1 /* 2 * sgtl5000.c -- SGTL5000 ALSA SoC Audio driver 3 * 4 * Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/moduleparam.h> 13 #include <linux/init.h> 14 #include <linux/delay.h> 15 #include <linux/slab.h> 16 #include <linux/pm.h> 17 #include <linux/i2c.h> 18 #include <linux/clk.h> 19 #include <linux/log2.h> 20 #include <linux/regmap.h> 21 #include <linux/regulator/driver.h> 22 #include <linux/regulator/machine.h> 23 #include <linux/regulator/consumer.h> 24 #include <linux/of_device.h> 25 #include <sound/core.h> 26 #include <sound/tlv.h> 27 #include <sound/pcm.h> 28 #include <sound/pcm_params.h> 29 #include <sound/soc.h> 30 #include <sound/soc-dapm.h> 31 #include <sound/initval.h> 32 33 #include "sgtl5000.h" 34 35 #define SGTL5000_DAP_REG_OFFSET 0x0100 36 #define SGTL5000_MAX_REG_OFFSET 0x013A 37 38 /* default value of sgtl5000 registers */ 39 static const struct reg_default sgtl5000_reg_defaults[] = { 40 { SGTL5000_CHIP_DIG_POWER, 0x0000 }, 41 { SGTL5000_CHIP_I2S_CTRL, 0x0010 }, 42 { SGTL5000_CHIP_SSS_CTRL, 0x0010 }, 43 { SGTL5000_CHIP_ADCDAC_CTRL, 0x020c }, 44 { SGTL5000_CHIP_DAC_VOL, 0x3c3c }, 45 { SGTL5000_CHIP_PAD_STRENGTH, 0x015f }, 46 { SGTL5000_CHIP_ANA_ADC_CTRL, 0x0000 }, 47 { SGTL5000_CHIP_ANA_HP_CTRL, 0x1818 }, 48 { SGTL5000_CHIP_ANA_CTRL, 0x0111 }, 49 { SGTL5000_CHIP_REF_CTRL, 0x0000 }, 50 { SGTL5000_CHIP_MIC_CTRL, 0x0000 }, 51 { SGTL5000_CHIP_LINE_OUT_CTRL, 0x0000 }, 52 { SGTL5000_CHIP_LINE_OUT_VOL, 0x0404 }, 53 { SGTL5000_CHIP_PLL_CTRL, 0x5000 }, 54 { SGTL5000_CHIP_CLK_TOP_CTRL, 0x0000 }, 55 { SGTL5000_CHIP_ANA_STATUS, 0x0000 }, 56 { SGTL5000_CHIP_SHORT_CTRL, 0x0000 }, 57 { SGTL5000_CHIP_ANA_TEST2, 0x0000 }, 58 { SGTL5000_DAP_CTRL, 0x0000 }, 59 { SGTL5000_DAP_PEQ, 0x0000 }, 60 { SGTL5000_DAP_BASS_ENHANCE, 0x0040 }, 61 { SGTL5000_DAP_BASS_ENHANCE_CTRL, 0x051f }, 62 { SGTL5000_DAP_AUDIO_EQ, 0x0000 }, 63 { SGTL5000_DAP_SURROUND, 0x0040 }, 64 { SGTL5000_DAP_EQ_BASS_BAND0, 0x002f }, 65 { SGTL5000_DAP_EQ_BASS_BAND1, 0x002f }, 66 { SGTL5000_DAP_EQ_BASS_BAND2, 0x002f }, 67 { SGTL5000_DAP_EQ_BASS_BAND3, 0x002f }, 68 { SGTL5000_DAP_EQ_BASS_BAND4, 0x002f }, 69 { SGTL5000_DAP_MAIN_CHAN, 0x8000 }, 70 { SGTL5000_DAP_MIX_CHAN, 0x0000 }, 71 { SGTL5000_DAP_AVC_CTRL, 0x0510 }, 72 { SGTL5000_DAP_AVC_THRESHOLD, 0x1473 }, 73 { SGTL5000_DAP_AVC_ATTACK, 0x0028 }, 74 { SGTL5000_DAP_AVC_DECAY, 0x0050 }, 75 }; 76 77 /* AVC: Threshold dB -> register: pre-calculated values */ 78 static const u16 avc_thr_db2reg[97] = { 79 0x5168, 0x488E, 0x40AA, 0x39A1, 0x335D, 0x2DC7, 0x28CC, 0x245D, 0x2068, 80 0x1CE2, 0x19BE, 0x16F1, 0x1472, 0x1239, 0x103E, 0x0E7A, 0x0CE6, 0x0B7F, 81 0x0A3F, 0x0922, 0x0824, 0x0741, 0x0677, 0x05C3, 0x0522, 0x0493, 0x0414, 82 0x03A2, 0x033D, 0x02E3, 0x0293, 0x024B, 0x020B, 0x01D2, 0x019F, 0x0172, 83 0x014A, 0x0126, 0x0106, 0x00E9, 0x00D0, 0x00B9, 0x00A5, 0x0093, 0x0083, 84 0x0075, 0x0068, 0x005D, 0x0052, 0x0049, 0x0041, 0x003A, 0x0034, 0x002E, 85 0x0029, 0x0025, 0x0021, 0x001D, 0x001A, 0x0017, 0x0014, 0x0012, 0x0010, 86 0x000E, 0x000D, 0x000B, 0x000A, 0x0009, 0x0008, 0x0007, 0x0006, 0x0005, 87 0x0005, 0x0004, 0x0004, 0x0003, 0x0003, 0x0002, 0x0002, 0x0002, 0x0002, 88 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0000, 0x0000, 89 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}; 90 91 /* regulator supplies for sgtl5000, VDDD is an optional external supply */ 92 enum sgtl5000_regulator_supplies { 93 VDDA, 94 VDDIO, 95 VDDD, 96 SGTL5000_SUPPLY_NUM 97 }; 98 99 /* vddd is optional supply */ 100 static const char *supply_names[SGTL5000_SUPPLY_NUM] = { 101 "VDDA", 102 "VDDIO", 103 "VDDD" 104 }; 105 106 #define LDO_VOLTAGE 1200000 107 #define LINREG_VDDD ((1600 - LDO_VOLTAGE / 1000) / 50) 108 109 enum sgtl5000_micbias_resistor { 110 SGTL5000_MICBIAS_OFF = 0, 111 SGTL5000_MICBIAS_2K = 2, 112 SGTL5000_MICBIAS_4K = 4, 113 SGTL5000_MICBIAS_8K = 8, 114 }; 115 116 enum { 117 I2S_LRCLK_STRENGTH_DISABLE, 118 I2S_LRCLK_STRENGTH_LOW, 119 I2S_LRCLK_STRENGTH_MEDIUM, 120 I2S_LRCLK_STRENGTH_HIGH, 121 }; 122 123 /* sgtl5000 private structure in codec */ 124 struct sgtl5000_priv { 125 int sysclk; /* sysclk rate */ 126 int master; /* i2s master or not */ 127 int fmt; /* i2s data format */ 128 struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM]; 129 int num_supplies; 130 struct regmap *regmap; 131 struct clk *mclk; 132 int revision; 133 u8 micbias_resistor; 134 u8 micbias_voltage; 135 u8 lrclk_strength; 136 }; 137 138 /* 139 * mic_bias power on/off share the same register bits with 140 * output impedance of mic bias, when power on mic bias, we 141 * need reclaim it to impedance value. 142 * 0x0 = Powered off 143 * 0x1 = 2Kohm 144 * 0x2 = 4Kohm 145 * 0x3 = 8Kohm 146 */ 147 static int mic_bias_event(struct snd_soc_dapm_widget *w, 148 struct snd_kcontrol *kcontrol, int event) 149 { 150 struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm); 151 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 152 153 switch (event) { 154 case SND_SOC_DAPM_POST_PMU: 155 /* change mic bias resistor */ 156 snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL, 157 SGTL5000_BIAS_R_MASK, 158 sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT); 159 break; 160 161 case SND_SOC_DAPM_PRE_PMD: 162 snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL, 163 SGTL5000_BIAS_R_MASK, 0); 164 break; 165 } 166 return 0; 167 } 168 169 /* 170 * As manual described, ADC/DAC only works when VAG powerup, 171 * So enabled VAG before ADC/DAC up. 172 * In power down case, we need wait 400ms when vag fully ramped down. 173 */ 174 static int power_vag_event(struct snd_soc_dapm_widget *w, 175 struct snd_kcontrol *kcontrol, int event) 176 { 177 struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm); 178 const u32 mask = SGTL5000_DAC_POWERUP | SGTL5000_ADC_POWERUP; 179 180 switch (event) { 181 case SND_SOC_DAPM_POST_PMU: 182 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 183 SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP); 184 msleep(400); 185 break; 186 187 case SND_SOC_DAPM_PRE_PMD: 188 /* 189 * Don't clear VAG_POWERUP, when both DAC and ADC are 190 * operational to prevent inadvertently starving the 191 * other one of them. 192 */ 193 if ((snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER) & 194 mask) != mask) { 195 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 196 SGTL5000_VAG_POWERUP, 0); 197 msleep(400); 198 } 199 break; 200 default: 201 break; 202 } 203 204 return 0; 205 } 206 207 /* input sources for ADC */ 208 static const char *adc_mux_text[] = { 209 "MIC_IN", "LINE_IN" 210 }; 211 212 static SOC_ENUM_SINGLE_DECL(adc_enum, 213 SGTL5000_CHIP_ANA_CTRL, 2, 214 adc_mux_text); 215 216 static const struct snd_kcontrol_new adc_mux = 217 SOC_DAPM_ENUM("Capture Mux", adc_enum); 218 219 /* input sources for DAC */ 220 static const char *dac_mux_text[] = { 221 "DAC", "LINE_IN" 222 }; 223 224 static SOC_ENUM_SINGLE_DECL(dac_enum, 225 SGTL5000_CHIP_ANA_CTRL, 6, 226 dac_mux_text); 227 228 static const struct snd_kcontrol_new dac_mux = 229 SOC_DAPM_ENUM("Headphone Mux", dac_enum); 230 231 static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = { 232 SND_SOC_DAPM_INPUT("LINE_IN"), 233 SND_SOC_DAPM_INPUT("MIC_IN"), 234 235 SND_SOC_DAPM_OUTPUT("HP_OUT"), 236 SND_SOC_DAPM_OUTPUT("LINE_OUT"), 237 238 SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0, 239 mic_bias_event, 240 SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), 241 242 SND_SOC_DAPM_PGA("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0), 243 SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0), 244 245 SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux), 246 SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &dac_mux), 247 248 /* aif for i2s input */ 249 SND_SOC_DAPM_AIF_IN("AIFIN", "Playback", 250 0, SGTL5000_CHIP_DIG_POWER, 251 0, 0), 252 253 /* aif for i2s output */ 254 SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture", 255 0, SGTL5000_CHIP_DIG_POWER, 256 1, 0), 257 258 SND_SOC_DAPM_ADC("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0), 259 SND_SOC_DAPM_DAC("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0), 260 261 SND_SOC_DAPM_PRE("VAG_POWER_PRE", power_vag_event), 262 SND_SOC_DAPM_POST("VAG_POWER_POST", power_vag_event), 263 }; 264 265 /* routes for sgtl5000 */ 266 static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = { 267 {"Capture Mux", "LINE_IN", "LINE_IN"}, /* line_in --> adc_mux */ 268 {"Capture Mux", "MIC_IN", "MIC_IN"}, /* mic_in --> adc_mux */ 269 270 {"ADC", NULL, "Capture Mux"}, /* adc_mux --> adc */ 271 {"AIFOUT", NULL, "ADC"}, /* adc --> i2s_out */ 272 273 {"DAC", NULL, "AIFIN"}, /* i2s-->dac,skip audio mux */ 274 {"Headphone Mux", "DAC", "DAC"}, /* dac --> hp_mux */ 275 {"LO", NULL, "DAC"}, /* dac --> line_out */ 276 277 {"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */ 278 {"HP", NULL, "Headphone Mux"}, /* hp_mux --> hp */ 279 280 {"LINE_OUT", NULL, "LO"}, 281 {"HP_OUT", NULL, "HP"}, 282 }; 283 284 /* custom function to fetch info of PCM playback volume */ 285 static int dac_info_volsw(struct snd_kcontrol *kcontrol, 286 struct snd_ctl_elem_info *uinfo) 287 { 288 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 289 uinfo->count = 2; 290 uinfo->value.integer.min = 0; 291 uinfo->value.integer.max = 0xfc - 0x3c; 292 return 0; 293 } 294 295 /* 296 * custom function to get of PCM playback volume 297 * 298 * dac volume register 299 * 15-------------8-7--------------0 300 * | R channel vol | L channel vol | 301 * ------------------------------- 302 * 303 * PCM volume with 0.5017 dB steps from 0 to -90 dB 304 * 305 * register values map to dB 306 * 0x3B and less = Reserved 307 * 0x3C = 0 dB 308 * 0x3D = -0.5 dB 309 * 0xF0 = -90 dB 310 * 0xFC and greater = Muted 311 * 312 * register value map to userspace value 313 * 314 * register value 0x3c(0dB) 0xf0(-90dB)0xfc 315 * ------------------------------ 316 * userspace value 0xc0 0 317 */ 318 static int dac_get_volsw(struct snd_kcontrol *kcontrol, 319 struct snd_ctl_elem_value *ucontrol) 320 { 321 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); 322 int reg; 323 int l; 324 int r; 325 326 reg = snd_soc_read(codec, SGTL5000_CHIP_DAC_VOL); 327 328 /* get left channel volume */ 329 l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT; 330 331 /* get right channel volume */ 332 r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT; 333 334 /* make sure value fall in (0x3c,0xfc) */ 335 l = clamp(l, 0x3c, 0xfc); 336 r = clamp(r, 0x3c, 0xfc); 337 338 /* invert it and map to userspace value */ 339 l = 0xfc - l; 340 r = 0xfc - r; 341 342 ucontrol->value.integer.value[0] = l; 343 ucontrol->value.integer.value[1] = r; 344 345 return 0; 346 } 347 348 /* 349 * custom function to put of PCM playback volume 350 * 351 * dac volume register 352 * 15-------------8-7--------------0 353 * | R channel vol | L channel vol | 354 * ------------------------------- 355 * 356 * PCM volume with 0.5017 dB steps from 0 to -90 dB 357 * 358 * register values map to dB 359 * 0x3B and less = Reserved 360 * 0x3C = 0 dB 361 * 0x3D = -0.5 dB 362 * 0xF0 = -90 dB 363 * 0xFC and greater = Muted 364 * 365 * userspace value map to register value 366 * 367 * userspace value 0xc0 0 368 * ------------------------------ 369 * register value 0x3c(0dB) 0xf0(-90dB)0xfc 370 */ 371 static int dac_put_volsw(struct snd_kcontrol *kcontrol, 372 struct snd_ctl_elem_value *ucontrol) 373 { 374 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); 375 int reg; 376 int l; 377 int r; 378 379 l = ucontrol->value.integer.value[0]; 380 r = ucontrol->value.integer.value[1]; 381 382 /* make sure userspace volume fall in (0, 0xfc-0x3c) */ 383 l = clamp(l, 0, 0xfc - 0x3c); 384 r = clamp(r, 0, 0xfc - 0x3c); 385 386 /* invert it, get the value can be set to register */ 387 l = 0xfc - l; 388 r = 0xfc - r; 389 390 /* shift to get the register value */ 391 reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT | 392 r << SGTL5000_DAC_VOL_RIGHT_SHIFT; 393 394 snd_soc_write(codec, SGTL5000_CHIP_DAC_VOL, reg); 395 396 return 0; 397 } 398 399 /* 400 * custom function to get AVC threshold 401 * 402 * The threshold dB is calculated by rearranging the calculation from the 403 * avc_put_threshold function: register_value = 10^(dB/20) * 0.636 * 2^15 ==> 404 * dB = ( fls(register_value) - 14.347 ) * 6.02 405 * 406 * As this calculation is expensive and the threshold dB values may not exeed 407 * 0 to 96 we use pre-calculated values. 408 */ 409 static int avc_get_threshold(struct snd_kcontrol *kcontrol, 410 struct snd_ctl_elem_value *ucontrol) 411 { 412 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); 413 int db, i; 414 u16 reg = snd_soc_read(codec, SGTL5000_DAP_AVC_THRESHOLD); 415 416 /* register value 0 => -96dB */ 417 if (!reg) { 418 ucontrol->value.integer.value[0] = 96; 419 ucontrol->value.integer.value[1] = 96; 420 return 0; 421 } 422 423 /* get dB from register value (rounded down) */ 424 for (i = 0; avc_thr_db2reg[i] > reg; i++) 425 ; 426 db = i; 427 428 ucontrol->value.integer.value[0] = db; 429 ucontrol->value.integer.value[1] = db; 430 431 return 0; 432 } 433 434 /* 435 * custom function to put AVC threshold 436 * 437 * The register value is calculated by following formula: 438 * register_value = 10^(dB/20) * 0.636 * 2^15 439 * As this calculation is expensive and the threshold dB values may not exeed 440 * 0 to 96 we use pre-calculated values. 441 */ 442 static int avc_put_threshold(struct snd_kcontrol *kcontrol, 443 struct snd_ctl_elem_value *ucontrol) 444 { 445 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); 446 int db; 447 u16 reg; 448 449 db = (int)ucontrol->value.integer.value[0]; 450 if (db < 0 || db > 96) 451 return -EINVAL; 452 reg = avc_thr_db2reg[db]; 453 snd_soc_write(codec, SGTL5000_DAP_AVC_THRESHOLD, reg); 454 455 return 0; 456 } 457 458 static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0); 459 460 /* tlv for mic gain, 0db 20db 30db 40db */ 461 static const DECLARE_TLV_DB_RANGE(mic_gain_tlv, 462 0, 0, TLV_DB_SCALE_ITEM(0, 0, 0), 463 1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0) 464 ); 465 466 /* tlv for hp volume, -51.5db to 12.0db, step .5db */ 467 static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0); 468 469 /* tlv for lineout volume, 31 steps of .5db each */ 470 static const DECLARE_TLV_DB_SCALE(lineout_volume, -1550, 50, 0); 471 472 /* tlv for dap avc max gain, 0db, 6db, 12db */ 473 static const DECLARE_TLV_DB_SCALE(avc_max_gain, 0, 600, 0); 474 475 /* tlv for dap avc threshold, */ 476 static const DECLARE_TLV_DB_MINMAX(avc_threshold, 0, 9600); 477 478 static const struct snd_kcontrol_new sgtl5000_snd_controls[] = { 479 /* SOC_DOUBLE_S8_TLV with invert */ 480 { 481 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 482 .name = "PCM Playback Volume", 483 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | 484 SNDRV_CTL_ELEM_ACCESS_READWRITE, 485 .info = dac_info_volsw, 486 .get = dac_get_volsw, 487 .put = dac_put_volsw, 488 }, 489 490 SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0), 491 SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)", 492 SGTL5000_CHIP_ANA_ADC_CTRL, 493 8, 1, 0, capture_6db_attenuate), 494 SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0), 495 496 SOC_DOUBLE_TLV("Headphone Playback Volume", 497 SGTL5000_CHIP_ANA_HP_CTRL, 498 0, 8, 499 0x7f, 1, 500 headphone_volume), 501 SOC_SINGLE("Headphone Playback Switch", SGTL5000_CHIP_ANA_CTRL, 502 4, 1, 1), 503 SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL, 504 5, 1, 0), 505 506 SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL, 507 0, 3, 0, mic_gain_tlv), 508 509 SOC_DOUBLE_TLV("Lineout Playback Volume", 510 SGTL5000_CHIP_LINE_OUT_VOL, 511 SGTL5000_LINE_OUT_VOL_LEFT_SHIFT, 512 SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT, 513 0x1f, 1, 514 lineout_volume), 515 SOC_SINGLE("Lineout Playback Switch", SGTL5000_CHIP_ANA_CTRL, 8, 1, 1), 516 517 /* Automatic Volume Control (DAP AVC) */ 518 SOC_SINGLE("AVC Switch", SGTL5000_DAP_AVC_CTRL, 0, 1, 0), 519 SOC_SINGLE("AVC Hard Limiter Switch", SGTL5000_DAP_AVC_CTRL, 5, 1, 0), 520 SOC_SINGLE_TLV("AVC Max Gain Volume", SGTL5000_DAP_AVC_CTRL, 12, 2, 0, 521 avc_max_gain), 522 SOC_SINGLE("AVC Integrator Response", SGTL5000_DAP_AVC_CTRL, 8, 3, 0), 523 SOC_SINGLE_EXT_TLV("AVC Threshold Volume", SGTL5000_DAP_AVC_THRESHOLD, 524 0, 96, 0, avc_get_threshold, avc_put_threshold, 525 avc_threshold), 526 }; 527 528 /* mute the codec used by alsa core */ 529 static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute) 530 { 531 struct snd_soc_codec *codec = codec_dai->codec; 532 u16 adcdac_ctrl = SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT; 533 534 snd_soc_update_bits(codec, SGTL5000_CHIP_ADCDAC_CTRL, 535 adcdac_ctrl, mute ? adcdac_ctrl : 0); 536 537 return 0; 538 } 539 540 /* set codec format */ 541 static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) 542 { 543 struct snd_soc_codec *codec = codec_dai->codec; 544 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 545 u16 i2sctl = 0; 546 547 sgtl5000->master = 0; 548 /* 549 * i2s clock and frame master setting. 