;
339 }
340 
341 /*
342  * custom function to put of PCM playback volume
343  *
344  * dac volume register
345  * 15-------------8-7--------------0
346  * | R channel vol | L channel vol |
347  *  -------------------------------
348  *
349  * PCM volume with 0.5017 dB steps from 0 to -90 dB
350  *
351  * register values map to dB
352  * 0x3B and less = Reserved
353  * 0x3C = 0 dB
354  * 0x3D = -0.5 dB
355  * 0xF0 = -90 dB
356  * 0xFC and greater = Muted
357  *
358  * userspace value map to register value
359  *
360  * userspace value	0xc0			     0
361  *			------------------------------
362  * register value	0x3c(0dB)	0xf0(-90dB)0xfc
363  */
364 static int dac_put_volsw(struct snd_kcontrol *kcontrol,
365 			 struct snd_ctl_elem_value *ucontrol)
366 {
367 	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
368 	int reg;
369 	int l;
370 	int r;
371 
372 	l = ucontrol->value.integer.value[0];
373 	r = ucontrol->value.integer.value[1];
374 
375 	/* make sure userspace volume fall in (0, 0xfc-0x3c) */
376 	l = clamp(l, 0, 0xfc - 0x3c);
377 	r = clamp(r, 0, 0xfc - 0x3c);
378 
379 	/* invert it, get the value can be set to register */
380 	l = 0xfc - l;
381 	r = 0xfc - r;
382 
383 	/* shift to get the register value */
384 	reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
385 		r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
386 
387 	snd_soc_write(codec, SGTL5000_CHIP_DAC_VOL, reg);
388 
389 	return 0;
390 }
391 
392 static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
393 
394 /* tlv for mic gain, 0db 20db 30db 40db */
395 static const unsigned int mic_gain_tlv[] = {
396 	TLV_DB_RANGE_HEAD(2),
397 	0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
398 	1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0),
399 };
400 
401 /* tlv for hp volume, -51.5db to 12.0db, step .5db */
402 static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
403 
404 static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
405 	/* SOC_DOUBLE_S8_TLV with invert */
406 	{
407 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
408 		.name = "PCM Playback Volume",
409 		.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
410 			SNDRV_CTL_ELEM_ACCESS_READWRITE,
411 		.info = dac_info_volsw,
412 		.get = dac_get_volsw,
413 		.put = dac_put_volsw,
414 	},
415 
416 	SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
417 	SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
418 			SGTL5000_CHIP_ANA_ADC_CTRL,
419 			8, 1, 0, capture_6db_attenuate),
420 	SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
421 
422 	SOC_DOUBLE_TLV("Headphone Playback Volume",
423 			SGTL5000_CHIP_ANA_HP_CTRL,
424 			0, 8,
425 			0x7f, 1,
426 			headphone_volume),
427 	SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
428 			5, 1, 0),
429 
430 	SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
431 			0, 3, 0, mic_gain_tlv),
432 };
433 
434 /* mute the codec used by alsa core */
435 static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute)
436 {
437 	struct snd_soc_codec *codec = codec_dai->codec;
438 	u16 adcdac_ctrl = SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT;
439 
440 	snd_soc_update_bits(codec, SGTL5000_CHIP_ADCDAC_CTRL,
441 			adcdac_ctrl, mute ? adcdac_ctrl : 0);
442 
443 	return 0;
444 }
445 
446 /* set codec format */
447 static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
448 {
449 	struct snd_soc_codec *codec = codec_dai->codec;
450 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
451 	u16 i2sctl = 0;
452 
453 	sgtl5000->master = 0;
454 	/*
455 	 * i2s clock and frame master setting.
456 	 * ONLY support:
457 	 *  - clock and frame slave,
458 	 *  - clock and frame master
459 	 */
460 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
461 	case SND_SOC_DAIFMT_CBS_CFS:
462 		break;
463 	case SND_SOC_DAIFMT_CBM_CFM:
464 		i2sctl |= SGTL5000_I2S_MASTER;
465 		sgtl5000->master = 1;
466 		break;
467 	default:
468 		return -EINVAL;
469 	}
470 
471 	/* setting i2s data format */
472 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
473 	case SND_SOC_DAIFMT_DSP_A:
474 		i2sctl |= SGTL5000_I2S_MODE_PCM;
475 		break;
476 	case SND_SOC_DAIFMT_DSP_B:
477 		i2sctl |= SGTL5000_I2S_MODE_PCM;
478 		i2sctl |= SGTL5000_I2S_LRALIGN;
479 		break;
480 	case SND_SOC_DAIFMT_I2S:
481 		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ;
482 		break;
483 	case SND_SOC_DAIFMT_RIGHT_J:
484 		i2sctl |= SGTL5000_I2S_MODE_RJ;
485 		i2sctl |= SGTL5000_I2S_LRPOL;
486 		break;
487 	case SND_SOC_DAIFMT_LEFT_J:
488 		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ;
489 		i2sctl |= SGTL5000_I2S_LRALIGN;
490 		break;
491 	default:
492 		return -EINVAL;
493 	}
494 
495 	sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
496 
497 	/* Clock inversion */
498 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
499 	case SND_SOC_DAIFMT_NB_NF:
500 		break;
501 	case SND_SOC_DAIFMT_IB_NF:
502 		i2sctl |= SGTL5000_I2S_SCLK_INV;
503 		break;
504 	default:
505 		return -EINVAL;
506 	}
507 
508 	snd_soc_write(codec, SGTL5000_CHIP_I2S_CTRL, i2sctl);
509 
510 	return 0;
511 }
512 
513 /* set codec sysclk */
514 static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
515 				   int clk_id, unsigned int freq, int dir)
516 {
517 	struct snd_soc_codec *codec = codec_dai->codec;
518 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
519 
520 	switch (clk_id) {
521 	case SGTL5000_SYSCLK:
522 		sgtl5000->sysclk = freq;
523 		break;
524 	default:
525 		return -EINVAL;
526 	}
527 
528 	return 0;
529 }
530 
531 /*
532  * set clock according to i2s frame clock,
533  * sgtl5000 provide 2 clock sources.
