1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // sgtl5000.c -- SGTL5000 ALSA SoC Audio driver 4 // 5 // Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved. 6 7 #include <linux/module.h> 8 #include <linux/moduleparam.h> 9 #include <linux/init.h> 10 #include <linux/delay.h> 11 #include <linux/slab.h> 12 #include <linux/pm.h> 13 #include <linux/i2c.h> 14 #include <linux/clk.h> 15 #include <linux/log2.h> 16 #include <linux/regmap.h> 17 #include <linux/regulator/driver.h> 18 #include <linux/regulator/machine.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/of_device.h> 21 #include <sound/core.h> 22 #include <sound/tlv.h> 23 #include <sound/pcm.h> 24 #include <sound/pcm_params.h> 25 #include <sound/soc.h> 26 #include <sound/soc-dapm.h> 27 #include <sound/initval.h> 28 29 #include "sgtl5000.h" 30 31 #define SGTL5000_DAP_REG_OFFSET 0x0100 32 #define SGTL5000_MAX_REG_OFFSET 0x013A 33 34 /* Delay for the VAG ramp up */ 35 #define SGTL5000_VAG_POWERUP_DELAY 500 /* ms */ 36 /* Delay for the VAG ramp down */ 37 #define SGTL5000_VAG_POWERDOWN_DELAY 500 /* ms */ 38 39 #define SGTL5000_OUTPUTS_MUTE (SGTL5000_HP_MUTE | SGTL5000_LINE_OUT_MUTE) 40 41 /* default value of sgtl5000 registers */ 42 static const struct reg_default sgtl5000_reg_defaults[] = { 43 { SGTL5000_CHIP_DIG_POWER, 0x0000 }, 44 { SGTL5000_CHIP_I2S_CTRL, 0x0010 }, 45 { SGTL5000_CHIP_SSS_CTRL, 0x0010 }, 46 { SGTL5000_CHIP_ADCDAC_CTRL, 0x020c }, 47 { SGTL5000_CHIP_DAC_VOL, 0x3c3c }, 48 { SGTL5000_CHIP_PAD_STRENGTH, 0x015f }, 49 { SGTL5000_CHIP_ANA_ADC_CTRL, 0x0000 }, 50 { SGTL5000_CHIP_ANA_HP_CTRL, 0x1818 }, 51 { SGTL5000_CHIP_ANA_CTRL, 0x0111 }, 52 { SGTL5000_CHIP_REF_CTRL, 0x0000 }, 53 { SGTL5000_CHIP_MIC_CTRL, 0x0000 }, 54 { SGTL5000_CHIP_LINE_OUT_CTRL, 0x0000 }, 55 { SGTL5000_CHIP_LINE_OUT_VOL, 0x0404 }, 56 { SGTL5000_CHIP_PLL_CTRL, 0x5000 }, 57 { SGTL5000_CHIP_CLK_TOP_CTRL, 0x0000 }, 58 { SGTL5000_CHIP_ANA_STATUS, 0x0000 }, 59 { SGTL5000_CHIP_SHORT_CTRL, 0x0000 }, 60 { SGTL5000_CHIP_ANA_TEST2, 0x0000 }, 61 { SGTL5000_DAP_CTRL, 0x0000 }, 62 { SGTL5000_DAP_PEQ, 0x0000 }, 63 { SGTL5000_DAP_BASS_ENHANCE, 0x0040 }, 64 { SGTL5000_DAP_BASS_ENHANCE_CTRL, 0x051f }, 65 { SGTL5000_DAP_AUDIO_EQ, 0x0000 }, 66 { SGTL5000_DAP_SURROUND, 0x0040 }, 67 { SGTL5000_DAP_EQ_BASS_BAND0, 0x002f }, 68 { SGTL5000_DAP_EQ_BASS_BAND1, 0x002f }, 69 { SGTL5000_DAP_EQ_BASS_BAND2, 0x002f }, 70 { SGTL5000_DAP_EQ_BASS_BAND3, 0x002f }, 71 { SGTL5000_DAP_EQ_BASS_BAND4, 0x002f }, 72 { SGTL5000_DAP_MAIN_CHAN, 0x8000 }, 73 { SGTL5000_DAP_MIX_CHAN, 0x0000 }, 74 { SGTL5000_DAP_AVC_CTRL, 0x5100 }, 75 { SGTL5000_DAP_AVC_THRESHOLD, 0x1473 }, 76 { SGTL5000_DAP_AVC_ATTACK, 0x0028 }, 77 { SGTL5000_DAP_AVC_DECAY, 0x0050 }, 78 }; 79 80 /* AVC: Threshold dB -> register: pre-calculated values */ 81 static const u16 avc_thr_db2reg[97] = { 82 0x5168, 0x488E, 0x40AA, 0x39A1, 0x335D, 0x2DC7, 0x28CC, 0x245D, 0x2068, 83 0x1CE2, 0x19BE, 0x16F1, 0x1472, 0x1239, 0x103E, 0x0E7A, 0x0CE6, 0x0B7F, 84 0x0A3F, 0x0922, 0x0824, 0x0741, 0x0677, 0x05C3, 0x0522, 0x0493, 0x0414, 85 0x03A2, 0x033D, 0x02E3, 0x0293, 0x024B, 0x020B, 0x01D2, 0x019F, 0x0172, 86 0x014A, 0x0126, 0x0106, 0x00E9, 0x00D0, 0x00B9, 0x00A5, 0x0093, 0x0083, 87 0x0075, 0x0068, 0x005D, 0x0052, 0x0049, 0x0041, 0x003A, 0x0034, 0x002E, 88 0x0029, 0x0025, 0x0021, 0x001D, 0x001A, 0x0017, 0x0014, 0x0012, 0x0010, 89 0x000E, 0x000D, 0x000B, 0x000A, 0x0009, 0x0008, 0x0007, 0x0006, 0x0005, 90 0x0005, 0x0004, 0x0004, 0x0003, 0x0003, 0x0002, 0x0002, 0x0002, 0x0002, 91 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0000, 0x0000, 92 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}; 93 94 /* regulator supplies for sgtl5000, VDDD is an optional external supply */ 95 enum sgtl5000_regulator_supplies { 96 VDDA, 97 VDDIO, 98 VDDD, 99 SGTL5000_SUPPLY_NUM 100 }; 101 102 /* vddd is optional supply */ 103 static const char *supply_names[SGTL5000_SUPPLY_NUM] = { 104 "VDDA", 105 "VDDIO", 106 "VDDD" 107 }; 108 109 #define LDO_VOLTAGE 1200000 110 #define LINREG_VDDD ((1600 - LDO_VOLTAGE / 1000) / 50) 111 112 enum sgtl5000_micbias_resistor { 113 SGTL5000_MICBIAS_OFF = 0, 114 SGTL5000_MICBIAS_2K = 2, 115 SGTL5000_MICBIAS_4K = 4, 116 SGTL5000_MICBIAS_8K = 8, 117 }; 118 119 enum { 120 I2S_LRCLK_STRENGTH_DISABLE, 121 I2S_LRCLK_STRENGTH_LOW, 122 I2S_LRCLK_STRENGTH_MEDIUM, 123 I2S_LRCLK_STRENGTH_HIGH, 124 }; 125 126 enum { 127 I2S_SCLK_STRENGTH_DISABLE, 128 I2S_SCLK_STRENGTH_LOW, 129 I2S_SCLK_STRENGTH_MEDIUM, 130 I2S_SCLK_STRENGTH_HIGH, 131 }; 132 133 enum { 134 HP_POWER_EVENT, 135 DAC_POWER_EVENT, 136 ADC_POWER_EVENT, 137 LAST_POWER_EVENT = ADC_POWER_EVENT 138 }; 139 140 /* sgtl5000 private structure in codec */ 141 struct sgtl5000_priv { 142 int sysclk; /* sysclk rate */ 143 int master; /* i2s master or not */ 144 int fmt; /* i2s data format */ 145 struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM]; 146 int num_supplies; 147 struct regmap *regmap; 148 struct clk *mclk; 149 int revision; 150 u8 micbias_resistor; 151 u8 micbias_voltage; 152 u8 lrclk_strength; 153 u8 sclk_strength; 154 u16 mute_state[LAST_POWER_EVENT + 1]; 155 }; 156 157 static inline int hp_sel_input(struct snd_soc_component *component) 158 { 159 return (snd_soc_component_read(component, SGTL5000_CHIP_ANA_CTRL) & 160 SGTL5000_HP_SEL_MASK) >> SGTL5000_HP_SEL_SHIFT; 161 } 162 163 static inline u16 mute_output(struct snd_soc_component *component, 164 u16 mute_mask) 165 { 166 u16 mute_reg = snd_soc_component_read(component, 167 SGTL5000_CHIP_ANA_CTRL); 168 169 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL, 170 mute_mask, mute_mask); 171 return mute_reg; 172 } 173 174 static inline void restore_output(struct snd_soc_component *component, 175 u16 mute_mask, u16 mute_reg) 176 { 177 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL, 178 mute_mask, mute_reg); 179 } 180 181 static void vag_power_on(struct snd_soc_component *component, u32 source) 182 { 183 if (snd_soc_component_read(component, SGTL5000_CHIP_ANA_POWER) & 184 SGTL5000_VAG_POWERUP) 185 return; 186 187 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, 188 SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP); 189 190 /* When VAG powering on to get local loop from Line-In, the sleep 191 * is required to avoid loud pop. 192 */ 193 if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN && 194 source == HP_POWER_EVENT) 195 msleep(SGTL5000_VAG_POWERUP_DELAY); 196 } 197 198 static int vag_power_consumers(struct snd_soc_component *component, 199 u16 ana_pwr_reg, u32 source) 200 { 201 int consumers = 0; 202 203 /* count dac/adc consumers unconditional */ 204 if (ana_pwr_reg & SGTL5000_DAC_POWERUP) 205 consumers++; 206 if (ana_pwr_reg & SGTL5000_ADC_POWERUP) 207 consumers++; 208 209 /* 210 * If the event comes from HP and Line-In is selected, 211 * current action is 'DAC to be powered down'. 212 * As HP_POWERUP is not set when HP muxed to line-in, 213 * we need to keep VAG power ON. 214 */ 215 if (source == HP_POWER_EVENT) { 216 if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN) 217 consumers++; 218 } else { 219 if (ana_pwr_reg & SGTL5000_HP_POWERUP) 220 consumers++; 221 } 222 223 return consumers; 224 } 225 226 static void vag_power_off(struct snd_soc_component *component, u32 source) 227 { 228 u16 ana_pwr = snd_soc_component_read(component, 229 SGTL5000_CHIP_ANA_POWER); 230 231 if (!