1 /* 2 * sgtl5000.c -- SGTL5000 ALSA SoC Audio driver 3 * 4 * Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/moduleparam.h> 13 #include <linux/init.h> 14 #include <linux/delay.h> 15 #include <linux/slab.h> 16 #include <linux/pm.h> 17 #include <linux/i2c.h> 18 #include <linux/clk.h> 19 #include <linux/regmap.h> 20 #include <linux/regulator/driver.h> 21 #include <linux/regulator/machine.h> 22 #include <linux/regulator/consumer.h> 23 #include <linux/of_device.h> 24 #include <sound/core.h> 25 #include <sound/tlv.h> 26 #include <sound/pcm.h> 27 #include <sound/pcm_params.h> 28 #include <sound/soc.h> 29 #include <sound/soc-dapm.h> 30 #include <sound/initval.h> 31 32 #include "sgtl5000.h" 33 34 #define SGTL5000_DAP_REG_OFFSET 0x0100 35 #define SGTL5000_MAX_REG_OFFSET 0x013A 36 37 /* default value of sgtl5000 registers */ 38 static const struct reg_default sgtl5000_reg_defaults[] = { 39 { SGTL5000_CHIP_DIG_POWER, 0x0000 }, 40 { SGTL5000_CHIP_CLK_CTRL, 0x0008 }, 41 { SGTL5000_CHIP_I2S_CTRL, 0x0010 }, 42 { SGTL5000_CHIP_SSS_CTRL, 0x0010 }, 43 { SGTL5000_CHIP_ADCDAC_CTRL, 0x020c }, 44 { SGTL5000_CHIP_DAC_VOL, 0x3c3c }, 45 { SGTL5000_CHIP_PAD_STRENGTH, 0x015f }, 46 { SGTL5000_CHIP_ANA_ADC_CTRL, 0x0000 }, 47 { SGTL5000_CHIP_ANA_HP_CTRL, 0x1818 }, 48 { SGTL5000_CHIP_ANA_CTRL, 0x0111 }, 49 { SGTL5000_CHIP_LINREG_CTRL, 0x0000 }, 50 { SGTL5000_CHIP_REF_CTRL, 0x0000 }, 51 { SGTL5000_CHIP_MIC_CTRL, 0x0000 }, 52 { SGTL5000_CHIP_LINE_OUT_CTRL, 0x0000 }, 53 { SGTL5000_CHIP_LINE_OUT_VOL, 0x0404 }, 54 { SGTL5000_CHIP_ANA_POWER, 0x7060 }, 55 { SGTL5000_CHIP_PLL_CTRL, 0x5000 }, 56 { SGTL5000_CHIP_CLK_TOP_CTRL, 0x0000 }, 57 { SGTL5000_CHIP_ANA_STATUS, 0x0000 }, 58 { SGTL5000_CHIP_SHORT_CTRL, 0x0000 }, 59 { SGTL5000_CHIP_ANA_TEST2, 0x0000 }, 60 { SGTL5000_DAP_CTRL, 0x0000 }, 61 { SGTL5000_DAP_PEQ, 0x0000 }, 62 { SGTL5000_DAP_BASS_ENHANCE, 0x0040 }, 63 { SGTL5000_DAP_BASS_ENHANCE_CTRL, 0x051f }, 64 { SGTL5000_DAP_AUDIO_EQ, 0x0000 }, 65 { SGTL5000_DAP_SURROUND, 0x0040 }, 66 { SGTL5000_DAP_EQ_BASS_BAND0, 0x002f }, 67 { SGTL5000_DAP_EQ_BASS_BAND1, 0x002f }, 68 { SGTL5000_DAP_EQ_BASS_BAND2, 0x002f }, 69 { SGTL5000_DAP_EQ_BASS_BAND3, 0x002f }, 70 { SGTL5000_DAP_EQ_BASS_BAND4, 0x002f }, 71 { SGTL5000_DAP_MAIN_CHAN, 0x8000 }, 72 { SGTL5000_DAP_MIX_CHAN, 0x0000 }, 73 { SGTL5000_DAP_AVC_CTRL, 0x0510 }, 74 { SGTL5000_DAP_AVC_THRESHOLD, 0x1473 }, 75 { SGTL5000_DAP_AVC_ATTACK, 0x0028 }, 76 { SGTL5000_DAP_AVC_DECAY, 0x0050 }, 77 }; 78 79 /* regulator supplies for sgtl5000, VDDD is an optional external supply */ 80 enum sgtl5000_regulator_supplies { 81 VDDA, 82 VDDIO, 83 VDDD, 84 SGTL5000_SUPPLY_NUM 85 }; 86 87 /* vddd is optional supply */ 88 static const char *supply_names[SGTL5000_SUPPLY_NUM] = { 89 "VDDA", 90 "VDDIO", 91 "VDDD" 92 }; 93 94 #define LDO_CONSUMER_NAME "VDDD_LDO" 95 #define LDO_VOLTAGE 1200000 96 97 static struct regulator_consumer_supply ldo_consumer[] = { 98 REGULATOR_SUPPLY(LDO_CONSUMER_NAME, NULL), 99 }; 100 101 static struct regulator_init_data ldo_init_data = { 102 .constraints = { 103 .min_uV = 1200000, 104 .max_uV = 1200000, 105 .valid_modes_mask = REGULATOR_MODE_NORMAL, 106 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 107 }, 108 .num_consumer_supplies = 1, 109 .consumer_supplies = &ldo_consumer[0], 110 }; 111 112 /* 113 * sgtl5000 internal ldo regulator, 114 * enabled when VDDD not provided 115 */ 116 struct ldo_regulator { 117 struct regulator_desc desc; 118 struct regulator_dev *dev; 119 int voltage; 120 void *codec_data; 121 bool enabled; 122 }; 123 124 /* sgtl5000 private structure in codec */ 125 struct sgtl5000_priv { 126 int sysclk; /* sysclk rate */ 127 int master; /* i2s master or not */ 128 int fmt; /* i2s data format */ 129 struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM]; 130 struct ldo_regulator *ldo; 131 struct regmap *regmap; 132 struct clk *mclk; 133 int revision; 134 }; 135 136 /* 137 * mic_bias power on/off share the same register bits with 138 * output impedance of mic bias, when power on mic bias, we 139 * need reclaim it to impedance value. 140 * 0x0 = Powered off 141 * 0x1 = 2Kohm 142 * 0x2 = 4Kohm 143 * 0x3 = 8Kohm 144 */ 145 static int mic_bias_event(struct snd_soc_dapm_widget *w, 146 struct snd_kcontrol *kcontrol, int event) 147 { 148 switch (event) { 149 case SND_SOC_DAPM_POST_PMU: 150 /* change mic bias resistor to 4Kohm */ 151 snd_soc_update_bits(w->codec, SGTL5000_CHIP_MIC_CTRL, 152 SGTL5000_BIAS_R_MASK, 153 SGTL5000_BIAS_R_4k << SGTL5000_BIAS_R_SHIFT); 154 break; 155 156 case SND_SOC_DAPM_PRE_PMD: 157 snd_soc_update_bits(w->codec, SGTL5000_CHIP_MIC_CTRL, 158 SGTL5000_BIAS_R_MASK, 0); 159 break; 160 } 161 return 0; 162 } 163 164 /* 165 * As manual described, ADC/DAC only works when VAG powerup, 166 * So enabled VAG before ADC/DAC up. 167 * In power down case, we need wait 400ms when vag fully ramped down. 168 */ 169 static int power_vag_event(struct snd_soc_dapm_widget *w, 170 struct snd_kcontrol *kcontrol, int event) 171 { 172 const u32 mask = SGTL5000_DAC_POWERUP | SGTL5000_ADC_POWERUP; 173 174 switch (event) { 175 case SND_SOC_DAPM_POST_PMU: 176 snd_soc_update_bits(w->codec, SGTL5000_CHIP_ANA_POWER, 177 SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP); 178 break; 179 180 case SND_SOC_DAPM_PRE_PMD: 181 /* 182 * Don't clear VAG_POWERUP, when both DAC and ADC are 183 * operational to prevent inadvertently starving the 184 * other one of them. 185 */ 186 if ((snd_soc_read(w->codec, SGTL5000_CHIP_ANA_POWER) & 187 mask) != mask) { 188 snd_soc_update_bits(w->codec, SGTL5000_CHIP_ANA_POWER, 