xref: /openbmc/linux/sound/soc/codecs/sgtl5000.c (revision 185c8f33)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // sgtl5000.c  --  SGTL5000 ALSA SoC Audio driver
4 //
5 // Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
6 
7 #include <linux/module.h>
8 #include <linux/moduleparam.h>
9 #include <linux/init.h>
10 #include <linux/delay.h>
11 #include <linux/slab.h>
12 #include <linux/pm.h>
13 #include <linux/i2c.h>
14 #include <linux/clk.h>
15 #include <linux/log2.h>
16 #include <linux/regmap.h>
17 #include <linux/regulator/driver.h>
18 #include <linux/regulator/machine.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/of_device.h>
21 #include <sound/core.h>
22 #include <sound/tlv.h>
23 #include <sound/pcm.h>
24 #include <sound/pcm_params.h>
25 #include <sound/soc.h>
26 #include <sound/soc-dapm.h>
27 #include <sound/initval.h>
28 
29 #include "sgtl5000.h"
30 
31 #define SGTL5000_DAP_REG_OFFSET	0x0100
32 #define SGTL5000_MAX_REG_OFFSET	0x013A
33 
34 /* Delay for the VAG ramp up */
35 #define SGTL5000_VAG_POWERUP_DELAY 500 /* ms */
36 /* Delay for the VAG ramp down */
37 #define SGTL5000_VAG_POWERDOWN_DELAY 500 /* ms */
38 
39 #define SGTL5000_OUTPUTS_MUTE (SGTL5000_HP_MUTE | SGTL5000_LINE_OUT_MUTE)
40 
41 /* default value of sgtl5000 registers */
42 static const struct reg_default sgtl5000_reg_defaults[] = {
43 	{ SGTL5000_CHIP_DIG_POWER,		0x0000 },
44 	{ SGTL5000_CHIP_I2S_CTRL,		0x0010 },
45 	{ SGTL5000_CHIP_SSS_CTRL,		0x0010 },
46 	{ SGTL5000_CHIP_ADCDAC_CTRL,		0x020c },
47 	{ SGTL5000_CHIP_DAC_VOL,		0x3c3c },
48 	{ SGTL5000_CHIP_PAD_STRENGTH,		0x015f },
49 	{ SGTL5000_CHIP_ANA_ADC_CTRL,		0x0000 },
50 	{ SGTL5000_CHIP_ANA_HP_CTRL,		0x1818 },
51 	{ SGTL5000_CHIP_ANA_CTRL,		0x0111 },
52 	{ SGTL5000_CHIP_REF_CTRL,		0x0000 },
53 	{ SGTL5000_CHIP_MIC_CTRL,		0x0000 },
54 	{ SGTL5000_CHIP_LINE_OUT_CTRL,		0x0000 },
55 	{ SGTL5000_CHIP_LINE_OUT_VOL,		0x0404 },
56 	{ SGTL5000_CHIP_PLL_CTRL,		0x5000 },
57 	{ SGTL5000_CHIP_CLK_TOP_CTRL,		0x0000 },
58 	{ SGTL5000_CHIP_ANA_STATUS,		0x0000 },
59 	{ SGTL5000_CHIP_SHORT_CTRL,		0x0000 },
60 	{ SGTL5000_CHIP_ANA_TEST2,		0x0000 },
61 	{ SGTL5000_DAP_CTRL,			0x0000 },
62 	{ SGTL5000_DAP_PEQ,			0x0000 },
63 	{ SGTL5000_DAP_BASS_ENHANCE,		0x0040 },
64 	{ SGTL5000_DAP_BASS_ENHANCE_CTRL,	0x051f },
65 	{ SGTL5000_DAP_AUDIO_EQ,		0x0000 },
66 	{ SGTL5000_DAP_SURROUND,		0x0040 },
67 	{ SGTL5000_DAP_EQ_BASS_BAND0,		0x002f },
68 	{ SGTL5000_DAP_EQ_BASS_BAND1,		0x002f },
69 	{ SGTL5000_DAP_EQ_BASS_BAND2,		0x002f },
70 	{ SGTL5000_DAP_EQ_BASS_BAND3,		0x002f },
71 	{ SGTL5000_DAP_EQ_BASS_BAND4,		0x002f },
72 	{ SGTL5000_DAP_MAIN_CHAN,		0x8000 },
73 	{ SGTL5000_DAP_MIX_CHAN,		0x0000 },
74 	{ SGTL5000_DAP_AVC_CTRL,		0x5100 },
75 	{ SGTL5000_DAP_AVC_THRESHOLD,		0x1473 },
76 	{ SGTL5000_DAP_AVC_ATTACK,		0x0028 },
77 	{ SGTL5000_DAP_AVC_DECAY,		0x0050 },
78 };
79 
80 /* AVC: Threshold dB -> register: pre-calculated values */
81 static const u16 avc_thr_db2reg[97] = {
82 	0x5168, 0x488E, 0x40AA, 0x39A1, 0x335D, 0x2DC7, 0x28CC, 0x245D, 0x2068,
83 	0x1CE2, 0x19BE, 0x16F1, 0x1472, 0x1239, 0x103E, 0x0E7A, 0x0CE6, 0x0B7F,
84 	0x0A3F, 0x0922, 0x0824, 0x0741, 0x0677, 0x05C3, 0x0522, 0x0493, 0x0414,
85 	0x03A2, 0x033D, 0x02E3, 0x0293, 0x024B, 0x020B, 0x01D2, 0x019F, 0x0172,
86 	0x014A, 0x0126, 0x0106, 0x00E9, 0x00D0, 0x00B9, 0x00A5, 0x0093, 0x0083,
87 	0x0075, 0x0068, 0x005D, 0x0052, 0x0049, 0x0041, 0x003A, 0x0034, 0x002E,
88 	0x0029, 0x0025, 0x0021, 0x001D, 0x001A, 0x0017, 0x0014, 0x0012, 0x0010,
89 	0x000E, 0x000D, 0x000B, 0x000A, 0x0009, 0x0008, 0x0007, 0x0006, 0x0005,
90 	0x0005, 0x0004, 0x0004, 0x0003, 0x0003, 0x0002, 0x0002, 0x0002, 0x0002,
91 	0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0000, 0x0000,
92 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000};
93 
94 /* regulator supplies for sgtl5000, VDDD is an optional external supply */
95 enum sgtl5000_regulator_supplies {
96 	VDDA,
97 	VDDIO,
98 	VDDD,
99 	SGTL5000_SUPPLY_NUM
100 };
101 
102 /* vddd is optional supply */
103 static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
104 	"VDDA",
105 	"VDDIO",
106 	"VDDD"
107 };
108 
109 #define LDO_VOLTAGE		1200000
110 #define LINREG_VDDD	((1600 - LDO_VOLTAGE / 1000) / 50)
111 
112 enum sgtl5000_micbias_resistor {
113 	SGTL5000_MICBIAS_OFF = 0,
114 	SGTL5000_MICBIAS_2K = 2,
115 	SGTL5000_MICBIAS_4K = 4,
116 	SGTL5000_MICBIAS_8K = 8,
117 };
118 
119 enum  {
120 	I2S_LRCLK_STRENGTH_DISABLE,
121 	I2S_LRCLK_STRENGTH_LOW,
122 	I2S_LRCLK_STRENGTH_MEDIUM,
123 	I2S_LRCLK_STRENGTH_HIGH,
124 };
125 
126 enum  {
127 	I2S_SCLK_STRENGTH_DISABLE,
128 	I2S_SCLK_STRENGTH_LOW,
129 	I2S_SCLK_STRENGTH_MEDIUM,
130 	I2S_SCLK_STRENGTH_HIGH,
131 };
132 
133 enum {
134 	HP_POWER_EVENT,
135 	DAC_POWER_EVENT,
136 	ADC_POWER_EVENT,
137 	LAST_POWER_EVENT = ADC_POWER_EVENT
138 };
139 
140 /* sgtl5000 private structure in codec */
141 struct sgtl5000_priv {
142 	int sysclk;	/* sysclk rate */
143 	int master;	/* i2s master or not */
144 	int fmt;	/* i2s data format */
145 	struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
146 	int num_supplies;
147 	struct regmap *regmap;
148 	struct clk *mclk;
149 	int revision;
150 	u8 micbias_resistor;
151 	u8 micbias_voltage;
152 	u8 lrclk_strength;
153 	u8 sclk_strength;
154 	u16 mute_state[LAST_POWER_EVENT + 1];
155 };
156 
157 static inline int hp_sel_input(struct snd_soc_component *component)
158 {
159 	return (snd_soc_component_read(component, SGTL5000_CHIP_ANA_CTRL) &
160 		SGTL5000_HP_SEL_MASK) >> SGTL5000_HP_SEL_SHIFT;
161 }
162 
163 static inline u16 mute_output(struct snd_soc_component *component,
164 			      u16 mute_mask)
165 {
166 	u16 mute_reg = snd_soc_component_read(component,
167 					      SGTL5000_CHIP_ANA_CTRL);
168 
169 	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
170 			    mute_mask, mute_mask);
171 	return mute_reg;
172 }
173 
174 static inline void restore_output(struct snd_soc_component *component,
175 				  u16 mute_mask, u16 mute_reg)
176 {
177 	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
178 		mute_mask, mute_reg);
179 }
180 
181 static void vag_power_on(struct snd_soc_component *component, u32 source)
182 {
183 	if (snd_soc_component_read(component, SGTL5000_CHIP_ANA_POWER) &
184 	    SGTL5000_VAG_POWERUP)
185 		return;
186 
187 	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
188 			    SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
189 
190 	/* When VAG powering on to get local loop from Line-In, the sleep
191 	 * is required to avoid loud pop.