(ana_pwr & SGTL5000_VAG_POWERUP)) 232 return; 233 234 /* 235 * This function calls when any of VAG power consumers is disappearing. 236 * Thus, if there is more than one consumer at the moment, as minimum 237 * one consumer will definitely stay after the end of the current 238 * event. 239 * Don't clear VAG_POWERUP if 2 or more consumers of VAG present: 240 * - LINE_IN (for HP events) / HP (for DAC/ADC events) 241 * - DAC 242 * - ADC 243 * (the current consumer is disappearing right now) 244 */ 245 if (vag_power_consumers(component, ana_pwr, source) >= 2) 246 return; 247 248 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, 249 SGTL5000_VAG_POWERUP, 0); 250 /* In power down case, we need wait 400-1000 ms 251 * when VAG fully ramped down. 252 * As longer we wait, as smaller pop we've got. 253 */ 254 msleep(SGTL5000_VAG_POWERDOWN_DELAY); 255 } 256 257 /* 258 * mic_bias power on/off share the same register bits with 259 * output impedance of mic bias, when power on mic bias, we 260 * need reclaim it to impedance value. 261 * 0x0 = Powered off 262 * 0x1 = 2Kohm 263 * 0x2 = 4Kohm 264 * 0x3 = 8Kohm 265 */ 266 static int mic_bias_event(struct snd_soc_dapm_widget *w, 267 struct snd_kcontrol *kcontrol, int event) 268 { 269 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); 270 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); 271 272 switch (event) { 273 case SND_SOC_DAPM_POST_PMU: 274 /* change mic bias resistor */ 275 snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL, 276 SGTL5000_BIAS_R_MASK, 277 sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT); 278 break; 279 280 case SND_SOC_DAPM_PRE_PMD: 281 snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL, 282 SGTL5000_BIAS_R_MASK, 0); 283 break; 284 } 285 return 0; 286 } 287 288 static int vag_and_mute_control(struct snd_soc_component *component, 289 int event, int event_source) 290 { 291 static const u16 mute_mask[] = { 292 /* 293 * Mask for HP_POWER_EVENT. 294 * Muxing Headphones have to be wrapped with mute/unmute 295 * headphones only. 296 */ 297 SGTL5000_HP_MUTE, 298 /* 299 * Masks for DAC_POWER_EVENT/ADC_POWER_EVENT. 300 * Muxing DAC or ADC block have to wrapped with mute/unmute 301 * both headphones and line-out. 302 */ 303 SGTL5000_OUTPUTS_MUTE, 304 SGTL5000_OUTPUTS_MUTE 305 }; 306 307 struct sgtl5000_priv *sgtl5000 = 308 snd_soc_component_get_drvdata(component); 309 310 switch (event) { 311 case SND_SOC_DAPM_PRE_PMU: 312 sgtl5000->mute_state[event_source] = 313 mute_output(component, mute_mask[event_source]); 314 break; 315 case SND_SOC_DAPM_POST_PMU: 316 vag_power_on(component, event_source); 317 restore_output(component, mute_mask[event_source], 318 sgtl5000->mute_state[event_source]); 319 break; 320 case SND_SOC_DAPM_PRE_PMD: 321 sgtl5000->mute_state[event_source] = 322 mute_output(component, mute_mask[event_source]); 323 vag_power_off(component, event_source); 324 break; 325 case SND_SOC_DAPM_POST_PMD: 326 restore_output(component, mute_mask[event_source], 327 sgtl5000->mute_state[event_source]); 328 break; 329 default: 330 break; 331 } 332 333 return 0; 334 } 335 336 /* 337 * Mute Headphone when power it up/down. 338 * Control VAG power on HP power path. 339 */ 340 static int headphone_pga_event(struct snd_soc_dapm_widget *w, 341 struct snd_kcontrol *kcontrol, int event) 342 { 343 struct snd_soc_component *component = 344 snd_soc_dapm_to_component(w->dapm); 345 346 return vag_and_mute_control(component, event, HP_POWER_EVENT); 347 } 348 349 /* As manual describes, ADC/DAC powering up/down requires 350 * to mute outputs to avoid pops. 351 * Control VAG power on ADC/DAC power path. 352 */ 353 static int adc_updown_depop(struct snd_soc_dapm_widget *w, 354 struct snd_kcontrol *kcontrol, int event) 355 { 356 struct snd_soc_component *component = 357 snd_soc_dapm_to_component(w->dapm); 358 359 return vag_and_mute_control(component, event, ADC_POWER_EVENT); 360 } 361 362 static int dac_updown_depop(struct snd_soc_dapm_widget *w, 363 struct snd_kcontrol *kcontrol, int event) 364 { 365 struct snd_soc_component *component = 366 snd_soc_dapm_to_component(w->dapm); 367 368 return vag_and_mute_control(component, event, DAC_POWER_EVENT); 369 } 370 371 /* input sources for ADC */ 372 static const char *adc_mux_text[] = { 373 "MIC_IN", "LINE_IN" 374 }; 375 376 static SOC_ENUM_SINGLE_DECL(adc_enum, 377 SGTL5000_CHIP_ANA_CTRL, 2, 378 adc_mux_text); 379 380 static const struct snd_kcontrol_new adc_mux = 381 SOC_DAPM_ENUM("Capture Mux", adc_enum); 382 383 /* input sources for headphone */ 384 static const char *hp_mux_text[] = { 385 "DAC", "LINE_IN" 386 }; 387 388 static SOC_ENUM_SINGLE_DECL(hp_enum, 389 SGTL5000_CHIP_ANA_CTRL, 6, 390 hp_mux_text); 391 392 static const struct snd_kcontrol_new hp_mux = 393 SOC_DAPM_ENUM("Headphone Mux", hp_enum); 394 395 /* input sources for DAC */ 396 static const char *dac_mux_text[] = { 397 "ADC", "I2S", "Rsvrd", "DAP" 398 }; 399 400 static SOC_ENUM_SINGLE_DECL(dac_enum, 401 SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAC_SEL_SHIFT, 402 dac_mux_text); 403 404 static const struct snd_kcontrol_new dac_mux = 405 SOC_DAPM_ENUM("Digital Input Mux", dac_enum); 406 407 /* input sources for DAP */ 408 static const char *dap_mux_text[] = { 409 "ADC", "I2S" 410 }; 411 412 static SOC_ENUM_SINGLE_DECL(dap_enum, 413 SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_SEL_SHIFT, 414 dap_mux_text); 415 416 static const struct snd_kcontrol_new dap_mux = 417 SOC_DAPM_ENUM("DAP Mux", dap_enum); 418 419 /* input sources for DAP mix */ 420 static const char *dapmix_mux_text[] = { 421 "ADC", "I2S" 422 }; 423 424 static SOC_ENUM_SINGLE_DECL(dapmix_enum, 425 SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_MIX_SEL_SHIFT, 426 dapmix_mux_text); 427 428 static const struct snd_kcontrol_new dapmix_mux = 429 SOC_DAPM_ENUM("DAP MIX Mux", dapmix_enum); 430 431 432 static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = { 433 SND_SOC_DAPM_INPUT("LINE_IN"), 434 SND_SOC_DAPM_INPUT("MIC_IN"), 435 436 SND_SOC_DAPM_OUTPUT("HP_OUT"), 437 SND_SOC_DAPM_OUTPUT("LINE_OUT"), 438 439 SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0, 440 mic_bias_event, 441 SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), 442 443 SND_SOC_DAPM_PGA_E("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0, 444 headphone_pga_event, 445 SND_SOC_DAPM_PRE_POST_PMU | 446 SND_SOC_DAPM_PRE_POST_PMD), 447 SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0), 448 449 SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux), 450 SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &hp_mux), 451 SND_SOC_DAPM_MUX("Digital Input Mux", SND_SOC_NOPM, 0, 0, &dac_mux), 452 SND_SOC_DAPM_MUX("DAP Mux", SGTL5000_DAP_CTRL, 0, 0, &dap_mux), 453 SND_SOC_DAPM_MUX("DAP MIX Mux", SGTL5000_DAP_CTRL, 4, 0, &dapmix_mux), 454 SND_SOC_DAPM_MIXER("DAP", SGTL5000_CHIP_DIG_POWER, 4, 0, NULL, 0), 455 456 457 /* aif for i2s input */ 458 