xref: /openbmc/linux/sound/soc/codecs/sgtl5000.c (revision 12653414)
1 /*
2  * sgtl5000.c  --  SGTL5000 ALSA SoC Audio driver
3  *
4  * Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/pm.h>
17 #include <linux/i2c.h>
18 #include <linux/clk.h>
19 #include <linux/log2.h>
20 #include <linux/regmap.h>
21 #include <linux/regulator/driver.h>
22 #include <linux/regulator/machine.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/of_device.h>
25 #include <sound/core.h>
26 #include <sound/tlv.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/soc.h>
30 #include <sound/soc-dapm.h>
31 #include <sound/initval.h>
32 
33 #include "sgtl5000.h"
34 
35 #define SGTL5000_DAP_REG_OFFSET	0x0100
36 #define SGTL5000_MAX_REG_OFFSET	0x013A
37 
38 /* default value of sgtl5000 registers */
39 static const struct reg_default sgtl5000_reg_defaults[] = {
40 	{ SGTL5000_CHIP_DIG_POWER,		0x0000 },
41 	{ SGTL5000_CHIP_I2S_CTRL,		0x0010 },
42 	{ SGTL5000_CHIP_SSS_CTRL,		0x0010 },
43 	{ SGTL5000_CHIP_ADCDAC_CTRL,		0x020c },
44 	{ SGTL5000_CHIP_DAC_VOL,		0x3c3c },
45 	{ SGTL5000_CHIP_PAD_STRENGTH,		0x015f },
46 	{ SGTL5000_CHIP_ANA_ADC_CTRL,		0x0000 },
47 	{ SGTL5000_CHIP_ANA_HP_CTRL,		0x1818 },
48 	{ SGTL5000_CHIP_ANA_CTRL,		0x0111 },
49 	{ SGTL5000_CHIP_REF_CTRL,		0x0000 },
50 	{ SGTL5000_CHIP_MIC_CTRL,		0x0000 },
51 	{ SGTL5000_CHIP_LINE_OUT_CTRL,		0x0000 },
52 	{ SGTL5000_CHIP_LINE_OUT_VOL,		0x0404 },
53 	{ SGTL5000_CHIP_PLL_CTRL,		0x5000 },
54 	{ SGTL5000_CHIP_CLK_TOP_CTRL,		0x0000 },
55 	{ SGTL5000_CHIP_ANA_STATUS,		0x0000 },
56 	{ SGTL5000_CHIP_SHORT_CTRL,		0x0000 },
57 	{ SGTL5000_CHIP_ANA_TEST2,		0x0000 },
58 	{ SGTL5000_DAP_CTRL,			0x0000 },
59 	{ SGTL5000_DAP_PEQ,			0x0000 },
60 	{ SGTL5000_DAP_BASS_ENHANCE,		0x0040 },
61 	{ SGTL5000_DAP_BASS_ENHANCE_CTRL,	0x051f },
62 	{ SGTL5000_DAP_AUDIO_EQ,		0x0000 },
63 	{ SGTL5000_DAP_SURROUND,		0x0040 },
64 	{ SGTL5000_DAP_EQ_BASS_BAND0,		0x002f },
65 	{ SGTL5000_DAP_EQ_BASS_BAND1,		0x002f },
66 	{ SGTL5000_DAP_EQ_BASS_BAND2,		0x002f },
67 	{ SGTL5000_DAP_EQ_BASS_BAND3,		0x002f },
68 	{ SGTL5000_DAP_EQ_BASS_BAND4,		0x002f },
69 	{ SGTL5000_DAP_MAIN_CHAN,		0x8000 },
70 	{ SGTL5000_DAP_MIX_CHAN,		0x0000 },
71 	{ SGTL5000_DAP_AVC_CTRL,		0x0510 },
72 	{ SGTL5000_DAP_AVC_THRESHOLD,		0x1473 },
73 	{ SGTL5000_DAP_AVC_ATTACK,		0x0028 },
74 	{ SGTL5000_DAP_AVC_DECAY,		0x0050 },
75 };
76 
77 /* AVC: Threshold dB -> register: pre-calculated values */
78 static const u16 avc_thr_db2reg[97] = {
79 	0x5168, 0x488E, 0x40AA, 0x39A1, 0x335D, 0x2DC7, 0x28CC, 0x245D, 0x2068,
80 	0x1CE2, 0x19BE, 0x16F1, 0x1472, 0x1239, 0x103E, 0x0E7A, 0x0CE6, 0x0B7F,
81 	0x0A3F, 0x0922, 0x0824, 0x0741, 0x0677, 0x05C3, 0x0522, 0x0493, 0x0414,
82 	0x03A2, 0x033D, 0x02E3, 0x0293, 0x024B, 0x020B, 0x01D2, 0x019F, 0x0172,
83 	0x014A, 0x0126, 0x0106, 0x00E9, 0x00D0, 0x00B9, 0x00A5, 0x0093, 0x0083,
84 	0x0075, 0x0068, 0x005D, 0x0052, 0x0049, 0x0041, 0x003A, 0x0034, 0x002E,
85 	0x0029, 0x0025, 0x0021, 0x001D, 0x001A, 0x0017, 0x0014, 0x0012, 0x0010,
86 	0x000E, 0x000D, 0x000B, 0x000A, 0x0009, 0x0008, 0x0007, 0x0006, 0x0005,
87 	0x0005, 0x0004, 0x0004, 0x0003, 0x0003, 0x0002, 0x0002, 0x0002, 0x0002,
88 	0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0000, 0x0000,
89 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000};
90 
91 /* regulator supplies for sgtl5000, VDDD is an optional external supply */
92 enum sgtl5000_regulator_supplies {
93 	VDDA,
94 	VDDIO,
95 	VDDD,
96 	SGTL5000_SUPPLY_NUM
97 };
98 
99 /* vddd is optional supply */
100 static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
101 	"VDDA",
102 	"VDDIO",
103 	"VDDD"
104 };
105 
106 #define LDO_VOLTAGE		1200000
107 #define LINREG_VDDD	((1600 - LDO_VOLTAGE / 1000) / 50)
108 
109 enum sgtl5000_micbias_resistor {
110 	SGTL5000_MICBIAS_OFF = 0,
111 	SGTL5000_MICBIAS_2K = 2,
112 	SGTL5000_MICBIAS_4K = 4,
113 	SGTL5000_MICBIAS_8K = 8,
114 };
115 
116 enum  {
117 	I2S_LRCLK_STRENGTH_DISABLE,
118 	I2S_LRCLK_STRENGTH_LOW,
119 	I2S_LRCLK_STRENGTH_MEDIUM,
120 	I2S_LRCLK_STRENGTH_HIGH,
121 };
122 
123 /* sgtl5000 private structure in codec */
124 struct sgtl5000_priv {
125 	int sysclk;	/* sysclk rate */
126 	int master;	/* i2s master or not */
127 	int fmt;	/* i2s data format */
128 	struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
129 	int num_supplies;
130 	struct regmap *regmap;
131 	struct clk *mclk;
132 	int revision;
133 	u8 micbias_resistor;
134 	u8 micbias_voltage;
135 	u8 lrclk_strength;
136 };
137 
138 /*
139  * mic_bias power on/off share the same register bits with
140  * output impedance of mic bias, when power on mic bias, we
141  * need reclaim it to impedance value.