189 SGTL5000_VAG_POWERUP, 0); 190 msleep(400); 191 } 192 break; 193 default: 194 break; 195 } 196 197 return 0; 198 } 199 200 /* input sources for ADC */ 201 static const char *adc_mux_text[] = { 202 "MIC_IN", "LINE_IN" 203 }; 204 205 static SOC_ENUM_SINGLE_DECL(adc_enum, 206 SGTL5000_CHIP_ANA_CTRL, 2, 207 adc_mux_text); 208 209 static const struct snd_kcontrol_new adc_mux = 210 SOC_DAPM_ENUM("Capture Mux", adc_enum); 211 212 /* input sources for DAC */ 213 static const char *dac_mux_text[] = { 214 "DAC", "LINE_IN" 215 }; 216 217 static SOC_ENUM_SINGLE_DECL(dac_enum, 218 SGTL5000_CHIP_ANA_CTRL, 6, 219 dac_mux_text); 220 221 static const struct snd_kcontrol_new dac_mux = 222 SOC_DAPM_ENUM("Headphone Mux", dac_enum); 223 224 static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = { 225 SND_SOC_DAPM_INPUT("LINE_IN"), 226 SND_SOC_DAPM_INPUT("MIC_IN"), 227 228 SND_SOC_DAPM_OUTPUT("HP_OUT"), 229 SND_SOC_DAPM_OUTPUT("LINE_OUT"), 230 231 SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0, 232 mic_bias_event, 233 SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), 234 235 SND_SOC_DAPM_PGA("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0), 236 SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0), 237 238 SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux), 239 SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &dac_mux), 240 241 /* aif for i2s input */ 242 SND_SOC_DAPM_AIF_IN("AIFIN", "Playback", 243 0, SGTL5000_CHIP_DIG_POWER, 244 0, 0), 245 246 /* aif for i2s output */ 247 SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture", 248 0, SGTL5000_CHIP_DIG_POWER, 249 1, 0), 250 251 SND_SOC_DAPM_ADC("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0), 252 SND_SOC_DAPM_DAC("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0), 253 254 SND_SOC_DAPM_PRE("VAG_POWER_PRE", power_vag_event), 255 SND_SOC_DAPM_POST("VAG_POWER_POST", power_vag_event), 256 }; 257 258 /* routes for sgtl5000 */ 259 static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = { 260 {"Capture Mux", "LINE_IN", "LINE_IN"}, /* line_in --> adc_mux */ 261 {"Capture Mux", "MIC_IN", "MIC_IN"}, /* mic_in --> adc_mux */ 262 263 {"ADC", NULL, "Capture Mux"}, /* adc_mux --> adc */ 264 {"AIFOUT", NULL, "ADC"}, /* adc --> i2s_out */ 265 266 {"DAC", NULL, "AIFIN"}, /* i2s-->dac,skip audio mux */ 267 {"Headphone Mux", "DAC", "DAC"}, /* dac --> hp_mux */ 268 {"LO", NULL, "DAC"}, /* dac --> line_out */ 269 270 {"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */ 271 {"HP", NULL, "Headphone Mux"}, /* hp_mux --> hp */ 272 273 {"LINE_OUT", NULL, "LO"}, 274 {"HP_OUT", NULL, "HP"}, 275 }; 276 277 /* custom function to fetch info of PCM playback volume */ 278 static int dac_info_volsw(struct snd_kcontrol *kcontrol, 279 struct snd_ctl_elem_info *uinfo) 280 { 281 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 282 uinfo->count = 2; 283 uinfo->value.integer.min = 0; 284 uinfo->value.integer.max = 0xfc - 0x3c; 285 return 0; 286 } 287 288 /* 289 * custom function to get of PCM playback volume 290 * 291 * dac volume register 292 * 15-------------8-7--------------0 293 * | R channel vol | L channel vol | 294 * ------------------------------- 295 * 296 * PCM volume with 0.5017 dB steps from 0 to -90 dB 297 * 298 * register values map to dB 299 * 0x3B and less = Reserved 300 * 0x3C = 0 dB 301 * 0x3D = -0.5 dB 302 * 0xF0 = -90 dB 303 * 0xFC and greater = Muted 304 * 305 * register value map to userspace value 306 * 307 * register value 0x3c(0dB) 0xf0(-90dB)0xfc 308 * ------------------------------ 309 * userspace value 0xc0 0 310 */ 311 static int dac_get_volsw(struct snd_kcontrol *kcontrol, 312 struct snd_ctl_elem_value *ucontrol) 313 { 314 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); 315 int reg; 316 int l; 317 int r; 318 319 reg = snd_soc_read(codec, SGTL5000_CHIP_DAC_VOL); 320 321 /* get left channel volume */ 322 l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT; 323 324 /* get right channel volume */ 325 r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT; 326 327 /* make sure value fall in (0x3c,0xfc) */ 328 l = clamp(l, 0x3c, 0xfc); 329 r = clamp(r, 0x3c, 0xfc); 330 331 /* invert it and map to userspace value */ 332 l = 0xfc - l; 333 r = 0xfc - r; 334 335 ucontrol->value.integer.value[0] = l; 336 ucontrol->value.integer.value[1] = r; 337 338 return 0; 339 } 340 341 /* 342 * custom function to put of PCM playback volume 343 * 344 * dac volume register 345 * 15-------------8-7--------------0 346 * | R channel vol | L channel vol | 347 * ------------------------------- 348 * 349 * PCM volume with 0.5017 dB steps from 0 to -90 dB 350 * 351 * register values map to dB 352 * 0x3B and less = Reserved 353 * 0x3C = 0 dB 354 * 0x3D = -0.5 dB 355 * 0xF0 = -90 dB 356 * 0xFC and greater = Muted 357 * 358 * userspace value map to register value 359 * 360 * userspace value 0xc0 0 361 * ------------------------------ 362 * register value 0x3c(0dB) 0xf0(-90dB)0xfc 363 */ 364 static int dac_put_volsw(struct snd_kcontrol *kcontrol, 365 struct snd_ctl_elem_value *ucontrol) 366 { 367 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); 368 int reg; 369 int l; 370 int r; 371 372 l = ucontrol->value.integer.value[0]; 373 r = ucontrol->value.integer.value[1]; 374 375 /* make sure userspace volume fall in (0, 0xfc-0x3c) */ 376 l = clamp(l, 0, 0xfc - 0x3c); 377 r = clamp(r, 0, 0xfc - 0x3c); 378 379 /* invert it, get the value can be set to register */ 380 l = 0xfc - l; 381 r = 0xfc - r; 382 383 /* shift