534  * 1. sys_mclk. sample freq can only configure to
535  *	1/256, 1/384, 1/512 of sys_mclk.
536  * 2. pll. can derive any audio clocks.
537  *
538  * clock setting rules:
539  * 1. in slave mode, only sys_mclk can use.
540  * 2. as constraint by sys_mclk, sample freq should
541  *	set to 32k, 44.1k and above.
542  * 3. using sys_mclk prefer to pll to save power.
543  */
544 static int sgtl5000_set_clock(struct snd_soc_codec *codec, int frame_rate)
545 {
546 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
547 	int clk_ctl = 0;
548 	int sys_fs;	/* sample freq */
549 
550 	/*
551 	 * sample freq should be divided by frame clock,
552 	 * if frame clock lower than 44.1khz, sample feq should set to
553 	 * 32khz or 44.1khz.
554 	 */
555 	switch (frame_rate) {
556 	case 8000:
557 	case 16000:
558 		sys_fs = 32000;
559 		break;
560 	case 11025:
561 	case 22050:
562 		sys_fs = 44100;
563 		break;
564 	default:
565 		sys_fs = frame_rate;
566 		break;
567 	}
568 
569 	/* set divided factor of frame clock */
570 	switch (sys_fs / frame_rate) {
571 	case 4:
572 		clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
573 		break;
574 	case 2:
575 		clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
576 		break;
577 	case 1:
578 		clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
579 		break;
580 	default:
581 		return -EINVAL;
582 	}
583 
584 	/* set the sys_fs according to frame rate */
585 	switch (sys_fs) {
586 	case 32000:
587 		clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
588 		break;
589 	case 44100:
590 		clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
591 		break;
592 	case 48000:
593 		clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
594 		break;
595 	case 96000:
596 		clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
597 		break;
598 	default:
599 		dev_err(codec->dev, "frame rate %d not supported\n",
600 			frame_rate);
601 		return -EINVAL;
602 	}
603 
604 	/*
605 	 * calculate the divider of mclk/sample_freq,
606 	 * factor of freq =96k can only be 256, since mclk in range (12m,27m)
607 	 */
608 	switch (sgtl5000->sysclk / sys_fs) {
609 	case 256:
610 		clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
611 			SGTL5000_MCLK_FREQ_SHIFT;
612 		break;
613 	case 384:
614 		clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
615 			SGTL5000_MCLK_FREQ_SHIFT;
616 		break;
617 	case 512:
618 		clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
619 			SGTL5000_MCLK_FREQ_SHIFT;
620 		break;
621 	default:
622 		/* if mclk not satisify the divider, use pll */
623 		if (sgtl5000->master) {
624 			clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
625 				SGTL5000_MCLK_FREQ_SHIFT;
626 		} else {
627 			dev_err(codec->dev,
628 				"PLL not supported in slave mode\n");
629 			dev_err(codec->dev, "%d ratio is not supported. "
630 				"SYS_MCLK needs to be 256, 384 or 512 * fs\n",
631 				sgtl5000->sysclk / sys_fs);
632 			return -EINVAL;
633 		}
634 	}
635 
636 	/* if using pll, please check manual 6.4.2 for detail */
637 	if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
638 		u64 out, t;
639 		int div2;
640 		int pll_ctl;
641 		unsigned int in, int_div, frac_div;
642 
643 		if (sgtl5000->sysclk > 17000000) {
644 			div2 = 1;
645 			in = sgtl5000->sysclk / 2;
646 		} else {
647 			div2 = 0;
648 			in = sgtl5000->sysclk;
649 		}
650 		if (sys_fs == 44100)
651 			out = 180633600;
652 		else
653 			out = 196608000;
654 		t = do_div(out, in);
655 		int_div = out;
656 		t *= 2048;
657 		do_div(t, in);
658 		frac_div = t;
659 		pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
660 		    frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
661 
662 		snd_soc_write(codec, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
663 		if (div2)
664 			snd_soc_update_bits(codec,
665 				SGTL5000_CHIP_CLK_TOP_CTRL,
666 				SGTL5000_INPUT_FREQ_DIV2,
667 				SGTL5000_INPUT_FREQ_DIV2);
668 		else
669 			snd_soc_update_bits(codec,
670 				SGTL5000_CHIP_CLK_TOP_CTRL,
671 				SGTL5000_INPUT_FREQ_DIV2,
672 				0);
673 
674 		/* power up pll */
675 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
676 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
677 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
678 
679 		/* if using pll, clk_ctrl must be set after pll power up */
680 		snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
681 	} else {
682 		/* otherwise, clk_ctrl must be set before pll power down */
683 		snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
684 
685 		/* power down pll */
686 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
687 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
688 			0);
689 	}
690 
691 	return 0;
692 }
693 
694 /*
695  * Set PCM DAI bit size and sample rate.
