xref: /openbmc/linux/sound/soc/codecs/nau8825.c (revision fc28ab18)
1 /*
2  * Nuvoton NAU8825 audio codec driver
3  *
4  * Copyright 2015 Google Chromium project.
5  *  Author: Anatol Pomozov <anatol@chromium.org>
6  * Copyright 2015 Nuvoton Technology Corp.
7  *  Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com>
8  *
9  * Licensed under the GPL-2.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/delay.h>
14 #include <linux/init.h>
15 #include <linux/i2c.h>
16 #include <linux/regmap.h>
17 #include <linux/slab.h>
18 #include <linux/clk.h>
19 #include <linux/acpi.h>
20 #include <linux/math64.h>
21 #include <linux/semaphore.h>
22 
23 #include <sound/initval.h>
24 #include <sound/tlv.h>
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 #include <sound/soc.h>
29 #include <sound/jack.h>
30 
31 
32 #include "nau8825.h"
33 
34 
35 #define NUVOTON_CODEC_DAI "nau8825-hifi"
36 
37 #define NAU_FREF_MAX 13500000
38 #define NAU_FVCO_MAX 124000000
39 #define NAU_FVCO_MIN 90000000
40 
41 /* cross talk suppression detection */
42 #define LOG10_MAGIC 646456993
43 #define GAIN_AUGMENT 22500
44 #define SIDETONE_BASE 207000
45 
46 /* the maximum frequency of CLK_ADC and CLK_DAC */
47 #define CLK_DA_AD_MAX 6144000
48 
49 static int nau8825_configure_sysclk(struct nau8825 *nau8825,
50 		int clk_id, unsigned int freq);
51 
52 struct nau8825_fll {
53 	int mclk_src;
54 	int ratio;
55 	int fll_frac;
56 	int fll_int;
57 	int clk_ref_div;
58 };
59 
60 struct nau8825_fll_attr {
61 	unsigned int param;
62 	unsigned int val;
63 };
64 
65 /* scaling for mclk from sysclk_src output */
66 static const struct nau8825_fll_attr mclk_src_scaling[] = {
67 	{ 1, 0x0 },
68 	{ 2, 0x2 },
69 	{ 4, 0x3 },
70 	{ 8, 0x4 },
71 	{ 16, 0x5 },
72 	{ 32, 0x6 },
73 	{ 3, 0x7 },
74 	{ 6, 0xa },
75 	{ 12, 0xb },
76 	{ 24, 0xc },
77 	{ 48, 0xd },
78 	{ 96, 0xe },
79 	{ 5, 0xf },
80 };
81 
82 /* ratio for input clk freq */
83 static const struct nau8825_fll_attr fll_ratio[] = {
84 	{ 512000, 0x01 },
85 	{ 256000, 0x02 },
86 	{ 128000, 0x04 },
87 	{ 64000, 0x08 },
88 	{ 32000, 0x10 },
89 	{ 8000, 0x20 },
90 	{ 4000, 0x40 },
91 };
92 
93 static const struct nau8825_fll_attr fll_pre_scalar[] = {
94 	{ 1, 0x0 },
95 	{ 2, 0x1 },
96 	{ 4, 0x2 },
97 	{ 8, 0x3 },
98 };
99 
100 /* over sampling rate */
101 struct nau8825_osr_attr {
102 	unsigned int osr;
103 	unsigned int clk_src;
104 };
105 
106 static const struct nau8825_osr_attr osr_dac_sel[] = {
107 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
108 	{ 256, 0 },	/* OSR 256, SRC 1 */
109 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
110 	{ 0, 0 },
111 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
112 };
113 
114 static const struct nau8825_osr_attr osr_adc_sel[] = {
115 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
116 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
117 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
118 	{ 256, 0 },	/* OSR 256, SRC 1 */
119 };
120 
121 static const struct reg_default nau8825_reg_defaults[] = {
122 	{ NAU8825_REG_ENA_CTRL, 0x00ff },
123 	{ NAU8825_REG_IIC_ADDR_SET, 0x0 },
124 	{ NAU8825_REG_CLK_DIVIDER, 0x0050 },
125 	{ NAU8825_REG_FLL1, 0x0 },
126 	{ NAU8825_REG_FLL2, 0x3126 },
127 	{ NAU8825_REG_FLL3, 0x0008 },
128 	{ NAU8825_REG_FLL4, 0x0010 },
129 	{ NAU8825_REG_FLL5, 0x0 },
130 	{ NAU8825_REG_FLL6, 0x6000 },
131 	{ NAU8825_REG_FLL_VCO_RSV, 0xf13c },
132 	{ NAU8825_REG_HSD_CTRL, 0x000c },
133 	{ NAU8825_REG_JACK_DET_CTRL, 0x0 },
134 	{ NAU8825_REG_INTERRUPT_MASK, 0x0 },
135 	{ NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff },
136 	{ NAU8825_REG_SAR_CTRL, 0x0015 },
137 	{ NAU8825_REG_KEYDET_CTRL, 0x0110 },
138 	{ NAU8825_REG_VDET_THRESHOLD_1, 0x0 },
139 	{ NAU8825_REG_VDET_THRESHOLD_2, 0x0 },
140 	{ NAU8825_REG_VDET_THRESHOLD_3, 0x0 },
141 	{ NAU8825_REG_VDET_THRESHOLD_4, 0x0 },
142 	{ NAU8825_REG_GPIO34_CTRL, 0x0 },
143 	{ NAU8825_REG_GPIO12_CTRL, 0x0 },
144 	{ NAU8825_REG_TDM_CTRL, 0x0 },
145 	{ NAU8825_REG_I2S_PCM_CTRL1, 0x000b },
146 	{ NAU8825_REG_I2S_PCM_CTRL2, 0x8010 },
147 	{ NAU8825_REG_LEFT_TIME_SLOT, 0x0 },
148 	{ NAU8825_REG_RIGHT_TIME_SLOT, 0x0 },
149 	{ NAU8825_REG_BIQ_CTRL, 0x0 },
150 	{ NAU8825_REG_BIQ_COF1, 0x0 },
151 	{ NAU8825_REG_BIQ_COF2, 0x0 },
152 	{ NAU8825_REG_BIQ_COF3, 0x0 },
153 	{ NAU8825_REG_BIQ_COF4, 0x0 },
154 	{ NAU8825_REG_BIQ_COF5, 0x0 },
155 	{ NAU8825_REG_BIQ_COF6, 0x0 },
156 	{ NAU8825_REG_BIQ_COF7, 0x0 },
157 	{ NAU8825_REG_BIQ_COF8, 0x0 },
158 	{ NAU8825_REG_BIQ_COF9, 0x0 },
159 	{ NAU8825_REG_BIQ_COF10, 0x0 },
160 	{ NAU8825_REG_ADC_RATE, 0x0010 },
161 	{ NAU8825_REG_DAC_CTRL1, 0x0001 },
162 	{ NAU8825_REG_DAC_CTRL2, 0x0 },
163 	{ NAU8825_REG_DAC_DGAIN_CTRL, 0x0 },
164 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
165 	{ NAU8825_REG_MUTE_CTRL, 0x0 },
166 	{ NAU8825_REG_HSVOL_CTRL, 0x0 },
167 	{ NAU8825_REG_DACL_CTRL, 0x02cf },
168 	{ NAU8825_REG_DACR_CTRL, 0x00cf },
169 	{ NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 },
170 	{ NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 },
171 	{ NAU8825_REG_ADC_DRC_SLOPES, 0x25ff },
172 	{ NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 },
173 	{ NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 },
174 	{ NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 },