to get the register value */ 384 reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT | 385 r << SGTL5000_DAC_VOL_RIGHT_SHIFT; 386 387 snd_soc_write(codec, SGTL5000_CHIP_DAC_VOL, reg); 388 389 return 0; 390 } 391 392 static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0); 393 394 /* tlv for mic gain, 0db 20db 30db 40db */ 395 static const unsigned int mic_gain_tlv[] = { 396 TLV_DB_RANGE_HEAD(2), 397 0, 0, TLV_DB_SCALE_ITEM(0, 0, 0), 398 1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0), 399 }; 400 401 /* tlv for hp volume, -51.5db to 12.0db, step .5db */ 402 static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0); 403 404 static const struct snd_kcontrol_new sgtl5000_snd_controls[] = { 405 /* SOC_DOUBLE_S8_TLV with invert */ 406 { 407 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 408 .name = "PCM Playback Volume", 409 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | 410 SNDRV_CTL_ELEM_ACCESS_READWRITE, 411 .info = dac_info_volsw, 412 .get = dac_get_volsw, 413 .put = dac_put_volsw, 414 }, 415 416 SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0), 417 SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)", 418 SGTL5000_CHIP_ANA_ADC_CTRL, 419 8, 1, 0, capture_6db_attenuate), 420 SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0), 421 422 SOC_DOUBLE_TLV("Headphone Playback Volume", 423 SGTL5000_CHIP_ANA_HP_CTRL, 424 0, 8, 425 0x7f, 1, 426 headphone_volume), 427 SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL, 428 5, 1, 0), 429 430 SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL, 431 0, 3, 0, mic_gain_tlv), 432 }; 433 434 /* mute the codec used by alsa core */ 435 static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute) 436 { 437 struct snd_soc_codec *codec = codec_dai->codec; 438 u16 adcdac_ctrl = SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT; 439 440 snd_soc_update_bits(codec, SGTL5000_CHIP_ADCDAC_CTRL, 441 adcdac_ctrl, mute ? adcdac_ctrl : 0); 442 443 return 0; 444 } 445 446 /* set codec format */ 447 static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) 448 { 449 struct snd_soc_codec *codec = codec_dai->codec; 450 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 451 u16 i2sctl = 0; 452 453 sgtl5000->master = 0; 454 /* 455 * i2s clock and frame master setting. 456 * ONLY support: 457 * - clock and frame slave, 458 * - clock and frame master 459 */ 460 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { 461 case SND_SOC_DAIFMT_CBS_CFS: 462 break; 463 case SND_SOC_DAIFMT_CBM_CFM: 464 i2sctl |= SGTL5000_I2S_MASTER; 465 sgtl5000->master = 1; 466 break; 467 default: 468 return -EINVAL; 469 } 470 471 /* setting i2s data format */ 472 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 473 case SND_SOC_DAIFMT_DSP_A: 474 i2sctl |= SGTL5000_I2S_MODE_PCM; 475 break; 476 case SND_SOC_DAIFMT_DSP_B: 477 i2sctl |= SGTL5000_I2S_MODE_PCM; 478 i2sctl |= SGTL5000_I2S_LRALIGN; 479 break; 480 case SND_SOC_DAIFMT_I2S: 481 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ; 482 break; 483 case SND_SOC_DAIFMT_RIGHT_J: 484 i2sctl |= SGTL5000_I2S_MODE_RJ; 485 i2sctl |= SGTL5000_I2S_LRPOL; 486 break; 487 case SND_SOC_DAIFMT_LEFT_J: 488 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ; 489 i2sctl |= SGTL5000_I2S_LRALIGN; 490 break; 491 default: 492 return -EINVAL; 493 } 494 495 sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK; 496 497 /* Clock inversion */ 498 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 499 case SND_SOC_DAIFMT_NB_NF: 500 break; 501 case SND_SOC_DAIFMT_IB_NF: 502 i2sctl |= SGTL5000_I2S_SCLK_INV; 503 break; 504 default: 505 return -EINVAL; 506 } 507 508 snd_soc_write(codec, SGTL5000_CHIP_I2S_CTRL, i2sctl); 509 510 return 0; 511 } 512 513 /* set codec sysclk */ 514 static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai, 515 int clk_id, unsigned int freq, int dir) 516 { 517 struct snd_soc_codec *codec = codec_dai->codec; 518 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 519 520 switch (clk_id) { 521 case SGTL5000_SYSCLK: 522 sgtl5000->sysclk = freq; 523 break; 524 default: 525 return -EINVAL; 526 } 527 528 return 0; 529 } 530 531 /* 532 * set clock according to i2s frame clock, 533 * sgtl5000 provide 2 clock sources. 534 * 1. sys_mclk. sample freq can only configure to 535 * 1/256, 1/384, 1/512 of sys_mclk. 536 * 2. pll. can derive any audio clocks. 537 * 538 * clock setting rules: 539 * 1. in slave mode, only sys_mclk can use. 540 * 2. as constraint by sys_mclk, sample freq should 541 * set to 32k, 44.1k and above. 542 * 3. using sys_mclk prefer to pll to save power. 543 */ 544 static int sgtl5000_set_clock(struct snd_soc_codec *codec, int frame_rate) 545 { 546 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 547 int clk_ctl = 0; 548 int sys_fs; /* sample freq */ 549 550 /* 551 * sample freq should be divided by frame clock, 552 * if frame clock lower than 44.1khz, sample feq should set to 553 * 32khz or 44.1khz. 554 */ 555 switch (frame_rate) { 556 case 8000: 557 case 16000: 558 sys_fs = 32000; 559 break; 560 case 11025: 561 case 22050: 562 sys_fs = 44100; 563 break; 564 default: 565 sys_fs = frame_rate; 566 break; 567 } 568 569 /* set divided factor of frame clock */ 570 switch (sys_fs / frame_rate) { 571 case 4: 572 clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT; 573 break; 574 case 2: 575 clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT; 576 break; 577 case 1: 578 clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT; 579 break; 580 default: 581 return -EINVAL; 