142  * 0x0 = Powered off
143  * 0x1 = 2Kohm
144  * 0x2 = 4Kohm
145  * 0x3 = 8Kohm
146  */
147 static int mic_bias_event(struct snd_soc_dapm_widget *w,
148 	struct snd_kcontrol *kcontrol, int event)
149 {
150 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
151 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
152 
153 	switch (event) {
154 	case SND_SOC_DAPM_POST_PMU:
155 		/* change mic bias resistor */
156 		snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
157 			SGTL5000_BIAS_R_MASK,
158 			sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
159 		break;
160 
161 	case SND_SOC_DAPM_PRE_PMD:
162 		snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
163 				SGTL5000_BIAS_R_MASK, 0);
164 		break;
165 	}
166 	return 0;
167 }
168 
169 /*
170  * As manual described, ADC/DAC only works when VAG powerup,
171  * So enabled VAG before ADC/DAC up.
172  * In power down case, we need wait 400ms when vag fully ramped down.
173  */
174 static int power_vag_event(struct snd_soc_dapm_widget *w,
175 	struct snd_kcontrol *kcontrol, int event)
176 {
177 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
178 	const u32 mask = SGTL5000_DAC_POWERUP | SGTL5000_ADC_POWERUP;
179 
180 	switch (event) {
181 	case SND_SOC_DAPM_POST_PMU:
182 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
183 			SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
184 		msleep(400);
185 		break;
186 
187 	case SND_SOC_DAPM_PRE_PMD:
188 		/*
189 		 * Don't clear VAG_POWERUP, when both DAC and ADC are
190 		 * operational to prevent inadvertently starving the
191 		 * other one of them.
192 		 */
193 		if ((snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER) &
194 				mask) != mask) {
195 			snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
196 				SGTL5000_VAG_POWERUP, 0);
197 			msleep(400);
198 		}
199 		break;
200 	default:
201 		break;
202 	}
203 
204 	return 0;
205 }
206 
207 /* input sources for ADC */
208 static const char *adc_mux_text[] = {
209 	"MIC_IN", "LINE_IN"
210 };
211 
212 static SOC_ENUM_SINGLE_DECL(adc_enum,
213 			    SGTL5000_CHIP_ANA_CTRL, 2,
214 			    adc_mux_text);
215 
216 static const struct snd_kcontrol_new adc_mux =
217 SOC_DAPM_ENUM("Capture Mux", adc_enum);
218 
219 /* input sources for DAC */
220 static const char *dac_mux_text[] = {
221 	"DAC", "LINE_IN"
222 };
223 
224 static SOC_ENUM_SINGLE_DECL(dac_enum,
225 			    SGTL5000_CHIP_ANA_CTRL, 6,
226 			    dac_mux_text);
227 
228 static const struct snd_kcontrol_new dac_mux =
229 SOC_DAPM_ENUM("Headphone Mux", dac_enum);
230 
231 static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
232 	SND_SOC_DAPM_INPUT("LINE_IN"),
233 	SND_SOC_DAPM_INPUT("MIC_IN"),
234 
235 	SND_SOC_DAPM_OUTPUT("HP_OUT"),
236 	SND_SOC_DAPM_OUTPUT("LINE_OUT"),
237 
238 	SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
239 			    mic_bias_event,
240 			    SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
241 
242 	SND_SOC_DAPM_PGA("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0),
243 	SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
244 
245 	SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
246 	SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
247 
248 	/* aif for i2s input */
249 	SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
250 				0, SGTL5000_CHIP_DIG_POWER,
251 				0, 0),
252 
253 	/* aif for i2s output */
254 	SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
255 				0, SGTL5000_CHIP_DIG_POWER,
256 				1, 0),
257 
258 	SND_SOC_DAPM_ADC("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0),
259 	SND_SOC_DAPM_DAC("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0),
260 
261 	SND_SOC_DAPM_PRE("VAG_POWER_PRE", power_vag_event),
262 	SND_SOC_DAPM_POST("VAG_POWER_POST", power_vag_event),
263 };
264 
265 /* routes for sgtl5000 */
266 static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
267 	{"Capture Mux", "LINE_IN", "LINE_IN"},	/* line_in --> adc_mux */
268 	{"Capture Mux", "MIC_IN", "MIC_IN"},	/* mic_in --> adc_mux */
269 
270 	{"ADC", NULL, "Capture Mux"},		/* adc_mux --> adc */
271 	{"AIFOUT", NULL, "ADC"},		/* adc --> i2s_out */
272 
273 	{"DAC", NULL, "AIFIN"},			/* i2s-->dac,skip audio mux */
274 	{"Headphone Mux", "DAC", "DAC"},	/* dac --> hp_mux */
275 	{"LO", NULL, "DAC"},			/* dac --> line_out */
276 
277 	{"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
278 	{"HP", NULL, "Headphone Mux"},		/* hp_mux --> hp */
279 
280 	{"LINE_OUT", NULL, "LO"},
281 	{"HP_OUT", NULL, "HP"},
282 };
283 
284 /* custom function to fetch info of PCM playback volume */
285 static int dac_info_volsw(struct snd_kcontrol *kcontrol,
286 			  struct snd_ctl_elem_info *uinfo)
287 {
288 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
289 	uinfo->count = 2;
290 	uinfo->value.integer.min = 0;
291 	uinfo->value.integer.max = 0xfc - 0x3c;
292 	return 0;
293 }
294 
295 /*
296  * custom function to get of PCM playback volume
297  *
298  * dac volume register
299  * 15-------------8-7--------------0
300  * | R channel vol | L channel vol |
301  *  -------------------------------
302  *
303  * PCM volume with 0.5017 dB steps from 0 to -90 dB
304  *
305  * register values map to dB
306  * 0x3B and less = Reserved
307  * 0x3C = 0 dB
308  * 0x3D = -0.5 dB
309  * 0xF0 = -90 dB
310  * 0xFC and greater = Muted
311  *
312  * register value map to userspace value
313  *
314  * register value	0x3c(0dB)	  0xf0(-90dB)0xfc
315  *			------------------------------
316  * userspace value	0xc0			     0
317  */
318 static int dac_get_volsw(struct snd_kcontrol *kcontrol,
319 			 struct snd_ctl_elem_value *ucontrol)
320 {
321 	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
322 	int reg;
323 	int l;
324 	int r;
325 
326 	reg = snd_soc_read(codec, SGTL5000_CHIP_DAC_VOL);
327 
328 	/* get left channel volume */
329 	l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
330 
331 	/* get right channel volume */
332 	r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
333 
334 	/* make sure value fall in (0x3c,0xfc) */
335 	l = clamp(l, 0x3c, 0xfc);
336 	r = clamp(r, 0x3c, 0xfc);
337 
338 	/* invert it and map to userspace value */
339 	l = 0xfc - l;
340 	r = 0xfc - r;
341 
342 	ucontrol->value.integer.value[0] = l;
343 	ucontrol->value.integer.value[1] = r;
344 
345 	return 0;
346 }
347 
348 /*
349  * custom function to put of PCM playback volume
350  *
351  * dac volume register
352  * 15-------------8-7--------------0
353  * | R channel vol | L channel vol |
354  *  -------------------------------
355  *
356  * PCM volume with 0.5017 dB steps from 0 to -90 dB
357  *
358  * register values map to dB
359  * 0x3B and less = Reserved
360  * 0x3C = 0 dB
361  * 0x3D = -0.5 dB
362  * 0xF0 = -90 dB
363  * 0xFC and greater = Muted
364  *
365  * userspace value map to register value
366  *
367  * userspace value	0xc0			     0
368  *			------------------------------
369  * register value	0x3c(0dB)	0xf0(-90dB)0xfc
370  */
371 static int dac_put_volsw(struct snd_kcontrol *kcontrol,
372 			 struct snd_ctl_elem_value *ucontrol)
373 {
374 	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
375 	int reg;
376 	int l;
377 	int r;
378 
379 	l = ucontrol->value.integer.value[0];
380 	r = ucontrol->value.integer.value[1];
381 
382 	/* make sure userspace volume fall in (0, 0xfc-0x3c) */
383 	l = clamp(l, 0, 0xfc - 0x3c);
384 	r = clamp(r, 0, 0xfc - 0x3c);
385 
386 	/* invert it, get the value can be set to register */
387 	l = 0xfc - l;
388 	r = 0xfc - r;
389 
390 	/* shift to get the register value */
391 	reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
392 		r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
393 
394 	snd_soc_write(codec, SGTL5000_CHIP_DAC_VOL, reg);
395 
396 	return 0;
397 }
398 
399 /*
400  * custom function to get AVC threshold
401  *
402  * The threshold dB is calculated by rearranging the calculation from the
403  * avc_put_threshold function: register_value = 10^(dB/20) * 0.636 * 2^15 ==>
404  * dB = ( fls(register_value) - 14.347 ) * 6.02
405  *
406  * As this calculation is expensive and the threshold dB values may not exeed
407  * 0 to 96 we use pre-calculated values.
