xref: /openbmc/linux/sound/soc/codecs/sgtl5000.c (revision 5104d265)
1 /*
2  * sgtl5000.c  --  SGTL5000 ALSA SoC Audio driver
3  *
4  * Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/pm.h>
17 #include <linux/i2c.h>
18 #include <linux/clk.h>
19 #include <linux/regmap.h>
20 #include <linux/regulator/driver.h>
21 #include <linux/regulator/machine.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/of_device.h>
24 #include <sound/core.h>
25 #include <sound/tlv.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 #include <sound/soc.h>
29 #include <sound/soc-dapm.h>
30 #include <sound/initval.h>
31 
32 #include "sgtl5000.h"
33 
34 #define SGTL5000_DAP_REG_OFFSET	0x0100
35 #define SGTL5000_MAX_REG_OFFSET	0x013A
36 
37 /* default value of sgtl5000 registers */
38 static const struct reg_default sgtl5000_reg_defaults[] = {
39 	{ SGTL5000_CHIP_CLK_CTRL,		0x0008 },
40 	{ SGTL5000_CHIP_I2S_CTRL,		0x0010 },
41 	{ SGTL5000_CHIP_SSS_CTRL,		0x0010 },
42 	{ SGTL5000_CHIP_DAC_VOL,		0x3c3c },
43 	{ SGTL5000_CHIP_PAD_STRENGTH,		0x015f },
44 	{ SGTL5000_CHIP_ANA_HP_CTRL,		0x1818 },
45 	{ SGTL5000_CHIP_ANA_CTRL,		0x0111 },
46 	{ SGTL5000_CHIP_LINE_OUT_VOL,		0x0404 },
47 	{ SGTL5000_CHIP_ANA_POWER,		0x7060 },
48 	{ SGTL5000_CHIP_PLL_CTRL,		0x5000 },
49 	{ SGTL5000_DAP_BASS_ENHANCE,		0x0040 },
50 	{ SGTL5000_DAP_BASS_ENHANCE_CTRL,	0x051f },
51 	{ SGTL5000_DAP_SURROUND,		0x0040 },
52 	{ SGTL5000_DAP_EQ_BASS_BAND0,		0x002f },
53 	{ SGTL5000_DAP_EQ_BASS_BAND1,		0x002f },
54 	{ SGTL5000_DAP_EQ_BASS_BAND2,		0x002f },
55 	{ SGTL5000_DAP_EQ_BASS_BAND3,		0x002f },
56 	{ SGTL5000_DAP_EQ_BASS_BAND4,		0x002f },
57 	{ SGTL5000_DAP_MAIN_CHAN,		0x8000 },
58 	{ SGTL5000_DAP_AVC_CTRL,		0x0510 },
59 	{ SGTL5000_DAP_AVC_THRESHOLD,		0x1473 },
60 	{ SGTL5000_DAP_AVC_ATTACK,		0x0028 },
61 	{ SGTL5000_DAP_AVC_DECAY,		0x0050 },
62 };
63 
64 /* regulator supplies for sgtl5000, VDDD is an optional external supply */
65 enum sgtl5000_regulator_supplies {
66 	VDDA,
67 	VDDIO,
68 	VDDD,
69 	SGTL5000_SUPPLY_NUM
70 };
71 
72 /* vddd is optional supply */
73 static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
74 	"VDDA",
75 	"VDDIO",
76 	"VDDD"
77 };
78 
79 #define LDO_CONSUMER_NAME	"VDDD_LDO"
80 #define LDO_VOLTAGE		1200000
81 
82 static struct regulator_consumer_supply ldo_consumer[] = {
83 	REGULATOR_SUPPLY(LDO_CONSUMER_NAME, NULL),
84 };
85 
86 static struct regulator_init_data ldo_init_data = {
87 	.constraints = {
88 		.min_uV                 = 1200000,
89 		.max_uV                 = 1200000,
90 		.valid_modes_mask       = REGULATOR_MODE_NORMAL,
91 		.valid_ops_mask         = REGULATOR_CHANGE_STATUS,
92 	},
93 	.num_consumer_supplies = 1,
94 	.consumer_supplies = &ldo_consumer[0],
95 };
96 
97 /*
98  * sgtl5000 internal ldo regulator,
99  * enabled when VDDD not provided
100  */
101 struct ldo_regulator {
102 	struct regulator_desc desc;
103 	struct regulator_dev *dev;
104 	int voltage;
105 	void *codec_data;
106 	bool enabled;
107 };
108 
109 /* sgtl5000 private structure in codec */
110 struct sgtl5000_priv {
111 	int sysclk;	/* sysclk rate */
112 	int master;	/* i2s master or not */
113 	int fmt;	/* i2s data format */
114 	struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
115 	struct ldo_regulator *ldo;
116 	struct regmap *regmap;
117 	struct clk *mclk;
118 };
119 
120 /*
121  * mic_bias power on/off share the same register bits with
122  * output impedance of mic bias, when power on mic bias, we
123  * need reclaim it to impedance value.
124  * 0x0 = Powered off
125  * 0x1 = 2Kohm
126  * 0x2 = 4Kohm
127  * 0x3 = 8Kohm
128  */
129 static int mic_bias_event(struct snd_soc_dapm_widget *w,
130 	struct snd_kcontrol *kcontrol, int event)
131 {
132 	switch (event) {
133 	case SND_SOC_DAPM_POST_PMU:
134 		/* change mic bias resistor to 4Kohm */
135 		snd_soc_update_bits(w->codec, SGTL5000_CHIP_MIC_CTRL,
136 				SGTL5000_BIAS_R_MASK,
137 				SGTL5000_BIAS_R_4k << SGTL5000_BIAS_R_SHIFT);
138 		break;
139 
140 	case SND_SOC_DAPM_PRE_PMD:
141 		snd_soc_update_bits(w->codec, SGTL5000_CHIP_MIC_CTRL,
142 				SGTL5000_BIAS_R_MASK, 0);
143 		break;
144 	}
145 	return 0;
146 }
147 
148 /*
149  * As manual described, ADC/DAC only works when VAG powerup,
150  * So enabled VAG before ADC/DAC up.
151  * In power down case, we need wait 400ms when vag fully ramped down.