SND_SOC_DAPM_AIF_IN("AIFIN", "Playback", 459 0, SGTL5000_CHIP_DIG_POWER, 460 0, 0), 461 462 /* aif for i2s output */ 463 SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture", 464 0, SGTL5000_CHIP_DIG_POWER, 465 1, 0), 466 467 SND_SOC_DAPM_ADC_E("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0, 468 adc_updown_depop, SND_SOC_DAPM_PRE_POST_PMU | 469 SND_SOC_DAPM_PRE_POST_PMD), 470 SND_SOC_DAPM_DAC_E("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0, 471 dac_updown_depop, SND_SOC_DAPM_PRE_POST_PMU | 472 SND_SOC_DAPM_PRE_POST_PMD), 473 }; 474 475 /* routes for sgtl5000 */ 476 static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = { 477 {"Capture Mux", "LINE_IN", "LINE_IN"}, /* line_in --> adc_mux */ 478 {"Capture Mux", "MIC_IN", "MIC_IN"}, /* mic_in --> adc_mux */ 479 480 {"ADC", NULL, "Capture Mux"}, /* adc_mux --> adc */ 481 {"AIFOUT", NULL, "ADC"}, /* adc --> i2s_out */ 482 483 {"DAP Mux", "ADC", "ADC"}, /* adc --> DAP mux */ 484 {"DAP Mux", NULL, "AIFIN"}, /* i2s --> DAP mux */ 485 {"DAP", NULL, "DAP Mux"}, /* DAP mux --> dap */ 486 487 {"DAP MIX Mux", "ADC", "ADC"}, /* adc --> DAP MIX mux */ 488 {"DAP MIX Mux", NULL, "AIFIN"}, /* i2s --> DAP MIX mux */ 489 {"DAP", NULL, "DAP MIX Mux"}, /* DAP MIX mux --> dap */ 490 491 {"Digital Input Mux", "ADC", "ADC"}, /* adc --> audio mux */ 492 {"Digital Input Mux", NULL, "AIFIN"}, /* i2s --> audio mux */ 493 {"Digital Input Mux", NULL, "DAP"}, /* dap --> audio mux */ 494 {"DAC", NULL, "Digital Input Mux"}, /* audio mux --> dac */ 495 496 {"Headphone Mux", "DAC", "DAC"}, /* dac --> hp_mux */ 497 {"LO", NULL, "DAC"}, /* dac --> line_out */ 498 499 {"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */ 500 {"HP", NULL, "Headphone Mux"}, /* hp_mux --> hp */ 501 502 {"LINE_OUT", NULL, "LO"}, 503 {"HP_OUT", NULL, "HP"}, 504 }; 505 506 /* custom function to fetch info of PCM playback volume */ 507 static int dac_info_volsw(struct snd_kcontrol *kcontrol, 508 struct snd_ctl_elem_info *uinfo) 509 { 510 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 511 uinfo->count = 2; 512 uinfo->value.integer.min = 0; 513 uinfo->value.integer.max = 0xfc - 0x3c; 514 return 0; 515 } 516 517 /* 518 * custom function to get of PCM playback volume 519 * 520 * dac volume register 521 * 15-------------8-7--------------0 522 * | R channel vol | L channel vol | 523 * ------------------------------- 524 * 525 * PCM volume with 0.5017 dB steps from 0 to -90 dB 526 * 527 * register values map to dB 528 * 0x3B and less = Reserved 529 * 0x3C = 0 dB 530 * 0x3D = -0.5 dB 531 * 0xF0 = -90 dB 532 * 0xFC and greater = Muted 533 * 534 * register value map to userspace value 535 * 536 * register value 0x3c(0dB) 0xf0(-90dB)0xfc 537 * ------------------------------ 538 * userspace value 0xc0 0 539 */ 540 static int dac_get_volsw(struct snd_kcontrol *kcontrol, 541 struct snd_ctl_elem_value *ucontrol) 542 { 543 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 544 int reg; 545 int l; 546 int r; 547 548 reg = snd_soc_component_read(component, SGTL5000_CHIP_DAC_VOL); 549 550 /* get left channel volume */ 551 l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT; 552 553 /* get right channel volume */ 554 r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT; 555 556 /* make sure value fall in (0x3c,0xfc) */ 557 l = clamp(l, 0x3c, 0xfc); 558 r = clamp(r, 0x3c, 0xfc); 559 560 /* invert it and map to userspace value */ 561 l = 0xfc - l; 562 r = 0xfc - r; 563 564 ucontrol->value.integer.value[0] = l; 565 ucontrol->value.integer.value[1] = r; 566 567 return 0; 568 } 569 570 /* 571 * custom function to put of PCM playback volume 572 * 573 * dac volume register 574 * 15-------------8-7--------------0 575 * | R channel vol | L channel vol | 576 * ------------------------------- 577 * 578 * PCM volume with 0.5017 dB steps from 0 to -90 dB 579 * 580 * register values map to dB 581 * 0x3B and less = Reserved 582 * 0x3C = 0 dB 583 * 0x3D = -0.5 dB 584 * 0xF0 = -90 dB 585 * 0xFC and greater = Muted 586 * 587 * userspace value map to register value 588 * 589 * userspace value 0xc0 0 590 * ------------------------------ 591 * register value 0x3c(0dB) 0xf0(-90dB)0xfc 592 */ 593 static int dac_put_volsw(struct snd_kcontrol *kcontrol, 594 struct snd_ctl_elem_value *ucontrol) 595 { 596 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 597 int reg; 598 int l; 599 int r; 600 601 l = ucontrol->value.integer.value[0]; 602 r = ucontrol->value.integer.value[1]; 603 604 /* make sure userspace volume fall in (0, 0xfc-0x3c) */ 605 l = clamp(l, 0, 0xfc - 0x3c); 606 r = clamp(r, 0, 0xfc - 0x3c); 607 608 /* invert it, get the value can be set to register */ 609 l = 0xfc - l; 610 r = 0xfc - r; 611 612 /* shift to get the register value */ 613 reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT | 614 r << SGTL5000_DAC_VOL_RIGHT_SHIFT; 615 616 snd_soc_component_write(component, SGTL5000_CHIP_DAC_VOL, reg); 617 618 return 0; 619 } 620 621 /* 622 * custom function to get AVC threshold 623 * 624 * The threshold dB is calculated by rearranging the calculation from the 625 * avc_put_threshold function: register_value = 10^(dB/20) * 0.636 * 2^15 ==> 626 * dB = ( fls(register_value) - 14.347 ) * 6.02 627 * 628 * As this calculation is expensive and the threshold dB values may not exceed 629 * 0 to 96 we use pre-calculated values. 630 */ 631 static int avc_get_threshold(struct snd_kcontrol *kcontrol, 632 struct snd_ctl_elem_value *ucontrol) 633 { 634 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 635 int db, i; 636 u16 reg = snd_soc_component_read(component, SGTL5000_DAP_AVC_THRESHOLD); 637 638 /* register value 0 => -96dB */ 639 if (!reg) { 640 ucontrol->value.integer.value[0] = 96; 641 ucontrol->value.integer.value[1] = 96; 642 return 0; 643 } 644 645 /* get dB from register value (rounded down) */ 646 for (i = 0; avc_thr_db2reg[i] > reg; i++) 647 ; 648 db = i; 649 650 ucontrol->value.integer.value[0] = db; 651 ucontrol->value.integer.value[1] = db; 652 653 return 0; 654 } 655 656 /* 657 * custom function to put AVC threshold 658 * 659 * The register value is calculated by following formula: 660 * register_value = 10^(dB/20) * 0.636 * 2^15 661 * As this calculation is expensive and the threshold dB values may not exceed 662 * 0 to 96 we use pre-calculated values. 