696  * input: params_rate, params_fmt
697  */
698 static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
699 				  struct snd_pcm_hw_params *params,
700 				  struct snd_soc_dai *dai)
701 {
702 	struct snd_soc_codec *codec = dai->codec;
703 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
704 	int channels = params_channels(params);
705 	int i2s_ctl = 0;
706 	int stereo;
707 	int ret;
708 
709 	/* sysclk should already set */
710 	if (!sgtl5000->sysclk) {
711 		dev_err(codec->dev, "%s: set sysclk first!\n", __func__);
712 		return -EFAULT;
713 	}
714 
715 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
716 		stereo = SGTL5000_DAC_STEREO;
717 	else
718 		stereo = SGTL5000_ADC_STEREO;
719 
720 	/* set mono to save power */
721 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, stereo,
722 			channels == 1 ? 0 : stereo);
723 
724 	/* set codec clock base on lrclk */
725 	ret = sgtl5000_set_clock(codec, params_rate(params));
726 	if (ret)
727 		return ret;
728 
729 	/* set i2s data format */
730 	switch (params_width(params)) {
731 	case 16:
732 		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
733 			return -EINVAL;
734 		i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
735 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
736 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
737 		break;
738 	case 20:
739 		i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
740 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
741 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
742 		break;
743 	case 24:
744 		i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
745 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
746 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
747 		break;
748 	case 32:
749 		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
750 			return -EINVAL;
751 		i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
752 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
753 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
754 		break;
755 	default:
756 		return -EINVAL;
757 	}
758 
759 	snd_soc_update_bits(codec, SGTL5000_CHIP_I2S_CTRL,
760 			    SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
761 			    i2s_ctl);
762 
763 	return 0;
764 }
765 
766 #ifdef CONFIG_REGULATOR
767 static int ldo_regulator_is_enabled(struct regulator_dev *dev)
768 {
769 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
770 
771 	return ldo->enabled;
772 }
773 
774 static int ldo_regulator_enable(struct regulator_dev *dev)
775 {
776 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
777 	struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data;
778 	int reg;
779 
780 	if (ldo_regulator_is_enabled(dev))
781 		return 0;
782 
783 	/* set regulator value firstly */
784 	reg = (1600 - ldo->voltage / 1000) / 50;
785 	reg = clamp(reg, 0x0, 0xf);
786 
787 	/* amend the voltage value, unit: uV */
788 	ldo->voltage = (1600 - reg * 50) * 1000;
789 
790 	/* set voltage to register */
791 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
792 				SGTL5000_LINREG_VDDD_MASK, reg);
793 
794 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
795 				SGTL5000_LINEREG_D_POWERUP,
796 				SGTL5000_LINEREG_D_POWERUP);
797 
798 	/* when internal ldo enabled, simple digital power can be disabled */
799 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
800 				SGTL5000_LINREG_SIMPLE_POWERUP,
801 				0);
802 
803 	ldo->enabled = 1;
804 	return 0;
805 }
806 
807 static int ldo_regulator_disable(struct regulator_dev *dev)
808 {
809 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
810 	struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data;
811 
812 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
813 				SGTL5000_LINEREG_D_POWERUP,
814 				0);
815 
816 	/* clear voltage info */
817 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