152  */
153 static int power_vag_event(struct snd_soc_dapm_widget *w,
154 	struct snd_kcontrol *kcontrol, int event)
155 {
156 	switch (event) {
157 	case SND_SOC_DAPM_POST_PMU:
158 		snd_soc_update_bits(w->codec, SGTL5000_CHIP_ANA_POWER,
159 			SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
160 		break;
161 
162 	case SND_SOC_DAPM_PRE_PMD:
163 		snd_soc_update_bits(w->codec, SGTL5000_CHIP_ANA_POWER,
164 			SGTL5000_VAG_POWERUP, 0);
165 		msleep(400);
166 		break;
167 	default:
168 		break;
169 	}
170 
171 	return 0;
172 }
173 
174 /* input sources for ADC */
175 static const char *adc_mux_text[] = {
176 	"MIC_IN", "LINE_IN"
177 };
178 
179 static const struct soc_enum adc_enum =
180 SOC_ENUM_SINGLE(SGTL5000_CHIP_ANA_CTRL, 2, 2, adc_mux_text);
181 
182 static const struct snd_kcontrol_new adc_mux =
183 SOC_DAPM_ENUM("Capture Mux", adc_enum);
184 
185 /* input sources for DAC */
186 static const char *dac_mux_text[] = {
187 	"DAC", "LINE_IN"
188 };
189 
190 static const struct soc_enum dac_enum =
191 SOC_ENUM_SINGLE(SGTL5000_CHIP_ANA_CTRL, 6, 2, dac_mux_text);
192 
193 static const struct snd_kcontrol_new dac_mux =
194 SOC_DAPM_ENUM("Headphone Mux", dac_enum);
195 
196 static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
197 	SND_SOC_DAPM_INPUT("LINE_IN"),
198 	SND_SOC_DAPM_INPUT("MIC_IN"),
199 
200 	SND_SOC_DAPM_OUTPUT("HP_OUT"),
201 	SND_SOC_DAPM_OUTPUT("LINE_OUT"),
202 
203 	SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
204 			    mic_bias_event,
205 			    SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
206 
207 	SND_SOC_DAPM_PGA("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0),
208 	SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
209 
210 	SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
211 	SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
212 
213 	/* aif for i2s input */
214 	SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
215 				0, SGTL5000_CHIP_DIG_POWER,
216 				0, 0),
217 
218 	/* aif for i2s output */
219 	SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
220 				0, SGTL5000_CHIP_DIG_POWER,
221 				1, 0),
222 
223 	SND_SOC_DAPM_ADC("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0),
224 	SND_SOC_DAPM_DAC("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0),
225 
226 	SND_SOC_DAPM_PRE("VAG_POWER_PRE", power_vag_event),
227 	SND_SOC_DAPM_POST("VAG_POWER_POST", power_vag_event),
228 };
229 
230 /* routes for sgtl5000 */
231 static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
232 	{"Capture Mux", "LINE_IN", "LINE_IN"},	/* line_in --> adc_mux */
233 	{"Capture Mux", "MIC_IN", "MIC_IN"},	/* mic_in --> adc_mux */
234 
235 	{"ADC", NULL, "Capture Mux"},		/* adc_mux --> adc */
236 	{"AIFOUT", NULL, "ADC"},		/* adc --> i2s_out */
237 
238 	{"DAC", NULL, "AIFIN"},			/* i2s-->dac,skip audio mux */
239 	{"Headphone Mux", "DAC", "DAC"},	/* dac --> hp_mux */
240 	{"LO", NULL, "DAC"},			/* dac --> line_out */
241 
242 	{"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
243 	{"HP", NULL, "Headphone Mux"},		/* hp_mux --> hp */
244 
245 	{"LINE_OUT", NULL, "LO"},
246 	{"HP_OUT", NULL, "HP"},
247 };
248 
249 /* custom function to fetch info of PCM playback volume */
250 static int dac_info_volsw(struct snd_kcontrol *kcontrol,
251 			  struct snd_ctl_elem_info *uinfo)
252 {
253 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
254 	uinfo->count = 2;
255 	uinfo->value.integer.min = 0;
256 	uinfo->value.integer.max = 0xfc - 0x3c;
257 	return 0;
258 }
259 
260 /*
261  * custom function to get of PCM playback volume
262  *
263  * dac volume register
264  * 15-------------8-7--------------0
265  * | R channel vol | L channel vol |
266  *  -------------------------------
267  *
268  * PCM volume with 0.5017 dB steps from 0 to -90 dB
269  *
270  * register values map to dB
271  * 0x3B and less = Reserved
272  * 0x3C = 0 dB
273  * 0x3D = -0.5 dB
274  * 0xF0 = -90 dB
275  * 0xFC and greater = Muted
276  *
277  * register value map to userspace value
278  *
279  * register value	0x3c(0dB)	  0xf0(-90dB)0xfc
280  *			------------------------------
281  * userspace value	0xc0			     0
282  */
283 static int dac_get_volsw(struct snd_kcontrol *kcontrol,
284 			 struct snd_ctl_elem_value *ucontrol)
285 {
286 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
287 	int reg;
288 	int l;
289 	int r;
290 
291 	reg = snd_soc_read(codec, SGTL5000_CHIP_DAC_VOL);
292 
293 	/* get left channel volume */
294 	l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
295 
296 	/* get right channel volume */
297 	r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
298 
299 	/* make sure value fall in (0x3c,0xfc) */
300 	l = clamp(l, 0x3c, 0xfc);
301 	r = clamp(r, 0x3c, 0xfc);
302 
303 	/* invert it and map to userspace value */
304 	l = 0xfc - l;
305 	r = 0xfc - r;
306 
307 	ucontrol->value.integer.value[0] = l;
308 	ucontrol->value.integer.value[1] = r;
309 
310 	return 0;
311 }
312 
313 /*
314  * custom function to put of PCM playback volume
315  *
316  * dac volume register
317  * 15-------------8-7--------------0
318  * | R channel vol | L channel vol |
319  *  -------------------------------
320  *
321  * PCM volume with 0.5017 dB steps from 0 to -90 dB
322  *
323  * register values map to dB
324  * 0x3B and less = Reserved
325  * 0x3C = 0 dB
326  * 0x3D = -0.5 dB
327  * 0xF0 = -90 dB
328  * 0xFC and greater = Muted
329  *
330  * userspace value map to register value
331  *
332  * userspace value	0xc0			     0
333  *			------------------------------
334  * register value	0x3c(0dB)	0xf0(-90dB)0xfc
335  */
336 static int dac_put_volsw(struct snd_kcontrol *kcontrol,
337 			 struct snd_ctl_elem_value *ucontrol)
338 {
339 	struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
340 	int reg;
341 	int l;
342 	int r;
343 
344 	l = ucontrol->value.integer.value[0];
345 	r = ucontrol->value.integer.value[1];
346 
347 	/* make sure userspace volume fall in (0, 0xfc-0x3c) */
348 	l = clamp(l, 0, 0xfc - 0x3c);
349 	r = clamp(r, 0, 0xfc - 0x3c);
350 
351 	/* invert it, get the value can be set to register */
352 	l = 0xfc - l;
353 	r = 0xfc - r;
354 
355 	/* shift to get the register value */
356 	reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
357 		r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
358 
359 	snd_soc_write(codec, SGTL5000_CHIP_DAC_VOL, reg);
360 
361 	return 0;
362 }
363 
364 static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
365 
366 /* tlv for mic gain, 0db 20db 30db 40db */
367 static const unsigned int mic_gain_tlv[] = {
368 	TLV_DB_RANGE_HEAD(2),
369 	0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
370 	1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0),
371 };
372 
373 /* tlv for hp volume, -51.5db to 12.0db, step .5db */
374 static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
375 
376 static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
377 	/* SOC_DOUBLE_S8_TLV with invert */
378 	{
379 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
380 		.name = "PCM Playback Volume",
381 		.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
382 			SNDRV_CTL_ELEM_ACCESS_READWRITE,
383 		.info = dac_info_volsw,
384 		.get = dac_get_volsw,
385 		.put = dac_put_volsw,
386 	},
387 
388 	SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
389 	SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
390 			SGTL5000_CHIP_ANA_ADC_CTRL,
391 			8, 2, 0, capture_6db_attenuate),
392 	SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
393 
394 	SOC_DOUBLE_TLV("Headphone Playback Volume",
395 			SGTL5000_CHIP_ANA_HP_CTRL,
396 			0, 8,
397 			0x7f, 1,
398 			headphone_volume),
399 	SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
400 			5, 1, 0),
401 
402 	SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
403 			0, 3, 0, mic_gain_tlv),
404 };
405 
406 /* mute the codec used by alsa core */
407 static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute)
408 {
409 	struct snd_soc_codec *codec = codec_dai->codec;
410 	u16 adcdac_ctrl = SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT;
411 
412 	snd_soc_update_bits(codec, SGTL5000_CHIP_ADCDAC_CTRL,
413 			adcdac_ctrl, mute ? adcdac_ctrl : 0);
414 
415 	return 0;
416 }
417 
418 /* set codec format */
419 static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
420 {
421 	struct snd_soc_codec *codec = codec_dai->codec;
422 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
423 	u16 i2sctl = 0;
424 
425 	sgtl5000->master = 0;
426 	/*
427 	 * i2s clock and frame master setting.