550 * ONLY support: 551 * - clock and frame slave, 552 * - clock and frame master 553 */ 554 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { 555 case SND_SOC_DAIFMT_CBS_CFS: 556 break; 557 case SND_SOC_DAIFMT_CBM_CFM: 558 i2sctl |= SGTL5000_I2S_MASTER; 559 sgtl5000->master = 1; 560 break; 561 default: 562 return -EINVAL; 563 } 564 565 /* setting i2s data format */ 566 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 567 case SND_SOC_DAIFMT_DSP_A: 568 i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT; 569 break; 570 case SND_SOC_DAIFMT_DSP_B: 571 i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT; 572 i2sctl |= SGTL5000_I2S_LRALIGN; 573 break; 574 case SND_SOC_DAIFMT_I2S: 575 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT; 576 break; 577 case SND_SOC_DAIFMT_RIGHT_J: 578 i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT; 579 i2sctl |= SGTL5000_I2S_LRPOL; 580 break; 581 case SND_SOC_DAIFMT_LEFT_J: 582 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT; 583 i2sctl |= SGTL5000_I2S_LRALIGN; 584 break; 585 default: 586 return -EINVAL; 587 } 588 589 sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK; 590 591 /* Clock inversion */ 592 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 593 case SND_SOC_DAIFMT_NB_NF: 594 break; 595 case SND_SOC_DAIFMT_IB_NF: 596 i2sctl |= SGTL5000_I2S_SCLK_INV; 597 break; 598 default: 599 return -EINVAL; 600 } 601 602 snd_soc_write(codec, SGTL5000_CHIP_I2S_CTRL, i2sctl); 603 604 return 0; 605 } 606 607 /* set codec sysclk */ 608 static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai, 609 int clk_id, unsigned int freq, int dir) 610 { 611 struct snd_soc_codec *codec = codec_dai->codec; 612 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 613 614 switch (clk_id) { 615 case SGTL5000_SYSCLK: 616 sgtl5000->sysclk = freq; 617 break; 618 default: 619 return -EINVAL; 620 } 621 622 return 0; 623 } 624 625 /* 626 * set clock according to i2s frame clock, 627 * sgtl5000 provides 2 clock sources: 628 * 1. sys_mclk: sample freq can only be configured to 629 * 1/256, 1/384, 1/512 of sys_mclk. 630 * 2. pll: can derive any audio clocks. 631 * 632 * clock setting rules: 633 * 1. in slave mode, only sys_mclk can be used 634 * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz 635 * and above. 636 * 3. usage of sys_mclk is preferred over pll to save power. 637 */ 638 static int sgtl5000_set_clock(struct snd_soc_codec *codec, int frame_rate) 639 { 640 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 641 int clk_ctl = 0; 642 int sys_fs; /* sample freq */ 643 644 /* 645 * sample freq should be divided by frame clock, 646 * if frame clock is lower than 44.1 kHz, sample freq should be set to 647 * 32 kHz or 44.1 kHz. 648 */ 649 switch (frame_rate) { 650 case 8000: 651 case 16000: 652 sys_fs = 32000; 653 break; 654 case 11025: 655 case 22050: 656 sys_fs = 44100; 657 break; 658 default: 659 sys_fs = frame_rate; 660 break; 661 } 662 663 /* set divided factor of frame clock */ 664 switch (sys_fs / frame_rate) { 665 case 4: 666 clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT; 667 break; 668 case 2: 669 clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT; 670 break; 671 case 1: 672 clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT; 673 break; 674 default: 675 return -EINVAL; 676 } 677 678 /* set the sys_fs according to frame rate */ 679 switch (sys_fs) { 680 case 32000: 681 clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT; 682 break; 683 case 44100: 684 clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT; 685 break; 686 case 48000: 687 clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT; 688 break; 689 case 96000: 690 clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT; 691 break; 692 default: 693 dev_err(codec->dev, "frame rate %d not supported\n", 694 frame_rate); 695 return -EINVAL; 696 } 697 698 /* 699 * calculate the divider of mclk/sample_freq, 700 * factor of freq = 96 kHz can only be 256, since mclk is in the range 701 * of 8 MHz - 27 MHz 702 */ 703 switch (sgtl5000->sysclk / frame_rate) { 704 case 256: 705 clk_ctl |= SGTL5000_MCLK_FREQ_256FS << 706 SGTL5000_MCLK_FREQ_SHIFT; 707 break; 708 case 384: 709 clk_ctl |= SGTL5000_MCLK_FREQ_384FS << 710 SGTL5000_MCLK_FREQ_SHIFT; 711 break; 712 case 512: 713 clk_ctl |= SGTL5000_MCLK_FREQ_512FS << 714 SGTL5000_MCLK_FREQ_SHIFT; 715 break; 716 default: 717 /* if mclk does not satisfy the divider, use pll */ 718 if (sgtl5000->master) { 719 clk_ctl |= SGTL5000_MCLK_FREQ_PLL << 720 SGTL5000_MCLK_FREQ_SHIFT; 721 } else { 722 dev_err(codec->dev, 723 "PLL not supported in slave mode\n"); 724 dev_err(codec->dev, "%d ratio is not supported. " 725 "SYS_MCLK needs to be 256, 384 or 512 * fs\n", 726 sgtl5000->sysclk / frame_rate); 727 return -EINVAL; 728 } 729 } 730 731 /* if using pll, please check manual 6.4.2 for detail */ 732 if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) { 733 u64 out, t; 734 int div2; 735 int pll_ctl; 736 unsigned int in, int_div, frac_div; 737 738 if (sgtl5000->sysclk > 17000000) { 739 div2 = 1; 740 in = sgtl5000->sysclk / 2; 741 } else { 742 div2 = 0; 743 in = sgtl5000->sysclk; 744 } 745 if (sys_fs == 44100) 746 out = 180633600; 747 else 748 out = 196608000; 749 t = do_div(out, in); 750 int_div = out; 751 t *= 2048; 752 do_div(t, in); 753 frac_div = t; 754 pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT | 755 frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT; 756 757 snd_soc_write(codec, SGTL5000_CHIP_PLL_CTRL, pll_ctl); 758 if (div2) 759 snd_soc_update_bits(codec, 760 SGTL5000_CHIP_CLK_TOP_CTRL, 761 SGTL5000_INPUT_FREQ_DIV2, 762 SGTL5000_INPUT_FREQ_DIV2); 763 else 764 snd_soc_update_bits(codec, 765 SGTL5000_CHIP_CLK_TOP_CTRL, 766 SGTL5000_INPUT_FREQ_DIV2, 767 0); 768 769 /* power up pll */ 770 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 771 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP, 