818 				SGTL5000_LINREG_VDDD_MASK, 0);
819 
820 	ldo->enabled = 0;
821 
822 	return 0;
823 }
824 
825 static int ldo_regulator_get_voltage(struct regulator_dev *dev)
826 {
827 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
828 
829 	return ldo->voltage;
830 }
831 
832 static struct regulator_ops ldo_regulator_ops = {
833 	.is_enabled = ldo_regulator_is_enabled,
834 	.enable = ldo_regulator_enable,
835 	.disable = ldo_regulator_disable,
836 	.get_voltage = ldo_regulator_get_voltage,
837 };
838 
839 static int ldo_regulator_register(struct snd_soc_codec *codec,
840 				struct regulator_init_data *init_data,
841 				int voltage)
842 {
843 	struct ldo_regulator *ldo;
844 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
845 	struct regulator_config config = { };
846 
847 	ldo = kzalloc(sizeof(struct ldo_regulator), GFP_KERNEL);
848 
849 	if (!ldo)
850 		return -ENOMEM;
851 
852 	ldo->desc.name = kstrdup(dev_name(codec->dev), GFP_KERNEL);
853 	if (!ldo->desc.name) {
854 		kfree(ldo);
855 		dev_err(codec->dev, "failed to allocate decs name memory\n");
856 		return -ENOMEM;
857 	}
858 
859 	ldo->desc.type  = REGULATOR_VOLTAGE;
860 	ldo->desc.owner = THIS_MODULE;
861 	ldo->desc.ops   = &ldo_regulator_ops;
862 	ldo->desc.n_voltages = 1;
863 
864 	ldo->codec_data = codec;
865 	ldo->voltage = voltage;
866 
867 	config.dev = codec->dev;
868 	config.driver_data = ldo;
869 	config.init_data = init_data;
870 
871 	ldo->dev = regulator_register(&ldo->desc, &config);
872 	if (IS_ERR(ldo->dev)) {
873 		int ret = PTR_ERR(ldo->dev);
874 
875 		dev_err(codec->dev, "failed to register regulator\n");
876 		kfree(ldo->desc.name);
877 		kfree(ldo);
878 
879 		return ret;
880 	}
881 	sgtl5000->ldo = ldo;
882 
883 	return 0;
884 }
885 
886 static int ldo_regulator_remove(struct snd_soc_codec *codec)
887 {
888 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
889 	struct ldo_regulator *ldo = sgtl5000->ldo;
890 
891 	if (!ldo)
892 		return 0;
893 
894 	regulator_unregister(ldo->dev);
895 	kfree(ldo->desc.name);
896 	kfree(ldo);
897 
898 	return 0;
899 }
900 #else
901 static int ldo_regulator_register(struct snd_soc_codec *codec,
902 				struct regulator_init_data *init_data,
903 				int voltage)
904 {
905 	dev_err(codec->dev, "this setup needs regulator support in the kernel\n");
906 	return -EINVAL;
907 }
908 
909 static int ldo_regulator_remove(struct snd_soc_codec *codec)
910 {
911 	return 0;
912 }
913 #endif
914 
915 /*
916  * set dac bias
917  * common state changes:
918  * startup:
919  * off --> standby --> prepare --> on
920  * standby --> prepare --> on
921  *
922  * stop:
923  * on --> prepare --> standby
924  */
925 static int sgtl5000_set_bias_level(struct snd_soc_codec *codec,
926 				   enum snd_soc_bias_level level)
927 {
928 	int ret;
929 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
930 
931 	switch (level) {
932 	case SND_SOC_BIAS_ON:
933 	case SND_SOC_BIAS_PREPARE:
934 		break;
935 	case SND_SOC_BIAS_STANDBY:
936 		if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
937 			ret = regulator_bulk_enable(
938 						ARRAY_SIZE(sgtl5000->supplies),
939 						sgtl5000->supplies);
940 			if (ret)
941 				return ret;
942 			udelay(10);
943 
944 			regcache_cache_only(sgtl5000->regmap, false);
945 
946 			ret = regcache_sync(sgtl5000->regmap);
947 			if (ret != 0) {
948 				dev_err(codec->dev,
949 					"Failed to restore cache: %d\n", ret);
950 
951 				regcache_cache_only(sgtl5000->regmap, true);
952 				regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
953 						       sgtl5000->supplies);
954 
955 				return ret;
956 			}
957 		}
958 
959 		break;
960 	case SND_SOC_BIAS_OFF:
961 		regcache_cache_only(sgtl5000->regmap, true);
962 		regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
963 					sgtl5000->supplies);
964 		break;
965 	}
966 
967 	codec->dapm.bias_level = level;