582 } 583 584 /* set the sys_fs according to frame rate */ 585 switch (sys_fs) { 586 case 32000: 587 clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT; 588 break; 589 case 44100: 590 clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT; 591 break; 592 case 48000: 593 clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT; 594 break; 595 case 96000: 596 clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT; 597 break; 598 default: 599 dev_err(codec->dev, "frame rate %d not supported\n", 600 frame_rate); 601 return -EINVAL; 602 } 603 604 /* 605 * calculate the divider of mclk/sample_freq, 606 * factor of freq =96k can only be 256, since mclk in range (12m,27m) 607 */ 608 switch (sgtl5000->sysclk / sys_fs) { 609 case 256: 610 clk_ctl |= SGTL5000_MCLK_FREQ_256FS << 611 SGTL5000_MCLK_FREQ_SHIFT; 612 break; 613 case 384: 614 clk_ctl |= SGTL5000_MCLK_FREQ_384FS << 615 SGTL5000_MCLK_FREQ_SHIFT; 616 break; 617 case 512: 618 clk_ctl |= SGTL5000_MCLK_FREQ_512FS << 619 SGTL5000_MCLK_FREQ_SHIFT; 620 break; 621 default: 622 /* if mclk not satisify the divider, use pll */ 623 if (sgtl5000->master) { 624 clk_ctl |= SGTL5000_MCLK_FREQ_PLL << 625 SGTL5000_MCLK_FREQ_SHIFT; 626 } else { 627 dev_err(codec->dev, 628 "PLL not supported in slave mode\n"); 629 dev_err(codec->dev, "%d ratio is not supported. " 630 "SYS_MCLK needs to be 256, 384 or 512 * fs\n", 631 sgtl5000->sysclk / sys_fs); 632 return -EINVAL; 633 } 634 } 635 636 /* if using pll, please check manual 6.4.2 for detail */ 637 if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) { 638 u64 out, t; 639 int div2; 640 int pll_ctl; 641 unsigned int in, int_div, frac_div; 642 643 if (sgtl5000->sysclk > 17000000) { 644 div2 = 1; 645 in = sgtl5000->sysclk / 2; 646 } else { 647 div2 = 0; 648 in = sgtl5000->sysclk; 649 } 650 if (sys_fs == 44100) 651 out = 180633600; 652 else 653 out = 196608000; 654 t = do_div(out, in); 655 int_div = out; 656 t *= 2048; 657 do_div(t, in); 658 frac_div = t; 659 pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT | 660 frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT; 661 662 snd_soc_write(codec, SGTL5000_CHIP_PLL_CTRL, pll_ctl); 663 if (div2) 664 snd_soc_update_bits(codec, 665 SGTL5000_CHIP_CLK_TOP_CTRL, 666 SGTL5000_INPUT_FREQ_DIV2, 667 SGTL5000_INPUT_FREQ_DIV2); 668 else 669 snd_soc_update_bits(codec, 670 SGTL5000_CHIP_CLK_TOP_CTRL, 671 SGTL5000_INPUT_FREQ_DIV2, 672 0); 673 674 /* power up pll */ 675 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 676 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP, 677 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP); 678 679 /* if using pll, clk_ctrl must be set after pll power up */ 680 snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl); 681 } else { 682 /* otherwise, clk_ctrl must be set before pll power down */ 683 snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl); 684 685 /* power down pll */ 686 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 687 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP, 688 0); 689 } 690 691 return 0; 692 } 693 694 /* 695 * Set PCM DAI bit size and sample rate. 696 * input: params_rate, params_fmt 697 */ 698 static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream, 699 struct snd_pcm_hw_params *params, 700 struct snd_soc_dai *dai) 701 { 702 struct snd_soc_codec *codec = dai->codec; 703 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 704 int channels = params_channels(params); 705 int i2s_ctl = 0; 706 int stereo; 707 int ret; 708 709 /* sysclk should already set */ 710 if (!sgtl5000->sysclk) { 711 dev_err(codec->dev, "%s: set sysclk first!\n", __func__); 712 return -EFAULT; 713 } 714 715 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 716 stereo = SGTL5000_DAC_STEREO; 717 else 718 stereo = SGTL5000_ADC_STEREO; 719 720 /* set mono to save power */ 721 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, stereo, 722 channels == 1 ? 0 : stereo); 723 724 /* set codec clock base on lrclk */ 725 ret = sgtl5000_set_clock(codec, params_rate(params)); 726 if (ret) 727 return ret; 728 729 /* set i2s data format */ 730 switch (params_width(params)) { 731 case 16: 732 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J) 733 return -EINVAL; 734 i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT; 735 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS << 736 SGTL5000_I2S_SCLKFREQ_SHIFT; 737 break; 738 case 20: 739 i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT; 740 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << 741 SGTL5000_I2S_SCLKFREQ_SHIFT; 742 break; 743 case 24: 744 i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT; 745 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << 746 SGTL5000_I2S_SCLKFREQ_SHIFT; 747 break; 748 case 32: 749 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J) 750 return -EINVAL; 751 i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT; 752 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << 753 SGTL5000_I2S_SCLKFREQ_SHIFT; 754 break; 755 default: 756 return -EINVAL; 757 } 758 759 snd_soc_update_bits(codec, SGTL5000_CHIP_I2S_CTRL, 760 SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK, 761 i2s_ctl); 762 763 return 0; 764 } 765 766 #ifdef CONFIG_REGULATOR 767 static int ldo_regulator_is_enabled(struct regulator_dev *dev) 768 { 769 struct ldo_regulator *ldo = rdev_get_drvdata(dev); 770 771 return ldo->enabled; 772 } 773 774 static int ldo_regulator_enable(struct regulator_dev *dev) 775 { 776 struct ldo_regulator *ldo = rdev_get_drvdata(dev); 777 struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data; 778 int reg; 779 780 if (ldo_regulator_is_enabled(dev)) 781 return 0; 782 783 /* set regulator value firstly */ 784 reg = (1600 - ldo->voltage / 1000) / 50; 785 reg = clamp(reg, 0x0, 0xf); 786 787 /* amend the voltage value, unit: uV */ 788 ldo->voltage = (1600 - reg * 50) * 1000; 789 790 /* set voltage to register */ 791 snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL, 792 SGTL5000_LINREG_VDDD_MASK, reg); 793 794 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 795 SGTL5000_LINEREG_D_POWERUP, 796 SGTL5000_LINEREG_D_POWERUP); 797 798 /* when internal ldo enabled, simple digital power can be disabled */ 799 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 800 SGTL5000_LINREG_SIMPLE_POWERUP, 801 0); 802 803 ldo->enabled = 1; 804 return 0; 805 } 806 807 static int ldo_regulator_disable(struct regulator_dev *dev) 808 { 809 struct ldo_regulator *ldo = rdev_get_drvdata(dev); 810 struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data; 811 812 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 813 SGTL5000_LINEREG_D_POWERUP, 814 0); 815 816 /* clear voltage info */ 817 snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL, 818 SGTL5000_LINREG_VDDD_MASK, 0); 819 820 ldo->enabled = 0; 821 822 return 0; 823 } 824 825 static int ldo_regulator_get_voltage(struct regulator_dev *dev) 826 { 827 struct ldo_regulator *ldo = rdev_get_drvdata(dev); 828 829 return ldo->voltage; 830 } 831 832 static struct regulator_ops ldo_regulator_ops = { 833 .is_enabled = ldo_regulator_is_enabled, 834 .enable = ldo_regulator_enable, 835 .disable = ldo_regulator_disable, 836 .get_voltage = ldo_regulator_get_voltage, 837 }; 838 839 static int ldo_regulator_register(struct snd_soc_codec *codec, 840 struct regulator_init_data *init_data, 841 int voltage) 842 { 843 struct ldo_regulator *ldo; 844 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 845 struct regulator_config config = { }; 846 847 ldo = kzalloc(sizeof(struct ldo_regulator), GFP_KERNEL); 848 849 if (!ldo) 850 return -ENOMEM; 851 852 ldo->desc.name = kstrdup(dev_name(codec->dev), GFP_KERNEL); 853 if (!ldo->desc.name) { 854 kfree(ldo); 855 dev_err(codec->dev, "failed to allocate decs name memory\n"); 856 return -ENOMEM; 857 } 858 859 ldo->desc.type = REGULATOR_VOLTAGE; 860 ldo->desc.owner = THIS_MODULE; 861 ldo->desc.ops = &ldo_regulator_ops; 862 ldo->desc.n_voltages = 1; 863 864 ldo->codec_data = codec; 865 ldo->voltage = voltage; 866 867 config.dev = codec->dev; 868 config.driver_data = ldo; 869 config.init_data = init_data; 870 871 ldo->dev = regulator_register(&ldo->desc, &config); 872 if (IS_ERR(ldo->dev)) { 873 int ret = PTR_ERR(ldo->dev); 874 875 dev_err(codec->dev, "failed to register regulator\n"); 876 kfree(ldo->desc.name); 877 kfree(ldo); 878 879 return ret; 880 } 881 sgtl5000->ldo = ldo; 882 883 return 0; 884 } 885 886 static int ldo_regulator_remove(struct snd_soc_codec *codec) 887 { 888 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 889 struct ldo_regulator *ldo = sgtl5000->ldo; 890 891 if (!ldo) 892 return 0; 893 894 regulator_unregister(ldo->dev); 895 kfree(ldo->desc.name); 896 kfree(ldo); 897 898 return 0; 899 } 900 #else 901 static int ldo_regulator_register(struct snd_soc_codec *codec, 902 struct regulator_init_data *init_data, 903 int voltage) 904 { 905 dev_err(codec->dev, "this setup needs regulator support in the kernel\n"); 906 return -EINVAL; 907 } 908 909 static int ldo_regulator_remove(struct snd_soc_codec *codec) 910 { 911 return 0; 912 } 913 #endif 914 915 /* 916 * set dac bias 917 * common state changes: 918 * startup: 919 * off --> standby --> prepare --> on 920 * standby --> prepare --> on 921 * 922 * stop: 923 * on --> prepare --> standby 924 */ 925 static int sgtl5000_set_bias_level(struct snd_soc_codec *codec, 926 enum snd_soc_bias_level level) 927 { 928 int ret; 929 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 930 931 switch (level) { 932 case SND_SOC_BIAS_ON: 933 case SND_SOC_BIAS_PREPARE: 934 break; 935 case SND_SOC_BIAS_STANDBY: 936 if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) { 937 ret = regulator_bulk_enable( 938 ARRAY_SIZE(sgtl5000->supplies), 939 sgtl5000->supplies); 940 if (ret) 941 return ret; 942 udelay(10); 943 944 regcache_cache_only(sgtl5000->regmap, false); 945 946 ret = regcache_sync(sgtl5000->regmap); 947 if (ret != 0) { 948 dev_err(codec->dev, 949 "Failed to restore cache: %d\n", ret); 950 951 regcache_cache_only(sgtl5000->regmap, true); 952 regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies), 953 sgtl5000->supplies); 954 955 return ret; 956 } 957 } 958 959 break; 960 case SND_SOC_BIAS_OFF: 961 regcache_cache_only(sgtl5000->regmap, true); 962 regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies), 963 sgtl5000->supplies); 964 break; 965 } 966 967 codec->dapm.bias_level = level; 968 return 0; 969 } 970 971 #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\ 972 SNDRV_PCM_FMTBIT_S20_3LE |\ 973 SNDRV_PCM_FMTBIT_S24_LE |\ 974 SNDRV_PCM_FMTBIT_S32_LE) 975 976 static const struct snd_soc_dai_ops sgtl5000_ops = { 977 .hw_params = sgtl5000_pcm_hw_params, 978 .digital_mute = sgtl5000_digital_mute, 979 .set_fmt = sgtl5000_set_dai_fmt, 980 .set_sysclk = sgtl5000_set_dai_sysclk, 981 }; 982 983 static struct snd_soc_dai_driver sgtl5000_dai = { 984 .name = "sgtl5000", 985 .playback = { 986 .stream_name = "Playback", 987 .channels_min = 1, 988 .channels_max = 2, 989 /* 990 * only