175 	{ NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 },
176 	{ NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 },
177 	{ NAU8825_REG_IMM_MODE_CTRL, 0x0 },
178 	{ NAU8825_REG_CLASSG_CTRL, 0x0 },
179 	{ NAU8825_REG_OPT_EFUSE_CTRL, 0x0 },
180 	{ NAU8825_REG_MISC_CTRL, 0x0 },
181 	{ NAU8825_REG_BIAS_ADJ, 0x0 },
182 	{ NAU8825_REG_TRIM_SETTINGS, 0x0 },
183 	{ NAU8825_REG_ANALOG_CONTROL_1, 0x0 },
184 	{ NAU8825_REG_ANALOG_CONTROL_2, 0x0 },
185 	{ NAU8825_REG_ANALOG_ADC_1, 0x0011 },
186 	{ NAU8825_REG_ANALOG_ADC_2, 0x0020 },
187 	{ NAU8825_REG_RDAC, 0x0008 },
188 	{ NAU8825_REG_MIC_BIAS, 0x0006 },
189 	{ NAU8825_REG_BOOST, 0x0 },
190 	{ NAU8825_REG_FEPGA, 0x0 },
191 	{ NAU8825_REG_POWER_UP_CONTROL, 0x0 },
192 	{ NAU8825_REG_CHARGE_PUMP, 0x0 },
193 };
194 
195 /* register backup table when cross talk detection */
196 static struct reg_default nau8825_xtalk_baktab[] = {
197 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0 },
198 	{ NAU8825_REG_HSVOL_CTRL, 0 },
199 	{ NAU8825_REG_DACL_CTRL, 0 },
200 	{ NAU8825_REG_DACR_CTRL, 0 },
201 };
202 
203 static const unsigned short logtable[256] = {
204 	0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7,
205 	0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508,
206 	0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6,
207 	0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37,
208 	0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f,
209 	0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41,
210 	0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1,
211 	0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142,
212 	0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68,
213 	0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355,
214 	0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c,
215 	0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490,
216 	0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3,
217 	0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507,
218 	0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe,
219 	0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca,
220 	0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c,
221 	0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7,
222 	0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c,
223 	0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c,
224 	0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a,
225 	0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065,
226 	0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730,
227 	0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc,
228 	0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469,
229 	0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9,
230 	0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c,
231 	0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765,
232 	0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83,
233 	0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387,
234 	0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973,
235 	0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47
236 };
237 
238 /**
239  * nau8825_sema_acquire - acquire the semaphore of nau88l25
240  * @nau8825:  component to register the codec private data with
241  * @timeout: how long in jiffies to wait before failure or zero to wait
242  * until release
243  *
244  * Attempts to acquire the semaphore with number of jiffies. If no more
245  * tasks are allowed to acquire the semaphore, calling this function will
246  * put the task to sleep. If the semaphore is not released within the
247  * specified number of jiffies, this function returns.
248  * Acquires the semaphore without jiffies. If no more tasks are allowed
249  * to acquire the semaphore, calling this function will put the task to
250  * sleep until the semaphore is released.
251  * If the semaphore is not released within the specified number of jiffies,
252  * this function returns -ETIME.
253  * If the sleep is interrupted by a signal, this function will return -EINTR.
254  * It returns 0 if the semaphore was acquired successfully.
255  */
256 static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout)
257 {
258 	int ret;
259 
260 	if (timeout) {
261 		ret = down_timeout(&nau8825->xtalk_sem, timeout);
262 		if (ret < 0)
263 			dev_warn(nau8825->dev, "Acquire semaphone timeout\n");
264 	} else {
265 		ret = down_interruptible(&nau8825->xtalk_sem);
266 		if (ret < 0)
267 			dev_warn(nau8825->dev, "Acquire semaphone fail\n");
268 	}
269 
270 	return ret;
271 }
272 
273 /**
274  * nau8825_sema_release - release the semaphore of nau88l25
275  * @nau8825:  component to register the codec private data with
276  *
277  * Release the semaphore which may be called from any context and
278  * even by tasks which have never called down().
279  */
280 static inline void nau8825_sema_release(struct nau8825 *nau8825)
281 {
282 	up(&nau8825->xtalk_sem);
283 }
284 
285 /**
286  * nau8825_sema_reset - reset the semaphore for nau88l25
287  * @nau8825:  component to register the codec private data with
288  *
289  * Reset the counter of the semaphore. Call this function to restart
290  * a new round task management.