772 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP); 773 774 /* if using pll, clk_ctrl must be set after pll power up */ 775 snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl); 776 } else { 777 /* otherwise, clk_ctrl must be set before pll power down */ 778 snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl); 779 780 /* power down pll */ 781 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 782 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP, 783 0); 784 } 785 786 return 0; 787 } 788 789 /* 790 * Set PCM DAI bit size and sample rate. 791 * input: params_rate, params_fmt 792 */ 793 static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream, 794 struct snd_pcm_hw_params *params, 795 struct snd_soc_dai *dai) 796 { 797 struct snd_soc_codec *codec = dai->codec; 798 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 799 int channels = params_channels(params); 800 int i2s_ctl = 0; 801 int stereo; 802 int ret; 803 804 /* sysclk should already set */ 805 if (!sgtl5000->sysclk) { 806 dev_err(codec->dev, "%s: set sysclk first!\n", __func__); 807 return -EFAULT; 808 } 809 810 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 811 stereo = SGTL5000_DAC_STEREO; 812 else 813 stereo = SGTL5000_ADC_STEREO; 814 815 /* set mono to save power */ 816 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, stereo, 817 channels == 1 ? 0 : stereo); 818 819 /* set codec clock base on lrclk */ 820 ret = sgtl5000_set_clock(codec, params_rate(params)); 821 if (ret) 822 return ret; 823 824 /* set i2s data format */ 825 switch (params_width(params)) { 826 case 16: 827 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J) 828 return -EINVAL; 829 i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT; 830 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS << 831 SGTL5000_I2S_SCLKFREQ_SHIFT; 832 break; 833 case 20: 834 i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT; 835 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << 836 SGTL5000_I2S_SCLKFREQ_SHIFT; 837 break; 838 case 24: 839 i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT; 840 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << 841 SGTL5000_I2S_SCLKFREQ_SHIFT; 842 break; 843 case 32: 844 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J) 845 return -EINVAL; 846 i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT; 847 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << 848 SGTL5000_I2S_SCLKFREQ_SHIFT; 849 break; 850 default: 851 return -EINVAL; 852 } 853 854 snd_soc_update_bits(codec, SGTL5000_CHIP_I2S_CTRL, 855 SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK, 856 i2s_ctl); 857 858 return 0; 859 } 860 861 /* 862 * set dac bias 863 * common state changes: 864 * startup: 865 * off --> standby --> prepare --> on 866 * standby --> prepare --> on 867 * 868 * stop: 869 * on --> prepare --> standby 870 */ 871 static int sgtl5000_set_bias_level(struct snd_soc_codec *codec, 872 enum snd_soc_bias_level level) 873 { 874 switch (level) { 875 case SND_SOC_BIAS_ON: 876 case SND_SOC_BIAS_PREPARE: 877 case SND_SOC_BIAS_STANDBY: 878 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 879 SGTL5000_REFTOP_POWERUP, 880 SGTL5000_REFTOP_POWERUP); 881 break; 882 case SND_SOC_BIAS_OFF: 883 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 884 SGTL5000_REFTOP_POWERUP, 0); 885 break; 886 } 887 888 return 0; 889 } 890 891 #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\ 892 SNDRV_PCM_FMTBIT_S20_3LE |\ 893 SNDRV_PCM_FMTBIT_S24_LE |\ 894 SNDRV_PCM_FMTBIT_S32_LE) 895 896 static const struct snd_soc_dai_ops sgtl5000_ops = { 897 .hw_params = sgtl5000_pcm_hw_params, 898 .digital_mute = sgtl5000_digital_mute, 899 .set_fmt = sgtl5000_set_dai_fmt, 900 .set_sysclk = sgtl5000_set_dai_sysclk, 901 }; 902 903 static struct snd_soc_dai_driver sgtl5000_dai = { 904 .name = "sgtl5000", 905 .playback = { 906 .stream_name = "Playback", 907 .channels_min = 1, 908 .channels_max = 2, 909 /* 910 * only support 8~48K + 96K, 911 * TODO modify hw_param to support more 912 */ 913 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000, 914 .formats = SGTL5000_FORMATS, 915 }, 916 .capture = { 917 .stream_name = "Capture", 918 .channels_min = 1, 919 .channels_max = 2, 920 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000, 921 .formats = SGTL5000_FORMATS, 922 }, 923 .ops = &sgtl5000_ops, 924 .symmetric_rates = 1, 925 }; 926 927 static bool sgtl5000_volatile(struct device *dev, unsigned int reg) 928 { 929 switch (reg) { 930 case SGTL5000_CHIP_ID: 931 case SGTL5000_CHIP_ADCDAC_CTRL: 932 case SGTL5000_CHIP_ANA_STATUS: 933 return true; 934 } 935 936 return false; 937 } 938 939 static bool sgtl5000_readable(struct device *dev, unsigned int reg) 940 { 941 switch (reg) { 942 case SGTL5000_CHIP_ID: 943 case SGTL5000_CHIP_DIG_POWER: 944 case SGTL5000_CHIP_CLK_CTRL: 945 case SGTL5000_CHIP_I2S_CTRL: 946 case SGTL5000_CHIP_SSS_CTRL: 947 case SGTL5000_CHIP_ADCDAC_CTRL: 948 case SGTL5000_CHIP_DAC_VOL: 949 case SGTL5000_CHIP_PAD_STRENGTH: 950 case SGTL5000_CHIP_ANA_ADC_CTRL: 951 case SGTL5000_CHIP_ANA_HP_CTRL: 952 case SGTL5000_CHIP_ANA_CTRL: 953 case SGTL5000_CHIP_LINREG_CTRL: 954 case SGTL5000_CHIP_REF_CTRL: 955 case SGTL5000_CHIP_MIC_CTRL: 956 case SGTL5000_CHIP_LINE_OUT_CTRL: 957 case SGTL5000_CHIP_LINE_OUT_VOL: 958 case SGTL5000_CHIP_ANA_POWER: 959 case SGTL5000_CHIP_PLL_CTRL: 960 case SGTL5000_CHIP_CLK_TOP_CTRL: 961 case SGTL5000_CHIP_ANA_STATUS: 962 case SGTL5000_CHIP_SHORT_CTRL: 963 case SGTL5000_CHIP_ANA_TEST2: 964 case SGTL5000_DAP_CTRL: 965 case SGTL5000_DAP_PEQ: 966 case SGTL5000_DAP_BASS_ENHANCE: 967 case SGTL5000_DAP_BASS_ENHANCE_CTRL: 968 case SGTL5000_DAP_AUDIO_EQ: 969 case SGTL5000_DAP_SURROUND: 970 case SGTL5000_DAP_FLT_COEF_ACCESS: 