192 	 */
193 	if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN &&
194 	    source == HP_POWER_EVENT)
195 		msleep(SGTL5000_VAG_POWERUP_DELAY);
196 }
197 
198 static int vag_power_consumers(struct snd_soc_component *component,
199 			       u16 ana_pwr_reg, u32 source)
200 {
201 	int consumers = 0;
202 
203 	/* count dac/adc consumers unconditional */
204 	if (ana_pwr_reg & SGTL5000_DAC_POWERUP)
205 		consumers++;
206 	if (ana_pwr_reg & SGTL5000_ADC_POWERUP)
207 		consumers++;
208 
209 	/*
210 	 * If the event comes from HP and Line-In is selected,
211 	 * current action is 'DAC to be powered down'.
212 	 * As HP_POWERUP is not set when HP muxed to line-in,
213 	 * we need to keep VAG power ON.
214 	 */
215 	if (source == HP_POWER_EVENT) {
216 		if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN)
217 			consumers++;
218 	} else {
219 		if (ana_pwr_reg & SGTL5000_HP_POWERUP)
220 			consumers++;
221 	}
222 
223 	return consumers;
224 }
225 
226 static void vag_power_off(struct snd_soc_component *component, u32 source)
227 {
228 	u16 ana_pwr = snd_soc_component_read(component,
229 					     SGTL5000_CHIP_ANA_POWER);
230 
231 	if (!(ana_pwr & SGTL5000_VAG_POWERUP))
232 		return;
233 
234 	/*
235 	 * This function calls when any of VAG power consumers is disappearing.
236 	 * Thus, if there is more than one consumer at the moment, as minimum
237 	 * one consumer will definitely stay after the end of the current
238 	 * event.
239 	 * Don't clear VAG_POWERUP if 2 or more consumers of VAG present:
240 	 * - LINE_IN (for HP events) / HP (for DAC/ADC events)
241 	 * - DAC
242 	 * - ADC
243 	 * (the current consumer is disappearing right now)
244 	 */
245 	if (vag_power_consumers(component, ana_pwr, source) >= 2)
246 		return;
247 
248 	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
249 		SGTL5000_VAG_POWERUP, 0);
250 	/* In power down case, we need wait 400-1000 ms
251 	 * when VAG fully ramped down.
252 	 * As longer we wait, as smaller pop we've got.
253 	 */
254 	msleep(SGTL5000_VAG_POWERDOWN_DELAY);
255 }
256 
257 /*
258  * mic_bias power on/off share the same register bits with
259  * output impedance of mic bias, when power on mic bias, we
260  * need reclaim it to impedance value.
261  * 0x0 = Powered off
262  * 0x1 = 2Kohm
263  * 0x2 = 4Kohm
264  * 0x3 = 8Kohm
265  */
266 static int mic_bias_event(struct snd_soc_dapm_widget *w,
267 	struct snd_kcontrol *kcontrol, int event)
268 {
269 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
270 	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
271 
272 	switch (event) {
273 	case SND_SOC_DAPM_POST_PMU:
274 		/* change mic bias resistor */
275 		snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
276 			SGTL5000_BIAS_R_MASK,
277 			sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
278 		break;
279 
280 	case SND_SOC_DAPM_PRE_PMD:
281 		snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
282 				SGTL5000_BIAS_R_MASK, 0);
283 		break;
284 	}
285 	return 0;
286 }
287 
288 static int vag_and_mute_control(struct snd_soc_component *component,
289 				 int event, int event_source)
290 {
291 	static const u16 mute_mask[] = {
292 		/*
293 		 * Mask for HP_POWER_EVENT.
294 		 * Muxing Headphones have to be wrapped with mute/unmute
295 		 * headphones only.
296 		 */
297 		SGTL5000_HP_MUTE,
298 		/*
299 		 * Masks for DAC_POWER_EVENT/ADC_POWER_EVENT.
300 		 * Muxing DAC or ADC block have to wrapped with mute/unmute
301 		 * both headphones and line-out.
302 		 */
303 		SGTL5000_OUTPUTS_MUTE,
304 		SGTL5000_OUTPUTS_MUTE
305 	};
306 
307 	struct sgtl5000_priv *sgtl5000 =
308 		snd_soc_component_get_drvdata(component);
309 
310 	switch (event) {
311 	case SND_SOC_DAPM_PRE_PMU:
312 		sgtl5000->mute_state[event_source] =
313 			mute_output(component, mute_mask[event_source]);
314 		break;
315 	case SND_SOC_DAPM_POST_PMU:
316 		vag_power_on(component, event_source);
317 		restore_output(component, mute_mask[event_source],
318 			       sgtl5000->mute_state[event_source]);
319 		break;
320 	case SND_SOC_DAPM_PRE_PMD:
321 		sgtl5000->mute_state[event_source] =
322 			mute_output(component, mute_mask[event_source]);
323 		vag_power_off(component, event_source);
324 		break;
325 	case SND_SOC_DAPM_POST_PMD:
326 		restore_output(component, mute_mask[event_source],
327 			       sgtl5000->mute_state[event_source]);
328 		break;
329 	default:
330 		break;
331 	}
332 
333 	return 0;
334 }
335 
336 /*
337  * Mute Headphone when power it up/down.
338  * Control VAG power on HP power path.
339  */
340 static int headphone_pga_event(struct snd_soc_dapm_widget *w,
341 	struct snd_kcontrol *kcontrol, int event)
342 {
343 	struct snd_soc_component *component =
344 		snd_soc_dapm_to_component(w->dapm);
345 
346 	return vag_and_mute_control(component, event, HP_POWER_EVENT);
347 }
348 
349 /* As manual describes, ADC/DAC powering up/down requires
350  * to mute outputs to avoid pops.
351  * Control VAG power on ADC/DAC power path.
352  */
353 static int adc_updown_depop(struct snd_soc_dapm_widget *w,
354 	struct snd_kcontrol *kcontrol, int event)
355 {
356 	struct snd_soc_component *component =
357 		snd_soc_dapm_to_component(w->dapm);
358 
359 	return vag_and_mute_control(component, event, ADC_POWER_EVENT);
360 }
361 
362 static int dac_updown_depop(struct snd_soc_dapm_widget *w,
363 	struct snd_kcontrol *kcontrol, int event)
364 {
365 	struct snd_soc_component *component =
366 		snd_soc_dapm_to_component(w->dapm);
367 
368 	return vag_and_mute_control(component, event, DAC_POWER_EVENT);
369 }
370 
371 /* input sources for ADC */
372 static const char *adc_mux_text[] = {
373 	"MIC_IN", "LINE_IN"
374 };
375 
376 static SOC_ENUM_SINGLE_DECL(adc_enum,
377 			    SGTL5000_CHIP_ANA_CTRL, 2,
378 			    adc_mux_text);
379 
380 static const struct snd_kcontrol_new adc_mux =
381 SOC_DAPM_ENUM("Capture Mux", adc_enum);
382 
383 /* input sources for headphone */
384 static const char *hp_mux_text[] = {
385 	"DAC", "LINE_IN"
386 };
387 
388 static SOC_ENUM_SINGLE_DECL(hp_enum,
389 			    SGTL5000_CHIP_ANA_CTRL, 6,
390 			    hp_mux_text);
391 
392 static const struct snd_kcontrol_new hp_mux =
393 SOC_DAPM_ENUM("Headphone Mux", hp_enum);
394 
395 /* input sources for DAC */
396 static const char *dac_mux_text[] = {
397 	"ADC", "I2S", "Rsvrd", "DAP"
398 };
399 
400 static SOC_ENUM_SINGLE_DECL(dac_enum,
401 			    SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAC_SEL_SHIFT,
402 			    dac_mux_text);
403 
404 static const struct snd_kcontrol_new dac_mux =
405 SOC_DAPM_ENUM("Digital Input Mux", dac_enum);
406 
407 /* input sources for DAP */
408 static const char *dap_mux_text[] = {
409 	"ADC", "I2S"
410 };
411 
412 static SOC_ENUM_SINGLE_DECL(dap_enum,
413 			    SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_SEL_SHIFT,
414 			    dap_mux_text);
415 
416 static const struct snd_kcontrol_new dap_mux =
417 SOC_DAPM_ENUM("DAP Mux", dap_enum);
418 
419 /* input sources for DAP mix */
420 static const char *dapmix_mux_text[] = {
421 	"ADC", "I2S"
422 };
423 
424 static SOC_ENUM_SINGLE_DECL(dapmix_enum,
425 			    SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_MIX_SEL_SHIFT,
426 			    dapmix_mux_text);
427 
428 static const struct snd_kcontrol_new dapmix_mux =
429 SOC_DAPM_ENUM("DAP MIX Mux", dapmix_enum);
430 
431 
432 static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
433 	SND_SOC_DAPM_INPUT("LINE_IN"),
434 	SND_SOC_DAPM_INPUT("MIC_IN"),
435 
436 	SND_SOC_DAPM_OUTPUT("HP_OUT"),
437 	SND_SOC_DAPM_OUTPUT("LINE_OUT"),