291  */
292 static inline void nau8825_sema_reset(struct nau8825 *nau8825)
293 {
294 	nau8825->xtalk_sem.count = 1;
295 }
296 
297 /**
298  * Ramp up the headphone volume change gradually to target level.
299  *
300  * @nau8825:  component to register the codec private data with
301  * @vol_from: the volume to start up
302  * @vol_to: the target volume
303  * @step: the volume span to move on
304  *
305  * The headphone volume is from 0dB to minimum -54dB and -1dB per step.
306  * If the volume changes sharp, there is a pop noise heard in headphone. We
307  * provide the function to ramp up the volume up or down by delaying 10ms
308  * per step.
309  */
310 static void nau8825_hpvol_ramp(struct nau8825 *nau8825,
311 	unsigned int vol_from, unsigned int vol_to, unsigned int step)
312 {
313 	unsigned int value, volume, ramp_up, from, to;
314 
315 	if (vol_from == vol_to || step == 0) {
316 		return;
317 	} else if (vol_from < vol_to) {
318 		ramp_up = true;
319 		from = vol_from;
320 		to = vol_to;
321 	} else {
322 		ramp_up = false;
323 		from = vol_to;
324 		to = vol_from;
325 	}
326 	/* only handle volume from 0dB to minimum -54dB */
327 	if (to > NAU8825_HP_VOL_MIN)
328 		to = NAU8825_HP_VOL_MIN;
329 
330 	for (volume = from; volume < to; volume += step) {
331 		if (ramp_up)
332 			value = volume;
333 		else
334 			value = to - volume + from;
335 		regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
336 			NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
337 			(value << NAU8825_HPL_VOL_SFT) | value);
338 		usleep_range(10000, 10500);
339 	}
340 	if (ramp_up)
341 		value = to;
342 	else
343 		value = from;
344 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
345 		NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
346 		(value << NAU8825_HPL_VOL_SFT) | value);
347 }
348 
349 /**
350  * Computes log10 of a value; the result is round off to 3 decimal. This func-
351  * tion takes reference to dvb-math. The source code locates as the following.
352  * Linux/drivers/media/dvb-core/dvb_math.c
353  *
354  * return log10(value) * 1000
355  */
356 static u32 nau8825_intlog10_dec3(u32 value)
357 {
358 	u32 msb, logentry, significand, interpolation, log10val;
359 	u64 log2val;
360 
361 	/* first detect the msb (count begins at 0) */
362 	msb = fls(value) - 1;
363 	/**
364 	 *      now we use a logtable after the following method:
365 	 *
366 	 *      log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24
367 	 *      where x = msb and therefore 1 <= y < 2
368 	 *      first y is determined by shifting the value left
369 	 *      so that msb is bit 31
370 	 *              0x00231f56 -> 0x8C7D5800
371 	 *      the result is y * 2^31 -> "significand"
372 	 *      then the highest 9 bits are used for a table lookup
373 	 *      the highest bit is discarded because it's always set
374 	 *      the highest nine bits in our example are 100011000
375 	 *      so we would use the entry 0x18
376 	 */
377 	significand = value << (31 - msb);
378 	logentry = (significand >> 23) & 0xff;
379 	/**
380 	 *      last step we do is interpolation because of the
381 	 *      limitations of the log table the error is that part of
382 	 *      the significand which isn't used for lookup then we
383 	 *      compute the ratio between the error and the next table entry
384 	 *      and interpolate it between the log table entry used and the
385 	 *      next one the biggest error possible is 0x7fffff
386 	 *      (in our example it's 0x7D5800)
387 	 *      needed value for next table entry is 0x800000
388 	 *      so the interpolation is
389 	 *      (error / 0x800000) * (logtable_next - logtable_current)
390 	 *      in the implementation the division is moved to the end for
391 	 *      better accuracy there is also an overflow correction if
392 	 *      logtable_next is 256
393 	 */
394 	interpolation = ((significand & 0x7fffff) *
395 		((logtable[(logentry + 1) & 0xff] -
396 		logtable[logentry]) & 0xffff)) >> 15;
397 
398 	log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation);
399 	/**
400 	 *      log10(x) = log2(x) * log10(2)
401 	 */
402 	log10val = (log2val * LOG10_MAGIC) >> 31;
403 	/**
404 	 *      the result is round off to 3 decimal
405 	 */
406 	return log10val / ((1 << 24) / 1000);
407 }
408 
409 /**
410  * computes cross talk suppression sidetone gain.
411  *
412  * @sig_org: orignal signal level
413  * @sig_cros: cross talk signal level
414  *
415  * The orignal and cross talk signal vlues need to be characterized.
416  * Once these values have been characterized, this sidetone value
417  * can be converted to decibel with the equation below.
418  * sidetone = 20 * log (original signal level / crosstalk signal level)
419  *
420  * return cross talk sidetone gain
421  */
422 static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros)
423 {
424 	u32 gain, sidetone;
425 
426 	if (unlikely(sig_org == 0) || unlikely(sig_cros == 0)) {
427 		WARN_ON(1);
428 		return 0;
429 	}
430 
431 	sig_org = nau8825_intlog10_dec3(sig_org);
432 	sig_cros = nau8825_intlog10_dec3(sig_cros);
433 	if (sig_org >= sig_cros)
434 		gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT;
435 	else
436 		gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT;
437 	sidetone = SIDETONE_BASE - gain * 2;
438 	sidetone /= 1000;
439 
440 	return sidetone;
441 }
442 
443 static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg)
444 {
445 	int index;
446 
447 	for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++)
448 		if (nau8825_xtalk_baktab[index].reg == reg)
449 			return index;
450 	return -EINVAL;
451 }
452 
453 static void nau8825_xtalk_backup(struct nau8825 *nau8825)
454 {
455 	int i;
456 
457 	/* Backup some register values to backup table */
458 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++)
459 		regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
460 				&nau8825_xtalk_baktab[i].def);
461 }
462 
463 static void nau8825_xtalk_restore(struct nau8825 *nau8825)
464 {
465 	int i, volume;
466 
467 	/* Restore register values from backup table; When the driver restores
468 	 * the headphone volumem, it needs recover to original level gradually
469 	 * with 3dB per step for less pop noise.