428 	 * ONLY support:
429 	 *  - clock and frame slave,
430 	 *  - clock and frame master
431 	 */
432 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
433 	case SND_SOC_DAIFMT_CBS_CFS:
434 		break;
435 	case SND_SOC_DAIFMT_CBM_CFM:
436 		i2sctl |= SGTL5000_I2S_MASTER;
437 		sgtl5000->master = 1;
438 		break;
439 	default:
440 		return -EINVAL;
441 	}
442 
443 	/* setting i2s data format */
444 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
445 	case SND_SOC_DAIFMT_DSP_A:
446 		i2sctl |= SGTL5000_I2S_MODE_PCM;
447 		break;
448 	case SND_SOC_DAIFMT_DSP_B:
449 		i2sctl |= SGTL5000_I2S_MODE_PCM;
450 		i2sctl |= SGTL5000_I2S_LRALIGN;
451 		break;
452 	case SND_SOC_DAIFMT_I2S:
453 		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ;
454 		break;
455 	case SND_SOC_DAIFMT_RIGHT_J:
456 		i2sctl |= SGTL5000_I2S_MODE_RJ;
457 		i2sctl |= SGTL5000_I2S_LRPOL;
458 		break;
459 	case SND_SOC_DAIFMT_LEFT_J:
460 		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ;
461 		i2sctl |= SGTL5000_I2S_LRALIGN;
462 		break;
463 	default:
464 		return -EINVAL;
465 	}
466 
467 	sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
468 
469 	/* Clock inversion */
470 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
471 	case SND_SOC_DAIFMT_NB_NF:
472 		break;
473 	case SND_SOC_DAIFMT_IB_NF:
474 		i2sctl |= SGTL5000_I2S_SCLK_INV;
475 		break;
476 	default:
477 		return -EINVAL;
478 	}
479 
480 	snd_soc_write(codec, SGTL5000_CHIP_I2S_CTRL, i2sctl);
481 
482 	return 0;
483 }
484 
485 /* set codec sysclk */
486 static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
487 				   int clk_id, unsigned int freq, int dir)
488 {
489 	struct snd_soc_codec *codec = codec_dai->codec;
490 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
491 
492 	switch (clk_id) {
493 	case SGTL5000_SYSCLK:
494 		sgtl5000->sysclk = freq;
495 		break;
496 	default:
497 		return -EINVAL;
498 	}
499 
500 	return 0;
501 }
502 
503 /*
504  * set clock according to i2s frame clock,
505  * sgtl5000 provide 2 clock sources.
506  * 1. sys_mclk. sample freq can only configure to
507  *	1/256, 1/384, 1/512 of sys_mclk.
508  * 2. pll. can derive any audio clocks.
509  *
510  * clock setting rules:
511  * 1. in slave mode, only sys_mclk can use.
512  * 2. as constraint by sys_mclk, sample freq should
513  *	set to 32k, 44.1k and above.
514  * 3. using sys_mclk prefer to pll to save power.
515  */
516 static int sgtl5000_set_clock(struct snd_soc_codec *codec, int frame_rate)
517 {
518 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
519 	int clk_ctl = 0;
520 	int sys_fs;	/* sample freq */
521 
522 	/*
523 	 * sample freq should be divided by frame clock,
524 	 * if frame clock lower than 44.1khz, sample feq should set to
525 	 * 32khz or 44.1khz.
526 	 */
527 	switch (frame_rate) {
528 	case 8000:
529 	case 16000:
530 		sys_fs = 32000;
531 		break;
532 	case 11025:
533 	case 22050:
534 		sys_fs = 44100;
535 		break;
536 	default:
537 		sys_fs = frame_rate;
538 		break;
539 	}
540 
541 	/* set divided factor of frame clock */
542 	switch (sys_fs / frame_rate) {
543 	case 4:
544 		clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
545 		break;
546 	case 2:
547 		clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
548 		break;
549 	case 1:
550 		clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
551 		break;
552 	default:
553 		return -EINVAL;
554 	}
555 
556 	/* set the sys_fs according to frame rate */
557 	switch (sys_fs) {
558 	case 32000:
559 		clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
560 		break;
561 	case 44100:
562 		clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
563 		break;
564 	case 48000:
565 		clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
566 		break;
567 	case 96000:
568 		clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
569 		break;
570 	default:
571 		dev_err(codec->dev, "frame rate %d not supported\n",
572 			frame_rate);
573 		return -EINVAL;
574 	}
575 
576 	/*
577 	 * calculate the divider of mclk/sample_freq,
578 	 * factor of freq =96k can only be 256, since mclk in range (12m,27m)
579 	 */
580 	switch (sgtl5000->sysclk / sys_fs) {
581 	case 256:
582 		clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
583 			SGTL5000_MCLK_FREQ_SHIFT;
584 		break;
585 	case 384:
586 		clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
587 			SGTL5000_MCLK_FREQ_SHIFT;
588 		break;
589 	case 512:
590 		clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
591 			SGTL5000_MCLK_FREQ_SHIFT;
592 		break;
593 	default:
594 		/* if mclk not satisify the divider, use pll */
595 		if (sgtl5000->master) {
596 			clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
597 				SGTL5000_MCLK_FREQ_SHIFT;
598 		} else {
599 			dev_err(codec->dev,
600 				"PLL not supported in slave mode\n");
601 			return -EINVAL;
602 		}
603 	}
604 
605 	/* if using pll, please check manual 6.4.2 for detail */
606 	if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
607 		u64 out, t;
608 		int div2;
609 		int pll_ctl;
610 		unsigned int in, int_div, frac_div;
611 
612 		if (sgtl5000->sysclk > 17000000) {
613 			div2 = 1;
614 			in = sgtl5000->sysclk / 2;
615 		} else {
616 			div2 = 0;
617 			in = sgtl5000->sysclk;
618 		}
619 		if (sys_fs == 44100)
620 			out = 180633600;
621 		else
622 			out = 196608000;
623 		t = do_div(out, in);
624 		int_div = out;
625 		t *= 2048;
626 		do_div(t, in);
627 		frac_div = t;
628 		pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
629 		    frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
630 
631 		snd_soc_write(codec, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
632 		if (div2)
633 			snd_soc_update_bits(codec,
634 				SGTL5000_CHIP_CLK_TOP_CTRL,
635 				SGTL5000_INPUT_FREQ_DIV2,
636 				SGTL5000_INPUT_FREQ_DIV2);
637 		else
638 			snd_soc_update_bits(codec,
639 				SGTL5000_CHIP_CLK_TOP_CTRL,
640 				SGTL5000_INPUT_FREQ_DIV2,
641 				0);
642 
643 		/* power up pll */
644 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
645 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
646 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
647 	} else {
648 		/* power down pll */
649 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
650 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
651 			0);
652 	}
653 
654 	/* if using pll, clk_ctrl must be set after pll power up */
655 	snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
656 
657 	return 0;
658 }
659 
660 /*
661  * Set PCM DAI bit size and sample rate.