438 
439 	SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
440 			    mic_bias_event,
441 			    SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
442 
443 	SND_SOC_DAPM_PGA_E("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0,
444 			   headphone_pga_event,
445 			   SND_SOC_DAPM_PRE_POST_PMU |
446 			   SND_SOC_DAPM_PRE_POST_PMD),
447 	SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
448 
449 	SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
450 	SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &hp_mux),
451 	SND_SOC_DAPM_MUX("Digital Input Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
452 	SND_SOC_DAPM_MUX("DAP Mux", SGTL5000_DAP_CTRL, 0, 0, &dap_mux),
453 	SND_SOC_DAPM_MUX("DAP MIX Mux", SGTL5000_DAP_CTRL, 4, 0, &dapmix_mux),
454 	SND_SOC_DAPM_MIXER("DAP", SGTL5000_CHIP_DIG_POWER, 4, 0, NULL, 0),
455 
456 
457 	/* aif for i2s input */
458 	SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
459 				0, SGTL5000_CHIP_DIG_POWER,
460 				0, 0),
461 
462 	/* aif for i2s output */
463 	SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
464 				0, SGTL5000_CHIP_DIG_POWER,
465 				1, 0),
466 
467 	SND_SOC_DAPM_ADC_E("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0,
468 			   adc_updown_depop, SND_SOC_DAPM_PRE_POST_PMU |
469 			   SND_SOC_DAPM_PRE_POST_PMD),
470 	SND_SOC_DAPM_DAC_E("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0,
471 			   dac_updown_depop, SND_SOC_DAPM_PRE_POST_PMU |
472 			   SND_SOC_DAPM_PRE_POST_PMD),
473 };
474 
475 /* routes for sgtl5000 */
476 static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
477 	{"Capture Mux", "LINE_IN", "LINE_IN"},	/* line_in --> adc_mux */
478 	{"Capture Mux", "MIC_IN", "MIC_IN"},	/* mic_in --> adc_mux */
479 
480 	{"ADC", NULL, "Capture Mux"},		/* adc_mux --> adc */
481 	{"AIFOUT", NULL, "ADC"},		/* adc --> i2s_out */
482 
483 	{"DAP Mux", "ADC", "ADC"},		/* adc --> DAP mux */
484 	{"DAP Mux", NULL, "AIFIN"},		/* i2s --> DAP mux */
485 	{"DAP", NULL, "DAP Mux"},		/* DAP mux --> dap */
486 
487 	{"DAP MIX Mux", "ADC", "ADC"},		/* adc --> DAP MIX mux */
488 	{"DAP MIX Mux", NULL, "AIFIN"},		/* i2s --> DAP MIX mux */
489 	{"DAP", NULL, "DAP MIX Mux"},		/* DAP MIX mux --> dap */
490 
491 	{"Digital Input Mux", "ADC", "ADC"},	/* adc --> audio mux */
492 	{"Digital Input Mux", NULL, "AIFIN"},	/* i2s --> audio mux */
493 	{"Digital Input Mux", NULL, "DAP"},	/* dap --> audio mux */
494 	{"DAC", NULL, "Digital Input Mux"},	/* audio mux --> dac */
495 
496 	{"Headphone Mux", "DAC", "DAC"},	/* dac --> hp_mux */
497 	{"LO", NULL, "DAC"},			/* dac --> line_out */
498 
499 	{"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
500 	{"HP", NULL, "Headphone Mux"},		/* hp_mux --> hp */
501 
502 	{"LINE_OUT", NULL, "LO"},
503 	{"HP_OUT", NULL, "HP"},
504 };
505 
506 /* custom function to fetch info of PCM playback volume */
507 static int dac_info_volsw(struct snd_kcontrol *kcontrol,
508 			  struct snd_ctl_elem_info *uinfo)
509 {
510 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
511 	uinfo->count = 2;
512 	uinfo->value.integer.min = 0;
513 	uinfo->value.integer.max = 0xfc - 0x3c;
514 	return 0;
515 }
516 
517 /*
518  * custom function to get of PCM playback volume
519  *
520  * dac volume register
521  * 15-------------8-7--------------0
522  * | R channel vol | L channel vol |
523  *  -------------------------------
524  *
525  * PCM volume with 0.5017 dB steps from 0 to -90 dB
526  *
527  * register values map to dB
528  * 0x3B and less = Reserved
529  * 0x3C = 0 dB
530  * 0x3D = -0.5 dB
531  * 0xF0 = -90 dB
532  * 0xFC and greater = Muted
533  *
534  * register value map to userspace value
535  *
536  * register value	0x3c(0dB)	  0xf0(-90dB)0xfc
537  *			------------------------------
538  * userspace value	0xc0			     0
539  */
540 static int dac_get_volsw(struct snd_kcontrol *kcontrol,
541 			 struct snd_ctl_elem_value *ucontrol)
542 {
543 	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
544 	int reg;
545 	int l;
546 	int r;
547 
548 	reg = snd_soc_component_read(component, SGTL5000_CHIP_DAC_VOL);
549 
550 	/* get left channel volume */
551 	l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
552 
553 	/* get right channel volume */
554 	r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
555 
556 	/* make sure value fall in (0x3c,0xfc) */
557 	l = clamp(l, 0x3c, 0xfc);
558 	r = clamp(r, 0x3c, 0xfc);
559 
560 	/* invert it and map to userspace value */
561 	l = 0xfc - l;
562 	r = 0xfc - r;
563 
564 	ucontrol->value.integer.value[0] = l;
565 	ucontrol->value.integer.value[1] = r;
566 
567 	return 0;
568 }
569 
570 /*
571  * custom function to put of PCM playback volume
572  *
573  * dac volume register
574  * 15-------------8-7--------------0
575  * | R channel vol | L channel vol |
576  *  -------------------------------
577  *
578  * PCM volume with 0.5017 dB steps from 0 to -90 dB
579  *
580  * register values map to dB
581  * 0x3B and less = Reserved
582  * 0x3C = 0 dB
583  * 0x3D = -0.5 dB
584  * 0xF0 = -90 dB
585  * 0xFC and greater = Muted
586  *
587  * userspace value map to register value
588  *
589  * userspace value	0xc0			     0
590  *			------------------------------
591  * register value	0x3c(0dB)	0xf0(-90dB)0xfc
592  */
593 static int dac_put_volsw(struct snd_kcontrol *kcontrol,
594 			 struct snd_ctl_elem_value *ucontrol)
595 {
596 	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
597 	int reg;
598 	int l;
599 	int r;
600 
601 	l = ucontrol->value.integer.value[0];
602 	r = ucontrol->value.integer.value[1];
603 
604 	/* make sure userspace volume fall in (0, 0xfc-0x3c) */
605 	l = clamp(l, 0, 0xfc - 0x3c);
606 	r = clamp(r, 0, 0xfc - 0x3c);
607 
608 	/* invert it, get the value can be set to register */
609 	l = 0xfc - l;
610 	r = 0xfc - r;
611 
612 	/* shift to get the register value */
613 	reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
614 		r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
615 
616 	snd_soc_component_write(component, SGTL5000_CHIP_DAC_VOL, reg);
617 
618 	return 0;
619 }
620 
621 /*
622  * custom function to get AVC threshold
623  *
624  * The threshold dB is calculated by rearranging the calculation from the
625  * avc_put_threshold function: register_value = 10^(dB/20) * 0.636 * 2^15 ==>
626  * dB = ( fls(register_value) - 14.347 ) * 6.02
627  *
628  * As this calculation is expensive and the threshold dB values may not exceed
629  * 0 to 96 we use pre-calculated values.
630  */
631 static int avc_get_threshold(struct snd_kcontrol *kcontrol,
632 			     struct snd_ctl_elem_value *ucontrol)
633 {
634 	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
635 	int db, i;
636 	u16 reg = snd_soc_component_read(component, SGTL5000_DAP_AVC_THRESHOLD);
637 
638 	/* register value 0 => -96dB */
639 	if (!reg) {
640 		ucontrol->value.integer.value[0] = 96;
641 		ucontrol->value.integer.value[1] = 96;
642 		return 0;
643 	}
644 
645 	/* get dB from register value (rounded down) */
646 	for (i = 0; avc_thr_db2reg[i] > reg; i++)
647 		;
648 	db = i;
649 
650 	ucontrol->value.integer.value[0] = db;
651 	ucontrol->value.integer.value[1] = db;
652 
653 	return 0;
654 }
655 
656 /*
657  * custom function to put AVC threshold
658  *
659  * The register value is calculated by following formula:
660  *                                    register_value = 10^(dB/20) * 0.636 * 2^15
661  * As this calculation is expensive and the threshold dB values may not exceed
662  * 0 to 96 we use pre-calculated values.