408  */
409 static int avc_get_threshold(struct snd_kcontrol *kcontrol,
410 			     struct snd_ctl_elem_value *ucontrol)
411 {
412 	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
413 	int db, i;
414 	u16 reg = snd_soc_read(codec, SGTL5000_DAP_AVC_THRESHOLD);
415 
416 	/* register value 0 => -96dB */
417 	if (!reg) {
418 		ucontrol->value.integer.value[0] = 96;
419 		ucontrol->value.integer.value[1] = 96;
420 		return 0;
421 	}
422 
423 	/* get dB from register value (rounded down) */
424 	for (i = 0; avc_thr_db2reg[i] > reg; i++)
425 		;
426 	db = i;
427 
428 	ucontrol->value.integer.value[0] = db;
429 	ucontrol->value.integer.value[1] = db;
430 
431 	return 0;
432 }
433 
434 /*
435  * custom function to put AVC threshold
436  *
437  * The register value is calculated by following formula:
438  *                                    register_value = 10^(dB/20) * 0.636 * 2^15
439  * As this calculation is expensive and the threshold dB values may not exeed
440  * 0 to 96 we use pre-calculated values.
441  */
442 static int avc_put_threshold(struct snd_kcontrol *kcontrol,
443 			     struct snd_ctl_elem_value *ucontrol)
444 {
445 	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
446 	int db;
447 	u16 reg;
448 
449 	db = (int)ucontrol->value.integer.value[0];
450 	if (db < 0 || db > 96)
451 		return -EINVAL;
452 	reg = avc_thr_db2reg[db];
453 	snd_soc_write(codec, SGTL5000_DAP_AVC_THRESHOLD, reg);
454 
455 	return 0;
456 }
457 
458 static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
459 
460 /* tlv for mic gain, 0db 20db 30db 40db */
461 static const DECLARE_TLV_DB_RANGE(mic_gain_tlv,
462 	0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
463 	1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0)
464 );
465 
466 /* tlv for hp volume, -51.5db to 12.0db, step .5db */
467 static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
468 
469 /* tlv for lineout volume, 31 steps of .5db each */
470 static const DECLARE_TLV_DB_SCALE(lineout_volume, -1550, 50, 0);
471 
472 /* tlv for dap avc max gain, 0db, 6db, 12db */
473 static const DECLARE_TLV_DB_SCALE(avc_max_gain, 0, 600, 0);
474 
475 /* tlv for dap avc threshold, */
476 static const DECLARE_TLV_DB_MINMAX(avc_threshold, 0, 9600);
477 
478 static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
479 	/* SOC_DOUBLE_S8_TLV with invert */
480 	{
481 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
482 		.name = "PCM Playback Volume",
483 		.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
484 			SNDRV_CTL_ELEM_ACCESS_READWRITE,
485 		.info = dac_info_volsw,
486 		.get = dac_get_volsw,
487 		.put = dac_put_volsw,
488 	},
489 
490 	SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
491 	SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
492 			SGTL5000_CHIP_ANA_ADC_CTRL,
493 			8, 1, 0, capture_6db_attenuate),
494 	SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
495 
496 	SOC_DOUBLE_TLV("Headphone Playback Volume",
497 			SGTL5000_CHIP_ANA_HP_CTRL,
498 			0, 8,
499 			0x7f, 1,
500 			headphone_volume),
501 	SOC_SINGLE("Headphone Playback Switch", SGTL5000_CHIP_ANA_CTRL,
502 			4, 1, 1),
503 	SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
504 			5, 1, 0),
505 
506 	SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
507 			0, 3, 0, mic_gain_tlv),
508 
509 	SOC_DOUBLE_TLV("Lineout Playback Volume",
510 			SGTL5000_CHIP_LINE_OUT_VOL,
511 			SGTL5000_LINE_OUT_VOL_LEFT_SHIFT,
512 			SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT,
513 			0x1f, 1,
514 			lineout_volume),
515 	SOC_SINGLE("Lineout Playback Switch", SGTL5000_CHIP_ANA_CTRL, 8, 1, 1),
516 
517 	/* Automatic Volume Control (DAP AVC) */
518 	SOC_SINGLE("AVC Switch", SGTL5000_DAP_AVC_CTRL, 0, 1, 0),
519 	SOC_SINGLE("AVC Hard Limiter Switch", SGTL5000_DAP_AVC_CTRL, 5, 1, 0),
520 	SOC_SINGLE_TLV("AVC Max Gain Volume", SGTL5000_DAP_AVC_CTRL, 12, 2, 0,
521 			avc_max_gain),
522 	SOC_SINGLE("AVC Integrator Response", SGTL5000_DAP_AVC_CTRL, 8, 3, 0),
523 	SOC_SINGLE_EXT_TLV("AVC Threshold Volume", SGTL5000_DAP_AVC_THRESHOLD,
524 			0, 96, 0, avc_get_threshold, avc_put_threshold,
525 			avc_threshold),
526 };
527 
528 /* mute the codec used by alsa core */
529 static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute)
530 {
531 	struct snd_soc_codec *codec = codec_dai->codec;
532 	u16 adcdac_ctrl = SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT;
533 
534 	snd_soc_update_bits(codec, SGTL5000_CHIP_ADCDAC_CTRL,
535 			adcdac_ctrl, mute ? adcdac_ctrl : 0);
536 
537 	return 0;
538 }
539 
540 /* set codec format */
541 static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
542 {
543 	struct snd_soc_codec *codec = codec_dai->codec;
544 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
545 	u16 i2sctl = 0;
546 
547 	sgtl5000->master = 0;
548 	/*
549 	 * i2s clock and frame master setting.