support 8~48K + 96K, 991 * TODO modify hw_param to support more 992 */ 993 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000, 994 .formats = SGTL5000_FORMATS, 995 }, 996 .capture = { 997 .stream_name = "Capture", 998 .channels_min = 1, 999 .channels_max = 2, 1000 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000, 1001 .formats = SGTL5000_FORMATS, 1002 }, 1003 .ops = &sgtl5000_ops, 1004 .symmetric_rates = 1, 1005 }; 1006 1007 static bool sgtl5000_volatile(struct device *dev, unsigned int reg) 1008 { 1009 switch (reg) { 1010 case SGTL5000_CHIP_ID: 1011 case SGTL5000_CHIP_ADCDAC_CTRL: 1012 case SGTL5000_CHIP_ANA_STATUS: 1013 return true; 1014 } 1015 1016 return false; 1017 } 1018 1019 static bool sgtl5000_readable(struct device *dev, unsigned int reg) 1020 { 1021 switch (reg) { 1022 case SGTL5000_CHIP_ID: 1023 case SGTL5000_CHIP_DIG_POWER: 1024 case SGTL5000_CHIP_CLK_CTRL: 1025 case SGTL5000_CHIP_I2S_CTRL: 1026 case SGTL5000_CHIP_SSS_CTRL: 1027 case SGTL5000_CHIP_ADCDAC_CTRL: 1028 case SGTL5000_CHIP_DAC_VOL: 1029 case SGTL5000_CHIP_PAD_STRENGTH: 1030 case SGTL5000_CHIP_ANA_ADC_CTRL: 1031 case SGTL5000_CHIP_ANA_HP_CTRL: 1032 case SGTL5000_CHIP_ANA_CTRL: 1033 case SGTL5000_CHIP_LINREG_CTRL: 1034 case SGTL5000_CHIP_REF_CTRL: 1035 case SGTL5000_CHIP_MIC_CTRL: 1036 case SGTL5000_CHIP_LINE_OUT_CTRL: 1037 case SGTL5000_CHIP_LINE_OUT_VOL: 1038 case SGTL5000_CHIP_ANA_POWER: 1039 case SGTL5000_CHIP_PLL_CTRL: 1040 case SGTL5000_CHIP_CLK_TOP_CTRL: 1041 case SGTL5000_CHIP_ANA_STATUS: 1042 case SGTL5000_CHIP_SHORT_CTRL: 1043 case SGTL5000_CHIP_ANA_TEST2: 1044 case SGTL5000_DAP_CTRL: 1045 case SGTL5000_DAP_PEQ: 1046 case SGTL5000_DAP_BASS_ENHANCE: 1047 case SGTL5000_DAP_BASS_ENHANCE_CTRL: 1048 case SGTL5000_DAP_AUDIO_EQ: 1049 case SGTL5000_DAP_SURROUND: 1050 case SGTL5000_DAP_FLT_COEF_ACCESS: 1051 case SGTL5000_DAP_COEF_WR_B0_MSB: 1052 case SGTL5000_DAP_COEF_WR_B0_LSB: 1053 case SGTL5000_DAP_EQ_BASS_BAND0: 1054 case SGTL5000_DAP_EQ_BASS_BAND1: 1055 case SGTL5000_DAP_EQ_BASS_BAND2: 1056 case SGTL5000_DAP_EQ_BASS_BAND3: 1057 case SGTL5000_DAP_EQ_BASS_BAND4: 1058 case SGTL5000_DAP_MAIN_CHAN: 1059 case SGTL5000_DAP_MIX_CHAN: 1060 case SGTL5000_DAP_AVC_CTRL: 1061 case SGTL5000_DAP_AVC_THRESHOLD: 1062 case SGTL5000_DAP_AVC_ATTACK: 1063 case SGTL5000_DAP_AVC_DECAY: 1064 case SGTL5000_DAP_COEF_WR_B1_MSB: 1065 case SGTL5000_DAP_COEF_WR_B1_LSB: 1066 case SGTL5000_DAP_COEF_WR_B2_MSB: 1067 case SGTL5000_DAP_COEF_WR_B2_LSB: 1068 case SGTL5000_DAP_COEF_WR_A1_MSB: 1069 case SGTL5000_DAP_COEF_WR_A1_LSB: 1070 case SGTL5000_DAP_COEF_WR_A2_MSB: 1071 case SGTL5000_DAP_COEF_WR_A2_LSB: 1072 return true; 1073 1074 default: 1075 return false; 1076 } 1077 } 1078 1079 /* 1080 * sgtl5000 has 3 internal power supplies: 1081 * 1. VAG, normally set to vdda/2 1082 * 2. chargepump, set to different value 1083 * according to voltage of vdda and vddio 1084 * 3. line out VAG, normally set to vddio/2 1085 * 1086 * and should be set according to: 1087 * 1. vddd provided by external or not 1088 * 2. vdda and vddio voltage value. > 3.1v or not 1089 * 3. chip revision >=0x11 or not. If >=0x11, not use external vddd. 1090 */ 1091 static int sgtl5000_set_power_regs(struct snd_soc_codec *codec) 1092 { 1093 int vddd; 1094 int vdda; 1095 int vddio; 1096 u16 ana_pwr; 1097 u16 lreg_ctrl; 1098 int vag; 1099 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 1100 1101 vdda = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer); 1102 vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer); 1103 vddd = regulator_get_voltage(sgtl5000->supplies[VDDD].consumer); 1104 1105 vdda = vdda / 1000; 1106 vddio = vddio / 1000; 1107 vddd = vddd / 1000; 1108 1109 if (vdda <= 0 || vddio <= 0 || vddd < 0) { 1110 dev_err(codec->dev, "regulator voltage not set correctly\n"); 1111 1112 return -EINVAL; 1113 } 1114 1115 /* according to datasheet, maximum voltage of supplies */ 1116 if (vdda > 3600 || vddio > 3600 || vddd > 1980) { 1117 dev_err(codec->dev, 1118 "exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n", 1119 vdda, vddio, vddd); 1120 1121 return -EINVAL; 1122 } 1123 1124 /* reset value */ 1125 ana_pwr = snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER); 1126 ana_pwr |= SGTL5000_DAC_STEREO | 1127 SGTL5000_ADC_STEREO | 1128 SGTL5000_REFTOP_POWERUP; 1129 lreg_ctrl = snd_soc_read(codec, SGTL5000_CHIP_LINREG_CTRL); 1130 1131 if (vddio < 3100 && vdda < 3100) { 1132 /* enable internal oscillator used for charge pump */ 1133 snd_soc_update_bits(codec, SGTL5000_CHIP_CLK_TOP_CTRL, 1134 SGTL5000_INT_OSC_EN, 1135 SGTL5000_INT_OSC_EN); 1136 /* Enable VDDC charge pump */ 1137 ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP; 1138 } else if (vddio >= 3100 && vdda >= 3100) { 1139 /* 1140 * if vddio and vddd > 3.1v, 1141 * charge pump should be clean before set ana_pwr 1142 */ 1143 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 1144 SGTL5000_VDDC_CHRGPMP_POWERUP, 0); 1145 1146 /* VDDC use VDDIO rail */ 1147 lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD; 1148 lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO << 1149 SGTL5000_VDDC_MAN_ASSN_SHIFT; 1150 } 1151 1152 snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl); 1153 1154 snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER, ana_pwr); 1155 1156 /* set voltage to register */ 1157 snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL, 1158 SGTL5000_LINREG_VDDD_MASK, 0x8); 1159 1160 /* 1161 * if vddd linear reg has been enabled, 1162 * simple digital supply should be clear to get 1163 * proper VDDD voltage. 