663  */
664 static int avc_put_threshold(struct snd_kcontrol *kcontrol,
665 			     struct snd_ctl_elem_value *ucontrol)
666 {
667 	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
668 	int db;
669 	u16 reg;
670 
671 	db = (int)ucontrol->value.integer.value[0];
672 	if (db < 0 || db > 96)
673 		return -EINVAL;
674 	reg = avc_thr_db2reg[db];
675 	snd_soc_component_write(component, SGTL5000_DAP_AVC_THRESHOLD, reg);
676 
677 	return 0;
678 }
679 
680 static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
681 
682 /* tlv for mic gain, 0db 20db 30db 40db */
683 static const DECLARE_TLV_DB_RANGE(mic_gain_tlv,
684 	0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
685 	1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0)
686 );
687 
688 /* tlv for DAP channels, 0% - 100% - 200% */
689 static const DECLARE_TLV_DB_SCALE(dap_volume, 0, 1, 0);
690 
691 /* tlv for bass bands, -11.75db to 12.0db, step .25db */
692 static const DECLARE_TLV_DB_SCALE(bass_band, -1175, 25, 0);
693 
694 /* tlv for hp volume, -51.5db to 12.0db, step .5db */
695 static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
696 
697 /* tlv for lineout volume, 31 steps of .5db each */
698 static const DECLARE_TLV_DB_SCALE(lineout_volume, -1550, 50, 0);
699 
700 /* tlv for dap avc max gain, 0db, 6db, 12db */
701 static const DECLARE_TLV_DB_SCALE(avc_max_gain, 0, 600, 0);
702 
703 /* tlv for dap avc threshold, */
704 static const DECLARE_TLV_DB_MINMAX(avc_threshold, 0, 9600);
705 
706 static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
707 	/* SOC_DOUBLE_S8_TLV with invert */
708 	{
709 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
710 		.name = "PCM Playback Volume",
711 		.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
712 			SNDRV_CTL_ELEM_ACCESS_READWRITE,
713 		.info = dac_info_volsw,
714 		.get = dac_get_volsw,
715 		.put = dac_put_volsw,
716 	},
717 
718 	SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
719 	SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
720 			SGTL5000_CHIP_ANA_ADC_CTRL,
721 			8, 1, 0, capture_6db_attenuate),
722 	SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
723 	SOC_SINGLE("Capture Switch", SGTL5000_CHIP_ANA_CTRL, 0, 1, 1),
724 
725 	SOC_DOUBLE_TLV("Headphone Playback Volume",
726 			SGTL5000_CHIP_ANA_HP_CTRL,
727 			0, 8,
728 			0x7f, 1,
729 			headphone_volume),
730 	SOC_SINGLE("Headphone Playback Switch", SGTL5000_CHIP_ANA_CTRL,
731 			4, 1, 1),
732 	SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
733 			5, 1, 0),
734 
735 	SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
736 			0, 3, 0, mic_gain_tlv),
737 
738 	SOC_DOUBLE_TLV("Lineout Playback Volume",
739 			SGTL5000_CHIP_LINE_OUT_VOL,
740 			SGTL5000_LINE_OUT_VOL_LEFT_SHIFT,
741 			SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT,
742 			0x1f, 1,
743 			lineout_volume),
744 	SOC_SINGLE("Lineout Playback Switch", SGTL5000_CHIP_ANA_CTRL, 8, 1, 1),
745 
746 	SOC_SINGLE_TLV("DAP Main channel", SGTL5000_DAP_MAIN_CHAN,
747 	0, 0xffff, 0, dap_volume),
748 
749 	SOC_SINGLE_TLV("DAP Mix channel", SGTL5000_DAP_MIX_CHAN,
750 	0, 0xffff, 0, dap_volume),
751 	/* Automatic Volume Control (DAP AVC) */
752 	SOC_SINGLE("AVC Switch", SGTL5000_DAP_AVC_CTRL, 0, 1, 0),
753 	SOC_SINGLE("AVC Hard Limiter Switch", SGTL5000_DAP_AVC_CTRL, 5, 1, 0),
754 	SOC_SINGLE_TLV("AVC Max Gain Volume", SGTL5000_DAP_AVC_CTRL, 12, 2, 0,
755 			avc_max_gain),
756 	SOC_SINGLE("AVC Integrator Response", SGTL5000_DAP_AVC_CTRL, 8, 3, 0),
757 	SOC_SINGLE_EXT_TLV("AVC Threshold Volume", SGTL5000_DAP_AVC_THRESHOLD,
758 			0, 96, 0, avc_get_threshold, avc_put_threshold,
759 			avc_threshold),
760 
761 	SOC_SINGLE_TLV("BASS 0", SGTL5000_DAP_EQ_BASS_BAND0,
762 	0, 0x5F, 0, bass_band),
763 
764 	SOC_SINGLE_TLV("BASS 1", SGTL5000_DAP_EQ_BASS_BAND1,
765 	0, 0x5F, 0, bass_band),
766 
767 	SOC_SINGLE_TLV("BASS 2", SGTL5000_DAP_EQ_BASS_BAND2,
768 	0, 0x5F, 0, bass_band),
769 
770 	SOC_SINGLE_TLV("BASS 3", SGTL5000_DAP_EQ_BASS_BAND3,
771 	0, 0x5F, 0, bass_band),
772 
773 	SOC_SINGLE_TLV("BASS 4", SGTL5000_DAP_EQ_BASS_BAND4,
774 	0, 0x5F, 0, bass_band),
775 };
776 
777 /* mute the codec used by alsa core */
778 static int sgtl5000_mute_stream(struct snd_soc_dai *codec_dai, int mute, int direction)
779 {
780 	struct snd_soc_component *component = codec_dai->component;
781 	u16 i2s_pwr = SGTL5000_I2S_IN_POWERUP;
782 
783 	/*
784 	 * During 'digital mute' do not mute DAC
785 	 * because LINE_IN would be muted aswell. We want to mute
786 	 * only I2S block - this can be done by powering it off
787 	 */
788 	snd_soc_component_update_bits(component, SGTL5000_CHIP_DIG_POWER,
789 			i2s_pwr, mute ? 0 : i2s_pwr);
790 
791 	return 0;
792 }
793 
794 /* set codec format */
795 static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
796 {
797 	struct snd_soc_component *component = codec_dai->component;
798 	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
799 	u16 i2sctl = 0;
800 
801 	sgtl5000->master = 0;
802 	/*
803 	 * i2s clock and frame master setting.
804 	 * ONLY support:
805 	 *  - clock and frame slave,
806 	 *  - clock and frame master
807 	 */
808 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
809 	case SND_SOC_DAIFMT_CBS_CFS:
810 		break;
811 	case SND_SOC_DAIFMT_CBM_CFM:
812 		i2sctl |= SGTL5000_I2S_MASTER;
813 		sgtl5000->master = 1;
814 		break;
815 	default:
816 		return -EINVAL;
817 	}
818 
819 	/* setting i2s data format */
820 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
821 	case SND_SOC_DAIFMT_DSP_A:
822 		i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
823 		break;
824 	case SND_SOC_DAIFMT_DSP_B:
825 		i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
826 		i2sctl |= SGTL5000_I2S_LRALIGN;
827 		break;
828 	case SND_SOC_DAIFMT_I2S:
829 		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
830 		break;
831 	case SND_SOC_DAIFMT_RIGHT_J:
832 		i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT;
833 		i2sctl |= SGTL5000_I2S_LRPOL;
834 		break;
835 	case SND_SOC_DAIFMT_LEFT_J:
836 		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
837 		i2sctl |= SGTL5000_I2S_LRALIGN;
838 		break;
839 	default:
840 		return -EINVAL;
841 	}
842 
843 	sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
844 
845 	/* Clock inversion */
846 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
847 	case SND_SOC_DAIFMT_NB_NF:
848 		break;
849 	case SND_SOC_DAIFMT_IB_NF:
850 		i2sctl |= SGTL5000_I2S_SCLK_INV;
851 		break;
852 	default:
853 		return -EINVAL;
854 	}
855 
856 	snd_soc_component_write(component, SGTL5000_CHIP_I2S_CTRL, i2sctl);
857 
858 	return 0;
859 }
860 
861 /* set codec sysclk */
862 static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
863 				   int clk_id, unsigned int freq, int dir)
864 {
865 	struct snd_soc_component *component = codec_dai->component;
866 	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
867 
868 	switch (clk_id) {
869 	case SGTL5000_SYSCLK:
870 		sgtl5000->sysclk = freq;
871 		break;
872 	default:
873 		return -EINVAL;
874 	}
875 
876 	return 0;
877 }
878 
879 /*
880  * set clock according to i2s frame clock,
881  * sgtl5000 provides 2 clock sources:
882  * 1. sys_mclk: sample freq can only be configured to
883  *	1/256, 1/384, 1/512 of sys_mclk.
884  * 2. pll: can derive any audio clocks.
885  *
886  * clock setting rules:
887  * 1. in slave mode, only sys_mclk can be used
888  * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz
889  * and above.