550 	 * ONLY support:
551 	 *  - clock and frame slave,
552 	 *  - clock and frame master
553 	 */
554 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
555 	case SND_SOC_DAIFMT_CBS_CFS:
556 		break;
557 	case SND_SOC_DAIFMT_CBM_CFM:
558 		i2sctl |= SGTL5000_I2S_MASTER;
559 		sgtl5000->master = 1;
560 		break;
561 	default:
562 		return -EINVAL;
563 	}
564 
565 	/* setting i2s data format */
566 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
567 	case SND_SOC_DAIFMT_DSP_A:
568 		i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
569 		break;
570 	case SND_SOC_DAIFMT_DSP_B:
571 		i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
572 		i2sctl |= SGTL5000_I2S_LRALIGN;
573 		break;
574 	case SND_SOC_DAIFMT_I2S:
575 		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
576 		break;
577 	case SND_SOC_DAIFMT_RIGHT_J:
578 		i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT;
579 		i2sctl |= SGTL5000_I2S_LRPOL;
580 		break;
581 	case SND_SOC_DAIFMT_LEFT_J:
582 		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
583 		i2sctl |= SGTL5000_I2S_LRALIGN;
584 		break;
585 	default:
586 		return -EINVAL;
587 	}
588 
589 	sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
590 
591 	/* Clock inversion */
592 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
593 	case SND_SOC_DAIFMT_NB_NF:
594 		break;
595 	case SND_SOC_DAIFMT_IB_NF:
596 		i2sctl |= SGTL5000_I2S_SCLK_INV;
597 		break;
598 	default:
599 		return -EINVAL;
600 	}
601 
602 	snd_soc_write(codec, SGTL5000_CHIP_I2S_CTRL, i2sctl);
603 
604 	return 0;
605 }
606 
607 /* set codec sysclk */
608 static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
609 				   int clk_id, unsigned int freq, int dir)
610 {
611 	struct snd_soc_codec *codec = codec_dai->codec;
612 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
613 
614 	switch (clk_id) {
615 	case SGTL5000_SYSCLK:
616 		sgtl5000->sysclk = freq;
617 		break;
618 	default:
619 		return -EINVAL;
620 	}
621 
622 	return 0;
623 }
624 
625 /*
626  * set clock according to i2s frame clock,
627  * sgtl5000 provides 2 clock sources:
628  * 1. sys_mclk: sample freq can only be configured to
629  *	1/256, 1/384, 1/512 of sys_mclk.
630  * 2. pll: can derive any audio clocks.
631  *
632  * clock setting rules:
633  * 1. in slave mode, only sys_mclk can be used
634  * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz
635  * and above.
636  * 3. usage of sys_mclk is preferred over pll to save power.
637  */
638 static int sgtl5000_set_clock(struct snd_soc_codec *codec, int frame_rate)
639 {
640 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
641 	int clk_ctl = 0;
642 	int sys_fs;	/* sample freq */
643 
644 	/*
645 	 * sample freq should be divided by frame clock,
646 	 * if frame clock is lower than 44.1 kHz, sample freq should be set to
647 	 * 32 kHz or 44.1 kHz.
648 	 */
649 	switch (frame_rate) {
650 	case 8000:
651 	case 16000:
652 		sys_fs = 32000;
653 		break;
654 	case 11025:
655 	case 22050:
656 		sys_fs = 44100;
657 		break;
658 	default:
659 		sys_fs = frame_rate;
660 		break;
661 	}
662 
663 	/* set divided factor of frame clock */
664 	switch (sys_fs / frame_rate) {
665 	case 4:
666 		clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
667 		break;
668 	case 2:
669 		clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
670 		break;
671 	case 1:
672 		clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
673 		break;
674 	default:
675 		return -EINVAL;
676 	}
677 
678 	/* set the sys_fs according to frame rate */
679 	switch (sys_fs) {
680 	case 32000:
681 		clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
682 		break;
683 	case 44100:
684 		clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
685 		break;
686 	case 48000:
687 		clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
688 		break;
689 	case 96000:
690 		clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
691 		break;
692 	default:
693 		dev_err(codec->dev, "frame rate %d not supported\n",
694 			frame_rate);
695 		return -EINVAL;
696 	}
697 
698 	/*
699 	 * calculate the divider of mclk/sample_freq,
700 	 * factor of freq = 96 kHz can only be 256, since mclk is in the range
701 	 * of 8 MHz - 27 MHz
702 	 */
703 	switch (sgtl5000->sysclk / frame_rate) {
704 	case 256:
705 		clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
706 			SGTL5000_MCLK_FREQ_SHIFT;
707 		break;
708 	case 384:
709 		clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
710 			SGTL5000_MCLK_FREQ_SHIFT;
711 		break;
712 	case 512:
713 		clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
714 			SGTL5000_MCLK_FREQ_SHIFT;
715 		break;
716 	default:
717 		/* if mclk does not satisfy the divider, use pll */
718 		if (sgtl5000->master) {
719 			clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
720 				SGTL5000_MCLK_FREQ_SHIFT;
721 		} else {
722 			dev_err(codec->dev,
723 				"PLL not supported in slave mode\n");
724 			dev_err(codec->dev, "%d ratio is not supported. "
725 				"SYS_MCLK needs to be 256, 384 or 512 * fs\n",
726 				sgtl5000->sysclk / frame_rate);
727 			return -EINVAL;
728 		}
729 	}
730 
731 	/* if using pll, please check manual 6.4.2 for detail */
732 	if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
733 		u64 out, t;
734 		int div2;
735 		int pll_ctl;
736 		unsigned int in, int_div, frac_div;
737 
738 		if (sgtl5000->sysclk > 17000000) {
739 			div2 = 1;
740 			in = sgtl5000->sysclk / 2;
741 		} else {
742 			div2 = 0;
743 			in = sgtl5000->sysclk;
744 		}
745 		if (sys_fs == 44100)
746 			out = 180633600;
747 		else
748 			out = 196608000;
749 		t = do_div(out, in);
750 		int_div = out;
751 		t *= 2048;
752 		do_div(t, in);
753 		frac_div = t;
754 		pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
755 		    frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
756 
757 		snd_soc_write(codec, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
758 		if (div2)
759 			snd_soc_update_bits(codec,
760 				SGTL5000_CHIP_CLK_TOP_CTRL,
761 				SGTL5000_INPUT_FREQ_DIV2,
762 				SGTL5000_INPUT_FREQ_DIV2);
763 		else
764 			snd_soc_update_bits(codec,
765 				SGTL5000_CHIP_CLK_TOP_CTRL,
766 				SGTL5000_INPUT_FREQ_DIV2,
767 				0);
768 
769 		/* power up pll */
770 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
771 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
772 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
773 
774 		/* if using pll, clk_ctrl must be set after pll power up */
775 		snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
776 	} else {
777 		/* otherwise, clk_ctrl must be set before pll power down */
778 		snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
779 
780 		/* power down pll */
781 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
782 			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
783 			0);
784 	}
785 
786 	return 0;
787 }
788 
789 /*
790  * Set PCM DAI bit size and sample rate.