971 case SGTL5000_DAP_COEF_WR_B0_MSB: 972 case SGTL5000_DAP_COEF_WR_B0_LSB: 973 case SGTL5000_DAP_EQ_BASS_BAND0: 974 case SGTL5000_DAP_EQ_BASS_BAND1: 975 case SGTL5000_DAP_EQ_BASS_BAND2: 976 case SGTL5000_DAP_EQ_BASS_BAND3: 977 case SGTL5000_DAP_EQ_BASS_BAND4: 978 case SGTL5000_DAP_MAIN_CHAN: 979 case SGTL5000_DAP_MIX_CHAN: 980 case SGTL5000_DAP_AVC_CTRL: 981 case SGTL5000_DAP_AVC_THRESHOLD: 982 case SGTL5000_DAP_AVC_ATTACK: 983 case SGTL5000_DAP_AVC_DECAY: 984 case SGTL5000_DAP_COEF_WR_B1_MSB: 985 case SGTL5000_DAP_COEF_WR_B1_LSB: 986 case SGTL5000_DAP_COEF_WR_B2_MSB: 987 case SGTL5000_DAP_COEF_WR_B2_LSB: 988 case SGTL5000_DAP_COEF_WR_A1_MSB: 989 case SGTL5000_DAP_COEF_WR_A1_LSB: 990 case SGTL5000_DAP_COEF_WR_A2_MSB: 991 case SGTL5000_DAP_COEF_WR_A2_LSB: 992 return true; 993 994 default: 995 return false; 996 } 997 } 998 999 /* 1000 * This precalculated table contains all (vag_val * 100 / lo_calcntrl) results 1001 * to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL 1002 * The calculatation was done for all possible register values which 1003 * is the array index and the following formula: 10^((idx−15)/40) * 100 1004 */ 1005 static const u8 vol_quot_table[] = { 1006 42, 45, 47, 50, 53, 56, 60, 63, 1007 67, 71, 75, 79, 84, 89, 94, 100, 1008 106, 112, 119, 126, 133, 141, 150, 158, 1009 168, 178, 188, 200, 211, 224, 237, 251 1010 }; 1011 1012 /* 1013 * sgtl5000 has 3 internal power supplies: 1014 * 1. VAG, normally set to vdda/2 1015 * 2. charge pump, set to different value 1016 * according to voltage of vdda and vddio 1017 * 3. line out VAG, normally set to vddio/2 1018 * 1019 * and should be set according to: 1020 * 1. vddd provided by external or not 1021 * 2. vdda and vddio voltage value. > 3.1v or not 1022 */ 1023 static int sgtl5000_set_power_regs(struct snd_soc_codec *codec) 1024 { 1025 int vddd; 1026 int vdda; 1027 int vddio; 1028 u16 ana_pwr; 1029 u16 lreg_ctrl; 1030 int vag; 1031 int lo_vag; 1032 int vol_quot; 1033 int lo_vol; 1034 size_t i; 1035 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 1036 1037 vdda = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer); 1038 vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer); 1039 vddd = (sgtl5000->num_supplies > VDDD) 1040 ? regulator_get_voltage(sgtl5000->supplies[VDDD].consumer) 1041 : LDO_VOLTAGE; 1042 1043 vdda = vdda / 1000; 1044 vddio = vddio / 1000; 1045 vddd = vddd / 1000; 1046 1047 if (vdda <= 0 || vddio <= 0 || vddd < 0) { 1048 dev_err(codec->dev, "regulator voltage not set correctly\n"); 1049 1050 return -EINVAL; 1051 } 1052 1053 /* according to datasheet, maximum voltage of supplies */ 1054 if (vdda > 3600 || vddio > 3600 || vddd > 1980) { 1055 dev_err(codec->dev, 1056 "exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n", 1057 vdda, vddio, vddd); 1058 1059 return -EINVAL; 1060 } 1061 1062 /* reset value */ 1063 ana_pwr = snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER); 1064 ana_pwr |= SGTL5000_DAC_STEREO | 1065 SGTL5000_ADC_STEREO | 1066 SGTL5000_REFTOP_POWERUP; 1067 lreg_ctrl = snd_soc_read(codec, SGTL5000_CHIP_LINREG_CTRL); 1068 1069 if (vddio < 3100 && vdda < 3100) { 1070 /* enable internal oscillator used for charge pump */ 1071 snd_soc_update_bits(codec, SGTL5000_CHIP_CLK_TOP_CTRL, 1072 SGTL5000_INT_OSC_EN, 1073 SGTL5000_INT_OSC_EN); 1074 /* Enable VDDC charge pump */ 1075 ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP; 1076 } else if (vddio >= 3100 && vdda >= 3100) { 1077 ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP; 1078 /* VDDC use VDDIO rail */ 1079 lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD; 1080 lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO << 1081 SGTL5000_VDDC_MAN_ASSN_SHIFT; 1082 } 1083 1084 snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl); 1085 1086 snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER, ana_pwr); 1087 1088 /* 1089 * set ADC/DAC VAG to vdda / 2, 1090 * should stay in range (0.8v, 1.575v) 1091 */ 1092 vag = vdda / 2; 1093 if (vag <= SGTL5000_ANA_GND_BASE) 1094 vag = 0; 1095 else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP * 1096 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT)) 1097 vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT; 1098 else 1099 vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP; 1100 1101 snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL, 1102 SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT); 1103 1104 /* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */ 1105 lo_vag = vddio / 2; 1106 if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE) 1107 lo_vag = 0; 1108 else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE + 1109 SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX) 1110 lo_vag = SGTL5000_LINE_OUT_GND_MAX; 1111 else 1112 lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) / 1113 SGTL5000_LINE_OUT_GND_STP; 1114 1115 snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_CTRL, 1116 SGTL5000_LINE_OUT_CURRENT_MASK | 1117 SGTL5000_LINE_OUT_GND_MASK, 1118 lo_vag << SGTL5000_LINE_OUT_GND_SHIFT | 1119 SGTL5000_LINE_OUT_CURRENT_360u << 1120 SGTL5000_LINE_OUT_CURRENT_SHIFT); 1121 1122 /* 1123 * Set lineout output level in range (0..31) 1124 * the same value is used for right and left channel 1125 * 1126 * Searching for a suitable index solving this formula: 1127 * idx = 40 * log10(vag_val / lo_cagcntrl) + 15 1128 */ 1129 vol_quot = (vag * 100) / lo_vag; 1130 lo_vol = 0; 1131 for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) { 1132 if (vol_quot >= vol_quot_table[i]) 1133 lo_vol = i; 1134 else 1135 break; 1136 } 1137 1138 snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_VOL, 1139 SGTL5000_LINE_OUT_VOL_RIGHT_MASK | 1140 SGTL5000_LINE_OUT_VOL_LEFT_MASK, 