470 	 */
471 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) {
472 		if (nau8825_xtalk_baktab[i].reg == NAU8825_REG_HSVOL_CTRL) {
473 			/* Ramping up the volume change to reduce pop noise */
474 			volume = nau8825_xtalk_baktab[i].def &
475 				NAU8825_HPR_VOL_MASK;
476 			nau8825_hpvol_ramp(nau8825, 0, volume, 3);
477 			continue;
478 		}
479 		regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
480 				nau8825_xtalk_baktab[i].def);
481 	}
482 }
483 
484 static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825)
485 {
486 	/* Enable power of DAC path */
487 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
488 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
489 		NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK |
490 		NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR |
491 		NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC |
492 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK);
493 	/* Prevent startup click by letting charge pump to ramp up and
494 	 * change bump enable
495 	 */
496 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
497 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN,
498 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN);
499 	/* Enable clock sync of DAC and DAC clock */
500 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
501 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN |
502 		NAU8825_RDAC_FS_BCLK_ENB,
503 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN);
504 	/* Power up output driver with 2 stage */
505 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
506 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
507 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L,
508 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
509 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L);
510 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
511 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L,
512 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L);
513 	/* HP outputs not shouted to ground  */
514 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
515 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0);
516 	/* Enable HP boost driver */
517 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
518 		NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS);
519 	/* Enable class G compare path to supply 1.8V or 0.9V. */
520 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL,
521 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN,
522 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN);
523 }
524 
525 static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825)
526 {
527 	/* Power up left ADC and raise 5dB than Vmid for Vref  */
528 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
529 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK,
530 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB);
531 }
532 
533 static void nau8825_xtalk_clock(struct nau8825 *nau8825)
534 {
535 	/* Recover FLL default value */
536 	regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0);
537 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126);
538 	regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008);
539 	regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010);
540 	regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0);
541 	regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000);
542 	/* Enable internal VCO clock for detection signal generated */
543 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
544 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
545 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN,
546 		NAU8825_DCO_EN);
547 	/* Given specific clock frequency of internal clock to
548 	 * generate signal.
549 	 */
550 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
551 		NAU8825_CLK_MCLK_SRC_MASK, 0xf);
552 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
553 		NAU8825_FLL_RATIO_MASK, 0x10);
554 }
555 
556 static void nau8825_xtalk_prepare(struct nau8825 *nau8825)
557 {
558 	int volume, index;
559 
560 	/* Backup those registers changed by cross talk detection */
561 	nau8825_xtalk_backup(nau8825);
562 	/* Config IIS as master to output signal by codec */
563 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
564 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
565 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER |
566 		(0x2 << NAU8825_I2S_LRC_DIV_SFT) | 0x1);
567 	/* Ramp up headphone volume to 0dB to get better performance and
568 	 * avoid pop noise in headphone.
569 	 */
570 	index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL);
571 	if (index != -EINVAL) {
572 		volume = nau8825_xtalk_baktab[index].def &
573 				NAU8825_HPR_VOL_MASK;
574 		nau8825_hpvol_ramp(nau8825, volume, 0, 3);
575 	}
576 	nau8825_xtalk_clock(nau8825);
577 	nau8825_xtalk_prepare_dac(nau8825);
578 	nau8825_xtalk_prepare_adc(nau8825);
579 	/* Config channel path and digital gain */
580 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
581 		NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK,
582 		NAU8825_DACL_CH_SEL_L | 0xab);
583 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
584 		NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK,
585 		NAU8825_DACR_CH_SEL_R | 0xab);
586 	/* Config cross talk parameters and generate the 23Hz sine wave with
587 	 * 1/16 full scale of signal level for impedance measurement.
588 	 */
589 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
590 		NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK |
591 		NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK,
592 		(0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th |
593 		NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN);
594 	/* RMS intrruption enable */
595 	regmap_update_bits(nau8825->regmap,
596 		NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0);
597 	/* Power up left and right DAC */
598 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
599 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0);
600 }
601 
602 static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825)
603 {
604 	/* Disable HP boost driver */
605 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
606 		NAU8825_HP_BOOST_DIS, 0);
607 	/* HP outputs shouted to ground  */
608 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
609 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
610 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
611 	/* Power down left and right DAC */
612 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
613 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
614 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
615 	/* Enable the TESTDAC and  disable L/R HP impedance */
616 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
617 		NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP |
618 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
619 	/* Power down output driver with 2 stage */
620 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
621 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0);
622 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
623 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
624 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0);
625 	/* Disable clock sync of DAC and DAC clock */
626 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
627 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0);
628 	/* Disable charge pump ramp up function and change bump */
629 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
630 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0);
631 	/* Disable power of DAC path */
632 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
633 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
634 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0);
635 	if (!nau8825->irq)
636 		regmap_update_bits(nau8825->regmap,
637 			NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
638 }
639 
640 static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825)
641 {
642 	/* Power down left ADC and restore voltage to Vmid */
643 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
644 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0);
645 }
646 
647 static void nau8825_xtalk_clean(struct nau8825 *nau8825)
648 {
649 	/* Enable internal VCO needed for interruptions */
650 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
651 	nau8825_xtalk_clean_dac(nau8825);
652 	nau8825_xtalk_clean_adc(nau8825);
653 	/* Clear cross talk parameters and disable */
654 	regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0);
655 	/* RMS intrruption disable */
656 	regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK,
657 		NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN);
658 	/* Recover default value for IIS */
659 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
660 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
661 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE);
662 	/* Restore value of specific register for cross talk */
663 	nau8825_xtalk_restore(nau8825);
664 }
665 
666 static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol)
667 {
668 	/* Apply ADC volume for better cross talk performance */
669 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL,
670 				NAU8825_ADC_DIG_VOL_MASK, vol);
671 	/* Disables JKTIP(HPL) DAC channel for right to left measurement.