791  * input: params_rate, params_fmt
792  */
793 static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
794 				  struct snd_pcm_hw_params *params,
795 				  struct snd_soc_dai *dai)
796 {
797 	struct snd_soc_codec *codec = dai->codec;
798 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
799 	int channels = params_channels(params);
800 	int i2s_ctl = 0;
801 	int stereo;
802 	int ret;
803 
804 	/* sysclk should already set */
805 	if (!sgtl5000->sysclk) {
806 		dev_err(codec->dev, "%s: set sysclk first!\n", __func__);
807 		return -EFAULT;
808 	}
809 
810 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
811 		stereo = SGTL5000_DAC_STEREO;
812 	else
813 		stereo = SGTL5000_ADC_STEREO;
814 
815 	/* set mono to save power */
816 	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, stereo,
817 			channels == 1 ? 0 : stereo);
818 
819 	/* set codec clock base on lrclk */
820 	ret = sgtl5000_set_clock(codec, params_rate(params));
821 	if (ret)
822 		return ret;
823 
824 	/* set i2s data format */
825 	switch (params_width(params)) {
826 	case 16:
827 		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
828 			return -EINVAL;
829 		i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
830 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
831 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
832 		break;
833 	case 20:
834 		i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
835 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
836 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
837 		break;
838 	case 24:
839 		i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
840 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
841 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
842 		break;
843 	case 32:
844 		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
845 			return -EINVAL;
846 		i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
847 		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
848 		    SGTL5000_I2S_SCLKFREQ_SHIFT;
849 		break;
850 	default:
851 		return -EINVAL;
852 	}
853 
854 	snd_soc_update_bits(codec, SGTL5000_CHIP_I2S_CTRL,
855 			    SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
856 			    i2s_ctl);
857 
858 	return 0;
859 }
860 
861 /*
862  * set dac bias
863  * common state changes:
864  * startup:
865  * off --> standby --> prepare --> on
866  * standby --> prepare --> on
867  *
868  * stop:
869  * on --> prepare --> standby
870  */
871 static int sgtl5000_set_bias_level(struct snd_soc_codec *codec,
872 				   enum snd_soc_bias_level level)
873 {
874 	switch (level) {
875 	case SND_SOC_BIAS_ON:
876 	case SND_SOC_BIAS_PREPARE:
877 	case SND_SOC_BIAS_STANDBY:
878 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
879 				    SGTL5000_REFTOP_POWERUP,
880 				    SGTL5000_REFTOP_POWERUP);
881 		break;
882 	case SND_SOC_BIAS_OFF:
883 		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
884 				    SGTL5000_REFTOP_POWERUP, 0);
885 		break;
886 	}
887 
888 	return 0;
889 }
890 
891 #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
892 			SNDRV_PCM_FMTBIT_S20_3LE |\
893 			SNDRV_PCM_FMTBIT_S24_LE |\
894 			SNDRV_PCM_FMTBIT_S32_LE)
895 
896 static const struct snd_soc_dai_ops sgtl5000_ops = {
897 	.hw_params = sgtl5000_pcm_hw_params,
898 	.digital_mute = sgtl5000_digital_mute,
899 	.set_fmt = sgtl5000_set_dai_fmt,
900 	.set_sysclk = sgtl5000_set_dai_sysclk,
901 };
902 
903 static struct snd_soc_dai_driver sgtl5000_dai = {
904 	.name = "sgtl5000",
905 	.playback = {
906 		.stream_name = "Playback",
907 		.channels_min = 1,
908 		.channels_max = 2,
909 		/*
910 		 * only support 8~48K + 96K,
911 		 * TODO modify hw_param to support more
912 		 */
913 		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
914 		.formats = SGTL5000_FORMATS,
915 	},
916 	.capture = {
917 		.stream_name = "Capture",
918 		.channels_min = 1,
919 		.channels_max = 2,
920 		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
921 		.formats = SGTL5000_FORMATS,
922 	},
923 	.ops = &sgtl5000_ops,
924 	.symmetric_rates = 1,
925 };
926 
927 static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
928 {
929 	switch (reg) {
930 	case SGTL5000_CHIP_ID:
931 	case SGTL5000_CHIP_ADCDAC_CTRL:
932 	case SGTL5000_CHIP_ANA_STATUS:
933 		return true;
934 	}
935 
936 	return false;
937 }
938 
939 static bool sgtl5000_readable(struct device *dev, unsigned int reg)
940 {
941 	switch (reg) {
942 	case SGTL5000_CHIP_ID:
943 	case SGTL5000_CHIP_DIG_POWER:
944 	case SGTL5000_CHIP_CLK_CTRL:
945 	case SGTL5000_CHIP_I2S_CTRL:
946 	case SGTL5000_CHIP_SSS_CTRL:
947 	case SGTL5000_CHIP_ADCDAC_CTRL:
948 	case SGTL5000_CHIP_DAC_VOL:
949 	case SGTL5000_CHIP_PAD_STRENGTH:
950 	case SGTL5000_CHIP_ANA_ADC_CTRL:
951 	case SGTL5000_CHIP_ANA_HP_CTRL:
952 	case SGTL5000_CHIP_ANA_CTRL:
953 	case SGTL5000_CHIP_LINREG_CTRL:
954 	case SGTL5000_CHIP_REF_CTRL:
955 	case SGTL5000_CHIP_MIC_CTRL:
956 	case SGTL5000_CHIP_LINE_OUT_CTRL:
957 	case SGTL5000_CHIP_LINE_OUT_VOL:
958 	case SGTL5000_CHIP_ANA_POWER:
959 	case SGTL5000_CHIP_PLL_CTRL:
960 	case SGTL5000_CHIP_CLK_TOP_CTRL:
961 	case SGTL5000_CHIP_ANA_STATUS:
962 	case SGTL5000_CHIP_SHORT_CTRL:
963 	case SGTL5000_CHIP_ANA_TEST2:
964 	case SGTL5000_DAP_CTRL:
965 	case SGTL5000_DAP_PEQ:
966 	case SGTL5000_DAP_BASS_ENHANCE:
967 	case SGTL5000_DAP_BASS_ENHANCE_CTRL:
968 	case SGTL5000_DAP_AUDIO_EQ:
969 	case SGTL5000_DAP_SURROUND:
970 	case SGTL5000_DAP_FLT_COEF_ACCESS:
971 	case SGTL5000_DAP_COEF_WR_B0_MSB:
972 	case SGTL5000_DAP_COEF_WR_B0_LSB:
973 	case SGTL5000_DAP_EQ_BASS_BAND0:
974 	case SGTL5000_DAP_EQ_BASS_BAND1:
975 	case SGTL5000_DAP_EQ_BASS_BAND2:
976 	case SGTL5000_DAP_EQ_BASS_BAND3:
977 	case SGTL5000_DAP_EQ_BASS_BAND4:
978 	case SGTL5000_DAP_MAIN_CHAN:
979 	case SGTL5000_DAP_MIX_CHAN:
980 	case SGTL5000_DAP_AVC_CTRL:
981 	case SGTL5000_DAP_AVC_THRESHOLD:
982 	case SGTL5000_DAP_AVC_ATTACK:
983 	case SGTL5000_DAP_AVC_DECAY:
984 	case SGTL5000_DAP_COEF_WR_B1_MSB:
985 	case SGTL5000_DAP_COEF_WR_B1_LSB:
986 	case SGTL5000_DAP_COEF_WR_B2_MSB:
987 	case SGTL5000_DAP_COEF_WR_B2_LSB:
988 	case SGTL5000_DAP_COEF_WR_A1_MSB:
989 	case SGTL5000_DAP_COEF_WR_A1_LSB:
990 	case SGTL5000_DAP_COEF_WR_A2_MSB:
991 	case SGTL5000_DAP_COEF_WR_A2_LSB:
992 		return true;
993 
994 	default:
995 		return false;
996 	}
997 }
998 
999 /*
1000  * This precalculated table contains all (vag_val * 100 / lo_calcntrl) results
1001  * to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL
1002  * The calculatation was done for all possible register values which
1003  * is the array index and the following formula: 10^((idx−15)/40) * 100
1004  */
1005 static const u8 vol_quot_table[] = {