663 */ 664 static int avc_put_threshold(struct snd_kcontrol *kcontrol, 665 struct snd_ctl_elem_value *ucontrol) 666 { 667 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); 668 int db; 669 u16 reg; 670 671 db = (int)ucontrol->value.integer.value[0]; 672 if (db < 0 || db > 96) 673 return -EINVAL; 674 reg = avc_thr_db2reg[db]; 675 snd_soc_component_write(component, SGTL5000_DAP_AVC_THRESHOLD, reg); 676 677 return 0; 678 } 679 680 static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0); 681 682 /* tlv for mic gain, 0db 20db 30db 40db */ 683 static const DECLARE_TLV_DB_RANGE(mic_gain_tlv, 684 0, 0, TLV_DB_SCALE_ITEM(0, 0, 0), 685 1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0) 686 ); 687 688 /* tlv for DAP channels, 0% - 100% - 200% */ 689 static const DECLARE_TLV_DB_SCALE(dap_volume, 0, 1, 0); 690 691 /* tlv for bass bands, -11.75db to 12.0db, step .25db */ 692 static const DECLARE_TLV_DB_SCALE(bass_band, -1175, 25, 0); 693 694 /* tlv for hp volume, -51.5db to 12.0db, step .5db */ 695 static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0); 696 697 /* tlv for lineout volume, 31 steps of .5db each */ 698 static const DECLARE_TLV_DB_SCALE(lineout_volume, -1550, 50, 0); 699 700 /* tlv for dap avc max gain, 0db, 6db, 12db */ 701 static const DECLARE_TLV_DB_SCALE(avc_max_gain, 0, 600, 0); 702 703 /* tlv for dap avc threshold, */ 704 static const DECLARE_TLV_DB_MINMAX(avc_threshold, 0, 9600); 705 706 static const struct snd_kcontrol_new sgtl5000_snd_controls[] = { 707 /* SOC_DOUBLE_S8_TLV with invert */ 708 { 709 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 710 .name = "PCM Playback Volume", 711 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | 712 SNDRV_CTL_ELEM_ACCESS_READWRITE, 713 .info = dac_info_volsw, 714 .get = dac_get_volsw, 715 .put = dac_put_volsw, 716 }, 717 718 SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0), 719 SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)", 720 SGTL5000_CHIP_ANA_ADC_CTRL, 721 8, 1, 0, capture_6db_attenuate), 722 SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0), 723 SOC_SINGLE("Capture Switch", SGTL5000_CHIP_ANA_CTRL, 0, 1, 1), 724 725 SOC_DOUBLE_TLV("Headphone Playback Volume", 726 SGTL5000_CHIP_ANA_HP_CTRL, 727 0, 8, 728 0x7f, 1, 729 headphone_volume), 730 SOC_SINGLE("Headphone Playback Switch", SGTL5000_CHIP_ANA_CTRL, 731 4, 1, 1), 732 SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL, 733 5, 1, 0), 734 735 SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL, 736 0, 3, 0, mic_gain_tlv), 737 738 SOC_DOUBLE_TLV("Lineout Playback Volume", 739 SGTL5000_CHIP_LINE_OUT_VOL, 740 SGTL5000_LINE_OUT_VOL_LEFT_SHIFT, 741 SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT, 742 0x1f, 1, 743 lineout_volume), 744 SOC_SINGLE("Lineout Playback Switch", SGTL5000_CHIP_ANA_CTRL, 8, 1, 1), 745 746 SOC_SINGLE_TLV("DAP Main channel", SGTL5000_DAP_MAIN_CHAN, 747 0, 0xffff, 0, dap_volume), 748 749 SOC_SINGLE_TLV("DAP Mix channel", SGTL5000_DAP_MIX_CHAN, 750 0, 0xffff, 0, dap_volume), 751 /* Automatic Volume Control (DAP AVC) */ 752 SOC_SINGLE("AVC Switch", SGTL5000_DAP_AVC_CTRL, 0, 1, 0), 753 SOC_SINGLE("AVC Hard Limiter Switch", SGTL5000_DAP_AVC_CTRL, 5, 1, 0), 754 SOC_SINGLE_TLV("AVC Max Gain Volume", SGTL5000_DAP_AVC_CTRL, 12, 2, 0, 755 avc_max_gain), 756 SOC_SINGLE("AVC Integrator Response", SGTL5000_DAP_AVC_CTRL, 8, 3, 0), 757 SOC_SINGLE_EXT_TLV("AVC Threshold Volume", SGTL5000_DAP_AVC_THRESHOLD, 758 0, 96, 0, avc_get_threshold, avc_put_threshold, 759 avc_threshold), 760 761 SOC_SINGLE_TLV("BASS 0", SGTL5000_DAP_EQ_BASS_BAND0, 762 0, 0x5F, 0, bass_band), 763 764 SOC_SINGLE_TLV("BASS 1", SGTL5000_DAP_EQ_BASS_BAND1, 765 0, 0x5F, 0, bass_band), 766 767 SOC_SINGLE_TLV("BASS 2", SGTL5000_DAP_EQ_BASS_BAND2, 768 0, 0x5F, 0, bass_band), 769 770 SOC_SINGLE_TLV("BASS 3", SGTL5000_DAP_EQ_BASS_BAND3, 771 0, 0x5F, 0, bass_band), 772 773 SOC_SINGLE_TLV("BASS 4", SGTL5000_DAP_EQ_BASS_BAND4, 774 0, 0x5F, 0, bass_band), 775 }; 776 777 /* mute the codec used by alsa core */ 778 static int sgtl5000_mute_stream(struct snd_soc_dai *codec_dai, int mute, int direction) 779 { 780 struct snd_soc_component *component = codec_dai->component; 781 u16 i2s_pwr = SGTL5000_I2S_IN_POWERUP; 782 783 /* 784 * During 'digital mute' do not mute DAC 785 * because LINE_IN would be muted aswell. We want to mute 786 * only I2S block - this can be done by powering it off 787 */ 788 snd_soc_component_update_bits(component, SGTL5000_CHIP_DIG_POWER, 789 i2s_pwr, mute ? 0 : i2s_pwr); 790 791 return 0; 792 } 793 794 /* set codec format */ 795 static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) 796 { 797 struct snd_soc_component *component = codec_dai->component; 798 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); 799 u16 i2sctl = 0; 800 801 sgtl5000->master = 0; 802 /* 803 * i2s clock and frame master setting. 804 * ONLY support: 805 * - clock and frame slave, 806 * - clock and frame master 807 */ 808 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { 809 case SND_SOC_DAIFMT_CBS_CFS: 810 break; 811 case SND_SOC_DAIFMT_CBM_CFM: 812 i2sctl |= SGTL5000_I2S_MASTER; 813 sgtl5000->master = 1; 814 break; 815 default: 816 return -EINVAL; 817 } 818 819 /* setting i2s data format */ 820 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 821 case SND_SOC_DAIFMT_DSP_A: 822 i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT; 823 break; 824 case SND_SOC_DAIFMT_DSP_B: 825 i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT; 826 i2sctl |= SGTL5000_I2S_LRALIGN; 827 break; 828 case SND_SOC_DAIFMT_I2S: 829 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT; 830 break; 831 case SND_SOC_DAIFMT_RIGHT_J: 832 i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT; 833 i2sctl |= SGTL5000_I2S_LRPOL; 834 break; 835 case SND_SOC_DAIFMT_LEFT_J: 836 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT; 837 i2sctl |= SGTL5000_I2S_LRALIGN; 838 break; 839 default: 840 return -EINVAL; 841 } 842 843 sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK; 844 845 /* Clock inversion */ 846 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 847 case SND_SOC_DAIFMT_NB_NF: 848 break; 849 case SND_SOC_DAIFMT_IB_NF: 850 i2sctl |= SGTL5000_I2S_SCLK_INV; 851 break; 852 default: 853 return -EINVAL; 854 } 855 856 snd_soc_component_write(component, SGTL5000_CHIP_I2S_CTRL, i2sctl); 857 858 return 0; 859 } 860 861 /* set codec sysclk */ 862 static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai, 863 int clk_id, unsigned int freq, int dir) 864 { 865 struct snd_soc_component *component = codec_dai->component; 866 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); 867 868 switch (clk_id) { 869 case SGTL5000_SYSCLK: 870 sgtl5000->sysclk = freq; 871 break; 872 default: 873 return -EINVAL; 874 } 875 876 return 0; 877 } 878 879 /* 880 * set clock according to i2s frame clock, 881 * sgtl5000 provides 2 clock sources: 882 * 1. sys_mclk: sample freq can only be configured to 883 * 1/256, 1/384, 1/512 of sys_mclk. 884 * 2. pll: can derive any audio clocks. 885 * 886 * clock setting rules: 887 * 1. in slave mode, only sys_mclk can be used 888 * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz 889 * and above. 890 * 3. usage of sys_mclk is preferred over pll to save power. 