662  * input: params_rate, params_fmt
663  */
664 static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
665 				  struct snd_pcm_hw_params *params,
666 				  struct snd_soc_dai *dai)
667 {
668 	struct snd_soc_codec *codec = dai->codec;
669 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
670 	int channels = params_channels(params);
671 	int i2s_ctl = 0;
672 	int stereo;
673 	int ret;
674 
675 	/* sysclk should already set */
676 	if (!sgtl5000->sysclk) {
677 		dev_err(codec->dev, "%s: set sysclk first!\n", __func__);
678 		return -EFAULT;
679 	}
680 
681 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
682 		stereo = SGTL5000_DAC_STEREO;
683 	else
684 		stereo = SGTL5000_ADC_STEREO;
685 
686 	/* set mono to save power */
687 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, stereo,
688 			channels == 1 ? 0 : stereo);
689 
690 	/* set codec clock base on lrclk */
691 	ret = sgtl5000_set_clock(codec, params_rate(params));
692 	if (ret)
693 		return ret;
694 
695 	/* set i2s data format */
696 	switch (params_format(params)) {
697 	case SNDRV_PCM_FORMAT_S16_LE:
698 		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
699 			return -EINVAL;
700 		i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
701 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
702 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
703 		break;
704 	case SNDRV_PCM_FORMAT_S20_3LE:
705 		i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
706 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
707 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
708 		break;
709 	case SNDRV_PCM_FORMAT_S24_LE:
710 		i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
711 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
712 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
713 		break;
714 	case SNDRV_PCM_FORMAT_S32_LE:
715 		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
716 			return -EINVAL;
717 		i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
718 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
719 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
720 		break;
721 	default:
722 		return -EINVAL;
723 	}
724 
725 	snd_soc_update_bits(codec, SGTL5000_CHIP_I2S_CTRL,
726 			    SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
727 			    i2s_ctl);
728 
729 	return 0;
730 }
731 
732 #ifdef CONFIG_REGULATOR
733 static int ldo_regulator_is_enabled(struct regulator_dev *dev)
734 {
735 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
736 
737 	return ldo->enabled;
738 }
739 
740 static int ldo_regulator_enable(struct regulator_dev *dev)
741 {
742 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
743 	struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data;
744 	int reg;
745 
746 	if (ldo_regulator_is_enabled(dev))
747 		return 0;
748 
749 	/* set regulator value firstly */
750 	reg = (1600 - ldo->voltage / 1000) / 50;
751 	reg = clamp(reg, 0x0, 0xf);
752 
753 	/* amend the voltage value, unit: uV */
754 	ldo->voltage = (1600 - reg * 50) * 1000;
755 
756 	/* set voltage to register */
757 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
758 				SGTL5000_LINREG_VDDD_MASK, reg);
759 
760 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
761 				SGTL5000_LINEREG_D_POWERUP,
762 				SGTL5000_LINEREG_D_POWERUP);
763 
764 	/* when internal ldo enabled, simple digital power can be disabled */
765 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
766 				SGTL5000_LINREG_SIMPLE_POWERUP,
767 				0);
768 
769 	ldo->enabled = 1;
770 	return 0;
771 }
772 
773 static int ldo_regulator_disable(struct regulator_dev *dev)
774 {
775 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
776 	struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data;
777 
778 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
779 				SGTL5000_LINEREG_D_POWERUP,
780 				0);
781 
782 	/* clear voltage info */
783 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
784 				SGTL5000_LINREG_VDDD_MASK, 0);
785 
786 	ldo->enabled = 0;
787 
788 	return 0;
789 }
790 
791 static int ldo_regulator_get_voltage(struct regulator_dev *dev)
792 {
793 	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
794 
795 	return ldo->voltage;
796 }
797 
798 static struct regulator_ops ldo_regulator_ops = {
799 	.is_enabled = ldo_regulator_is_enabled,
800 	.enable = ldo_regulator_enable,
801 	.disable = ldo_regulator_disable,
802 	.get_voltage = ldo_regulator_get_voltage,
803 };
804 
805 static int ldo_regulator_register(struct snd_soc_codec *codec,
806 				struct regulator_init_data *init_data,
807 				int voltage)
808 {
809 	struct ldo_regulator *ldo;
810 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
811 	struct regulator_config config = { };
812 
813 	ldo = kzalloc(sizeof(struct ldo_regulator), GFP_KERNEL);
814 
815 	if (!ldo) {
816 		dev_err(codec->dev, "failed to allocate ldo_regulator\n");
817 		return -ENOMEM;
818 	}
819 
820 	ldo->desc.name = kstrdup(dev_name(codec->dev), GFP_KERNEL);
821 	if (!ldo->desc.name) {
822 		kfree(ldo);
823 		dev_err(codec->dev, "failed to allocate decs name memory\n");
824 		return -ENOMEM;
825 	}
826 
827 	ldo->desc.type  = REGULATOR_VOLTAGE;
828 	ldo->desc.owner = THIS_MODULE;
829 	ldo->desc.ops   = &ldo_regulator_ops;
830 	ldo->desc.n_voltages = 1;
831 
832 	ldo->codec_data = codec;
833 	ldo->voltage = voltage;
834 
835 	config.dev = codec->dev;
836 	config.driver_data = ldo;
837 	config.init_data = init_data;
838 
839 	ldo->dev = regulator_register(&ldo->desc, &config);
840 	if (IS_ERR(ldo->dev)) {
841 		int ret = PTR_ERR(ldo->dev);
842 
843 		dev_err(codec->dev, "failed to register regulator\n");
844 		kfree(ldo->desc.name);
845 		kfree(ldo);
846 
847 		return ret;
848 	}
849 	sgtl5000->ldo = ldo;
850 
851 	return 0;
852 }
853 