890  * 3. usage of sys_mclk is preferred over pll to save power.
891  */
892 static int sgtl5000_set_clock(struct snd_soc_component *component, int frame_rate)
893 {
894 	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
895 	int clk_ctl = 0;
896 	int sys_fs;	/* sample freq */
897 
898 	/*
899 	 * sample freq should be divided by frame clock,
900 	 * if frame clock is lower than 44.1 kHz, sample freq should be set to
901 	 * 32 kHz or 44.1 kHz.
902 	 */
903 	switch (frame_rate) {
904 	case 8000:
905 	case 16000:
906 		sys_fs = 32000;
907 		break;
908 	case 11025:
909 	case 22050:
910 		sys_fs = 44100;
911 		break;
912 	default:
913 		sys_fs = frame_rate;
914 		break;
915 	}
916 
917 	/* set divided factor of frame clock */
918 	switch (sys_fs / frame_rate) {
919 	case 4:
920 		clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
921 		break;
922 	case 2:
923 		clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
924 		break;
925 	case 1:
926 		clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
927 		break;
928 	default:
929 		return -EINVAL;
930 	}
931 
932 	/* set the sys_fs according to frame rate */
933 	switch (sys_fs) {
934 	case 32000:
935 		clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
936 		break;
937 	case 44100:
938 		clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
939 		break;
940 	case 48000:
941 		clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
942 		break;
943 	case 96000:
944 		clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
945 		break;
946 	default:
947 		dev_err(component->dev, "frame rate %d not supported\n",
948 			frame_rate);
949 		return -EINVAL;
950 	}
951 
952 	/*
953 	 * calculate the divider of mclk/sample_freq,
954 	 * factor of freq = 96 kHz can only be 256, since mclk is in the range
955 	 * of 8 MHz - 27 MHz
956 	 */
957 	switch (sgtl5000->sysclk / frame_rate) {
958 	case 256:
959 		clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
960 			SGTL5000_MCLK_FREQ_SHIFT;
961 		break;
962 	case 384:
963 		clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
964 			SGTL5000_MCLK_FREQ_SHIFT;
965 		break;
966 	case 512:
967 		clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
968 			SGTL5000_MCLK_FREQ_SHIFT;
969 		break;
970 	default:
971 		/* if mclk does not satisfy the divider, use pll */
972 		if (sgtl5000->master) {
973 			clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
974 				SGTL5000_MCLK_FREQ_SHIFT;
975 		} else {
976 			dev_err(component->dev,
977 				"PLL not supported in slave mode\n");
978 			dev_err(component->dev, "%d ratio is not supported. "
979 				"SYS_MCLK needs to be 256, 384 or 512 * fs\n",
980 				sgtl5000->sysclk / frame_rate);
981 			return -EINVAL;
982 		}
983 	}
984 
985 	/* if using pll, please check manual 6.4.2 for detail */
986 	if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
987 		u64 out, t;
988 		int div2;
989 		int pll_ctl;
990 		unsigned int in, int_div, frac_div;
991 
992 		if (sgtl5000->sysclk > 17000000) {
993 			div2 = 1;
994 			in = sgtl5000->sysclk / 2;
995 		} else {
996 			div2 = 0;
997 			in = sgtl5000->sysclk;
998 		}
999 		if (sys_fs == 44100)
1000 			out = 180633600;
1001 		else
1002 			out = 196608000;
1003 		t = do_div(out, in);
1004 		int_div = out;
1005 		t *= 2048;
1006 		do_div(t, in);
1007 		frac_div = t;
1008 		pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
1009 		    frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
1010 
1011 		snd_soc_component_write(component, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
1012 		if (div2)
1013 			snd_soc_component_update_bits(component,
1014 				SGTL5000_CHIP_CLK_TOP_CTRL,
1015 				SGTL5000_INPUT_FREQ_DIV2,
1016 				SGTL5000_INPUT_FREQ_DIV2);
1017 		else
1018 			snd_soc_component_update_bits(component,
1019 				SGTL5000_CHIP_CLK_TOP_CTRL,
1020 				SGTL5000_INPUT_FREQ_DIV2,
1021 				0);
1022 
1023 		/* power up pll */
1024 		snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1025 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
1026 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
1027 
1028 		/* if using pll, clk_ctrl must be set after pll power up */
1029 		snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
1030 	} else {
1031 		/* otherwise, clk_ctrl must be set before pll power down */
1032 		snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
1033 
1034 		/* power down pll */
1035 		snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1036 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
1037 			0);
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 /*
1044  * Set PCM DAI bit size and sample rate.
1045  * input: params_rate, params_fmt
1046  */
1047 static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
1048 				  struct snd_pcm_hw_params *params,
1049 				  struct snd_soc_dai *dai)
1050 {
1051 	struct snd_soc_component *component = dai->component;
1052 	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1053 	int channels = params_channels(params);
1054 	int i2s_ctl = 0;
1055 	int stereo;
1056 	int ret;
1057 
1058 	/* sysclk should already set */
1059 	if (!sgtl5000->sysclk) {
1060 		dev_err(component->dev, "%s: set sysclk first!\n", __func__);
1061 		return -EFAULT;
1062 	}
1063 
1064 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1065 		stereo = SGTL5000_DAC_STEREO;
1066 	else
1067 		stereo = SGTL5000_ADC_STEREO;
1068 
1069 	/* set mono to save power */
1070 	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, stereo,
1071 			channels == 1 ? 0 : stereo);
1072 
1073 	/* set codec clock base on lrclk */
1074 	ret = sgtl5000_set_clock(component, params_rate(params));
1075 	if (ret)
1076 		return ret;
1077 
1078 	/* set i2s data format */
1079 	switch (params_width(params)) {
1080 	case 16:
1081 		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
1082 			return -EINVAL;
1083 		i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
1084 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
1085 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
1086 		break;
1087 	case 20:
1088 		i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
1089 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
1090 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
1091 		break;
1092 	case 24:
1093 		i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
1094 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
1095 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
1096 		break;
1097 	case 32:
1098 		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
1099 			return -EINVAL;
1100 		i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
1101 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
1102 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
1103 		break;
1104 	default:
1105 		return -EINVAL;
1106 	}
1107 
1108 	snd_soc_component_update_bits(component, SGTL5000_CHIP_I2S_CTRL,
1109 			    SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
1110 			    i2s_ctl);
1111 
1112 	return 0;
1113 }
1114 
1115 /*
1116  * set dac bias
1117  * common state changes:
1118  * startup:
1119  * off --> standby --> prepare --> on
1120  * standby --> prepare --> on
1121  *
1122  * stop:
1123  * on --> prepare --> standby
1124  */
1125 static int sgtl5000_set_bias_level(struct snd_soc_component *component,
1126 				   enum snd_soc_bias_level level)
1127 {
1128 	struct sgtl5000_priv *sgtl = snd_soc_component_get_drvdata(component);
1129 	int ret;
1130 
1131 	switch (level) {
1132 	case SND_SOC_BIAS_ON:
1133 	case SND_SOC_BIAS_PREPARE:
1134 	case SND_SOC_BIAS_STANDBY:
1135 		regcache_cache_only(sgtl->regmap, false);
1136 		ret = regcache_sync(sgtl->regmap);
1137 		if (ret) {
1138 			regcache_cache_only(sgtl->regmap, true);
1139 			return ret;
1140 		}
1141 
1142 		snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1143 				    SGTL5000_REFTOP_POWERUP,
1144 				    SGTL5000_REFTOP_POWERUP);
1145 		break;
1146 	case SND_SOC_BIAS_OFF:
1147 		regcache_cache_only(sgtl->regmap, true);
1148 		snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1149 				    SGTL5000_REFTOP_POWERUP, 0);
1150 		break;
1151 	}
1152 
1153 	return 0;
1154 }
1155 
1156 #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
1157 			SNDRV_PCM_FMTBIT_S20_3LE |\
1158 			SNDRV_PCM_FMTBIT_S24_LE |\
1159 			SNDRV_PCM_FMTBIT_S32_LE)
1160 
1161 static const struct snd_soc_dai_ops sgtl5000_ops = {
1162 	.hw_params = sgtl5000_pcm_hw_params,
1163 	.mute_stream = sgtl5000_mute_stream,
1164 	.set_fmt = sgtl5000_set_dai_fmt,
1165 	.set_sysclk = sgtl5000_set_dai_sysclk,