672 	 * Do it before sending signal in order to erase pop noise.
673 	 */
674 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
675 		NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN,
676 		NAU8825_BIAS_TESTDACL_EN);
677 	switch (nau8825->xtalk_state) {
678 	case NAU8825_XTALK_HPR_R2L:
679 		/* Enable right headphone impedance */
680 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
681 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
682 			NAU8825_BIAS_HPR_IMP);
683 		break;
684 	case NAU8825_XTALK_HPL_R2L:
685 		/* Enable left headphone impedance */
686 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
687 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
688 			NAU8825_BIAS_HPL_IMP);
689 		break;
690 	default:
691 		break;
692 	}
693 	msleep(100);
694 	/* Impedance measurement mode enable */
695 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
696 				NAU8825_IMM_EN, NAU8825_IMM_EN);
697 }
698 
699 static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825)
700 {
701 	/* Impedance measurement mode disable */
702 	regmap_update_bits(nau8825->regmap,
703 		NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0);
704 }
705 
706 /* The cross talk measurement function can reduce cross talk across the
707  * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal
708  * level to determine what cross talk reduction gain is. This system works by
709  * sending a 23Hz -24dBV sine wave into the headset output DAC and through
710  * the PGA. The output of the PGA is then connected to an internal current
711  * sense which measures the attenuated 23Hz signal and passing the output to
712  * an ADC which converts the measurement to a binary code. With two separated
713  * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data
714  * can be separated read in IMM_RMS_L for HSR and HSL after each measurement.
715  * Thus, the measurement function has four states to complete whole sequence.
716  * 1. Prepare state : Prepare the resource for detection and transfer to HPR
717  *     IMM stat to make JKR1(HPR) impedance measure.
718  * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer
719  *     to HPL IMM state to make JKTIP(HPL) impedance measure.
720  * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and
721  *     transfer to IMM state to determine suppression sidetone gain.
722  * 4. IMM state : Computes cross talk suppression sidetone gain with orignal
723  *     and cross talk signal level. Apply this gain and then restore codec
724  *     configuration. Then transfer to Done state for ending.
725  */
726 static void nau8825_xtalk_measure(struct nau8825 *nau8825)
727 {
728 	u32 sidetone;
729 
730 	switch (nau8825->xtalk_state) {
731 	case NAU8825_XTALK_PREPARE:
732 		/* In prepare state, set up clock, intrruption, DAC path, ADC
733 		 * path and cross talk detection parameters for preparation.
734 		 */
735 		nau8825_xtalk_prepare(nau8825);
736 		msleep(280);
737 		/* Trigger right headphone impedance detection */
738 		nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L;
739 		nau8825_xtalk_imm_start(nau8825, 0x00d2);
740 		break;
741 	case NAU8825_XTALK_HPR_R2L:
742 		/* In right headphone IMM state, read out right headphone
743 		 * impedance measure result, and then start up left side.
744 		 */
745 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
746 			&nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
747 		dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n",
748 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
749 		/* Disable then re-enable IMM mode to update */
750 		nau8825_xtalk_imm_stop(nau8825);
751 		/* Trigger left headphone impedance detection */
752 		nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L;
753 		nau8825_xtalk_imm_start(nau8825, 0x00ff);
754 		break;
755 	case NAU8825_XTALK_HPL_R2L:
756 		/* In left headphone IMM state, read out left headphone
757 		 * impedance measure result, and delay some time to wait
758 		 * detection sine wave output finish. Then, we can calculate
759 		 * the cross talk suppresstion side tone according to the L/R
760 		 * headphone imedance.
761 		 */
762 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
763 			&nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
764 		dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n",
765 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
766 		nau8825_xtalk_imm_stop(nau8825);
767 		msleep(150);
768 		nau8825->xtalk_state = NAU8825_XTALK_IMM;
769 		break;
770 	case NAU8825_XTALK_IMM:
771 		/* In impedance measure state, the orignal and cross talk
772 		 * signal level vlues are ready. The side tone gain is deter-
773 		 * mined with these signal level. After all, restore codec
774 		 * configuration.
775 		 */
776 		sidetone = nau8825_xtalk_sidetone(
777 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L],
778 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
779 		dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone);
780 		regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL,
781 					(sidetone << 8) | sidetone);
782 		nau8825_xtalk_clean(nau8825);
783 		nau8825->xtalk_state = NAU8825_XTALK_DONE;
784 		break;
785 	default:
786 		break;
787 	}
788 }
789 
790 static void nau8825_xtalk_work(struct work_struct *work)
791 {
792 	struct nau8825 *nau8825 = container_of(
793 		work, struct nau8825, xtalk_work);
794 
795 	nau8825_xtalk_measure(nau8825);
796 	/* To determine the cross talk side tone gain when reach
797 	 * the impedance measure state.
798 	 */
799 	if (nau8825->xtalk_state == NAU8825_XTALK_IMM)
800 		nau8825_xtalk_measure(nau8825);
801 
802 	/* Delay jack report until cross talk detection process
803 	 * completed. It can avoid application to do playback
804 	 * preparation before cross talk detection is still working.
805 	 * Meanwhile, the protection of the cross talk detection
806 	 * is released.
807 	 */
808 	if (nau8825->xtalk_state == NAU8825_XTALK_DONE) {
809 		snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event,
810 				nau8825->xtalk_event_mask);
811 		nau8825_sema_release(nau8825);
812 		nau8825->xtalk_protect = false;
813 	}
814 }
815 
816 static void nau8825_xtalk_cancel(struct nau8825 *nau8825)
817 {
818 	/* If the xtalk_protect is true, that means the process is still
819 	 * on going. The driver forces to cancel the cross talk task and
820 	 * restores the configuration to original status.