1006 	42, 45, 47, 50, 53, 56, 60, 63,
1007 	67, 71, 75, 79, 84, 89, 94, 100,
1008 	106, 112, 119, 126, 133, 141, 150, 158,
1009 	168, 178, 188, 200, 211, 224, 237, 251
1010 };
1011 
1012 /*
1013  * sgtl5000 has 3 internal power supplies:
1014  * 1. VAG, normally set to vdda/2
1015  * 2. charge pump, set to different value
1016  *	according to voltage of vdda and vddio
1017  * 3. line out VAG, normally set to vddio/2
1018  *
1019  * and should be set according to:
1020  * 1. vddd provided by external or not
1021  * 2. vdda and vddio voltage value. > 3.1v or not
1022  */
1023 static int sgtl5000_set_power_regs(struct snd_soc_codec *codec)
1024 {
1025 	int vddd;
1026 	int vdda;
1027 	int vddio;
1028 	u16 ana_pwr;
1029 	u16 lreg_ctrl;
1030 	int vag;
1031 	int lo_vag;
1032 	int vol_quot;
1033 	int lo_vol;
1034 	size_t i;
1035 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1036 
1037 	vdda  = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
1038 	vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
1039 	vddd  = (sgtl5000->num_supplies > VDDD)
1040 		? regulator_get_voltage(sgtl5000->supplies[VDDD].consumer)
1041 		: LDO_VOLTAGE;
1042 
1043 	vdda  = vdda / 1000;
1044 	vddio = vddio / 1000;
1045 	vddd  = vddd / 1000;
1046 
1047 	if (vdda <= 0 || vddio <= 0 || vddd < 0) {
1048 		dev_err(codec->dev, "regulator voltage not set correctly\n");
1049 
1050 		return -EINVAL;
1051 	}
1052 
1053 	/* according to datasheet, maximum voltage of supplies */
1054 	if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
1055 		dev_err(codec->dev,
1056 			"exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
1057 			vdda, vddio, vddd);
1058 
1059 		return -EINVAL;
1060 	}
1061 
1062 	/* reset value */
1063 	ana_pwr = snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER);
1064 	ana_pwr |= SGTL5000_DAC_STEREO |
1065 			SGTL5000_ADC_STEREO |
1066 			SGTL5000_REFTOP_POWERUP;
1067 	lreg_ctrl = snd_soc_read(codec, SGTL5000_CHIP_LINREG_CTRL);
1068 
1069 	if (vddio < 3100 && vdda < 3100) {
1070 		/* enable internal oscillator used for charge pump */
1071 		snd_soc_update_bits(codec, SGTL5000_CHIP_CLK_TOP_CTRL,
1072 					SGTL5000_INT_OSC_EN,
1073 					SGTL5000_INT_OSC_EN);
1074 		/* Enable VDDC charge pump */
1075 		ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
1076 	} else if (vddio >= 3100 && vdda >= 3100) {
1077 		ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP;
1078 		/* VDDC use VDDIO rail */
1079 		lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
1080 		lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
1081 			    SGTL5000_VDDC_MAN_ASSN_SHIFT;
1082 	}
1083 
1084 	snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
1085 
1086 	snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1087 
1088 	/*
1089 	 * set ADC/DAC VAG to vdda / 2,
1090 	 * should stay in range (0.8v, 1.575v)
1091 	 */
1092 	vag = vdda / 2;
1093 	if (vag <= SGTL5000_ANA_GND_BASE)
1094 		vag = 0;
1095 	else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
1096 		 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
1097 		vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
1098 	else
1099 		vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
1100 
1101 	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1102 			SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1103 
1104 	/* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
1105 	lo_vag = vddio / 2;
1106 	if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE)
1107 		lo_vag = 0;
1108 	else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE +
1109 		SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
1110 		lo_vag = SGTL5000_LINE_OUT_GND_MAX;
1111 	else
1112 		lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) /
1113 		    SGTL5000_LINE_OUT_GND_STP;
1114 
1115 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_CTRL,
1116 			SGTL5000_LINE_OUT_CURRENT_MASK |
1117 			SGTL5000_LINE_OUT_GND_MASK,
1118 			lo_vag << SGTL5000_LINE_OUT_GND_SHIFT |
1119 			SGTL5000_LINE_OUT_CURRENT_360u <<
1120 				SGTL5000_LINE_OUT_CURRENT_SHIFT);
1121 
1122 	/*
1123 	 * Set lineout output level in range (0..31)
1124 	 * the same value is used for right and left channel
1125 	 *
1126 	 * Searching for a suitable index solving this formula:
1127 	 * idx = 40 * log10(vag_val / lo_cagcntrl) + 15
1128 	 */
1129 	vol_quot = (vag * 100) / lo_vag;
1130 	lo_vol = 0;
1131 	for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) {
1132 		if (vol_quot >= vol_quot_table[i])
1133 			lo_vol = i;
1134 		else
1135 			break;
1136 	}
1137 
1138 	snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_VOL,
1139 		SGTL5000_LINE_OUT_VOL_RIGHT_MASK |
1140 		SGTL5000_LINE_OUT_VOL_LEFT_MASK,
1141 		lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT |
1142 		lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT);
1143 
1144 	return 0;
1145 }
1146 
1147 static int sgtl5000_enable_regulators(struct i2c_client *client)
1148 {
1149 	int ret;
1150 	int i;
1151 	int external_vddd = 0;
1152 	struct regulator *vddd;
1153 	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1154 
1155 	for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
1156 		sgtl5000->supplies[i].supply = supply_names[i];
1157 
1158 	vddd = regulator_get_optional(&client->dev, "VDDD");
1159 	if (IS_ERR(vddd)) {
1160 		/* See if it's just not registered yet */
1161 		if (PTR_ERR(vddd) == -EPROBE_DEFER)
1162 			return -EPROBE_DEFER;
1163 	} else {
1164 		external_vddd = 1;
1165 		regulator_put(vddd);
1166 	}
1167 
1168 	sgtl5000->num_supplies = ARRAY_SIZE(sgtl5000->supplies)
1169 				 - 1 + external_vddd;
1170 	ret = regulator_bulk_get(&client->dev, sgtl5000->num_supplies,
1171 				 sgtl5000->supplies);
1172 	if (ret)
1173 		return ret;
1174 
1175 	ret = regulator_bulk_enable(sgtl5000->num_supplies,
1176 				    sgtl5000->supplies);
1177 	if (!ret)
1178 		usleep_range(10, 20);
1179 	else
1180 		regulator_bulk_free(sgtl5000->num_supplies,
1181 				    sgtl5000->supplies);
1182 
1183 	return ret;
1184 }
1185 
1186 static int sgtl5000_probe(struct snd_soc_codec *codec)
1187 {
1188 	int ret;
1189 	u16 reg;
1190 	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1191 
1192 	/* power up sgtl5000 */
1193 	ret = sgtl5000_set_power_regs(codec);
1194 	if (ret)
1195 		goto err;
1196 
1197 	/* enable small pop, introduce 400ms delay in turning off */
1198 	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1199 				SGTL5000_SMALL_POP, 1);
1200 
1201 	/* disable short cut detector */
1202 	snd_soc_write(codec, SGTL5000_CHIP_SHORT_CTRL, 0);
1203 
1204 	/*
1205 	 * set i2s as default input of sound switch
1206 	 * TODO: add sound switch to control and dapm widge.