1166 	.no_capture_mute = 1,
1167 };
1168 
1169 static struct snd_soc_dai_driver sgtl5000_dai = {
1170 	.name = "sgtl5000",
1171 	.playback = {
1172 		.stream_name = "Playback",
1173 		.channels_min = 1,
1174 		.channels_max = 2,
1175 		/*
1176 		 * only support 8~48K + 96K,
1177 		 * TODO modify hw_param to support more
1178 		 */
1179 		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1180 		.formats = SGTL5000_FORMATS,
1181 	},
1182 	.capture = {
1183 		.stream_name = "Capture",
1184 		.channels_min = 1,
1185 		.channels_max = 2,
1186 		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1187 		.formats = SGTL5000_FORMATS,
1188 	},
1189 	.ops = &sgtl5000_ops,
1190 	.symmetric_rate = 1,
1191 };
1192 
1193 static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
1194 {
1195 	switch (reg) {
1196 	case SGTL5000_CHIP_ID:
1197 	case SGTL5000_CHIP_ADCDAC_CTRL:
1198 	case SGTL5000_CHIP_ANA_STATUS:
1199 		return true;
1200 	}
1201 
1202 	return false;
1203 }
1204 
1205 static bool sgtl5000_readable(struct device *dev, unsigned int reg)
1206 {
1207 	switch (reg) {
1208 	case SGTL5000_CHIP_ID:
1209 	case SGTL5000_CHIP_DIG_POWER:
1210 	case SGTL5000_CHIP_CLK_CTRL:
1211 	case SGTL5000_CHIP_I2S_CTRL:
1212 	case SGTL5000_CHIP_SSS_CTRL:
1213 	case SGTL5000_CHIP_ADCDAC_CTRL:
1214 	case SGTL5000_CHIP_DAC_VOL:
1215 	case SGTL5000_CHIP_PAD_STRENGTH:
1216 	case SGTL5000_CHIP_ANA_ADC_CTRL:
1217 	case SGTL5000_CHIP_ANA_HP_CTRL:
1218 	case SGTL5000_CHIP_ANA_CTRL:
1219 	case SGTL5000_CHIP_LINREG_CTRL:
1220 	case SGTL5000_CHIP_REF_CTRL:
1221 	case SGTL5000_CHIP_MIC_CTRL:
1222 	case SGTL5000_CHIP_LINE_OUT_CTRL:
1223 	case SGTL5000_CHIP_LINE_OUT_VOL:
1224 	case SGTL5000_CHIP_ANA_POWER:
1225 	case SGTL5000_CHIP_PLL_CTRL:
1226 	case SGTL5000_CHIP_CLK_TOP_CTRL:
1227 	case SGTL5000_CHIP_ANA_STATUS:
1228 	case SGTL5000_CHIP_SHORT_CTRL:
1229 	case SGTL5000_CHIP_ANA_TEST2:
1230 	case SGTL5000_DAP_CTRL:
1231 	case SGTL5000_DAP_PEQ:
1232 	case SGTL5000_DAP_BASS_ENHANCE:
1233 	case SGTL5000_DAP_BASS_ENHANCE_CTRL:
1234 	case SGTL5000_DAP_AUDIO_EQ:
1235 	case SGTL5000_DAP_SURROUND:
1236 	case SGTL5000_DAP_FLT_COEF_ACCESS:
1237 	case SGTL5000_DAP_COEF_WR_B0_MSB:
1238 	case SGTL5000_DAP_COEF_WR_B0_LSB:
1239 	case SGTL5000_DAP_EQ_BASS_BAND0:
1240 	case SGTL5000_DAP_EQ_BASS_BAND1:
1241 	case SGTL5000_DAP_EQ_BASS_BAND2:
1242 	case SGTL5000_DAP_EQ_BASS_BAND3:
1243 	case SGTL5000_DAP_EQ_BASS_BAND4:
1244 	case SGTL5000_DAP_MAIN_CHAN:
1245 	case SGTL5000_DAP_MIX_CHAN:
1246 	case SGTL5000_DAP_AVC_CTRL:
1247 	case SGTL5000_DAP_AVC_THRESHOLD:
1248 	case SGTL5000_DAP_AVC_ATTACK:
1249 	case SGTL5000_DAP_AVC_DECAY:
1250 	case SGTL5000_DAP_COEF_WR_B1_MSB:
1251 	case SGTL5000_DAP_COEF_WR_B1_LSB:
1252 	case SGTL5000_DAP_COEF_WR_B2_MSB:
1253 	case SGTL5000_DAP_COEF_WR_B2_LSB:
1254 	case SGTL5000_DAP_COEF_WR_A1_MSB:
1255 	case SGTL5000_DAP_COEF_WR_A1_LSB:
1256 	case SGTL5000_DAP_COEF_WR_A2_MSB:
1257 	case SGTL5000_DAP_COEF_WR_A2_LSB:
1258 		return true;
1259 
1260 	default:
1261 		return false;
1262 	}
1263 }
1264 
1265 /*
1266  * This precalculated table contains all (vag_val * 100 / lo_calcntrl) results
1267  * to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL
1268  * The calculatation was done for all possible register values which
1269  * is the array index and the following formula: 10^((idx−15)/40) * 100
1270  */
1271 static const u8 vol_quot_table[] = {
1272 	42, 45, 47, 50, 53, 56, 60, 63,
1273 	67, 71, 75, 79, 84, 89, 94, 100,
1274 	106, 112, 119, 126, 133, 141, 150, 158,
1275 	168, 178, 188, 200, 211, 224, 237, 251
1276 };
1277 
1278 /*
1279  * sgtl5000 has 3 internal power supplies:
1280  * 1. VAG, normally set to vdda/2
1281  * 2. charge pump, set to different value
1282  *	according to voltage of vdda and vddio
1283  * 3. line out VAG, normally set to vddio/2
1284  *
1285  * and should be set according to:
1286  * 1. vddd provided by external or not
1287  * 2. vdda and vddio voltage value. > 3.1v or not
1288  */
1289 static int sgtl5000_set_power_regs(struct snd_soc_component *component)
1290 {
1291 	int vddd;
1292 	int vdda;
1293 	int vddio;
1294 	u16 ana_pwr;
1295 	u16 lreg_ctrl;
1296 	int vag;
1297 	int lo_vag;
1298 	int vol_quot;
1299 	int lo_vol;
1300 	size_t i;
1301 	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1302 
1303 	vdda  = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
1304 	vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
1305 	vddd  = (sgtl5000->num_supplies > VDDD)
1306 		? regulator_get_voltage(sgtl5000->supplies[VDDD].consumer)
1307 		: LDO_VOLTAGE;
1308 
1309 	vdda  = vdda / 1000;
1310 	vddio = vddio / 1000;
1311 	vddd  = vddd / 1000;
1312 
1313 	if (vdda <= 0 || vddio <= 0 || vddd < 0) {
1314 		dev_err(component->dev, "regulator voltage not set correctly\n");
1315 
1316 		return -EINVAL;
1317 	}
1318 
1319 	/* according to datasheet, maximum voltage of supplies */
1320 	if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
1321 		dev_err(component->dev,
1322 			"exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
1323 			vdda, vddio, vddd);
1324 
1325 		return -EINVAL;
1326 	}
1327 
1328 	/* reset value */
1329 	ana_pwr = snd_soc_component_read(component, SGTL5000_CHIP_ANA_POWER);
1330 	ana_pwr |= SGTL5000_DAC_STEREO |
1331 			SGTL5000_ADC_STEREO |
1332 			SGTL5000_REFTOP_POWERUP;
1333 	lreg_ctrl = snd_soc_component_read(component, SGTL5000_CHIP_LINREG_CTRL);
1334 
1335 	if (vddio < 3100 && vdda < 3100) {
1336 		/* enable internal oscillator used for charge pump */
1337 		snd_soc_component_update_bits(component, SGTL5000_CHIP_CLK_TOP_CTRL,
1338 					SGTL5000_INT_OSC_EN,
1339 					SGTL5000_INT_OSC_EN);
1340 		/* Enable VDDC charge pump */
1341 		ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
1342 	} else {
1343 		ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP;
1344 		/*
1345 		 * if vddio == vdda the source of charge pump should be
1346 		 * assigned manually to VDDIO
1347 		 */
1348 		if (regulator_is_equal(sgtl5000->supplies[VDDA].consumer,
1349 				       sgtl5000->supplies[VDDIO].consumer)) {
1350 			lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
1351 			lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
1352 				    SGTL5000_VDDC_MAN_ASSN_SHIFT;
1353 		}
1354 	}
1355 
1356 	snd_soc_component_write(component, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
1357 
1358 	snd_soc_component_write(component, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1359 
1360 	/*
1361 	 * set ADC/DAC VAG to vdda / 2,
1362 	 * should stay in range (0.8v, 1.575v)
1363 	 */
1364 	vag = vdda / 2;
1365 	if (vag <= SGTL5000_ANA_GND_BASE)
1366 		vag = 0;
1367 	else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
1368 		 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
1369 		vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
1370 	else
1371 		vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
1372 
1373 	snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
1374 			SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1375 
1376 	/* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
1377 	lo_vag = vddio / 2;
1378 	if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE)
1379 		lo_vag = 0;
1380 	else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE +
1381 		SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
1382 		lo_vag = SGTL5000_LINE_OUT_GND_MAX;
1383 	else
1384 		lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) /
1385 		    SGTL5000_LINE_OUT_GND_STP;
1386 
1387 	snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_CTRL,
1388 			SGTL5000_LINE_OUT_CURRENT_MASK |
1389 			SGTL5000_LINE_OUT_GND_MASK,
1390 			lo_vag << SGTL5000_LINE_OUT_GND_SHIFT |
1391 			SGTL5000_LINE_OUT_CURRENT_360u <<
1392 				SGTL5000_LINE_OUT_CURRENT_SHIFT);
1393 
1394 	/*
1395 	 * Set lineout output level in range (0..31)
1396 	 * the same value is used for right and left channel
1397 	 *
1398 	 * Searching for a suitable index solving this formula:
1399 	 * idx = 40 * log10(vag_val / lo_cagcntrl) + 15
1400 	 */
1401 	vol_quot = lo_vag ? (vag * 100) / lo_vag : 0;
1402 	lo_vol = 0;
1403 	for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) {
1404 		if (vol_quot >= vol_quot_table[i])
1405 			lo_vol = i;
1406 		else
1407 			break;
1408 	}
1409 
1410 	snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_VOL,
1411 		SGTL5000_LINE_OUT_VOL_RIGHT_MASK |
1412 		SGTL5000_LINE_OUT_VOL_LEFT_MASK,
1413 		lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT |
1414 		lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT);
1415 
1416 	return 0;
1417 }
1418 