968 	return 0;
969 }
970 
971 #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
972 			SNDRV_PCM_FMTBIT_S20_3LE |\
973 			SNDRV_PCM_FMTBIT_S24_LE |\
974 			SNDRV_PCM_FMTBIT_S32_LE)
975 
976 static const struct snd_soc_dai_ops sgtl5000_ops = {
977 	.hw_params = sgtl5000_pcm_hw_params,
978 	.digital_mute = sgtl5000_digital_mute,
979 	.set_fmt = sgtl5000_set_dai_fmt,
980 	.set_sysclk = sgtl5000_set_dai_sysclk,
981 };
982 
983 static struct snd_soc_dai_driver sgtl5000_dai = {
984 	.name = "sgtl5000",
985 	.playback = {
986 		.stream_name = "Playback",
987 		.channels_min = 1,
988 		.channels_max = 2,
989 		/*
990 		 * only support 8~48K + 96K,
991 		 * TODO modify hw_param to support more
992 		 */
993 		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
994 		.formats = SGTL5000_FORMATS,
995 	},
996 	.capture = {
997 		.stream_name = "Capture",
998 		.channels_min = 1,
999 		.channels_max = 2,
1000 		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1001 		.formats = SGTL5000_FORMATS,
1002 	},
1003 	.ops = &sgtl5000_ops,
1004 	.symmetric_rates = 1,
1005 };
1006 
1007 static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
1008 {
1009 	switch (reg) {
1010 	case SGTL5000_CHIP_ID:
1011 	case SGTL5000_CHIP_ADCDAC_CTRL:
1012 	case SGTL5000_CHIP_ANA_STATUS:
1013 		return true;
1014 	}
1015 
1016 	return false;
1017 }
1018 
1019 static bool sgtl5000_readable(struct device *dev, unsigned int reg)
1020 {
1021 	switch (reg) {
1022 	case SGTL5000_CHIP_ID:
1023 	case SGTL5000_CHIP_DIG_POWER:
1024 	case SGTL5000_CHIP_CLK_CTRL:
1025 	case SGTL5000_CHIP_I2S_CTRL:
1026 	case SGTL5000_CHIP_SSS_CTRL:
1027 	case SGTL5000_CHIP_ADCDAC_CTRL:
1028 	case SGTL5000_CHIP_DAC_VOL:
1029 	case SGTL5000_CHIP_PAD_STRENGTH:
1030 	case SGTL5000_CHIP_ANA_ADC_CTRL:
1031 	case SGTL5000_CHIP_ANA_HP_CTRL:
1032 	case SGTL5000_CHIP_ANA_CTRL:
1033 	case SGTL5000_CHIP_LINREG_CTRL:
1034 	case SGTL5000_CHIP_REF_CTRL:
1035 	case SGTL5000_CHIP_MIC_CTRL:
1036 	case SGTL5000_CHIP_LINE_OUT_CTRL:
1037 	case SGTL5000_CHIP_LINE_OUT_VOL:
1038 	case SGTL5000_CHIP_ANA_POWER:
1039 	case SGTL5000_CHIP_PLL_CTRL:
1040 	case SGTL5000_CHIP_CLK_TOP_CTRL:
1041 	case SGTL5000_CHIP_ANA_STATUS:
1042 	case SGTL5000_CHIP_SHORT_CTRL:
1043 	case SGTL5000_CHIP_ANA_TEST2:
1044 	case SGTL5000_DAP_CTRL:
1045 	case SGTL5000_DAP_PEQ:
1046 	case SGTL5000_DAP_BASS_ENHANCE:
1047 	case SGTL5000_DAP_BASS_ENHANCE_CTRL:
1048 	case SGTL5000_DAP_AUDIO_EQ:
1049 	case SGTL5000_DAP_SURROUND:
1050 	case SGTL5000_DAP_FLT_COEF_ACCESS:
1051 	case SGTL5000_DAP_COEF_WR_B0_MSB:
1052 	case SGTL5000_DAP_COEF_WR_B0_LSB:
1053 	case SGTL5000_DAP_EQ_BASS_BAND0:
1054 	case SGTL5000_DAP_EQ_BASS_BAND1:
1055 	case SGTL5000_DAP_EQ_BASS_BAND2:
1056 	case SGTL5000_DAP_EQ_BASS_BAND3:
1057 	case SGTL5000_DAP_EQ_BASS_BAND4:
1058 	case SGTL5000_DAP_MAIN_CHAN:
1059 	case SGTL5000_DAP_MIX_CHAN:
1060 	case SGTL5000_DAP_AVC_CTRL:
1061 	case SGTL5000_DAP_AVC_THRESHOLD:
1062 	case SGTL5000_DAP_AVC_ATTACK:
1063 	case SGTL5000_DAP_AVC_DECAY:
1064 	case SGTL5000_DAP_COEF_WR_B1_MSB:
1065 	case SGTL5000_DAP_COEF_WR_B1_LSB:
1066 	case SGTL5000_DAP_COEF_WR_B2_MSB:
1067 	case SGTL5000_DAP_COEF_WR_B2_LSB:
1068 	case SGTL5000_DAP_COEF_WR_A1_MSB:
1069 	case SGTL5000_DAP_COEF_WR_A1_LSB:
1070 	case SGTL5000_DAP_COEF_WR_A2_MSB:
1071 	case SGTL5000_DAP_COEF_WR_A2_LSB:
1072 		return true;
1073 
1074 	default:
1075 		return false;
1076 	}
1077 }
1078 
1079 /*
1080  * sgtl5000 has 3 internal power supplies:
1081  * 1. VAG, normally set to vdda/2
1082  * 2. chargepump, set to different value
1083  *	according to voltage of vdda and vddio
1084  * 3. line out VAG, normally set to vddio/2
1085  *
1086  * and should be set according to:
1087  * 1. vddd provided by external or not
1088  * 2. vdda and vddio voltage value. > 3.1v or not
1089  * 3. chip revision >=0x11 or not. If >=0x11, not use external vddd.