1164 */ 1165 if (ana_pwr & SGTL5000_LINEREG_D_POWERUP) 1166 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 1167 SGTL5000_LINREG_SIMPLE_POWERUP, 1168 0); 1169 else 1170 snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, 1171 SGTL5000_LINREG_SIMPLE_POWERUP | 1172 SGTL5000_STARTUP_POWERUP, 1173 0); 1174 1175 /* 1176 * set ADC/DAC VAG to vdda / 2, 1177 * should stay in range (0.8v, 1.575v) 1178 */ 1179 vag = vdda / 2; 1180 if (vag <= SGTL5000_ANA_GND_BASE) 1181 vag = 0; 1182 else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP * 1183 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT)) 1184 vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT; 1185 else 1186 vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP; 1187 1188 snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL, 1189 SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT); 1190 1191 /* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */ 1192 vag = vddio / 2; 1193 if (vag <= SGTL5000_LINE_OUT_GND_BASE) 1194 vag = 0; 1195 else if (vag >= SGTL5000_LINE_OUT_GND_BASE + 1196 SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX) 1197 vag = SGTL5000_LINE_OUT_GND_MAX; 1198 else 1199 vag = (vag - SGTL5000_LINE_OUT_GND_BASE) / 1200 SGTL5000_LINE_OUT_GND_STP; 1201 1202 snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_CTRL, 1203 SGTL5000_LINE_OUT_CURRENT_MASK | 1204 SGTL5000_LINE_OUT_GND_MASK, 1205 vag << SGTL5000_LINE_OUT_GND_SHIFT | 1206 SGTL5000_LINE_OUT_CURRENT_360u << 1207 SGTL5000_LINE_OUT_CURRENT_SHIFT); 1208 1209 return 0; 1210 } 1211 1212 static int sgtl5000_replace_vddd_with_ldo(struct snd_soc_codec *codec) 1213 { 1214 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 1215 int ret; 1216 1217 /* set internal ldo to 1.2v */ 1218 ret = ldo_regulator_register(codec, &ldo_init_data, LDO_VOLTAGE); 1219 if (ret) { 1220 dev_err(codec->dev, 1221 "Failed to register vddd internal supplies: %d\n", ret); 1222 return ret; 1223 } 1224 1225 sgtl5000->supplies[VDDD].supply = LDO_CONSUMER_NAME; 1226 1227 dev_info(codec->dev, "Using internal LDO instead of VDDD\n"); 1228 return 0; 1229 } 1230 1231 static int sgtl5000_enable_regulators(struct snd_soc_codec *codec) 1232 { 1233 int ret; 1234 int i; 1235 int external_vddd = 0; 1236 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 1237 struct regulator *vddd; 1238 1239 for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++) 1240 sgtl5000->supplies[i].supply = supply_names[i]; 1241 1242 /* External VDDD only works before revision 0x11 */ 1243 if (sgtl5000->revision < 0x11) { 1244 vddd = regulator_get_optional(codec->dev, "VDDD"); 1245 if (IS_ERR(vddd)) { 1246 /* See if it's just not registered yet */ 1247 if (PTR_ERR(vddd) == -EPROBE_DEFER) 1248 return -EPROBE_DEFER; 1249 } else { 1250 external_vddd = 1; 1251 regulator_put(vddd); 1252 } 1253 } 1254 1255 if (!external_vddd) { 1256 ret = sgtl5000_replace_vddd_with_ldo(codec); 1257 if (ret) 1258 return ret; 1259 } 1260 1261 ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sgtl5000->supplies), 1262 sgtl5000->supplies); 1263 if (ret) 1264 goto err_ldo_remove; 1265 1266 ret = regulator_bulk_enable(ARRAY_SIZE(sgtl5000->supplies), 1267 sgtl5000->supplies); 1268 if (ret) 1269 goto err_regulator_free; 1270 1271 /* wait for all power rails bring up */ 1272 udelay(10); 1273 1274 return 0; 1275 1276 err_regulator_free: 1277 regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies), 1278 sgtl5000->supplies); 1279 err_ldo_remove: 1280 if (!external_vddd) 1281 ldo_regulator_remove(codec); 1282 return ret; 1283 1284 } 1285 1286 static int sgtl5000_probe(struct snd_soc_codec *codec) 1287 { 1288 int ret; 1289 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 1290 1291 ret = sgtl5000_enable_regulators(codec); 1292 if (ret) 1293 return ret; 1294 1295 /* power up sgtl5000 */ 1296 ret = sgtl5000_set_power_regs(codec); 1297 if (ret) 1298 goto err; 1299 1300 /* enable small pop, introduce 400ms delay in turning off */ 1301 snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL, 1302 SGTL5000_SMALL_POP, 1303 SGTL5000_SMALL_POP); 1304 1305 /* disable short cut detector */ 1306 snd_soc_write(codec, SGTL5000_CHIP_SHORT_CTRL, 0); 1307 1308 /* 1309 * set i2s as default input of sound switch 1310 * TODO: add sound switch to control and dapm widge. 1311 */ 1312 snd_soc_write(codec, SGTL5000_CHIP_SSS_CTRL, 1313 SGTL5000_DAC_SEL_I2S_IN << SGTL5000_DAC_SEL_SHIFT); 1314 snd_soc_write(codec, SGTL5000_CHIP_DIG_POWER, 1315 SGTL5000_ADC_EN | SGTL5000_DAC_EN); 1316 1317 /* enable dac volume ramp by default */ 1318 snd_soc_write(codec, SGTL5000_CHIP_ADCDAC_CTRL, 1319 SGTL5000_DAC_VOL_RAMP_EN | 1320 SGTL5000_DAC_MUTE_RIGHT | 1321 SGTL5000_DAC_MUTE_LEFT); 1322 1323 snd_soc_write(codec, SGTL5000_CHIP_PAD_STRENGTH, 0x015f); 1324 1325 snd_soc_write(codec, SGTL5000_CHIP_ANA_CTRL, 1326 SGTL5000_HP_ZCD_EN | 1327 SGTL5000_ADC_ZCD_EN); 1328 1329 snd_soc_write(codec, SGTL5000_CHIP_MIC_CTRL, 2); 1330 1331 /* 1332 * disable DAP 1333 * TODO: 1334 * Enable DAP in kcontrol and dapm. 1335 */ 1336 snd_soc_write(codec, SGTL5000_DAP_CTRL, 0); 1337 1338 return 0; 1339 1340 err: 1341 regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies), 1342 sgtl5000->supplies); 1343 regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies), 1344 sgtl5000->supplies); 1345 ldo_regulator_remove(codec); 1346 1347 return ret; 1348 } 1349 1350 static int sgtl5000_remove(struct snd_soc_codec *codec) 1351 { 1352 struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec); 