821 	 */
822 	if (nau8825->xtalk_protect) {
823 		cancel_work_sync(&nau8825->xtalk_work);
824 		nau8825_xtalk_clean(nau8825);
825 	}
826 	/* Reset parameters for cross talk suppression function */
827 	nau8825_sema_reset(nau8825);
828 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
829 	nau8825->xtalk_protect = false;
830 }
831 
832 static bool nau8825_readable_reg(struct device *dev, unsigned int reg)
833 {
834 	switch (reg) {
835 	case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV:
836 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
837 	case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL:
838 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
839 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
840 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
841 	case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R:
842 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
843 	case NAU8825_REG_MISC_CTRL:
844 	case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS:
845 	case NAU8825_REG_BIAS_ADJ:
846 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
847 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
848 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
849 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS:
850 		return true;
851 	default:
852 		return false;
853 	}
854 
855 }
856 
857 static bool nau8825_writeable_reg(struct device *dev, unsigned int reg)
858 {
859 	switch (reg) {
860 	case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV:
861 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
862 	case NAU8825_REG_INTERRUPT_MASK:
863 	case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL:
864 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
865 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
866 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
867 	case NAU8825_REG_IMM_MODE_CTRL:
868 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
869 	case NAU8825_REG_MISC_CTRL:
870 	case NAU8825_REG_BIAS_ADJ:
871 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
872 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
873 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
874 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP:
875 		return true;
876 	default:
877 		return false;
878 	}
879 }
880 
881 static bool nau8825_volatile_reg(struct device *dev, unsigned int reg)
882 {
883 	switch (reg) {
884 	case NAU8825_REG_RESET:
885 	case NAU8825_REG_IRQ_STATUS:
886 	case NAU8825_REG_INT_CLR_KEY_STATUS:
887 	case NAU8825_REG_IMM_RMS_L:
888 	case NAU8825_REG_IMM_RMS_R:
889 	case NAU8825_REG_I2C_DEVICE_ID:
890 	case NAU8825_REG_SARDOUT_RAM_STATUS:
891 	case NAU8825_REG_CHARGE_PUMP_INPUT_READ:
892 	case NAU8825_REG_GENERAL_STATUS:
893 	case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10:
894 		return true;
895 	default:
896 		return false;
897 	}
898 }
899 
900 static int nau8825_adc_event(struct snd_soc_dapm_widget *w,
901 		struct snd_kcontrol *kcontrol, int event)
902 {
903 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
904 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
905 
906 	switch (event) {
907 	case SND_SOC_DAPM_POST_PMU:
908 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
909 			NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
910 		break;
911 	case SND_SOC_DAPM_POST_PMD:
912 		if (!nau8825->irq)
913 			regmap_update_bits(nau8825->regmap,
914 				NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
915 		break;
916 	default:
917 		return -EINVAL;
918 	}
919 
920 	return 0;
921 }
922 
923 static int nau8825_pump_event(struct snd_soc_dapm_widget *w,
924 	struct snd_kcontrol *kcontrol, int event)
925 {
926 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
927 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
928 
929 	switch (event) {
930 	case SND_SOC_DAPM_POST_PMU:
931 		/* Prevent startup click by letting charge pump to ramp up */
932 		msleep(10);
933 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
934 			NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW);
935 		break;
936 	case SND_SOC_DAPM_PRE_PMD:
937 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
938 			NAU8825_JAMNODCLOW, 0);
939 		break;
940 	default:
941 		return -EINVAL;
942 	}
943 
944 	return 0;
945 }
946 
947 static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w,
948 	struct snd_kcontrol *kcontrol, int event)
949 {
950 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
951 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
952 
953 	switch (event) {
954 	case SND_SOC_DAPM_PRE_PMU:
955 		/* Disables the TESTDAC to let DAC signal pass through. */
956 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
957 			NAU8825_BIAS_TESTDAC_EN, 0);
958 		break;
959 	case SND_SOC_DAPM_POST_PMD:
960 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
961 			NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
962 		break;
963 	default:
964 		return -EINVAL;
965 	}
966 
967 	return 0;
968 }
969 
970 static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol,
971 				     struct snd_ctl_elem_value *ucontrol)
972 {
973 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
974 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
975 
976 	if (!component->regmap)
977 		return -EINVAL;
978 
979 	regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1,
980 		ucontrol->value.bytes.data, params->max);
981 	return 0;
982 }
983 
984 static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol,
985 				     struct snd_ctl_elem_value *ucontrol)
986 {
987 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
988 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
989 	void *data;
990 
991 	if (!component->regmap)
992 		return -EINVAL;
993 
994 	data = kmemdup(ucontrol->value.bytes.data,
995 		params->max, GFP_KERNEL | GFP_DMA);
996 	if (!data)
997 		return -ENOMEM;
998 
999 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1000 		NAU8825_BIQ_WRT_EN, 0);
1001 	regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1,
1002 		data, params->max);
1003 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1004 		NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN);
1005 
1006 	kfree(data);
1007 	return 0;
1008 }
1009 
1010 static const char * const nau8825_biq_path[] = {
1011 	"ADC", "DAC"
1012 };