1090  */
1091 static int sgtl5000_set_power_regs(struct snd_soc_codec *codec)
1092 {
1093 	int vddd;
1094 	int vdda;
1095 	int vddio;
1096 	u16 ana_pwr;
1097 	u16 lreg_ctrl;
1098 	int vag;
1099 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1100 
1101 	vdda  = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
1102 	vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
1103 	vddd  = regulator_get_voltage(sgtl5000->supplies[VDDD].consumer);
1104 
1105 	vdda  = vdda / 1000;
1106 	vddio = vddio / 1000;
1107 	vddd  = vddd / 1000;
1108 
1109 	if (vdda <= 0 || vddio <= 0 || vddd < 0) {
1110 		dev_err(codec->dev, "regulator voltage not set correctly\n");
1111 
1112 		return -EINVAL;
1113 	}
1114 
1115 	/* according to datasheet, maximum voltage of supplies */
1116 	if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
1117 		dev_err(codec->dev,
1118 			"exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
1119 			vdda, vddio, vddd);
1120 
1121 		return -EINVAL;
1122 	}
1123 
1124 	/* reset value */
1125 	ana_pwr = snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER);
1126 	ana_pwr |= SGTL5000_DAC_STEREO |
1127 			SGTL5000_ADC_STEREO |
1128 			SGTL5000_REFTOP_POWERUP;
1129 	lreg_ctrl = snd_soc_read(codec, SGTL5000_CHIP_LINREG_CTRL);
1130 
1131 	if (vddio < 3100 && vdda < 3100) {
1132 		/* enable internal oscillator used for charge pump */
1133 		snd_soc_update_bits(codec, SGTL5000_CHIP_CLK_TOP_CTRL,
1134 					SGTL5000_INT_OSC_EN,
1135 					SGTL5000_INT_OSC_EN);
1136 		/* Enable VDDC charge pump */
1137 		ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
1138 	} else if (vddio >= 3100 && vdda >= 3100) {
1139 		/*
1140 		 * if vddio and vddd > 3.1v,
1141 		 * charge pump should be clean before set ana_pwr
1142 		 */
1143 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1144 				SGTL5000_VDDC_CHRGPMP_POWERUP, 0);
1145 
1146 		/* VDDC use VDDIO rail */
1147 		lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
1148 		lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
1149 			    SGTL5000_VDDC_MAN_ASSN_SHIFT;
1150 	}
1151 
1152 	snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
1153 
1154 	snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1155 
1156 	/* set voltage to register */
1157 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
1158 				SGTL5000_LINREG_VDDD_MASK, 0x8);
1159 
1160 	/*
1161 	 * if vddd linear reg has been enabled,
1162 	 * simple digital supply should be clear to get
1163 	 * proper VDDD voltage.
1164 	 */
1165 	if (ana_pwr & SGTL5000_LINEREG_D_POWERUP)
1166 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1167 				SGTL5000_LINREG_SIMPLE_POWERUP,
1168 				0);
1169 	else
1170 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1171 				SGTL5000_LINREG_SIMPLE_POWERUP |
1172 				SGTL5000_STARTUP_POWERUP,
1173 				0);
1174 
1175 	/*
1176 	 * set ADC/DAC VAG to vdda / 2,
1177 	 * should stay in range (0.8v, 1.575v)
1178 	 */
1179 	vag = vdda / 2;
1180 	if (vag <= SGTL5000_ANA_GND_BASE)
1181 		vag = 0;
1182 	else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
1183 		 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
1184 		vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
1185 	else
1186 		vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
1187 
1188 	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1189 			SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1190 
1191 	/* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
1192 	vag = vddio / 2;
1193 	if (vag <= SGTL5000_LINE_OUT_GND_BASE)
1194 		vag = 0;
1195 	else if (vag >= SGTL5000_LINE_OUT_GND_BASE +
1196 		SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
1197 		vag = SGTL5000_LINE_OUT_GND_MAX;
1198 	else
1199 		vag = (vag - SGTL5000_LINE_OUT_GND_BASE) /
1200 		    SGTL5000_LINE_OUT_GND_STP;
1201 
1202 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_CTRL,
1203 			SGTL5000_LINE_OUT_CURRENT_MASK |
1204 			SGTL5000_LINE_OUT_GND_MASK,
1205 			vag << SGTL5000_LINE_OUT_GND_SHIFT |
1206 			SGTL5000_LINE_OUT_CURRENT_360u <<
1207 				SGTL5000_LINE_OUT_CURRENT_SHIFT);
1208 
1209 	return 0;
1210 }
1211 
1212 static int sgtl5000_replace_vddd_with_ldo(struct snd_soc_codec *codec)
1213 {
1214 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1215 	int ret;
1216 
1217 	/* set internal ldo to 1.2v */
1218 	ret = ldo_regulator_register(codec, &ldo_init_data, LDO_VOLTAGE);
1219 	if (ret) {
1220 		dev_err(codec->dev,
1221 			"Failed to register vddd internal supplies: %d\n", ret);
1222 		return ret;
1223 	}
1224 
1225 	sgtl5000->supplies[VDDD].supply = LDO_CONSUMER_NAME;
1226 
1227 	dev_info(codec->dev, "Using internal LDO instead of VDDD\n");
1228 	return 0;
1229 }
1230 
1231 static int sgtl5000_enable_regulators(struct snd_soc_codec *codec)
1232 {
1233 	int ret;
1234 	int i;
1235 	int external_vddd = 0;