1353 1354 regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies), 1355 sgtl5000->supplies); 1356 regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies), 1357 sgtl5000->supplies); 1358 ldo_regulator_remove(codec); 1359 1360 return 0; 1361 } 1362 1363 static struct snd_soc_codec_driver sgtl5000_driver = { 1364 .probe = sgtl5000_probe, 1365 .remove = sgtl5000_remove, 1366 .set_bias_level = sgtl5000_set_bias_level, 1367 .suspend_bias_off = true, 1368 .controls = sgtl5000_snd_controls, 1369 .num_controls = ARRAY_SIZE(sgtl5000_snd_controls), 1370 .dapm_widgets = sgtl5000_dapm_widgets, 1371 .num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets), 1372 .dapm_routes = sgtl5000_dapm_routes, 1373 .num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes), 1374 }; 1375 1376 static const struct regmap_config sgtl5000_regmap = { 1377 .reg_bits = 16, 1378 .val_bits = 16, 1379 .reg_stride = 2, 1380 1381 .max_register = SGTL5000_MAX_REG_OFFSET, 1382 .volatile_reg = sgtl5000_volatile, 1383 .readable_reg = sgtl5000_readable, 1384 1385 .cache_type = REGCACHE_RBTREE, 1386 .reg_defaults = sgtl5000_reg_defaults, 1387 .num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults), 1388 }; 1389 1390 /* 1391 * Write all the default values from sgtl5000_reg_defaults[] array into the 1392 * sgtl5000 registers, to make sure we always start with the sane registers 1393 * values as stated in the datasheet. 1394 * 1395 * Since sgtl5000 does not have a reset line, nor a reset command in software, 1396 * we follow this approach to guarantee we always start from the default values 1397 * and avoid problems like, not being able to probe after an audio playback 1398 * followed by a system reset or a 'reboot' command in Linux 1399 */ 1400 static int sgtl5000_fill_defaults(struct sgtl5000_priv *sgtl5000) 1401 { 1402 int i, ret, val, index; 1403 1404 for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) { 1405 val = sgtl5000_reg_defaults[i].def; 1406 index = sgtl5000_reg_defaults[i].reg; 1407 ret = regmap_write(sgtl5000->regmap, index, val); 1408 if (ret) 1409 return ret; 1410 } 1411 1412 return 0; 1413 } 1414 1415 static int sgtl5000_i2c_probe(struct i2c_client *client, 1416 const struct i2c_device_id *id) 1417 { 1418 struct sgtl5000_priv *sgtl5000; 1419 int ret, reg, rev; 1420 unsigned int mclk; 1421 1422 sgtl5000 = devm_kzalloc(&client->dev, sizeof(struct sgtl5000_priv), 1423 GFP_KERNEL); 1424 if (!sgtl5000) 1425 return -ENOMEM; 1426 1427 sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap); 1428 if (IS_ERR(sgtl5000->regmap)) { 1429 ret = PTR_ERR(sgtl5000->regmap); 1430 dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret); 1431 return ret; 1432 } 1433 1434 sgtl5000->mclk = devm_clk_get(&client->dev, NULL); 1435 if (IS_ERR(sgtl5000->mclk)) { 1436 ret = PTR_ERR(sgtl5000->mclk); 1437 dev_err(&client->dev, "Failed to get mclock: %d\n", ret); 1438 /* Defer the probe to see if the clk will be provided later */ 1439 if (ret == -ENOENT) 1440 return -EPROBE_DEFER; 1441 return ret; 1442 } 1443 1444 /* SGTL5000 SYS_MCLK should be between 8 and 27 MHz */ 1445 mclk = clk_get_rate(sgtl5000->mclk); 1446 if (mclk < 8000000 || mclk > 27000000) { 1447 dev_err(&client->dev, "Invalid SYS_CLK frequency: %u.%03uMHz\n", 1448 mclk / 1000000, mclk / 1000 % 1000); 1449 return -EINVAL; 1450 } 1451 1452 ret = clk_prepare_enable(sgtl5000->mclk); 1453 if (ret) 1454 return ret; 1455 1456 /* read chip information */ 1457 ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, ®); 1458 if (ret) 1459 goto disable_clk; 1460 1461 if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) != 1462 SGTL5000_PARTID_PART_ID) { 1463 dev_err(&client->dev, 1464 "Device with ID register %x is not a sgtl5000\n", reg); 1465 ret = -ENODEV; 1466 goto disable_clk; 1467 } 1468 1469 rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT; 1470 dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev); 1471 sgtl5000->revision = rev; 1472 1473 i2c_set_clientdata(client, sgtl5000); 1474 1475 /* Ensure sgtl5000 will start with sane register values */ 1476 ret = sgtl5000_fill_defaults(sgtl5000); 1477 if (ret) 1478 goto disable_clk; 1479 1480 ret = snd_soc_register_codec(&client->dev, 1481 &sgtl5000_driver, &sgtl5000_dai, 1); 1482 if (ret) 1483 goto disable_clk; 1484 1485 return 0; 1486 1487 disable_clk: 1488 clk_disable_unprepare(sgtl5000->mclk); 1489 return ret; 1490 } 1491 1492 static int sgtl5000_i2c_remove(struct i2c_client *client) 1493 { 1494 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client); 1495 1496 snd_soc_unregister_codec(&client->dev); 1497 clk_disable_unprepare(sgtl5000->mclk); 1498 return 0; 1499 } 1500 1501 static const struct i2c_device_id sgtl5000_id[] = { 1502 {"sgtl5000", 0}, 1503 {}, 1504 }; 1505 1506 MODULE_DEVICE_TABLE(i2c, sgtl5000_id); 1507 1508 static const struct of_device_id sgtl5000_dt_ids[] = { 1509 { .compatible = "fsl,sgtl5000", }, 1510 { /* sentinel */ } 1511 }; 1512 MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids); 1513 1514 static struct i2c_driver sgtl5000_i2c_driver = { 1515 .driver = { 1516 .name = "sgtl5000", 1517 .owner = THIS_MODULE, 1518 .of_match_table = sgtl5000_dt_ids, 1519 }, 1520 .probe = sgtl5000_i2c_probe, 1521 .remove = sgtl5000_i2c_remove, 1522 .id_table = sgtl5000_id, 1523 }; 1524 1525 module_i2c_driver(sgtl5000_i2c_driver); 1526 1527 MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver"); 1528 MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>"); 1529 MODULE_LICENSE("GPL"); 1530