854 static int ldo_regulator_remove(struct snd_soc_codec *codec)
855 {
856 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
857 	struct ldo_regulator *ldo = sgtl5000->ldo;
858 
859 	if (!ldo)
860 		return 0;
861 
862 	regulator_unregister(ldo->dev);
863 	kfree(ldo->desc.name);
864 	kfree(ldo);
865 
866 	return 0;
867 }
868 #else
869 static int ldo_regulator_register(struct snd_soc_codec *codec,
870 				struct regulator_init_data *init_data,
871 				int voltage)
872 {
873 	dev_err(codec->dev, "this setup needs regulator support in the kernel\n");
874 	return -EINVAL;
875 }
876 
877 static int ldo_regulator_remove(struct snd_soc_codec *codec)
878 {
879 	return 0;
880 }
881 #endif
882 
883 /*
884  * set dac bias
885  * common state changes:
886  * startup:
887  * off --> standby --> prepare --> on
888  * standby --> prepare --> on
889  *
890  * stop:
891  * on --> prepare --> standby
892  */
893 static int sgtl5000_set_bias_level(struct snd_soc_codec *codec,
894 				   enum snd_soc_bias_level level)
895 {
896 	int ret;
897 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
898 
899 	switch (level) {
900 	case SND_SOC_BIAS_ON:
901 	case SND_SOC_BIAS_PREPARE:
902 		break;
903 	case SND_SOC_BIAS_STANDBY:
904 		if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
905 			ret = regulator_bulk_enable(
906 						ARRAY_SIZE(sgtl5000->supplies),
907 						sgtl5000->supplies);
908 			if (ret)
909 				return ret;
910 			udelay(10);
911 
912 			regcache_cache_only(sgtl5000->regmap, false);
913 
914 			ret = regcache_sync(sgtl5000->regmap);
915 			if (ret != 0) {
916 				dev_err(codec->dev,
917 					"Failed to restore cache: %d\n", ret);
918 
919 				regcache_cache_only(sgtl5000->regmap, true);
920 				regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
921 						       sgtl5000->supplies);
922 
923 				return ret;
924 			}
925 		}
926 
927 		break;
928 	case SND_SOC_BIAS_OFF:
929 		regcache_cache_only(sgtl5000->regmap, true);
930 		regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
931 					sgtl5000->supplies);
932 		break;
933 	}
934 
935 	codec->dapm.bias_level = level;
936 	return 0;
937 }
938 
939 #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
940 			SNDRV_PCM_FMTBIT_S20_3LE |\
941 			SNDRV_PCM_FMTBIT_S24_LE |\
942 			SNDRV_PCM_FMTBIT_S32_LE)
943 
944 static const struct snd_soc_dai_ops sgtl5000_ops = {
945 	.hw_params = sgtl5000_pcm_hw_params,
946 	.digital_mute = sgtl5000_digital_mute,
947 	.set_fmt = sgtl5000_set_dai_fmt,
948 	.set_sysclk = sgtl5000_set_dai_sysclk,
949 };
950 
951 static struct snd_soc_dai_driver sgtl5000_dai = {
952 	.name = "sgtl5000",
953 	.playback = {
954 		.stream_name = "Playback",
955 		.channels_min = 1,
956 		.channels_max = 2,
957 		/*
958 		 * only support 8~48K + 96K,
959 		 * TODO modify hw_param to support more
960 		 */
961 		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
962 		.formats = SGTL5000_FORMATS,
963 	},
964 	.capture = {
965 		.stream_name = "Capture",
966 		.channels_min = 1,
967 		.channels_max = 2,
968 		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
969 		.formats = SGTL5000_FORMATS,
970 	},
971 	.ops = &sgtl5000_ops,
972 	.symmetric_rates = 1,
973 };
974 
975 static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
976 {
977 	switch (reg) {
978 	case SGTL5000_CHIP_ID:
979 	case SGTL5000_CHIP_ADCDAC_CTRL:
980 	case SGTL5000_CHIP_ANA_STATUS:
981 		return true;
982 	}
983 
984 	return false;
985 }
986 
987 static bool sgtl5000_readable(struct device *dev, unsigned int reg)
988 {
989 	switch (reg) {
990 	case SGTL5000_CHIP_ID:
991 	case SGTL5000_CHIP_DIG_POWER:
992 	case SGTL5000_CHIP_CLK_CTRL:
993 	case SGTL5000_CHIP_I2S_CTRL:
994 	case SGTL5000_CHIP_SSS_CTRL:
995 	case SGTL5000_CHIP_ADCDAC_CTRL:
996 	case SGTL5000_CHIP_DAC_VOL:
997 	case SGTL5000_CHIP_PAD_STRENGTH:
998 	case SGTL5000_CHIP_ANA_ADC_CTRL:
999 	case SGTL5000_CHIP_ANA_HP_CTRL:
1000 	case SGTL5000_CHIP_ANA_CTRL:
1001 	case SGTL5000_CHIP_LINREG_CTRL:
1002 	case SGTL5000_CHIP_REF_CTRL:
1003 	case SGTL5000_CHIP_MIC_CTRL:
1004 	case SGTL5000_CHIP_LINE_OUT_CTRL:
1005 	case SGTL5000_CHIP_LINE_OUT_VOL:
1006 	case SGTL5000_CHIP_ANA_POWER:
1007 	case SGTL5000_CHIP_PLL_CTRL:
1008 	case SGTL5000_CHIP_CLK_TOP_CTRL:
1009 	case SGTL5000_CHIP_ANA_STATUS:
1010 	case SGTL5000_CHIP_SHORT_CTRL:
1011 	case SGTL5000_CHIP_ANA_TEST2:
1012 	case SGTL5000_DAP_CTRL:
1013 	case SGTL5000_DAP_PEQ:
1014 	case SGTL5000_DAP_BASS_ENHANCE:
1015 	case SGTL5000_DAP_BASS_ENHANCE_CTRL:
1016 	case SGTL5000_DAP_AUDIO_EQ:
1017 	case SGTL5000_DAP_SURROUND:
1018 	case SGTL5000_DAP_FLT_COEF_ACCESS:
1019 	case SGTL5000_DAP_COEF_WR_B0_MSB:
1020 	case SGTL5000_DAP_COEF_WR_B0_LSB:
1021 	case SGTL5000_DAP_EQ_BASS_BAND0:
1022 	case SGTL5000_DAP_EQ_BASS_BAND1:
1023 	case SGTL5000_DAP_EQ_BASS_BAND2:
1024 	case SGTL5000_DAP_EQ_BASS_BAND3:
1025 	case SGTL5000_DAP_EQ_BASS_BAND4:
1026 	case SGTL5000_DAP_MAIN_CHAN:
1027 	case SGTL5000_DAP_MIX_CHAN:
1028 	case SGTL5000_DAP_AVC_CTRL:
1029 	case SGTL5000_DAP_AVC_THRESHOLD:
1030 	case SGTL5000_DAP_AVC_ATTACK:
1031 	case SGTL5000_DAP_AVC_DECAY:
1032 	case SGTL5000_DAP_COEF_WR_B1_MSB:
1033 	case SGTL5000_DAP_COEF_WR_B1_LSB:
1034 	case SGTL5000_DAP_COEF_WR_B2_MSB:
1035 	case SGTL5000_DAP_COEF_WR_B2_LSB:
1036 	case SGTL5000_DAP_COEF_WR_A1_MSB:
1037 	case SGTL5000_DAP_COEF_WR_A1_LSB:
1038 	case SGTL5000_DAP_COEF_WR_A2_MSB:
1039 	case SGTL5000_DAP_COEF_WR_A2_LSB:
1040 		return true;
1041 
1042 	default:
1043 		return false;
1044 	}
1045 }
1046 
1047 #ifdef CONFIG_SUSPEND
1048 static int sgtl5000_suspend(struct snd_soc_codec *codec)
1049 {
1050 	sgtl5000_set_bias_level(codec, SND_SOC_BIAS_OFF);
1051 
1052 	return 0;
1053 }
1054 
1055 /*
1056  * restore all sgtl5000 registers,
1057  * since a big hole between dap and regular registers,
1058  * we will restore them respectively.