1419 static int sgtl5000_enable_regulators(struct i2c_client *client)
1420 {
1421 	int ret;
1422 	int i;
1423 	int external_vddd = 0;
1424 	struct regulator *vddd;
1425 	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1426 
1427 	for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
1428 		sgtl5000->supplies[i].supply = supply_names[i];
1429 
1430 	vddd = regulator_get_optional(&client->dev, "VDDD");
1431 	if (IS_ERR(vddd)) {
1432 		/* See if it's just not registered yet */
1433 		if (PTR_ERR(vddd) == -EPROBE_DEFER)
1434 			return -EPROBE_DEFER;
1435 	} else {
1436 		external_vddd = 1;
1437 		regulator_put(vddd);
1438 	}
1439 
1440 	sgtl5000->num_supplies = ARRAY_SIZE(sgtl5000->supplies)
1441 				 - 1 + external_vddd;
1442 	ret = regulator_bulk_get(&client->dev, sgtl5000->num_supplies,
1443 				 sgtl5000->supplies);
1444 	if (ret)
1445 		return ret;
1446 
1447 	ret = regulator_bulk_enable(sgtl5000->num_supplies,
1448 				    sgtl5000->supplies);
1449 	if (!ret)
1450 		usleep_range(10, 20);
1451 	else
1452 		regulator_bulk_free(sgtl5000->num_supplies,
1453 				    sgtl5000->supplies);
1454 
1455 	return ret;
1456 }
1457 
1458 static int sgtl5000_probe(struct snd_soc_component *component)
1459 {
1460 	int ret;
1461 	u16 reg;
1462 	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1463 	unsigned int zcd_mask = SGTL5000_HP_ZCD_EN | SGTL5000_ADC_ZCD_EN;
1464 
1465 	/* power up sgtl5000 */
1466 	ret = sgtl5000_set_power_regs(component);
1467 	if (ret)
1468 		goto err;
1469 
1470 	/* enable small pop, introduce 400ms delay in turning off */
1471 	snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
1472 				SGTL5000_SMALL_POP, SGTL5000_SMALL_POP);
1473 
1474 	/* disable short cut detector */
1475 	snd_soc_component_write(component, SGTL5000_CHIP_SHORT_CTRL, 0);
1476 
1477 	snd_soc_component_write(component, SGTL5000_CHIP_DIG_POWER,
1478 			SGTL5000_ADC_EN | SGTL5000_DAC_EN);
1479 
1480 	/* enable dac volume ramp by default */
1481 	snd_soc_component_write(component, SGTL5000_CHIP_ADCDAC_CTRL,
1482 			SGTL5000_DAC_VOL_RAMP_EN |
1483 			SGTL5000_DAC_MUTE_RIGHT |
1484 			SGTL5000_DAC_MUTE_LEFT);
1485 
1486 	reg = ((sgtl5000->lrclk_strength) << SGTL5000_PAD_I2S_LRCLK_SHIFT |
1487 	       (sgtl5000->sclk_strength) << SGTL5000_PAD_I2S_SCLK_SHIFT |
1488 	       0x1f);
1489 	snd_soc_component_write(component, SGTL5000_CHIP_PAD_STRENGTH, reg);
1490 
1491 	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
1492 		zcd_mask, zcd_mask);
1493 
1494 	snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
1495 			SGTL5000_BIAS_R_MASK,
1496 			sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
1497 
1498 	snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
1499 			SGTL5000_BIAS_VOLT_MASK,
1500 			sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT);
1501 	/*
1502 	 * enable DAP Graphic EQ
1503 	 * TODO:
1504 	 * Add control for changing between PEQ/Tone Control/GEQ
1505 	 */
1506 	snd_soc_component_write(component, SGTL5000_DAP_AUDIO_EQ, SGTL5000_DAP_SEL_GEQ);
1507 
1508 	/* Unmute DAC after start */
1509 	snd_soc_component_update_bits(component, SGTL5000_CHIP_ADCDAC_CTRL,
1510 		SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT, 0);
1511 
1512 	return 0;
1513 
1514 err:
1515 	return ret;
1516 }
1517 
1518 static int sgtl5000_of_xlate_dai_id(struct snd_soc_component *component,
1519 				    struct device_node *endpoint)
1520 {
1521 	/* return dai id 0, whatever the endpoint index */
1522 	return 0;
1523 }
1524 
1525 static const struct snd_soc_component_driver sgtl5000_driver = {
1526 	.probe			= sgtl5000_probe,
1527 	.set_bias_level		= sgtl5000_set_bias_level,
1528 	.controls		= sgtl5000_snd_controls,
1529 	.num_controls		= ARRAY_SIZE(sgtl5000_snd_controls),
1530 	.dapm_widgets		= sgtl5000_dapm_widgets,
1531 	.num_dapm_widgets	= ARRAY_SIZE(sgtl5000_dapm_widgets),
1532 	.dapm_routes		= sgtl5000_dapm_routes,
1533 	.num_dapm_routes	= ARRAY_SIZE(sgtl5000_dapm_routes),
1534 	.of_xlate_dai_id	= sgtl5000_of_xlate_dai_id,
1535 	.suspend_bias_off	= 1,
1536 	.idle_bias_on		= 1,
1537 	.use_pmdown_time	= 1,
1538 	.endianness		= 1,
1539 };
1540 
1541 static const struct regmap_config sgtl5000_regmap = {
1542 	.reg_bits = 16,
1543 	.val_bits = 16,
1544 	.reg_stride = 2,
1545 
1546 	.max_register = SGTL5000_MAX_REG_OFFSET,
1547 	.volatile_reg = sgtl5000_volatile,
1548 	.readable_reg = sgtl5000_readable,
1549 
1550 	.cache_type = REGCACHE_RBTREE,
1551 	.reg_defaults = sgtl5000_reg_defaults,
1552 	.num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
1553 };
1554 
1555 /*
1556  * Write all the default values from sgtl5000_reg_defaults[] array into the
1557  * sgtl5000 registers, to make sure we always start with the sane registers
1558  * values as stated in the datasheet.
1559  *
1560  * Since sgtl5000 does not have a reset line, nor a reset command in software,
1561  * we follow this approach to guarantee we always start from the default values
1562  * and avoid problems like, not being able to probe after an audio playback
1563  * followed by a system reset or a 'reboot' command in Linux
1564  */
1565 static void sgtl5000_fill_defaults(struct i2c_client *client)
1566 {
1567 	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1568 	int i, ret, val, index;
1569 
1570 	for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
1571 		val = sgtl5000_reg_defaults[i].def;
1572 		index = sgtl5000_reg_defaults[i].reg;
1573 		ret = regmap_write(sgtl5000->regmap, index, val);
1574 		if (ret)
1575 			dev_err(&client->dev,
1576 				"%s: error %d setting reg 0x%02x to 0x%04x\n",
1577 				__func__, ret, index, val);
1578 	}
1579 }
1580 
1581 static int sgtl5000_i2c_probe(struct i2c_client *client)
1582 {
1583 	struct sgtl5000_priv *sgtl5000;
1584 	int ret, reg, rev;
1585 	struct device_node *np = client->dev.of_node;
1586 	u32 value;
1587 	u16 ana_pwr;
1588 
1589 	sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL);
1590 	if (!sgtl5000)
1591 		return -ENOMEM;
1592 
1593 	i2c_set_clientdata(client, sgtl5000);
1594 
1595 	ret = sgtl5000_enable_regulators(client);
1596 	if (ret)
1597 		return ret;
1598 
1599 	sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
1600 	if (IS_ERR(sgtl5000->regmap)) {
1601 		ret = PTR_ERR(sgtl5000->regmap);
1602 		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1603 		goto disable_regs;
1604 	}
1605 
1606 	sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
1607 	if (IS_ERR(sgtl5000->mclk)) {
1608 		ret = PTR_ERR(sgtl5000->mclk);
1609 		/* Defer the probe to see if the clk will be provided later */
1610 		if (ret == -ENOENT)
1611 			ret = -EPROBE_DEFER;
1612 
1613 		dev_err_probe(&client->dev, ret, "Failed to get mclock\n");
1614 
1615 		goto disable_regs;
1616 	}
1617 
1618 	ret = clk_prepare_enable(sgtl5000->mclk);
1619 	if (ret) {
1620 		dev_err(&client->dev, "Error enabling clock %d\n", ret);
1621 		goto disable_regs;
1622 	}
1623 
1624 	/* Need 8 clocks before I2C accesses */
1625 	udelay(1);
1626 
1627 	/* read chip information */
1628 	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
1629 	if (ret) {
1630 		dev_err(&client->dev, "Error reading chip id %d\n", ret);
1631 		goto disable_clk;
1632 	}
1633 
1634 	if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
1635 	    SGTL5000_PARTID_PART_ID) {
1636 		dev_err(&client->dev,
1637 			"Device with ID register %x is not a sgtl5000\n", reg);
1638 		ret = -ENODEV;
1639 		goto disable_clk;
1640 	}
1641 
1642 	rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
1643 	dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
1644 	sgtl5000->revision = rev;
1645 
1646 	/* reconfigure the clocks in case we're using the PLL */
1647 	ret = regmap_write(sgtl5000->regmap,
1648 			   SGTL5000_CHIP_CLK_CTRL,
1649 			   SGTL5000_CHIP_CLK_CTRL_DEFAULT);
1650 	if (ret)
1651 		dev_err(&client->dev,
1652 			"Error %d initializing CHIP_CLK_CTRL\n", ret);
1653 
1654 	/* Mute everything to avoid pop from the following power-up */
1655 	ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_CTRL,
1656 			   SGTL5000_CHIP_ANA_CTRL_DEFAULT);
1657 	if (ret) {
1658 		dev_err(&client->dev,
1659 			"Error %d muting outputs via CHIP_ANA_CTRL\n", ret);
1660 		goto disable_clk;
1661 	}
1662 
1663 	/*
1664 	 * If VAG is powered-on (e.g. from previous boot), it would be disabled
1665 	 * by the write to ANA_POWER in later steps of the probe code. This
1666 	 * may create a loud pop even with all outputs muted. The proper way
1667 	 * to circumvent this is disabling the bit first and waiting the proper
1668 	 * cool-down time.