1236 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1237 	struct regulator *vddd;
1238 
1239 	for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
1240 		sgtl5000->supplies[i].supply = supply_names[i];
1241 
1242 	/* External VDDD only works before revision 0x11 */
1243 	if (sgtl5000->revision < 0x11) {
1244 		vddd = regulator_get_optional(codec->dev, "VDDD");
1245 		if (IS_ERR(vddd)) {
1246 			/* See if it's just not registered yet */
1247 			if (PTR_ERR(vddd) == -EPROBE_DEFER)
1248 				return -EPROBE_DEFER;
1249 		} else {
1250 			external_vddd = 1;
1251 			regulator_put(vddd);
1252 		}
1253 	}
1254 
1255 	if (!external_vddd) {
1256 		ret = sgtl5000_replace_vddd_with_ldo(codec);
1257 		if (ret)
1258 			return ret;
1259 	}
1260 
1261 	ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sgtl5000->supplies),
1262 				 sgtl5000->supplies);
1263 	if (ret)
1264 		goto err_ldo_remove;
1265 
1266 	ret = regulator_bulk_enable(ARRAY_SIZE(sgtl5000->supplies),
1267 					sgtl5000->supplies);
1268 	if (ret)
1269 		goto err_regulator_free;
1270 
1271 	/* wait for all power rails bring up */
1272 	udelay(10);
1273 
1274 	return 0;
1275 
1276 err_regulator_free:
1277 	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1278 				sgtl5000->supplies);
1279 err_ldo_remove:
1280 	if (!external_vddd)
1281 		ldo_regulator_remove(codec);
1282 	return ret;
1283 
1284 }
1285 
1286 static int sgtl5000_probe(struct snd_soc_codec *codec)
1287 {
1288 	int ret;
1289 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1290 
1291 	ret = sgtl5000_enable_regulators(codec);
1292 	if (ret)
1293 		return ret;
1294 
1295 	/* power up sgtl5000 */
1296 	ret = sgtl5000_set_power_regs(codec);
1297 	if (ret)
1298 		goto err;
1299 
1300 	/* enable small pop, introduce 400ms delay in turning off */
1301 	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1302 				SGTL5000_SMALL_POP, 1);
1303 
1304 	/* disable short cut detector */
1305 	snd_soc_write(codec, SGTL5000_CHIP_SHORT_CTRL, 0);
1306 
1307 	/*
1308 	 * set i2s as default input of sound switch
1309 	 * TODO: add sound switch to control and dapm widge.
1310 	 */
1311 	snd_soc_write(codec, SGTL5000_CHIP_SSS_CTRL,
1312 			SGTL5000_DAC_SEL_I2S_IN << SGTL5000_DAC_SEL_SHIFT);
1313 	snd_soc_write(codec, SGTL5000_CHIP_DIG_POWER,
1314 			SGTL5000_ADC_EN | SGTL5000_DAC_EN);
1315 
1316 	/* enable dac volume ramp by default */
1317 	snd_soc_write(codec, SGTL5000_CHIP_ADCDAC_CTRL,
1318 			SGTL5000_DAC_VOL_RAMP_EN |
1319 			SGTL5000_DAC_MUTE_RIGHT |
1320 			SGTL5000_DAC_MUTE_LEFT);
1321 
1322 	snd_soc_write(codec, SGTL5000_CHIP_PAD_STRENGTH, 0x015f);
1323 
1324 	snd_soc_write(codec, SGTL5000_CHIP_ANA_CTRL,
1325 			SGTL5000_HP_ZCD_EN |
1326 			SGTL5000_ADC_ZCD_EN);
1327 
1328 	snd_soc_write(codec, SGTL5000_CHIP_MIC_CTRL, 2);
1329 
1330 	/*
1331 	 * disable DAP
1332 	 * TODO:
1333 	 * Enable DAP in kcontrol and dapm.
1334 	 */
1335 	snd_soc_write(codec, SGTL5000_DAP_CTRL, 0);
1336 
1337 	return 0;
1338 
1339 err:
1340 	regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
1341 						sgtl5000->supplies);
1342 	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1343 				sgtl5000->supplies);
1344 	ldo_regulator_remove(codec);
1345 
1346 	return ret;
1347 }
1348 
1349 static int sgtl5000_remove(struct snd_soc_codec *codec)
1350 {
1351 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1352 
1353 	regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
1354 						sgtl5000->supplies);
1355 	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1356 				sgtl5000->supplies);
1357 	ldo_regulator_remove(codec);
1358 
1359 	return 0;
1360 }
1361 
1362 static struct snd_soc_codec_driver sgtl5000_driver = {
1363 	.probe = sgtl5000_probe,
1364 	.remove = sgtl5000_remove,
1365 	.set_bias_level = sgtl5000_set_bias_level,
1366 	.suspend_bias_off = true,
1367 	.controls = sgtl5000_snd_controls,
1368 	.num_controls = ARRAY_SIZE(sgtl5000_snd_controls),
1369 	.dapm_widgets = sgtl5000_dapm_widgets,
1370 	.num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets),
1371 	.dapm_routes = sgtl5000_dapm_routes,
1372 	.num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes),
1373 };
1374 
1375 static const struct regmap_config sgtl5000_regmap = {
1376 	.reg_bits = 16,
1377 	.val_bits = 16,
1378 	.reg_stride = 2,
1379 
1380 	.max_register = SGTL5000_MAX_REG_OFFSET,
1381 	.volatile_reg = sgtl5000_volatile,
1382 	.readable_reg = sgtl5000_readable,
1383 
1384 	.cache_type = REGCACHE_RBTREE,
1385 	.reg_defaults = sgtl5000_reg_defaults,
1386 	.num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
1387 };
1388 
1389 /*
1390  * Write all the default values from sgtl5000_reg_defaults[] array into the
1391  * sgtl5000 registers, to make sure we always start with the sane registers
1392  * values as stated in the datasheet.