891 */ 892 static int sgtl5000_set_clock(struct snd_soc_component *component, int frame_rate) 893 { 894 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); 895 int clk_ctl = 0; 896 int sys_fs; /* sample freq */ 897 898 /* 899 * sample freq should be divided by frame clock, 900 * if frame clock is lower than 44.1 kHz, sample freq should be set to 901 * 32 kHz or 44.1 kHz. 902 */ 903 switch (frame_rate) { 904 case 8000: 905 case 16000: 906 sys_fs = 32000; 907 break; 908 case 11025: 909 case 22050: 910 sys_fs = 44100; 911 break; 912 default: 913 sys_fs = frame_rate; 914 break; 915 } 916 917 /* set divided factor of frame clock */ 918 switch (sys_fs / frame_rate) { 919 case 4: 920 clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT; 921 break; 922 case 2: 923 clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT; 924 break; 925 case 1: 926 clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT; 927 break; 928 default: 929 return -EINVAL; 930 } 931 932 /* set the sys_fs according to frame rate */ 933 switch (sys_fs) { 934 case 32000: 935 clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT; 936 break; 937 case 44100: 938 clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT; 939 break; 940 case 48000: 941 clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT; 942 break; 943 case 96000: 944 clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT; 945 break; 946 default: 947 dev_err(component->dev, "frame rate %d not supported\n", 948 frame_rate); 949 return -EINVAL; 950 } 951 952 /* 953 * calculate the divider of mclk/sample_freq, 954 * factor of freq = 96 kHz can only be 256, since mclk is in the range 955 * of 8 MHz - 27 MHz 956 */ 957 switch (sgtl5000->sysclk / frame_rate) { 958 case 256: 959 clk_ctl |= SGTL5000_MCLK_FREQ_256FS << 960 SGTL5000_MCLK_FREQ_SHIFT; 961 break; 962 case 384: 963 clk_ctl |= SGTL5000_MCLK_FREQ_384FS << 964 SGTL5000_MCLK_FREQ_SHIFT; 965 break; 966 case 512: 967 clk_ctl |= SGTL5000_MCLK_FREQ_512FS << 968 SGTL5000_MCLK_FREQ_SHIFT; 969 break; 970 default: 971 /* if mclk does not satisfy the divider, use pll */ 972 if (sgtl5000->master) { 973 clk_ctl |= SGTL5000_MCLK_FREQ_PLL << 974 SGTL5000_MCLK_FREQ_SHIFT; 975 } else { 976 dev_err(component->dev, 977 "PLL not supported in slave mode\n"); 978 dev_err(component->dev, "%d ratio is not supported. " 979 "SYS_MCLK needs to be 256, 384 or 512 * fs\n", 980 sgtl5000->sysclk / frame_rate); 981 return -EINVAL; 982 } 983 } 984 985 /* if using pll, please check manual 6.4.2 for detail */ 986 if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) { 987 u64 out, t; 988 int div2; 989 int pll_ctl; 990 unsigned int in, int_div, frac_div; 991 992 if (sgtl5000->sysclk > 17000000) { 993 div2 = 1; 994 in = sgtl5000->sysclk / 2; 995 } else { 996 div2 = 0; 997 in = sgtl5000->sysclk; 998 } 999 if (sys_fs == 44100) 1000 out = 180633600; 1001 else 1002 out = 196608000; 1003 t = do_div(out, in); 1004 int_div = out; 1005 t *= 2048; 1006 do_div(t, in); 1007 frac_div = t; 1008 pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT | 1009 frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT; 1010 1011 snd_soc_component_write(component, SGTL5000_CHIP_PLL_CTRL, pll_ctl); 1012 if (div2) 1013 snd_soc_component_update_bits(component, 1014 SGTL5000_CHIP_CLK_TOP_CTRL, 1015 SGTL5000_INPUT_FREQ_DIV2, 1016 SGTL5000_INPUT_FREQ_DIV2); 1017 else 1018 snd_soc_component_update_bits(component, 1019 SGTL5000_CHIP_CLK_TOP_CTRL, 1020 SGTL5000_INPUT_FREQ_DIV2, 1021 0); 1022 1023 /* power up pll */ 1024 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, 1025 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP, 1026 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP); 1027 1028 /* if using pll, clk_ctrl must be set after pll power up */ 1029 snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl); 1030 } else { 1031 /* otherwise, clk_ctrl must be set before pll power down */ 1032 snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl); 1033 1034 /* power down pll */ 1035 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, 1036 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP, 1037 0); 1038 } 1039 1040 return 0; 1041 } 1042 1043 /* 1044 * Set PCM DAI bit size and sample rate. 1045 * input: params_rate, params_fmt 1046 */ 1047 static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream, 1048 struct snd_pcm_hw_params *params, 1049 struct snd_soc_dai *dai) 1050 { 1051 struct snd_soc_component *component = dai->component; 1052 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); 1053 int channels = params_channels(params); 1054 int i2s_ctl = 0; 1055 int stereo; 1056 int ret; 1057 1058 /* sysclk should already set */ 1059 if (!sgtl5000->sysclk) { 1060 dev_err(component->dev, "%s: set sysclk first!\n", __func__); 1061 return -EFAULT; 1062 } 1063 1064 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 1065 stereo = SGTL5000_DAC_STEREO; 1066 else 1067 stereo = SGTL5000_ADC_STEREO; 1068 1069 /* set mono to save power */ 1070 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, stereo, 1071 channels == 1 ? 0 : stereo); 1072 1073 /* set codec clock base on lrclk */ 1074 ret = sgtl5000_set_clock(component, params_rate(params)); 1075 if (ret) 1076 return ret; 1077 1078 /* set i2s data format */ 1079 switch (params_width(params)) { 1080 case 16: 1081 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J) 1082 return -EINVAL; 1083 i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT; 1084 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS << 1085 SGTL5000_I2S_SCLKFREQ_SHIFT; 1086 break; 1087 case 20: 1088 i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT; 1089 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << 1090 SGTL5000_I2S_SCLKFREQ_SHIFT; 1091 break; 1092 case 24: 1093 i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT; 1094 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << 1095 SGTL5000_I2S_SCLKFREQ_SHIFT; 1096 break; 1097 case 32: 1098 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J) 1099 return -EINVAL; 1100 i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT; 1101 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS << 1102 SGTL5000_I2S_SCLKFREQ_SHIFT; 1103 break; 1104 default: 1105 return -EINVAL; 1106 } 1107 1108 snd_soc_component_update_bits(component, SGTL5000_CHIP_I2S_CTRL, 1109 SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK, 1110 i2s_ctl); 1111 1112 return 0; 1113 } 1114 1115 /* 1116 * set dac bias 1117 * common state changes: 1118 * startup: 1119 * off --> standby --> prepare --> on 1120 * standby --> prepare --> on 1121 * 1122 * stop: 1123 * on --> prepare --> standby 1124 */ 1125 static int sgtl5000_set_bias_level(struct snd_soc_component *component, 1126 enum snd_soc_bias_level level) 1127 { 1128 struct sgtl5000_priv *sgtl = snd_soc_component_get_drvdata(component); 1129 int ret; 1130 1131 switch (level) { 1132 case SND_SOC_BIAS_ON: 1133 case SND_SOC_BIAS_PREPARE: 1134 case SND_SOC_BIAS_STANDBY: 1135 regcache_cache_only(sgtl->regmap, false); 1136 ret = regcache_sync(sgtl->regmap); 1137 if (ret) { 1138 regcache_cache_only(sgtl->regmap, true); 1139 return ret; 1140 } 1141 1142 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, 1143 SGTL5000_REFTOP_POWERUP, 1144 SGTL5000_REFTOP_POWERUP); 1145 break; 1146 case SND_SOC_BIAS_OFF: 1147 regcache_cache_only(sgtl->regmap, true); 1148 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, 1149 SGTL5000_REFTOP_POWERUP, 0); 1150 break; 1151 } 1152 1153 return 0; 1154 } 1155 1156 #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\ 1157 SNDRV_PCM_FMTBIT_S20_3LE |\ 1158 SNDRV_PCM_FMTBIT_S24_LE |\ 1159 SNDRV_PCM_FMTBIT_S32_LE) 1160 1161 static const struct snd_soc_dai_ops sgtl5000_ops = { 1162 .hw_params = sgtl5000_pcm_hw_params, 1163 .mute_stream = sgtl5000_mute_stream, 1164 .set_fmt = sgtl5000_set_dai_fmt, 1165 .set_sysclk = sgtl5000_set_dai_sysclk, 1166 .no_capture_mute = 1, 1167 }; 1168 1169 static struct snd_soc_dai_driver sgtl5000_dai = { 1170 .name = "sgtl5000", 1171 .playback = { 1172 .stream_name = "Playback", 1173 .channels_min = 1, 1174 .channels_max = 2, 1175 /* 1176 * only support 8~48K + 96K, 1177 * TODO modify hw_param to support more 1178 */ 1179 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000, 1180 .formats = SGTL5000_FORMATS, 1181 }, 1182 .capture = { 1183 .stream_name = "Capture", 1184 .channels_min = 1, 1185 .channels_max = 2, 1186 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000, 1187 .formats = SGTL5000_FORMATS, 1188 }, 1189 .ops = &sgtl5000_ops, 1190 .symmetric_rate = 1, 1191 }; 1192 1193 static bool sgtl5000_volatile(struct device *dev, unsigned int reg) 1194 { 1195 switch (reg) { 1196 case SGTL5000_CHIP_ID: 1197 case SGTL5000_CHIP_ADCDAC_CTRL: 1198 case SGTL5000_CHIP_ANA_STATUS: 1199 return true; 1200 } 1201 1202 return false; 1203 } 1204 1205 static bool sgtl5000_readable(struct device *dev, unsigned int reg) 1206 { 1207 switch (reg) { 1208 case SGTL5000_CHIP_ID: 1209 case SGTL5000_CHIP_DIG_POWER: 1210 case SGTL5000_CHIP_CLK_CTRL: 1211 case SGTL5000_CHIP_I2S_CTRL: 1212 case SGTL5000_CHIP_SSS_CTRL: 1213 case SGTL5000_CHIP_ADCDAC_CTRL: 1214 case SGTL5000_CHIP_DAC_VOL: 1215 case SGTL5000_CHIP_PAD_STRENGTH: 1216 case SGTL5000_CHIP_ANA_ADC_CTRL: 1217 case SGTL5000_CHIP_ANA_HP_CTRL: 1218 case SGTL5000_CHIP_ANA_CTRL: 1219 case SGTL5000_CHIP_LINREG_CTRL: 1220 case SGTL5000_CHIP_REF_CTRL: 1221 case SGTL5000_CHIP_MIC_CTRL: 1222 case SGTL5000_CHIP_LINE_OUT_CTRL: 1223 case SGTL5000_CHIP_LINE_OUT_VOL: 1224 case SGTL5000_CHIP_ANA_POWER: 1225 case SGTL5000_CHIP_PLL_CTRL: 1226 case SGTL5000_CHIP_CLK_TOP_CTRL: 1227 case SGTL5000_CHIP_ANA_STATUS: 1228 case SGTL5000_CHIP_SHORT_CTRL: 1229 case SGTL5000_CHIP_ANA_TEST2: 1230 case SGTL5000_DAP_CTRL: 1231 case SGTL5000_DAP_PEQ: 1232 case SGTL5000_DAP_BASS_ENHANCE: 1233 case SGTL5000_DAP_BASS_ENHANCE_CTRL: 1234 case SGTL5000_DAP_AUDIO_EQ: 1235 case SGTL5000_DAP_SURROUND: 1236 case SGTL5000_DAP_FLT_COEF_ACCESS: 1237 case SGTL5000_DAP_COEF_WR_B0_MSB: 1238 case SGTL5000_DAP_COEF_WR_B0_LSB: 1239 case SGTL5000_DAP_EQ_BASS_BAND0: 1240 case SGTL5000_DAP_EQ_BASS_BAND1: 1241 case SGTL5000_DAP_EQ_BASS_BAND2: 1242 case SGTL5000_DAP_EQ_BASS_BAND3: 1243 case SGTL5000_DAP_EQ_BASS_BAND4: 1244 case SGTL5000_DAP_MAIN_CHAN: 1245 case SGTL5000_DAP_MIX_CHAN: 1246 case SGTL5000_DAP_AVC_CTRL: 1247 case SGTL5000_DAP_AVC_THRESHOLD: 1248 case SGTL5000_DAP_AVC_ATTACK: 1249 case SGTL5000_DAP_AVC_DECAY: 1250 case SGTL5000_DAP_COEF_WR_B1_MSB: 1251 case SGTL5000_DAP_COEF_WR_B1_LSB: 1252 case SGTL5000_DAP_COEF_WR_B2_MSB: 1253 case SGTL5000_DAP_COEF_WR_B2_LSB: 1254 case SGTL5000_DAP_COEF_WR_A1_MSB: 1255 case SGTL5000_DAP_COEF_WR_A1_LSB: 1256 case SGTL5000_DAP_COEF_WR_A2_MSB: 1257 case SGTL5000_DAP_COEF_WR_A2_LSB: 1258 return true; 1259 1260 default: 1261 return false; 1262 } 1263 } 1264 1265 /* 1266 * This precalculated table contains all (vag_val * 100 / lo_calcntrl) results 1267 * to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL 1268 * The calculatation was done for all possible register values which 1269 * is the array index and the following formula: 10^((idx−15)/40) * 100 1270 */ 1271 static const u8 vol_quot_table[] = { 1272 42, 45, 47, 50, 53, 56, 60, 63, 1273 67, 71, 75, 79, 84, 89, 94, 100, 1274 106, 112, 119, 126, 133, 141, 150, 158, 1275 168, 178, 188, 200, 211, 224, 237, 251 1276 }; 1277 1278 /* 1279 * sgtl5000 has 3 internal power supplies: 1280 * 1. VAG, normally set to vdda/2 1281 * 2. charge pump, set to different value 1282 * according to voltage of vdda and vddio 1283 * 3. line out VAG, normally set to vddio/2 1284 * 1285 * and should be set according to: 1286 * 1. vddd provided by external or not 1287 * 2. vdda and vddio voltage value. > 3.1v or not 1288 */ 1289 static int sgtl5000_set_power_regs(struct snd_soc_component *component) 1290 { 1291 int vddd; 1292 int vdda; 1293 int vddio; 1294 u16 ana_pwr; 1295 u16 lreg_ctrl; 1296 int vag; 1297 int lo_vag; 1298 int vol_quot; 1299 int lo_vol; 1300 size_t i; 1301 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); 1302 1303 vdda = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer); 1304 vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer); 1305 vddd = (sgtl5000->num_supplies > VDDD) 1306 ? regulator_get_voltage(sgtl5000->supplies[VDDD].consumer) 1307 : LDO_VOLTAGE; 1308 1309 vdda = vdda / 1000; 1310 vddio = vddio / 1000; 1311 vddd = vddd / 1000; 1312 1313 if (vdda <= 0 || vddio <= 0 || vddd < 0) { 1314 dev_err(component->dev, "regulator voltage not set correctly\n"); 1315 1316 return -EINVAL; 1317 } 1318 1319 /* according to datasheet, maximum voltage of supplies */ 1320 if (vdda > 3600 || vddio > 3600 || vddd > 1980) { 1321 dev_err(component->dev, 1322 "exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n", 1323 vdda, vddio, vddd); 1324 1325 return -EINVAL; 1326 } 1327 1328 /* reset value */ 1329 ana_pwr = snd_soc_component_read(component, SGTL5000_CHIP_ANA_POWER); 1330 ana_pwr |= SGTL5000_DAC_STEREO | 1331 SGTL5000_ADC_STEREO | 1332 SGTL5000_REFTOP_POWERUP; 1333 lreg_ctrl = snd_soc_component_read(component, SGTL5000_CHIP_LINREG_CTRL); 1334 1335 if (vddio < 3100 && vdda < 3100) { 1336 /* enable internal oscillator used for charge pump */ 1337 snd_soc_component_update_bits(component, SGTL5000_CHIP_CLK_TOP_CTRL, 1338 SGTL5000_INT_OSC_EN, 1339 SGTL5000_INT_OSC_EN); 1340 /* Enable VDDC charge pump */ 1341 ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP; 1342 } else { 1343 ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP; 1344 /* 1345 * if vddio == vdda the source of charge pump should be 1346 * assigned manually to VDDIO 1347 */ 1348 if (regulator_is_equal(sgtl5000->supplies[VDDA].consumer, 1349 sgtl5000->supplies[VDDIO].consumer)) { 1350 lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD; 1351 lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO << 1352 SGTL5000_VDDC_MAN_ASSN_SHIFT; 1353 } 1354 } 1355 1356 snd_soc_component_write(component, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl); 1357 1358 snd_soc_component_write(component, SGTL5000_CHIP_ANA_POWER, ana_pwr); 1359 1360 /* 1361 * set ADC/DAC VAG to vdda / 2, 1362 * should stay in range (0.8v, 1.575v) 1363 */ 1364 vag = vdda / 2; 1365 if (vag <= SGTL5000_ANA_GND_BASE) 1366 vag = 0; 1367 else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP * 1368 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT)) 1369 vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT; 1370 else 1371 vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP; 1372 1373 snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL, 1374 SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT); 1375 1376 /* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */ 1377 lo_vag = vddio / 2; 1378 if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE) 1379 lo_vag = 0; 1380 else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE + 1381 SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX) 1382 lo_vag = SGTL5000_LINE_OUT_GND_MAX; 