1013 
1014 static const struct soc_enum nau8825_biq_path_enum =
1015 	SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT,
1016 		ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path);
1017 
1018 static const char * const nau8825_adc_decimation[] = {
1019 	"32", "64", "128", "256"
1020 };
1021 
1022 static const struct soc_enum nau8825_adc_decimation_enum =
1023 	SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT,
1024 		ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation);
1025 
1026 static const char * const nau8825_dac_oversampl[] = {
1027 	"64", "256", "128", "", "32"
1028 };
1029 
1030 static const struct soc_enum nau8825_dac_oversampl_enum =
1031 	SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT,
1032 		ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl);
1033 
1034 static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400);
1035 static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0);
1036 static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0);
1037 static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
1038 static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400);
1039 
1040 static const struct snd_kcontrol_new nau8825_controls[] = {
1041 	SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1042 		0, 0xff, 0, adc_vol_tlv),
1043 	SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1044 		12, 8, 0x0f, 0, sidetone_vol_tlv),
1045 	SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL,
1046 		6, 0, 0x3f, 1, dac_vol_tlv),
1047 	SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL,
1048 		8, 37, 0, fepga_gain_tlv),
1049 	SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL,
1050 		0, 8, 0xff, 0, crosstalk_vol_tlv),
1051 
1052 	SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum),
1053 	SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum),
1054 	/* programmable biquad filter */
1055 	SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum),
1056 	SND_SOC_BYTES_EXT("BIQ Coefficients", 20,
1057 		  nau8825_biq_coeff_get, nau8825_biq_coeff_put),
1058 };
1059 
1060 /* DAC Mux 0x33[9] and 0x34[9] */
1061 static const char * const nau8825_dac_src[] = {
1062 	"DACL", "DACR",
1063 };
1064 
1065 static SOC_ENUM_SINGLE_DECL(
1066 	nau8825_dacl_enum, NAU8825_REG_DACL_CTRL,
1067 	NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src);
1068 
1069 static SOC_ENUM_SINGLE_DECL(
1070 	nau8825_dacr_enum, NAU8825_REG_DACR_CTRL,
1071 	NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src);
1072 
1073 static const struct snd_kcontrol_new nau8825_dacl_mux =
1074 	SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum);
1075 
1076 static const struct snd_kcontrol_new nau8825_dacr_mux =
1077 	SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum);
1078 
1079 
1080 static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = {
1081 	SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2,
1082 		15, 1),
1083 
1084 	SND_SOC_DAPM_INPUT("MIC"),
1085 	SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0),
1086 
1087 	SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0,
1088 		NULL, 0),
1089 
1090 	SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0,
1091 		nau8825_adc_event, SND_SOC_DAPM_POST_PMU |
1092 		SND_SOC_DAPM_POST_PMD),
1093 	SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0),
1094 	SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL,
1095 		0),
1096 
1097 	/* ADC for button press detection. A dapm supply widget is used to
1098 	 * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON
1099 	 * during suspend.
1100 	 */
1101 	SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL,
1102 		NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0),
1103 
1104 	SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0),
1105 	SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0),
1106 	SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0),
1107 	SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0),
1108 
1109 	SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL,
1110 		NAU8825_ENABLE_DACR_SFT, 0),
1111 	SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL,
1112 		NAU8825_ENABLE_DACL_SFT, 0),
1113 	SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0),
1114 
1115 	SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux),
1116 	SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux),
1117 
1118 	SND_SOC_DAPM_PGA_S("HP amp L", 0,
1119 		NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0),
1120 	SND_SOC_DAPM_PGA_S("HP amp R", 0,
1121 		NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0),
1122 
1123 	SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0,
1124 		nau8825_pump_event, SND_SOC_DAPM_POST_PMU |
1125 		SND_SOC_DAPM_PRE_PMD),
1126 
1127 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4,
1128 		NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0),
1129 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4,
1130 		NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0),
1131 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5,
1132 		NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0),
1133 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5,
1134 		NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0),
1135 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6,
1136 		NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0),
1137 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6,
1138 		NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0),
1139 
1140 	SND_SOC_DAPM_PGA_S("Output DACL", 7,
1141 		NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event,
1142 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1143 	SND_SOC_DAPM_PGA_S("Output DACR", 7,
1144 		NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event,
1145 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1146 
1147 	/* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */
1148 	SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8,
1149 		NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0),
1150 	SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8,
1151 		NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0),
1152 
1153 	/* High current HPOL/R boost driver */
1154 	SND_SOC_DAPM_PGA_S("HP Boost Driver", 9,
1155 		NAU8825_REG_BOOST, 9, 1, NULL, 0),
1156 
1157 	/* Class G operation control*/