1393  *
1394  * Since sgtl5000 does not have a reset line, nor a reset command in software,
1395  * we follow this approach to guarantee we always start from the default values
1396  * and avoid problems like, not being able to probe after an audio playback
1397  * followed by a system reset or a 'reboot' command in Linux
1398  */
1399 static int sgtl5000_fill_defaults(struct sgtl5000_priv *sgtl5000)
1400 {
1401 	int i, ret, val, index;
1402 
1403 	for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
1404 		val = sgtl5000_reg_defaults[i].def;
1405 		index = sgtl5000_reg_defaults[i].reg;
1406 		ret = regmap_write(sgtl5000->regmap, index, val);
1407 		if (ret)
1408 			return ret;
1409 	}
1410 
1411 	return 0;
1412 }
1413 
1414 static int sgtl5000_i2c_probe(struct i2c_client *client,
1415 			      const struct i2c_device_id *id)
1416 {
1417 	struct sgtl5000_priv *sgtl5000;
1418 	int ret, reg, rev;
1419 	unsigned int mclk;
1420 
1421 	sgtl5000 = devm_kzalloc(&client->dev, sizeof(struct sgtl5000_priv),
1422 								GFP_KERNEL);
1423 	if (!sgtl5000)
1424 		return -ENOMEM;
1425 
1426 	sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
1427 	if (IS_ERR(sgtl5000->regmap)) {
1428 		ret = PTR_ERR(sgtl5000->regmap);
1429 		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1430 		return ret;
1431 	}
1432 
1433 	sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
1434 	if (IS_ERR(sgtl5000->mclk)) {
1435 		ret = PTR_ERR(sgtl5000->mclk);
1436 		dev_err(&client->dev, "Failed to get mclock: %d\n", ret);
1437 		/* Defer the probe to see if the clk will be provided later */
1438 		if (ret == -ENOENT)
1439 			return -EPROBE_DEFER;
1440 		return ret;
1441 	}
1442 
1443 	/* SGTL5000 SYS_MCLK should be between 8 and 27 MHz */
1444 	mclk = clk_get_rate(sgtl5000->mclk);
1445 	if (mclk < 8000000 || mclk > 27000000) {
1446 		dev_err(&client->dev, "Invalid SYS_CLK frequency: %u.%03uMHz\n",
1447 			mclk / 1000000, mclk / 1000 % 1000);
1448 		return -EINVAL;
1449 	}
1450 
1451 	ret = clk_prepare_enable(sgtl5000->mclk);
1452 	if (ret)
1453 		return ret;
1454 
1455 	/* read chip information */
1456 	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
1457 	if (ret)
1458 		goto disable_clk;
1459 
1460 	if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
1461 	    SGTL5000_PARTID_PART_ID) {
1462 		dev_err(&client->dev,
1463 			"Device with ID register %x is not a sgtl5000\n", reg);
1464 		ret = -ENODEV;
1465 		goto disable_clk;
1466 	}
1467 
1468 	rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
1469 	dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
1470 	sgtl5000->revision = rev;
1471 
1472 	i2c_set_clientdata(client, sgtl5000);
1473 
1474 	/* Ensure sgtl5000 will start with sane register values */
1475 	ret = sgtl5000_fill_defaults(sgtl5000);
1476 	if (ret)
1477 		goto disable_clk;
1478 
1479 	ret = snd_soc_register_codec(&client->dev,
1480 			&sgtl5000_driver, &sgtl5000_dai, 1);
1481 	if (ret)
1482 		goto disable_clk;
1483 
1484 	return 0;
1485 
1486 disable_clk:
1487 	clk_disable_unprepare(sgtl5000->mclk);
1488 	return ret;
1489 }
1490 
1491 static int sgtl5000_i2c_remove(struct i2c_client *client)
1492 {
1493 	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1494 
1495 	snd_soc_unregister_codec(&client->dev);
1496 	clk_disable_unprepare(sgtl5000->mclk);
1497 	return 0;
1498 }
1499 
1500 static const struct i2c_device_id sgtl5000_id[] = {
1501 	{"sgtl5000", 0},
1502 	{},
1503 };
1504 
1505 MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
1506 
1507 static const struct of_device_id sgtl5000_dt_ids[] = {
1508 	{ .compatible = "fsl,sgtl5000", },
1509 	{ /* sentinel */ }
1510 };
1511 MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1512 
1513 static struct i2c_driver sgtl5000_i2c_driver = {
1514 	.driver = {
1515 		   .name = "sgtl5000",
1516 		   .owner = THIS_MODULE,
1517 		   .of_match_table = sgtl5000_dt_ids,
1518 		   },
1519 	.probe = sgtl5000_i2c_probe,
1520 	.remove = sgtl5000_i2c_remove,
1521 	.id_table = sgtl5000_id,
1522 };
1523 
1524 module_i2c_driver(sgtl5000_i2c_driver);
1525 
1526 MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1527 MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1528 MODULE_LICENSE("GPL");
1529