1207 	 */
1208 	snd_soc_write(codec, SGTL5000_CHIP_SSS_CTRL,
1209 			SGTL5000_DAC_SEL_I2S_IN << SGTL5000_DAC_SEL_SHIFT);
1210 	snd_soc_write(codec, SGTL5000_CHIP_DIG_POWER,
1211 			SGTL5000_ADC_EN | SGTL5000_DAC_EN);
1212 
1213 	/* enable dac volume ramp by default */
1214 	snd_soc_write(codec, SGTL5000_CHIP_ADCDAC_CTRL,
1215 			SGTL5000_DAC_VOL_RAMP_EN |
1216 			SGTL5000_DAC_MUTE_RIGHT |
1217 			SGTL5000_DAC_MUTE_LEFT);
1218 
1219 	reg = ((sgtl5000->lrclk_strength) << SGTL5000_PAD_I2S_LRCLK_SHIFT | 0x5f);
1220 	snd_soc_write(codec, SGTL5000_CHIP_PAD_STRENGTH, reg);
1221 
1222 	snd_soc_write(codec, SGTL5000_CHIP_ANA_CTRL,
1223 			SGTL5000_HP_ZCD_EN |
1224 			SGTL5000_ADC_ZCD_EN);
1225 
1226 	snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
1227 			SGTL5000_BIAS_R_MASK,
1228 			sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
1229 
1230 	snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
1231 			SGTL5000_BIAS_VOLT_MASK,
1232 			sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT);
1233 	/*
1234 	 * disable DAP
1235 	 * TODO:
1236 	 * Enable DAP in kcontrol and dapm.
1237 	 */
1238 	snd_soc_write(codec, SGTL5000_DAP_CTRL, 0);
1239 
1240 	return 0;
1241 
1242 err:
1243 	return ret;
1244 }
1245 
1246 static int sgtl5000_remove(struct snd_soc_codec *codec)
1247 {
1248 	return 0;
1249 }
1250 
1251 static struct snd_soc_codec_driver sgtl5000_driver = {
1252 	.probe = sgtl5000_probe,
1253 	.remove = sgtl5000_remove,
1254 	.set_bias_level = sgtl5000_set_bias_level,
1255 	.suspend_bias_off = true,
1256 	.component_driver = {
1257 		.controls		= sgtl5000_snd_controls,
1258 		.num_controls		= ARRAY_SIZE(sgtl5000_snd_controls),
1259 		.dapm_widgets		= sgtl5000_dapm_widgets,
1260 		.num_dapm_widgets	= ARRAY_SIZE(sgtl5000_dapm_widgets),
1261 		.dapm_routes		= sgtl5000_dapm_routes,
1262 		.num_dapm_routes	= ARRAY_SIZE(sgtl5000_dapm_routes),
1263 	},
1264 };
1265 
1266 static const struct regmap_config sgtl5000_regmap = {
1267 	.reg_bits = 16,
1268 	.val_bits = 16,
1269 	.reg_stride = 2,
1270 
1271 	.max_register = SGTL5000_MAX_REG_OFFSET,
1272 	.volatile_reg = sgtl5000_volatile,
1273 	.readable_reg = sgtl5000_readable,
1274 
1275 	.cache_type = REGCACHE_RBTREE,
1276 	.reg_defaults = sgtl5000_reg_defaults,
1277 	.num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
1278 };
1279 
1280 /*
1281  * Write all the default values from sgtl5000_reg_defaults[] array into the
1282  * sgtl5000 registers, to make sure we always start with the sane registers
1283  * values as stated in the datasheet.