1669 	 */
1670 	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, &value);
1671 	if (ret) {
1672 		dev_err(&client->dev, "Failed to read ANA_POWER: %d\n", ret);
1673 		goto disable_clk;
1674 	}
1675 	if (value & SGTL5000_VAG_POWERUP) {
1676 		ret = regmap_update_bits(sgtl5000->regmap,
1677 					 SGTL5000_CHIP_ANA_POWER,
1678 					 SGTL5000_VAG_POWERUP,
1679 					 0);
1680 		if (ret) {
1681 			dev_err(&client->dev, "Error %d disabling VAG\n", ret);
1682 			goto disable_clk;
1683 		}
1684 
1685 		msleep(SGTL5000_VAG_POWERDOWN_DELAY);
1686 	}
1687 
1688 	/* Follow section 2.2.1.1 of AN3663 */
1689 	ana_pwr = SGTL5000_ANA_POWER_DEFAULT;
1690 	if (sgtl5000->num_supplies <= VDDD) {
1691 		/* internal VDDD at 1.2V */
1692 		ret = regmap_update_bits(sgtl5000->regmap,
1693 					 SGTL5000_CHIP_LINREG_CTRL,
1694 					 SGTL5000_LINREG_VDDD_MASK,
1695 					 LINREG_VDDD);
1696 		if (ret)
1697 			dev_err(&client->dev,
1698 				"Error %d setting LINREG_VDDD\n", ret);
1699 
1700 		ana_pwr |= SGTL5000_LINEREG_D_POWERUP;
1701 		dev_info(&client->dev,
1702 			 "Using internal LDO instead of VDDD: check ER1 erratum\n");
1703 	} else {
1704 		/* using external LDO for VDDD
1705 		 * Clear startup powerup and simple powerup
1706 		 * bits to save power
1707 		 */
1708 		ana_pwr &= ~(SGTL5000_STARTUP_POWERUP
1709 			     | SGTL5000_LINREG_SIMPLE_POWERUP);
1710 		dev_dbg(&client->dev, "Using external VDDD\n");
1711 	}
1712 	ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1713 	if (ret)
1714 		dev_err(&client->dev,
1715 			"Error %d setting CHIP_ANA_POWER to %04x\n",
1716 			ret, ana_pwr);
1717 
1718 	if (np) {
1719 		if (!of_property_read_u32(np,
1720 			"micbias-resistor-k-ohms", &value)) {
1721 			switch (value) {
1722 			case SGTL5000_MICBIAS_OFF:
1723 				sgtl5000->micbias_resistor = 0;
1724 				break;
1725 			case SGTL5000_MICBIAS_2K:
1726 				sgtl5000->micbias_resistor = 1;
1727 				break;
1728 			case SGTL5000_MICBIAS_4K:
1729 				sgtl5000->micbias_resistor = 2;
1730 				break;
1731 			case SGTL5000_MICBIAS_8K:
1732 				sgtl5000->micbias_resistor = 3;
1733 				break;
1734 			default:
1735 				sgtl5000->micbias_resistor = 2;
1736 				dev_err(&client->dev,
1737 					"Unsuitable MicBias resistor\n");
1738 			}
1739 		} else {
1740 			/* default is 4Kohms */
1741 			sgtl5000->micbias_resistor = 2;
1742 		}
1743 		if (!of_property_read_u32(np,
1744 			"micbias-voltage-m-volts", &value)) {
1745 			/* 1250mV => 0 */
1746 			/* steps of 250mV */
1747 			if ((value >= 1250) && (value <= 3000))
1748 				sgtl5000->micbias_voltage = (value / 250) - 5;
1749 			else {
1750 				sgtl5000->micbias_voltage = 0;
1751 				dev_err(&client->dev,
1752 					"Unsuitable MicBias voltage\n");
1753 			}
1754 		} else {
1755 			sgtl5000->micbias_voltage = 0;
1756 		}
1757 	}
1758 
1759 	sgtl5000->lrclk_strength = I2S_LRCLK_STRENGTH_LOW;
1760 	if (!of_property_read_u32(np, "lrclk-strength", &value)) {
1761 		if (value > I2S_LRCLK_STRENGTH_HIGH)
1762 			value = I2S_LRCLK_STRENGTH_LOW;
1763 		sgtl5000->lrclk_strength = value;
1764 	}
1765 
1766 	sgtl5000->sclk_strength = I2S_SCLK_STRENGTH_LOW;
1767 	if (!of_property_read_u32(np, "sclk-strength", &value)) {
1768 		if (value > I2S_SCLK_STRENGTH_HIGH)
1769 			value = I2S_SCLK_STRENGTH_LOW;
1770 		sgtl5000->sclk_strength = value;
1771 	}
1772 
1773 	/* Ensure sgtl5000 will start with sane register values */
1774 	sgtl5000_fill_defaults(client);
1775 
1776 	ret = devm_snd_soc_register_component(&client->dev,
1777 			&sgtl5000_driver, &sgtl5000_dai, 1);
1778 	if (ret)
1779 		goto disable_clk;
1780 
1781 	return 0;
1782 
1783 disable_clk:
1784 	clk_disable_unprepare(sgtl5000->mclk);
1785 
1786 disable_regs:
1787 	regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1788 	regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1789 
1790 	return ret;
1791 }
1792 
1793 static void sgtl5000_i2c_remove(struct i2c_client *client)
1794 {
1795 	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1796 
1797 	regmap_write(sgtl5000->regmap, SGTL5000_CHIP_CLK_CTRL, SGTL5000_CHIP_CLK_CTRL_DEFAULT);
1798 	regmap_write(sgtl5000->regmap, SGTL5000_CHIP_DIG_POWER, SGTL5000_DIG_POWER_DEFAULT);
1799 	regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, SGTL5000_ANA_POWER_DEFAULT);
1800 
1801 	clk_disable_unprepare(sgtl5000->mclk);
1802 	regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1803 	regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1804 }
1805 
1806 static void sgtl5000_i2c_shutdown(struct i2c_client *client)
1807 {
1808 	sgtl5000_i2c_remove(client);
1809 }
1810 
1811 static const struct i2c_device_id sgtl5000_id[] = {
1812 	{"sgtl5000", 0},
1813 	{},
1814 };
1815 
1816 MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
1817 
1818 static const struct of_device_id sgtl5000_dt_ids[] = {
1819 	{ .compatible = "fsl,sgtl5000", },
1820 	{ /* sentinel */ }
1821 };
1822 MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1823 
1824 static struct i2c_driver sgtl5000_i2c_driver = {
1825 	.driver = {
1826 		.name = "sgtl5000",
1827 		.of_match_table = sgtl5000_dt_ids,
1828 	},
1829 	.probe = sgtl5000_i2c_probe,
1830 	.remove = sgtl5000_i2c_remove,
1831 	.shutdown = sgtl5000_i2c_shutdown,
1832 	.id_table = sgtl5000_id,
1833 };
1834 
1835 module_i2c_driver(sgtl5000_i2c_driver);
1836 
1837 MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1838 MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1839 MODULE_LICENSE("GPL");
1840