1141 lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT | 1142 lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT); 1143 1144 return 0; 1145 } 1146 1147 static int sgtl5000_enable_regulators(struct i2c_client *client) 1148 { 1149 int ret; 1150 int i; 1151 int external_vddd = 0; 1152 struct regulator *vddd; 1153 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client); 1154 1155 for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++) 1156 sgtl5000->supplies[i].supply = supply_names[i]; 1157 1158 vddd = regulator_get_optional(&client->dev, "VDDD"); 1159 if (IS_ERR(vddd)) { 1160 /* See if it's just not registered yet */ 1161 if (PTR_ERR(vddd) == -EPROBE_DEFER) 1162 return -EPROBE_DEFER; 1163 } else { 1164 external_vddd = 1; 1165 regulator_put(vddd); 1166 } 1167 1168 sgtl5000->num_supplies = ARRAY_SIZE(sgtl5000->supplies) 1169 - 1 + external_vddd; 1170 ret = regulator_bulk_get(&client->dev, sgtl5000->num_supplies, 1171 sgtl5000->supplies); 1172 if (ret) 1173 return ret; 1174 1175 ret = regulator_bulk_enable(sgtl5000->num_supplies, 1176 sgtl5000->supplies); 1177 if (!ret) 1178 usleep_range(10, 20); 1179 else 1180 regulator_bulk_free(sgtl5000->num_supplies, 1181 sgtl5000->supplies); 1182 1183 return ret; 1184 } 1185 1186 static int sgtl5000_probe(struct snd_soc_codec *codec) 1187 { 1188 int ret; 1189 u16 reg; 1190 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 1191 1192 /* power up sgtl5000 */ 1193 ret = sgtl5000_set_power_regs(codec); 1194 if (ret) 1195 goto err; 1196 1197 /* enable small pop, introduce 400ms delay in turning off */ 1198 snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL, 1199 SGTL5000_SMALL_POP, 1); 1200 1201 /* disable short cut detector */ 1202 snd_soc_write(codec, SGTL5000_CHIP_SHORT_CTRL, 0); 1203 1204 /* 1205 * set i2s as default input of sound switch 1206 * TODO: add sound switch to control and dapm widge. 1207 */ 1208 snd_soc_write(codec, SGTL5000_CHIP_SSS_CTRL, 1209 SGTL5000_DAC_SEL_I2S_IN << SGTL5000_DAC_SEL_SHIFT); 1210 snd_soc_write(codec, SGTL5000_CHIP_DIG_POWER, 1211 SGTL5000_ADC_EN | SGTL5000_DAC_EN); 1212 1213 /* enable dac volume ramp by default */ 1214 snd_soc_write(codec, SGTL5000_CHIP_ADCDAC_CTRL, 1215 SGTL5000_DAC_VOL_RAMP_EN | 1216 SGTL5000_DAC_MUTE_RIGHT | 1217 SGTL5000_DAC_MUTE_LEFT); 1218 1219 reg = ((sgtl5000->lrclk_strength) << SGTL5000_PAD_I2S_LRCLK_SHIFT | 0x5f); 1220 snd_soc_write(codec, SGTL5000_CHIP_PAD_STRENGTH, reg); 1221 1222 snd_soc_write(codec, SGTL5000_CHIP_ANA_CTRL, 1223 SGTL5000_HP_ZCD_EN | 1224 SGTL5000_ADC_ZCD_EN); 1225 1226 snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL, 1227 SGTL5000_BIAS_R_MASK, 1228 sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT); 1229 1230 snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL, 1231 SGTL5000_BIAS_VOLT_MASK, 1232 sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT); 1233 /* 1234 * disable DAP 1235 * TODO: 1236 * Enable DAP in kcontrol and dapm. 1237 */ 1238 snd_soc_write(codec, SGTL5000_DAP_CTRL, 0); 1239 1240 return 0; 1241 1242 err: 1243 return ret; 1244 } 1245 1246 static int sgtl5000_remove(struct snd_soc_codec *codec) 1247 { 1248 return 0; 1249 } 1250 1251 static const struct snd_soc_codec_driver sgtl5000_driver = { 1252 .probe = sgtl5000_probe, 1253 .remove = sgtl5000_remove, 1254 .set_bias_level = sgtl5000_set_bias_level, 1255 .suspend_bias_off = true, 1256 .component_driver = { 1257 .controls = sgtl5000_snd_controls, 1258 .num_controls = ARRAY_SIZE(sgtl5000_snd_controls), 1259 .dapm_widgets = sgtl5000_dapm_widgets, 1260 .num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets), 1261 .dapm_routes = sgtl5000_dapm_routes, 1262 .num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes), 1263 }, 1264 }; 1265 1266 static const struct regmap_config sgtl5000_regmap = { 1267 .reg_bits = 16, 1268 .val_bits = 16, 1269 .reg_stride = 2, 1270 1271 .max_register = SGTL5000_MAX_REG_OFFSET, 1272 .volatile_reg = sgtl5000_volatile, 1273 .readable_reg = sgtl5000_readable, 1274 1275 .cache_type = REGCACHE_RBTREE, 1276 .reg_defaults = sgtl5000_reg_defaults, 1277 .num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults), 1278 }; 1279 1280 /* 1281 * Write all the default values from sgtl5000_reg_defaults[] array into the 1282 * sgtl5000 registers, to make sure we always start with the sane registers 1283 * values as stated in the datasheet. 1284 * 1285 * Since sgtl5000 does not have a reset line, nor a reset command in software, 1286 * we follow this approach to guarantee we always start from the default values 1287 * and avoid problems like, not being able to probe after an audio playback 1288 * followed by a system reset or a 'reboot' command in Linux 1289 */ 1290 static void sgtl5000_fill_defaults(struct i2c_client *client) 1291 { 1292 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client); 1293 int i, ret, val, index; 1294 1295 for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) { 1296 val = sgtl5000_reg_defaults[i].def; 1297 index = sgtl5000_reg_defaults[i].reg; 1298 ret = regmap_write(sgtl5000->regmap, index, val); 1299 if (ret) 1300 dev_err(&client->dev, 1301 "%s: error %d setting reg 0x%02x to 0x%04x\n", 1302 __func__, ret, index, val); 1303 } 1304 } 1305 1306 static int sgtl5000_i2c_probe(struct i2c_client *client, 1307 const struct i2c_device_id *id) 1308 { 1309 struct sgtl5000_priv *sgtl5000; 1310 int ret, reg, rev; 1311 struct device_node *np = client->dev.of_node; 1312 u32 value; 1313 u16 ana_pwr; 1314 1315 sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL); 1316 if (!sgtl5000) 1317 return -ENOMEM; 1318 1319 i2c_set_clientdata(client, sgtl5000); 1320 1321 ret = sgtl5000_enable_regulators(client); 1322 if (ret) 1323 return ret; 1324 1325 sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap); 1326 if (IS_ERR(sgtl5000->regmap)) { 1327 ret = PTR_ERR(sgtl5000->regmap); 1328 dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret); 1329 goto disable_regs; 1330 } 1331 1332 sgtl5000->mclk = devm_clk_get(&client->dev, NULL); 1333 if (IS_ERR(sgtl5000->mclk)) { 1334 ret = PTR_ERR(sgtl5000->mclk); 1335 /* Defer the probe to see if the clk will be provided later */ 1336 if (ret == -ENOENT) 1337 ret = -EPROBE_DEFER; 1338 1339 if (ret != -EPROBE_DEFER) 1340 dev_err(&client->dev, "Failed to get mclock: %d\n", 1341 ret); 1342 goto disable_regs; 1343 } 1344 1345 ret = clk_prepare_enable(sgtl5000->mclk); 1346 if (ret) { 1347 dev_err(&client->dev, "Error enabling clock %d\n", ret); 1348 goto disable_regs; 1349 } 1350 1351 /* Need 8 clocks before I2C accesses */ 1352 udelay(1); 1353 1354 /* read chip information */ 1355 ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, ®); 1356 if (ret) { 1357 dev_err(&client->dev, "Error reading chip id %d\n", ret); 1358 goto disable_clk; 1359 } 1360 1361 if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) != 1362 SGTL5000_PARTID_PART_ID) { 1363 dev_err(&client->dev, 1364 "Device with ID register %x is not a sgtl5000\n", reg); 1365 ret = -ENODEV; 1366 goto disable_clk; 1367 } 1368 1369 rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT; 1370 dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev); 1371 sgtl5000->revision = rev; 1372 1373 /* reconfigure the clocks in case we're using the PLL */ 1374 ret = regmap_write(sgtl5000->regmap, 1375 SGTL5000_CHIP_CLK_CTRL, 1376 SGTL5000_CHIP_CLK_CTRL_DEFAULT); 1377 if (ret) 1378 dev_err(&client->dev, 1379 "Error %d initializing CHIP_CLK_CTRL\n", ret); 1380 1381 /* Follow section 2.2.1.1 of AN3663 */ 1382 ana_pwr = SGTL5000_ANA_POWER_DEFAULT; 1383 if (sgtl5000->num_supplies <= VDDD) { 1384 /* internal VDDD at 1.2V */ 1385 ret = regmap_update_bits(sgtl5000->regmap, 1386 SGTL5000_CHIP_LINREG_CTRL, 1387 SGTL5000_LINREG_VDDD_MASK, 1388 LINREG_VDDD); 1389 if (ret) 1390 dev_err(&client->dev, 1391 "Error %d setting LINREG_VDDD\n", ret); 1392 1393 ana_pwr |= SGTL5000_LINEREG_D_POWERUP; 1394 dev_info(&client->dev, 1395 "Using internal LDO instead of VDDD: check ER1 erratum\n"); 1396 } else { 1397 /* using external LDO for VDDD 1398 * Clear startup powerup and simple powerup 1399 * bits to save power 1400 */ 1401 ana_pwr &= ~(SGTL5000_STARTUP_POWERUP 1402 | SGTL5000_LINREG_SIMPLE_POWERUP); 1403 dev_dbg(&client->dev, "Using external VDDD\n"); 1404 } 1405 ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, ana_pwr); 1406 if (ret) 1407 dev_err(&client->dev, 1408 "Error %d setting CHIP_ANA_POWER to %04x\n", 1409 ret, ana_pwr); 1410 1411 if (np) { 1412 if (!of_property_read_u32(np, 1413 "micbias-resistor-k-ohms", &value)) { 1414 switch (value) { 1415 case SGTL5000_MICBIAS_OFF: 1416 sgtl5000->micbias_resistor = 0; 1417 break; 1418 case SGTL5000_MICBIAS_2K: 1419 sgtl5000->micbias_resistor = 1; 1420 break; 1421 case SGTL5000_MICBIAS_4K: 1422 sgtl5000->micbias_resistor = 2; 1423 break; 1424 case SGTL5000_MICBIAS_8K: 1425 sgtl5000->micbias_resistor = 3; 1426 break; 1427 default: 1428 sgtl5000->micbias_resistor = 2; 1429 dev_err(&client->dev, 1430 "Unsuitable MicBias resistor\n"); 1431 } 1432 } else { 1433 /* default is 4Kohms */ 1434 sgtl5000->micbias_resistor = 2; 1435 } 1436 if (!of_property_read_u32(np, 1437 "micbias-voltage-m-volts", &value)) { 1438 /* 1250mV => 0 */ 1439 /* steps of 250mV */ 1440 if ((value >= 1250) && (value <= 3000)) 1441 sgtl5000->micbias_voltage = (value / 250) - 5; 1442 else { 1443 sgtl5000->micbias_voltage = 0; 1444 dev_err(&client->dev, 1445 "Unsuitable MicBias voltage\n"); 1446 } 1447 } else { 1448 sgtl5000->micbias_voltage = 0; 1449 } 1450 } 1451 1452 sgtl5000->lrclk_strength = I2S_LRCLK_STRENGTH_LOW; 1453 if (!of_property_read_u32(np, "lrclk-strength", &value)) { 1454 if (value > I2S_LRCLK_STRENGTH_HIGH) 1455 value = I2S_LRCLK_STRENGTH_LOW; 1456 sgtl5000->lrclk_strength = value; 1457 } 1458 1459 /* Ensure sgtl5000 will start with sane register values */ 1460 sgtl5000_fill_defaults(client); 1461 1462 ret = snd_soc_register_codec(&client->dev, 1463 &sgtl5000_driver, &sgtl5000_dai, 1); 1464 if (ret) 1465 goto disable_clk; 1466 1467 return 0; 1468 1469 disable_clk: 1470 clk_disable_unprepare(sgtl5000->mclk); 1471 1472 disable_regs: 1473 regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies); 1474 regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies); 1475 1476 return ret; 1477 } 1478 1479 static int sgtl5000_i2c_remove(struct i2c_client *client) 1480 { 1481 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client); 1482 1483 snd_soc_unregister_codec(&client->dev); 1484 clk_disable_unprepare(sgtl5000->mclk); 1485 regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies); 1486 regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies); 1487 1488 return 0; 1489 } 1490 1491 static const struct i2c_device_id sgtl5000_id[] = { 1492 {"sgtl5000", 0}, 1493 {}, 1494 }; 1495 1496 MODULE_DEVICE_TABLE(i2c, sgtl5000_id); 1497 1498 static const struct of_device_id sgtl5000_dt_ids[] = { 1499 { .compatible = "fsl,sgtl5000", }, 1500 { /* sentinel */ } 1501 }; 1502 MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids); 1503 1504 static struct i2c_driver sgtl5000_i2c_driver = { 1505 .driver = { 1506 .name = "sgtl5000", 1507 .of_match_table = sgtl5000_dt_ids, 1508 }, 1509 .probe = sgtl5000_i2c_probe, 1510 .remove = sgtl5000_i2c_remove, 1511 .id_table = sgtl5000_id, 1512 }; 1513 1514 module_i2c_driver(sgtl5000_i2c_driver); 1515 1516 MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver"); 1517 MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>"); 1518 MODULE_LICENSE("GPL"); 1519