1383 else 1384 lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) / 1385 SGTL5000_LINE_OUT_GND_STP; 1386 1387 snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_CTRL, 1388 SGTL5000_LINE_OUT_CURRENT_MASK | 1389 SGTL5000_LINE_OUT_GND_MASK, 1390 lo_vag << SGTL5000_LINE_OUT_GND_SHIFT | 1391 SGTL5000_LINE_OUT_CURRENT_360u << 1392 SGTL5000_LINE_OUT_CURRENT_SHIFT); 1393 1394 /* 1395 * Set lineout output level in range (0..31) 1396 * the same value is used for right and left channel 1397 * 1398 * Searching for a suitable index solving this formula: 1399 * idx = 40 * log10(vag_val / lo_cagcntrl) + 15 1400 */ 1401 vol_quot = lo_vag ? (vag * 100) / lo_vag : 0; 1402 lo_vol = 0; 1403 for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) { 1404 if (vol_quot >= vol_quot_table[i]) 1405 lo_vol = i; 1406 else 1407 break; 1408 } 1409 1410 snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_VOL, 1411 SGTL5000_LINE_OUT_VOL_RIGHT_MASK | 1412 SGTL5000_LINE_OUT_VOL_LEFT_MASK, 1413 lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT | 1414 lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT); 1415 1416 return 0; 1417 } 1418 1419 static int sgtl5000_enable_regulators(struct i2c_client *client) 1420 { 1421 int ret; 1422 int i; 1423 int external_vddd = 0; 1424 struct regulator *vddd; 1425 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client); 1426 1427 for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++) 1428 sgtl5000->supplies[i].supply = supply_names[i]; 1429 1430 vddd = regulator_get_optional(&client->dev, "VDDD"); 1431 if (IS_ERR(vddd)) { 1432 /* See if it's just not registered yet */ 1433 if (PTR_ERR(vddd) == -EPROBE_DEFER) 1434 return -EPROBE_DEFER; 1435 } else { 1436 external_vddd = 1; 1437 regulator_put(vddd); 1438 } 1439 1440 sgtl5000->num_supplies = ARRAY_SIZE(sgtl5000->supplies) 1441 - 1 + external_vddd; 1442 ret = regulator_bulk_get(&client->dev, sgtl5000->num_supplies, 1443 sgtl5000->supplies); 1444 if (ret) 1445 return ret; 1446 1447 ret = regulator_bulk_enable(sgtl5000->num_supplies, 1448 sgtl5000->supplies); 1449 if (!ret) 1450 usleep_range(10, 20); 1451 else 1452 regulator_bulk_free(sgtl5000->num_supplies, 1453 sgtl5000->supplies); 1454 1455 return ret; 1456 } 1457 1458 static int sgtl5000_probe(struct snd_soc_component *component) 1459 { 1460 int ret; 1461 u16 reg; 1462 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component); 1463 unsigned int zcd_mask = SGTL5000_HP_ZCD_EN | SGTL5000_ADC_ZCD_EN; 1464 1465 /* power up sgtl5000 */ 1466 ret = sgtl5000_set_power_regs(component); 1467 if (ret) 1468 goto err; 1469 1470 /* enable small pop, introduce 400ms delay in turning off */ 1471 snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL, 1472 SGTL5000_SMALL_POP, SGTL5000_SMALL_POP); 1473 1474 /* disable short cut detector */ 1475 snd_soc_component_write(component, SGTL5000_CHIP_SHORT_CTRL, 0); 1476 1477 snd_soc_component_write(component, SGTL5000_CHIP_DIG_POWER, 1478 SGTL5000_ADC_EN | SGTL5000_DAC_EN); 1479 1480 /* enable dac volume ramp by default */ 1481 snd_soc_component_write(component, SGTL5000_CHIP_ADCDAC_CTRL, 1482 SGTL5000_DAC_VOL_RAMP_EN | 1483 SGTL5000_DAC_MUTE_RIGHT | 1484 SGTL5000_DAC_MUTE_LEFT); 1485 1486 reg = ((sgtl5000->lrclk_strength) << SGTL5000_PAD_I2S_LRCLK_SHIFT | 1487 (sgtl5000->sclk_strength) << SGTL5000_PAD_I2S_SCLK_SHIFT | 1488 0x1f); 1489 snd_soc_component_write(component, SGTL5000_CHIP_PAD_STRENGTH, reg); 1490 1491 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL, 1492 zcd_mask, zcd_mask); 1493 1494 snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL, 1495 SGTL5000_BIAS_R_MASK, 1496 sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT); 1497 1498 snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL, 1499 SGTL5000_BIAS_VOLT_MASK, 1500 sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT); 1501 /* 1502 * enable DAP Graphic EQ 1503 * TODO: 1504 * Add control for changing between PEQ/Tone Control/GEQ 1505 */ 1506 snd_soc_component_write(component, SGTL5000_DAP_AUDIO_EQ, SGTL5000_DAP_SEL_GEQ); 1507 1508 /* Unmute DAC after start */ 1509 snd_soc_component_update_bits(component, SGTL5000_CHIP_ADCDAC_CTRL, 1510 SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT, 0); 1511 1512 return 0; 1513 1514 err: 1515 return ret; 1516 } 1517 1518 static int sgtl5000_of_xlate_dai_id(struct snd_soc_component *component, 1519 struct device_node *endpoint) 1520 { 1521 /* return dai id 0, whatever the endpoint index */ 1522 return 0; 1523 } 1524 1525 static const struct snd_soc_component_driver sgtl5000_driver = { 1526 .probe = sgtl5000_probe, 1527 .set_bias_level = sgtl5000_set_bias_level, 1528 .controls = sgtl5000_snd_controls, 1529 .num_controls = ARRAY_SIZE(sgtl5000_snd_controls), 1530 .dapm_widgets = sgtl5000_dapm_widgets, 1531 .num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets), 1532 .dapm_routes = sgtl5000_dapm_routes, 1533 .num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes), 1534 .of_xlate_dai_id = sgtl5000_of_xlate_dai_id, 1535 .suspend_bias_off = 1, 1536 .idle_bias_on = 1, 1537 .use_pmdown_time = 1, 1538 .endianness = 1, 1539 .non_legacy_dai_naming = 1, 1540 }; 1541 1542 static const struct regmap_config sgtl5000_regmap = { 1543 .reg_bits = 16, 1544 .val_bits = 16, 1545 .reg_stride = 2, 1546 1547 .max_register = SGTL5000_MAX_REG_OFFSET, 1548 .volatile_reg = sgtl5000_volatile, 1549 .readable_reg = sgtl5000_readable, 1550 1551 .cache_type = REGCACHE_RBTREE, 1552 .reg_defaults = sgtl5000_reg_defaults, 1553 .num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults), 1554 }; 1555 1556 /* 1557 * Write all the default values from sgtl5000_reg_defaults[] array into the 1558 * sgtl5000 registers, to make sure we always start with the sane registers 1559 * values as stated in the datasheet. 1560 * 1561 * Since sgtl5000 does not have a reset line, nor a reset command in software, 1562 * we follow this approach to guarantee we always start from the default values 1563 * and avoid problems like, not being able to probe after an audio playback 1564 * followed by a system reset or a 'reboot' command in Linux 1565 */ 1566 static void sgtl5000_fill_defaults(struct i2c_client *client) 1567 { 1568 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client); 1569 int i, ret, val, index; 1570 1571 for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) { 1572 val = sgtl5000_reg_defaults[i].def; 1573 index = sgtl5000_reg_defaults[i].reg; 1574 ret = regmap_write(sgtl5000->regmap, index, val); 1575 if (ret) 1576 dev_err(&client->dev, 1577 "%s: error %d setting reg 0x%02x to 0x%04x\n", 1578 __func__, ret, index, val); 1579 } 1580 } 1581 1582 static int sgtl5000_i2c_probe(struct i2c_client *client, 1583 const struct i2c_device_id *id) 1584 { 1585 struct sgtl5000_priv *sgtl5000; 1586 int ret, reg, rev; 1587 struct device_node *np = client->dev.of_node; 1588 u32 value; 1589 u16 ana_pwr; 1590 1591 sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL); 1592 if (!sgtl5000) 1593 return -ENOMEM; 1594 1595 i2c_set_clientdata(client, sgtl5000); 1596 1597 ret = sgtl5000_enable_regulators(client); 1598 if (ret) 1599 return