1059  */
1060 static int sgtl5000_restore_regs(struct snd_soc_codec *codec)
1061 {
1062 	u16 *cache = codec->reg_cache;
1063 	u16 reg;
1064 
1065 	/* restore regular registers */
1066 	for (reg = 0; reg <= SGTL5000_CHIP_SHORT_CTRL; reg += 2) {
1067 
1068 		/* These regs should restore in particular order */
1069 		if (reg == SGTL5000_CHIP_ANA_POWER ||
1070 			reg == SGTL5000_CHIP_CLK_CTRL ||
1071 			reg == SGTL5000_CHIP_LINREG_CTRL ||
1072 			reg == SGTL5000_CHIP_LINE_OUT_CTRL ||
1073 			reg == SGTL5000_CHIP_REF_CTRL)
1074 			continue;
1075 
1076 		snd_soc_write(codec, reg, cache[reg]);
1077 	}
1078 
1079 	/* restore dap registers */
1080 	for (reg = SGTL5000_DAP_REG_OFFSET; reg < SGTL5000_MAX_REG_OFFSET; reg += 2)
1081 		snd_soc_write(codec, reg, cache[reg]);
1082 
1083 	/*
1084 	 * restore these regs according to the power setting sequence in
1085 	 * sgtl5000_set_power_regs() and clock setting sequence in
1086 	 * sgtl5000_set_clock().
1087 	 *
1088 	 * The order of restore is:
1089 	 * 1. SGTL5000_CHIP_CLK_CTRL MCLK_FREQ bits (1:0) should be restore after
1090 	 *    SGTL5000_CHIP_ANA_POWER PLL bits set
1091 	 * 2. SGTL5000_CHIP_LINREG_CTRL should be set before
1092 	 *    SGTL5000_CHIP_ANA_POWER LINREG_D restored
1093 	 * 3. SGTL5000_CHIP_REF_CTRL controls Analog Ground Voltage,
1094 	 *    prefer to resotre it after SGTL5000_CHIP_ANA_POWER restored
1095 	 */
1096 	snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL,
1097 			cache[SGTL5000_CHIP_LINREG_CTRL]);
1098 
1099 	snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER,
1100 			cache[SGTL5000_CHIP_ANA_POWER]);
1101 
1102 	snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL,
1103 			cache[SGTL5000_CHIP_CLK_CTRL]);
1104 
1105 	snd_soc_write(codec, SGTL5000_CHIP_REF_CTRL,
1106 			cache[SGTL5000_CHIP_REF_CTRL]);
1107 
1108 	snd_soc_write(codec, SGTL5000_CHIP_LINE_OUT_CTRL,
1109 			cache[SGTL5000_CHIP_LINE_OUT_CTRL]);
1110 	return 0;
1111 }
1112 
1113 static int sgtl5000_resume(struct snd_soc_codec *codec)
1114 {
1115 	/* Bring the codec back up to standby to enable regulators */
1116 	sgtl5000_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1117 
1118 	/* Restore registers by cached in memory */
1119 	sgtl5000_restore_regs(codec);
1120 	return 0;
1121 }
1122 #else
1123 #define sgtl5000_suspend NULL
1124 #define sgtl5000_resume  NULL
1125 #endif	/* CONFIG_SUSPEND */
1126 
1127 /*
1128  * sgtl5000 has 3 internal power supplies:
1129  * 1. VAG, normally set to vdda/2
1130  * 2. chargepump, set to different value
1131  *	according to voltage of vdda and vddio
1132  * 3. line out VAG, normally set to vddio/2
1133  *
1134  * and should be set according to:
1135  * 1. vddd provided by external or not
1136  * 2. vdda and vddio voltage value. > 3.1v or not
1137  * 3. chip revision >=0x11 or not. If >=0x11, not use external vddd.
1138  */
1139 static int sgtl5000_set_power_regs(struct snd_soc_codec *codec)
1140 {
1141 	int vddd;
1142 	int vdda;
1143 	int vddio;
1144 	u16 ana_pwr;
1145 	u16 lreg_ctrl;
1146 	int vag;
1147 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1148 
1149 	vdda  = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
1150 	vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
1151 	vddd  = regulator_get_voltage(sgtl5000->supplies[VDDD].consumer);
1152 
1153 	vdda  = vdda / 1000;
1154 	vddio = vddio / 1000;
1155 	vddd  = vddd / 1000;
1156 
1157 	if (vdda <= 0 || vddio <= 0 || vddd < 0) {
1158 		dev_err(codec->dev, "regulator voltage not set correctly\n");
1159 
1160 		return -EINVAL;
1161 	}
1162 
1163 	/* according to datasheet, maximum voltage of supplies */
1164 	if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
1165 		dev_err(codec->dev,
1166 			"exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
1167 			vdda, vddio, vddd);
1168 
1169 		return -EINVAL;
1170 	}
1171 
1172 	/* reset value */
1173 	ana_pwr = snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER);
1174 	ana_pwr |= SGTL5000_DAC_STEREO |
1175 			SGTL5000_ADC_STEREO |
1176 			SGTL5000_REFTOP_POWERUP;
1177 	lreg_ctrl = snd_soc_read(codec, SGTL5000_CHIP_LINREG_CTRL);
1178 
1179 	if (vddio < 3100 && vdda < 3100) {
1180 		/* enable internal oscillator used for charge pump */
1181 		snd_soc_update_bits(codec, SGTL5000_CHIP_CLK_TOP_CTRL,
1182 					SGTL5000_INT_OSC_EN,
1183 					SGTL5000_INT_OSC_EN);
1184 		/* Enable VDDC charge pump */
1185 		ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
1186 	} else if (vddio >= 3100 && vdda >= 3100) {
1187 		/*
1188 		 * if vddio and vddd > 3.1v,
1189 		 * charge pump should be clean before set ana_pwr
1190 		 */
1191 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1192 				SGTL5000_VDDC_CHRGPMP_POWERUP, 0);
1193 
1194 		/* VDDC use VDDIO rail */
1195 		lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
1196 		lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
1197 			    SGTL5000_VDDC_MAN_ASSN_SHIFT;
1198 	}
1199 
1200 	snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
1201 
1202 	snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1203 
1204 	/* set voltage to register */
1205 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
1206 				SGTL5000_LINREG_VDDD_MASK, 0x8);
1207 
1208 	/*
1209 	 * if vddd linear reg has been enabled,
1210 	 * simple digital supply should be clear to get
1211 	 * proper VDDD voltage.