1284  *
1285  * Since sgtl5000 does not have a reset line, nor a reset command in software,
1286  * we follow this approach to guarantee we always start from the default values
1287  * and avoid problems like, not being able to probe after an audio playback
1288  * followed by a system reset or a 'reboot' command in Linux
1289  */
1290 static void sgtl5000_fill_defaults(struct i2c_client *client)
1291 {
1292 	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1293 	int i, ret, val, index;
1294 
1295 	for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
1296 		val = sgtl5000_reg_defaults[i].def;
1297 		index = sgtl5000_reg_defaults[i].reg;
1298 		ret = regmap_write(sgtl5000->regmap, index, val);
1299 		if (ret)
1300 			dev_err(&client->dev,
1301 				"%s: error %d setting reg 0x%02x to 0x%04x\n",
1302 				__func__, ret, index, val);
1303 	}
1304 }
1305 
1306 static int sgtl5000_i2c_probe(struct i2c_client *client,
1307 			      const struct i2c_device_id *id)
1308 {
1309 	struct sgtl5000_priv *sgtl5000;
1310 	int ret, reg, rev;
1311 	struct device_node *np = client->dev.of_node;
1312 	u32 value;
1313 	u16 ana_pwr;
1314 
1315 	sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL);
1316 	if (!sgtl5000)
1317 		return -ENOMEM;
1318 
1319 	i2c_set_clientdata(client, sgtl5000);
1320 
1321 	ret = sgtl5000_enable_regulators(client);
1322 	if (ret)
1323 		return ret;
1324 
1325 	sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
1326 	if (IS_ERR(sgtl5000->regmap)) {
1327 		ret = PTR_ERR(sgtl5000->regmap);
1328 		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1329 		goto disable_regs;
1330 	}
1331 
1332 	sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
1333 	if (IS_ERR(sgtl5000->mclk)) {
1334 		ret = PTR_ERR(sgtl5000->mclk);
1335 		dev_err(&client->dev, "Failed to get mclock: %d\n", ret);
1336 		/* Defer the probe to see if the clk will be provided later */
1337 		if (ret == -ENOENT)
1338 			ret = -EPROBE_DEFER;
1339 		goto disable_regs;
1340 	}
1341 
1342 	ret = clk_prepare_enable(sgtl5000->mclk);
1343 	if (ret) {
1344 		dev_err(&client->dev, "Error enabling clock %d\n", ret);
1345 		goto disable_regs;
1346 	}
1347 
1348 	/* Need 8 clocks before I2C accesses */
1349 	udelay(1);
1350 
1351 	/* read chip information */
1352 	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
1353 	if (ret) {
1354 		dev_err(&client->dev, "Error reading chip id %d\n", ret);
1355 		goto disable_clk;
1356 	}
1357 
1358 	if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
1359 	    SGTL5000_PARTID_PART_ID) {
1360 		dev_err(&client->dev,
1361 			"Device with ID register %x is not a sgtl5000\n", reg);
1362 		ret = -ENODEV;
1363 		goto disable_clk;
1364 	}
1365 
1366 	rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
1367 	dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
1368 	sgtl5000->revision = rev;
1369 
1370 	/* reconfigure the clocks in case we're using the PLL */
1371 	ret = regmap_write(sgtl5000->regmap,
1372 			   SGTL5000_CHIP_CLK_CTRL,
1373 			   SGTL5000_CHIP_CLK_CTRL_DEFAULT);
1374 	if (ret)
1375 		dev_err(&client->dev,
1376 			"Error %d initializing CHIP_CLK_CTRL\n", ret);
1377 
1378 	/* Follow section 2.2.1.1 of AN3663 */
1379 	ana_pwr = SGTL5000_ANA_POWER_DEFAULT;
1380 	if (sgtl5000->num_supplies <= VDDD) {
1381 		/* internal VDDD at 1.2V */
1382 		ret = regmap_update_bits(sgtl5000->regmap,
1383 					 SGTL5000_CHIP_LINREG_CTRL,
1384 					 SGTL5000_LINREG_VDDD_MASK,
1385 					 LINREG_VDDD);
1386 		if (ret)
1387 			dev_err(&client->dev,
1388 				"Error %d setting LINREG_VDDD\n", ret);
1389 
1390 		ana_pwr |= SGTL5000_LINEREG_D_POWERUP;
1391 		dev_info(&client->dev,
1392 			 "Using internal LDO instead of VDDD: check ER1\n");
1393 	} else {
1394 		/* using external LDO for VDDD
1395 		 * Clear startup powerup and simple powerup
1396 		 * bits to save power
1397 		 */
1398 		ana_pwr &= ~(SGTL5000_STARTUP_POWERUP
1399 			     | SGTL5000_LINREG_SIMPLE_POWERUP);
1400 		dev_dbg(&client->dev, "Using external VDDD\n");
1401 	}
1402 	ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1403 	if (ret)
1404 		dev_err(&client->dev,
1405 			"Error %d setting CHIP_ANA_POWER to %04x\n",
1406 			ret, ana_pwr);
1407 
1408 	if (np) {
1409 		if (!of_property_read_u32(np,
1410 			"micbias-resistor-k-ohms", &value)) {
1411 			switch (value) {
1412 			case SGTL5000_MICBIAS_OFF:
1413 				sgtl5000->micbias_resistor = 0;
1414 				break;
1415 			case SGTL5000_MICBIAS_2K:
1416 				sgtl5000->micbias_resistor = 1;
1417 				break;
1418 			case SGTL5000_MICBIAS_4K:
1419 				sgtl5000->micbias_resistor = 2;
1420 				break;
1421 			case SGTL5000_MICBIAS_8K:
1422 				sgtl5000->micbias_resistor = 3;
1423 				break;
1424 			default:
1425 				sgtl5000->micbias_resistor = 2;
1426 				dev_err(&client->dev,
1427 					"Unsuitable MicBias resistor\n");
1428 			}
1429 		} else {
1430 			/* default is 4Kohms */
1431 			sgtl5000->micbias_resistor = 2;
1432 		}
1433 		if (!of_property_read_u32(np,
1434 			"micbias-voltage-m-volts", &value)) {
1435 			/* 1250mV => 0 */
1436 			/* steps of 250mV */
1437 			if ((value >= 1250) && (value <= 3000))
1438 				sgtl5000->micbias_voltage = (value / 250) - 5;
1439 			else {
1440 				sgtl5000->micbias_voltage = 0;
1441 				dev_err(&client->dev,
1442 					"Unsuitable MicBias voltage\n");
1443 			}
1444 		} else {
1445 			sgtl5000->micbias_voltage = 0;
1446 		}
1447 	}
1448 
1449 	sgtl5000->lrclk_strength = I2S_LRCLK_STRENGTH_LOW;
1450 	if (!of_property_read_u32(np, "lrclk-strength", &value)) {
1451 		if (value > I2S_LRCLK_STRENGTH_HIGH)
1452 			value = I2S_LRCLK_STRENGTH_LOW;
1453 		sgtl5000->lrclk_strength = value;
1454 	}
1455 
1456 	/* Ensure sgtl5000 will start with sane register values */
1457 	sgtl5000_fill_defaults(client);
1458 
1459 	ret = snd_soc_register_codec(&client->dev,
1460 			&sgtl5000_driver, &sgtl5000_dai, 1);
1461 	if (ret)
1462 		goto disable_clk;
1463 
1464 	return 0;
1465 
1466 disable_clk:
1467 	clk_disable_unprepare(sgtl5000->mclk);
1468 
1469 disable_regs:
1470 	regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1471 	regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1472 
1473 	return ret;
1474 }
1475 
1476 static int sgtl5000_i2c_remove(struct i2c_client *client)
1477 {
1478 	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1479 
1480 	snd_soc_unregister_codec(&client->dev);
1481 	clk_disable_unprepare(sgtl5000->mclk);
1482 	regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1483 	regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1484 
1485 	return 0;
1486 }
1487 
1488 static const struct i2c_device_id sgtl5000_id[] = {
1489 	{"sgtl5000", 0},
1490 	{},
1491 };
1492 
1493 MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
1494 
1495 static const struct of_device_id sgtl5000_dt_ids[] = {
1496 	{ .compatible = "fsl,sgtl5000", },
1497 	{ /* sentinel */ }
1498 };
1499 MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1500 
1501 static struct i2c_driver sgtl5000_i2c_driver = {
1502 	.driver = {
1503 		   .name = "sgtl5000",
1504 		   .of_match_table = sgtl5000_dt_ids,
1505 		   },
1506 	.probe = sgtl5000_i2c_probe,
1507 	.remove = sgtl5000_i2c_remove,
1508 	.id_table = sgtl5000_id,
1509 };
1510 
1511 module_i2c_driver(sgtl5000_i2c_driver);
1512 
1513 MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1514 MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1515 MODULE_LICENSE("GPL");
1516