ret; 1600 1601 sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap); 1602 if (IS_ERR(sgtl5000->regmap)) { 1603 ret = PTR_ERR(sgtl5000->regmap); 1604 dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret); 1605 goto disable_regs; 1606 } 1607 1608 sgtl5000->mclk = devm_clk_get(&client->dev, NULL); 1609 if (IS_ERR(sgtl5000->mclk)) { 1610 ret = PTR_ERR(sgtl5000->mclk); 1611 /* Defer the probe to see if the clk will be provided later */ 1612 if (ret == -ENOENT) 1613 ret = -EPROBE_DEFER; 1614 1615 if (ret != -EPROBE_DEFER) 1616 dev_err(&client->dev, "Failed to get mclock: %d\n", 1617 ret); 1618 goto disable_regs; 1619 } 1620 1621 ret = clk_prepare_enable(sgtl5000->mclk); 1622 if (ret) { 1623 dev_err(&client->dev, "Error enabling clock %d\n", ret); 1624 goto disable_regs; 1625 } 1626 1627 /* Need 8 clocks before I2C accesses */ 1628 udelay(1); 1629 1630 /* read chip information */ 1631 ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, ®); 1632 if (ret) { 1633 dev_err(&client->dev, "Error reading chip id %d\n", ret); 1634 goto disable_clk; 1635 } 1636 1637 if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) != 1638 SGTL5000_PARTID_PART_ID) { 1639 dev_err(&client->dev, 1640 "Device with ID register %x is not a sgtl5000\n", reg); 1641 ret = -ENODEV; 1642 goto disable_clk; 1643 } 1644 1645 rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT; 1646 dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev); 1647 sgtl5000->revision = rev; 1648 1649 /* reconfigure the clocks in case we're using the PLL */ 1650 ret = regmap_write(sgtl5000->regmap, 1651 SGTL5000_CHIP_CLK_CTRL, 1652 SGTL5000_CHIP_CLK_CTRL_DEFAULT); 1653 if (ret) 1654 dev_err(&client->dev, 1655 "Error %d initializing CHIP_CLK_CTRL\n", ret); 1656 1657 /* Mute everything to avoid pop from the following power-up */ 1658 ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_CTRL, 1659 SGTL5000_CHIP_ANA_CTRL_DEFAULT); 1660 if (ret) { 1661 dev_err(&client->dev, 1662 "Error %d muting outputs via CHIP_ANA_CTRL\n", ret); 1663 goto disable_clk; 1664 } 1665 1666 /* 1667 * If VAG is powered-on (e.g. from previous boot), it would be disabled 1668 * by the write to ANA_POWER in later steps of the probe code. This 1669 * may create a loud pop even with all outputs muted. The proper way 1670 * to circumvent this is disabling the bit first and waiting the proper 1671 * cool-down time. 1672 */ 1673 ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, &value); 1674 if (ret) { 1675 dev_err(&client->dev, "Failed to read ANA_POWER: %d\n", ret); 1676 goto disable_clk; 1677 } 1678 if (value & SGTL5000_VAG_POWERUP) { 1679 ret = regmap_update_bits(sgtl5000->regmap, 1680 SGTL5000_CHIP_ANA_POWER, 1681 SGTL5000_VAG_POWERUP, 1682 0); 1683 if (ret) { 1684 dev_err(&client->dev, "Error %d disabling VAG\n", ret); 1685 goto disable_clk; 1686 } 1687 1688 msleep(SGTL5000_VAG_POWERDOWN_DELAY); 1689 } 1690 1691 /* Follow section 2.2.1.1 of AN3663 */ 1692 ana_pwr = SGTL5000_ANA_POWER_DEFAULT; 1693 if (sgtl5000->num_supplies <= VDDD) { 1694 /* internal VDDD at 1.2V */ 1695 ret = regmap_update_bits(sgtl5000->regmap, 1696 SGTL5000_CHIP_LINREG_CTRL, 1697 SGTL5000_LINREG_VDDD_MASK, 1698 LINREG_VDDD); 1699 if (ret) 1700 dev_err(&client->dev, 1701 "Error %d setting LINREG_VDDD\n", ret); 1702 1703 ana_pwr |= SGTL5000_LINEREG_D_POWERUP; 1704 dev_info(&client->dev, 1705 "Using internal LDO instead of VDDD: check ER1 erratum\n"); 1706 } else { 1707 /* using external LDO for VDDD 1708 * Clear startup powerup and simple powerup 1709 * bits to save power 1710 */ 1711 ana_pwr &= ~(SGTL5000_STARTUP_POWERUP 1712 | SGTL5000_LINREG_SIMPLE_POWERUP); 1713 dev_dbg(&client->dev, "Using external VDDD\n"); 1714 } 1715 ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, ana_pwr); 1716 if (ret) 1717 dev_err(&client->dev, 1718 "Error %d setting CHIP_ANA_POWER to %04x\n", 1719 ret, ana_pwr); 1720 1721 if (np) { 1722 if (!of_property_read_u32(np, 1723 "micbias-resistor-k-ohms", &value)) { 1724 switch (value) { 1725 case SGTL5000_MICBIAS_OFF: 1726 sgtl5000->micbias_resistor = 0; 1727 break; 1728 case SGTL5000_MICBIAS_2K: 1729 sgtl5000->micbias_resistor = 1; 1730 break; 1731 case SGTL5000_MICBIAS_4K: 1732 sgtl5000->micbias_resistor = 2; 1733 break; 1734 case SGTL5000_MICBIAS_8K: 1735 sgtl5000->micbias_resistor = 3; 1736 break; 1737 default: 1738 sgtl5000->micbias_resistor = 2; 1739 dev_err(&client->dev, 1740 "Unsuitable MicBias resistor\n"); 1741 } 1742 } else { 1743 /* default is 4Kohms */ 1744 sgtl5000->micbias_resistor = 2; 1745 } 1746 if (!of_property_read_u32(np, 1747 "micbias-voltage-m-volts", &value)) { 1748 /* 1250mV => 0 */ 1749 /* steps of 250mV */ 1750 if ((value >= 1250) && (value <= 3000)) 1751 sgtl5000->micbias_voltage = (value / 250) - 5; 1752 else { 1753 sgtl5000->micbias_voltage = 0; 1754 dev_err(&client->dev, 1755 "Unsuitable MicBias voltage\n"); 1756 } 1757 } else { 1758 sgtl5000->micbias_voltage = 0; 1759 } 1760 } 1761 1762 sgtl5000->lrclk_strength = I2S_LRCLK_STRENGTH_LOW; 1763 if (!of_property_read_u32(np, "lrclk-strength", &value)) { 1764 if (value > I2S_LRCLK_STRENGTH_HIGH) 1765 value = I2S_LRCLK_STRENGTH_LOW; 1766 sgtl5000->lrclk_strength = value; 1767 } 1768 1769 sgtl5000->sclk_strength = I2S_SCLK_STRENGTH_LOW; 1770 if (!of_property_read_u32(np, "sclk-strength", &value)) { 1771 if (value > I2S_SCLK_STRENGTH_HIGH) 1772 value = I2S_SCLK_STRENGTH_LOW; 1773 sgtl5000->sclk_strength = value; 1774 } 1775 1776 /* Ensure sgtl5000 will start with sane register values */ 1777 sgtl5000_fill_defaults(client); 1778 1779 ret = devm_snd_soc_register_component(&client->dev, 1780 &sgtl5000_driver, &sgtl5000_dai, 1); 1781 if (ret) 1782 goto disable_clk; 1783 1784 return 0; 1785 1786 disable_clk: 1787 clk_disable_unprepare(sgtl5000->mclk); 1788 1789 disable_regs: 1790 regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies); 1791 regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies); 1792 1793 return ret; 1794 } 1795 1796 static int sgtl5000_i2c_remove(struct i2c_client *client) 1797 { 1798 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client); 1799 1800 clk_disable_unprepare(sgtl5000->mclk); 1801 regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies); 1802 regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies); 1803 1804 return 0; 1805 } 1806 1807 static const struct i2c_device_id sgtl5000_id[] = { 1808 {"sgtl5000", 0}, 1809 {}, 1810 }; 1811 1812 MODULE_DEVICE_TABLE(i2c, sgtl5000_id); 1813 1814 static const struct of_device_id sgtl5000_dt_ids[] = { 1815 { .compatible = "fsl,sgtl5000", }, 1816 { /* sentinel */ } 1817 }; 1818 MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids); 1819 1820 static struct i2c_driver sgtl5000_i2c_driver = { 1821 .driver = { 1822 .name = "sgtl5000", 1823 .of_match_table = sgtl5000_dt_ids, 1824 }, 1825 .probe = sgtl5000_i2c_probe, 1826 .remove = sgtl5000_i2c_remove, 1827 .id_table = sgtl5000_id, 1828 }; 1829 1830 module_i2c_driver(sgtl5000_i2c_driver); 1831 1832 MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver"); 1833 MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>"); 1834 MODULE_LICENSE("GPL"); 1835