1212 	 */
1213 	if (ana_pwr & SGTL5000_LINEREG_D_POWERUP)
1214 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1215 				SGTL5000_LINREG_SIMPLE_POWERUP,
1216 				0);
1217 	else
1218 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1219 				SGTL5000_LINREG_SIMPLE_POWERUP |
1220 				SGTL5000_STARTUP_POWERUP,
1221 				0);
1222 
1223 	/*
1224 	 * set ADC/DAC VAG to vdda / 2,
1225 	 * should stay in range (0.8v, 1.575v)
1226 	 */
1227 	vag = vdda / 2;
1228 	if (vag <= SGTL5000_ANA_GND_BASE)
1229 		vag = 0;
1230 	else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
1231 		 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
1232 		vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
1233 	else
1234 		vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
1235 
1236 	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1237 			SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1238 
1239 	/* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
1240 	vag = vddio / 2;
1241 	if (vag <= SGTL5000_LINE_OUT_GND_BASE)
1242 		vag = 0;
1243 	else if (vag >= SGTL5000_LINE_OUT_GND_BASE +
1244 		SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
1245 		vag = SGTL5000_LINE_OUT_GND_MAX;
1246 	else
1247 		vag = (vag - SGTL5000_LINE_OUT_GND_BASE) /
1248 		    SGTL5000_LINE_OUT_GND_STP;
1249 
1250 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_CTRL,
1251 			SGTL5000_LINE_OUT_CURRENT_MASK |
1252 			SGTL5000_LINE_OUT_GND_MASK,
1253 			vag << SGTL5000_LINE_OUT_GND_SHIFT |
1254 			SGTL5000_LINE_OUT_CURRENT_360u <<
1255 				SGTL5000_LINE_OUT_CURRENT_SHIFT);
1256 
1257 	return 0;
1258 }
1259 
1260 static int sgtl5000_replace_vddd_with_ldo(struct snd_soc_codec *codec)
1261 {
1262 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1263 	int ret;
1264 
1265 	/* set internal ldo to 1.2v */
1266 	ret = ldo_regulator_register(codec, &ldo_init_data, LDO_VOLTAGE);
1267 	if (ret) {
1268 		dev_err(codec->dev,
1269 			"Failed to register vddd internal supplies: %d\n", ret);
1270 		return ret;
1271 	}
1272 
1273 	sgtl5000->supplies[VDDD].supply = LDO_CONSUMER_NAME;
1274 
1275 	ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sgtl5000->supplies),
1276 			sgtl5000->supplies);
1277 
1278 	if (ret) {
1279 		ldo_regulator_remove(codec);
1280 		dev_err(codec->dev, "Failed to request supplies: %d\n", ret);
1281 		return ret;
1282 	}
1283 
1284 	dev_info(codec->dev, "Using internal LDO instead of VDDD\n");
1285 	return 0;
1286 }
1287 
1288 static int sgtl5000_enable_regulators(struct snd_soc_codec *codec)
1289 {
1290 	int reg;
1291 	int ret;
1292 	int rev;
1293 	int i;
1294 	int external_vddd = 0;
1295 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1296 
1297 	for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
1298 		sgtl5000->supplies[i].supply = supply_names[i];
1299 
1300 	ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sgtl5000->supplies),
1301 				sgtl5000->supplies);
1302 	if (!ret)
1303 		external_vddd = 1;
1304 	else {
1305 		ret = sgtl5000_replace_vddd_with_ldo(codec);
1306 		if (ret)
1307 			return ret;
1308 	}
1309 
1310 	ret = regulator_bulk_enable(ARRAY_SIZE(sgtl5000->supplies),
1311 					sgtl5000->supplies);
1312 	if (ret)
1313 		goto err_regulator_free;
1314 
1315 	/* wait for all power rails bring up */
1316 	udelay(10);
1317 
1318 	/*
1319 	 * workaround for revision 0x11 and later,
1320 	 * roll back to use internal LDO
1321 	 */
1322 
1323 	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
1324 	if (ret)
1325 		goto err_regulator_disable;
1326 
1327 	rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
1328 
1329 	if (external_vddd && rev >= 0x11) {
1330 		/* disable all regulator first */
1331 		regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
1332 					sgtl5000->supplies);
1333 		/* free VDDD regulator */
1334 		regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1335 					sgtl5000->supplies);
1336 
1337 		ret = sgtl5000_replace_vddd_with_ldo(codec);
1338 		if (ret)
1339 			return ret;
1340 
1341 		ret = regulator_bulk_enable(ARRAY_SIZE(sgtl5000->supplies),
1342 						sgtl5000->supplies);
1343 		if (ret)
1344 			goto err_regulator_free;
1345 
1346 		/* wait for all power rails bring up */
1347 		udelay(10);
1348 	}
1349 
1350 	return 0;
1351 
1352 err_regulator_disable:
1353 	regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
1354 				sgtl5000->supplies);
1355 err_regulator_free:
1356 	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1357 				sgtl5000->supplies);
1358 	if (external_vddd)
1359 		ldo_regulator_remove(codec);
1360 	return ret;
1361 
1362 }
1363 
1364 static int sgtl5000_probe(struct snd_soc_codec *codec)
1365 {
1366 	int ret;
1367 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1368 
1369 	/* setup i2c data ops */
1370 	codec->control_data = sgtl5000->regmap;
1371 	ret = snd_soc_codec_set_cache_io(codec, 16, 16, SND_SOC_REGMAP);
1372 	if (ret < 0) {
1373 		dev_err(codec->dev, "Failed to set cache I/O: %d\n", ret);
1374 		return ret;
1375 	}
1376 
1377 	ret = sgtl5000_enable_regulators(codec);
1378 	if (ret)
1379 		return ret;
1380 
1381 	/* power up sgtl5000 */
1382 	ret = sgtl5000_set_power_regs(codec);
1383 	if (ret)
1384 		goto err;
1385 
1386 	/* enable small pop, introduce 400ms delay in turning off */
1387 	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1388 				SGTL5000_SMALL_POP,
1389 				SGTL5000_SMALL_POP);
1390 
1391 	/* disable short cut detector */
1392 	snd_soc_write(codec, SGTL5000_CHIP_SHORT_CTRL, 0);
1393 
1394 	/*
1395 	 * set i2s as default input of sound switch
1396 	 * TODO: add sound switch to control and dapm widge.
1397 	 */
1398 	snd_soc_write(codec, SGTL5000_CHIP_SSS_CTRL,
1399 			SGTL5000_DAC_SEL_I2S_IN << SGTL5000_DAC_SEL_SHIFT);
1400 	snd_soc_write(codec, SGTL5000_CHIP_DIG_POWER,
1401 			SGTL5000_ADC_EN | SGTL5000_DAC_EN);
1402 
1403 	/* enable dac volume ramp by default */
1404 	snd_soc_write(codec, SGTL5000_CHIP_ADCDAC_CTRL,
1405 			SGTL5000_DAC_VOL_RAMP_EN |
1406 			SGTL5000_DAC_MUTE_RIGHT |
1407 			SGTL5000_DAC_MUTE_LEFT);
1408 
1409 	snd_soc_write(codec, SGTL5000_CHIP_PAD_STRENGTH, 0x015f);
1410 
1411 	snd_soc_write(codec, SGTL5000_CHIP_ANA_CTRL,
1412 			SGTL5000_HP_ZCD_EN |
1413 			SGTL5000_ADC_ZCD_EN);
1414 
1415 	snd_soc_write(codec, SGTL5000_CHIP_MIC_CTRL, 2);
1416 
1417 	/*
1418 	 * disable DAP
1419 	 * TODO:
1420 	 * Enable DAP in kcontrol and dapm.
1421 	 */
1422 	snd_soc_write(codec, SGTL5000_DAP_CTRL, 0);
1423 
1424 	/* leading to standby state */
1425 	ret = sgtl5000_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1426 	if (ret)
1427 		goto err;
1428 
1429 	return 0;
1430 
1431 err:
1432 	regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
1433 						sgtl5000->supplies);
1434 	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1435 				sgtl5000->supplies);
1436 	ldo_regulator_remove(codec);
1437 
1438 	return ret;
1439 }
1440 
1441 static int sgtl5000_remove(struct snd_soc_codec *codec)
1442 {
1443 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1444 
1445 	sgtl5000_set_bias_level(codec, SND_SOC_BIAS_OFF);
1446 
1447 	regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
1448 						sgtl5000->supplies);
1449 	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1450 				sgtl5000->supplies);
1451 	ldo_regulator_remove(codec);
1452 
1453 	return 0;
1454 }
1455 
1456 static struct snd_soc_codec_driver sgtl5000_driver = {
1457 	.probe = sgtl5000_probe,
1458 	.remove = sgtl5000_remove,
1459 	.suspend = sgtl5000_suspend,
1460 	.resume = sgtl5000_resume,
1461 	.set_bias_level = sgtl5000_set_bias_level,
1462 	.controls = sgtl5000_snd_controls,
1463 	.num_controls = ARRAY_SIZE(sgtl5000_snd_controls),
1464 	.dapm_widgets = sgtl5000_dapm_widgets,
1465 	.num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets),
1466 	.dapm_routes = sgtl5000_dapm_routes,
1467 	.num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes),
1468 };
1469 
1470 static const struct regmap_config sgtl5000_regmap = {
1471 	.reg_bits = 16,
1472 	.val_bits = 16,
1473 
1474 	.max_register = SGTL5000_MAX_REG_OFFSET,
1475 	.volatile_reg = sgtl5000_volatile,
1476 	.readable_reg = sgtl5000_readable,
1477 
1478 	.cache_type = REGCACHE_RBTREE,
1479 	.reg_defaults = sgtl5000_reg_defaults,
1480 	.num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
1481 };
1482 
1483 /*
1484  * Write all the default values from sgtl5000_reg_defaults[] array into the
1485  * sgtl5000 registers, to make sure we always start with the sane registers
1486  * values as stated in the datasheet.
1487  *
1488  * Since sgtl5000 does not have a reset line, nor a reset command in software,
1489  * we follow this approach to guarantee we always start from the default values
1490  * and avoid problems like, not being able to probe after an audio playback
1491  * followed by a system reset or a 'reboot' command in Linux
1492  */
1493 static int sgtl5000_fill_defaults(struct sgtl5000_priv *sgtl5000)
1494 {
1495 	int i, ret, val, index;
1496 
1497 	for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
1498 		val = sgtl5000_reg_defaults[i].def;
1499 		index = sgtl5000_reg_defaults[i].reg;
1500 		ret = regmap_write(sgtl5000->regmap, index, val);
1501 		if (ret)
1502 			return ret;
1503 	}
1504 
1505 	return 0;
1506 }
1507 
1508 static int sgtl5000_i2c_probe(struct i2c_client *client,
1509 			      const struct i2c_device_id *id)
1510 {
1511 	struct sgtl5000_priv *sgtl5000;
1512 	int ret, reg, rev;
1513 
1514 	sgtl5000 = devm_kzalloc(&client->dev, sizeof(struct sgtl5000_priv),
1515 								GFP_KERNEL);
1516 	if (!sgtl5000)
1517 		return -ENOMEM;
1518 
1519 	sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
1520 	if (IS_ERR(sgtl5000->regmap)) {
1521 		ret = PTR_ERR(sgtl5000->regmap);
1522 		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1523 		return ret;
1524 	}
1525 
1526 	sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
1527 	if (IS_ERR(sgtl5000->mclk)) {
1528 		ret = PTR_ERR(sgtl5000->mclk);
1529 		dev_err(&client->dev, "Failed to get mclock: %d\n", ret);
1530 		return ret;
1531 	}
1532 
1533 	ret = clk_prepare_enable(sgtl5000->mclk);
1534 	if (ret)
1535 		return ret;
1536 
1537 	/* read chip information */
1538 	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
1539 	if (ret)
1540 		goto disable_clk;
1541 
1542 	if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
1543 	    SGTL5000_PARTID_PART_ID) {
1544 		dev_err(&client->dev,
1545 			"Device with ID register %x is not a sgtl5000\n", reg);
1546 		ret = -ENODEV;
1547 		goto disable_clk;
1548 	}
1549 
1550 	rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
1551 	dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
1552 
1553 	i2c_set_clientdata(client, sgtl5000);
1554 
1555 	/* Ensure sgtl5000 will start with sane register values */
1556 	ret = sgtl5000_fill_defaults(sgtl5000);
1557 	if (ret)
1558 		goto disable_clk;
1559 
1560 	ret = snd_soc_register_codec(&client->dev,
1561 			&sgtl5000_driver, &sgtl5000_dai, 1);
1562 	if (ret)
1563 		goto disable_clk;
1564 
1565 	return 0;
1566 
1567 disable_clk:
1568 	clk_disable_unprepare(sgtl5000->mclk);
1569 	return ret;
1570 }
1571 
1572 static int sgtl5000_i2c_remove(struct i2c_client *client)
1573 {
1574 	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1575 
1576 	snd_soc_unregister_codec(&client->dev);
1577 	clk_disable_unprepare(sgtl5000->mclk);
1578 	return 0;
1579 }
1580 
1581 static const struct i2c_device_id sgtl5000_id[] = {
1582 	{"sgtl5000", 0},
1583 	{},
1584 };
1585 
1586 MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
1587 
1588 static const struct of_device_id sgtl5000_dt_ids[] = {
1589 	{ .compatible = "fsl,sgtl5000", },
1590 	{ /* sentinel */ }
1591 };
1592 MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1593 
1594 static struct i2c_driver sgtl5000_i2c_driver = {
1595 	.driver = {
1596 		   .name = "sgtl5000",
1597 		   .owner = THIS_MODULE,
1598 		   .of_match_table = sgtl5000_dt_ids,
1599 		   },
1600 	.probe = sgtl5000_i2c_probe,
1601 	.remove = sgtl5000_i2c_remove,
1602 	.id_table = sgtl5000_id,
1603 };
1604 
1605 module_i2c_driver(sgtl5000_i2c_driver);
1606 
1607 MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1608 MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1609 MODULE_LICENSE("GPL");
1610