1158 	SND_SOC_DAPM_PGA_S("Class G", 10,
1159 		NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0),
1160 
1161 	SND_SOC_DAPM_OUTPUT("HPOL"),
1162 	SND_SOC_DAPM_OUTPUT("HPOR"),
1163 };
1164 
1165 static const struct snd_soc_dapm_route nau8825_dapm_routes[] = {
1166 	{"Frontend PGA", NULL, "MIC"},
1167 	{"ADC", NULL, "Frontend PGA"},
1168 	{"ADC", NULL, "ADC Clock"},
1169 	{"ADC", NULL, "ADC Power"},
1170 	{"AIFTX", NULL, "ADC"},
1171 
1172 	{"DDACL", NULL, "Playback"},
1173 	{"DDACR", NULL, "Playback"},
1174 	{"DDACL", NULL, "DDAC Clock"},
1175 	{"DDACR", NULL, "DDAC Clock"},
1176 	{"DACL Mux", "DACL", "DDACL"},
1177 	{"DACL Mux", "DACR", "DDACR"},
1178 	{"DACR Mux", "DACL", "DDACL"},
1179 	{"DACR Mux", "DACR", "DDACR"},
1180 	{"HP amp L", NULL, "DACL Mux"},
1181 	{"HP amp R", NULL, "DACR Mux"},
1182 	{"Charge Pump", NULL, "HP amp L"},
1183 	{"Charge Pump", NULL, "HP amp R"},
1184 	{"ADACL", NULL, "Charge Pump"},
1185 	{"ADACR", NULL, "Charge Pump"},
1186 	{"ADACL Clock", NULL, "ADACL"},
1187 	{"ADACR Clock", NULL, "ADACR"},
1188 	{"Output Driver L Stage 1", NULL, "ADACL Clock"},
1189 	{"Output Driver R Stage 1", NULL, "ADACR Clock"},
1190 	{"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"},
1191 	{"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"},
1192 	{"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"},
1193 	{"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"},
1194 	{"Output DACL", NULL, "Output Driver L Stage 3"},
1195 	{"Output DACR", NULL, "Output Driver R Stage 3"},
1196 	{"HPOL Pulldown", NULL, "Output DACL"},
1197 	{"HPOR Pulldown", NULL, "Output DACR"},
1198 	{"HP Boost Driver", NULL, "HPOL Pulldown"},
1199 	{"HP Boost Driver", NULL, "HPOR Pulldown"},
1200 	{"Class G", NULL, "HP Boost Driver"},
1201 	{"HPOL", NULL, "Class G"},
1202 	{"HPOR", NULL, "Class G"},
1203 };
1204 
1205 static int nau8825_clock_check(struct nau8825 *nau8825,
1206 	int stream, int rate, int osr)
1207 {
1208 	int osrate;
1209 
1210 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
1211 		if (osr >= ARRAY_SIZE(osr_dac_sel))
1212 			return -EINVAL;
1213 		osrate = osr_dac_sel[osr].osr;
1214 	} else {
1215 		if (osr >= ARRAY_SIZE(osr_adc_sel))
1216 			return -EINVAL;
1217 		osrate = osr_adc_sel[osr].osr;
1218 	}
1219 
1220 	if (!osrate || rate * osr > CLK_DA_AD_MAX) {
1221 		dev_err(nau8825->dev, "exceed the maximum frequency of CLK_ADC or CLK_DAC\n");
1222 		return -EINVAL;
1223 	}
1224 
1225 	return 0;
1226 }
1227 
1228 static int nau8825_hw_params(struct snd_pcm_substream *substream,
1229 				struct snd_pcm_hw_params *params,
1230 				struct snd_soc_dai *dai)
1231 {
1232 	struct snd_soc_codec *codec = dai->codec;
1233 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1234 	unsigned int val_len = 0, osr;
1235 
1236 	nau8825_sema_acquire(nau8825, 3 * HZ);
1237 
1238 	/* CLK_DAC or CLK_ADC = OSR * FS
1239 	 * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR)
1240 	 * multiplied by the audio sample rate (Fs). Note that the OSR and Fs
1241 	 * values must be selected such that the maximum frequency is less
1242 	 * than 6.144 MHz.
1243 	 */
1244 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1245 		regmap_read(nau8825->regmap, NAU8825_REG_DAC_CTRL1, &osr);
1246 		osr &= NAU8825_DAC_OVERSAMPLE_MASK;
1247 		if (nau8825_clock_check(nau8825, substream->stream,
1248 			params_rate(params), osr))
1249 			return -EINVAL;
1250 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1251 			NAU8825_CLK_DAC_SRC_MASK,
1252 			osr_dac_sel[osr].clk_src << NAU8825_CLK_DAC_SRC_SFT);
1253 	} else {
1254 		regmap_read(nau8825->regmap, NAU8825_REG_ADC_RATE, &osr);
1255 		osr &= NAU8825_ADC_SYNC_DOWN_MASK;
1256 		if (nau8825_clock_check(nau8825, substream->stream,
1257 			params_rate(params), osr))
1258 			return -EINVAL;
1259 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1260 			NAU8825_CLK_ADC_SRC_MASK,
1261 			osr_adc_sel[osr].clk_src << NAU8825_CLK_ADC_SRC_SFT);
1262 	}
1263 
1264 	switch (params_width(params)) {
1265 	case 16:
1266 		val_len |= NAU8825_I2S_DL_16;
1267 		break;
1268 	case 20:
1269 		val_len |= NAU8825_I2S_DL_20;
1270 		break;
1271 	case 24:
1272 		val_len |= NAU8825_I2S_DL_24;
1273 		break;
1274 	case 32:
1275 		val_len |= NAU8825_I2S_DL_32;
1276 		break;
1277 	default:
1278 		return -EINVAL;
1279 	}
1280 
1281 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1282 		NAU8825_I2S_DL_MASK, val_len);
1283 
1284 	/* Release the semaphone. */
1285 	nau8825_sema_release(nau8825);
1286 
1287 	return 0;
1288 }
1289 
1290 static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
1291 {
1292 	struct snd_soc_codec *codec = codec_dai->codec;
1293 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1294 	unsigned int ctrl1_val = 0, ctrl2_val = 0;
1295 
1296 	nau8825_sema_acquire(nau8825, 3 * HZ);
1297 
1298 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1299 	case SND_SOC_DAIFMT_CBM_CFM:
1300 		ctrl2_val |= NAU8825_I2S_MS_MASTER;
1301 		break;
1302 	case SND_SOC_DAIFMT_CBS_CFS:
1303 		break;
1304 	default:
1305 		return -EINVAL;
1306 	}
1307 
1308 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1309 	case SND_SOC_DAIFMT_NB_NF:
1310 		break;
1311 	case SND_SOC_DAIFMT_IB_NF:
1312 		ctrl1_val |= NAU8825_I2S_BP_INV;
1313 		break;
1314 	default:
1315 		return -EINVAL;
1316 	}
1317 
1318 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1319 	case SND_SOC_DAIFMT_I2S:
1320 		ctrl1_val |= NAU8825_I2S_DF_I2S;
1321 		break;
1322 	case SND_SOC_DAIFMT_LEFT_J:
1323 		ctrl1_val |= NAU8825_I2S_DF_LEFT;
1324 		break;
1325 	case SND_SOC_DAIFMT_RIGHT_J:
1326 		ctrl1_val |= NAU8825_I2S_DF_RIGTH;
1327 		break;
1328 	case SND_SOC_DAIFMT_DSP_A:
1329 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1330 		break;
1331 	case SND_SOC_DAIFMT_DSP_B:
1332 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1333 		ctrl1_val |= NAU8825_I2S_PCMB_EN;
1334 		break;
1335 	default:
1336 		return -EINVAL;
1337 	}
1338 
1339 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1340 		NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK |
1341 		NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK,
1342 		ctrl1_val);
1343 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1344 		NAU8825_I2S_MS_MASK, ctrl2_val);
1345 
1346 	/* Release the semaphone. */
1347 	nau8825_sema_release(nau8825);
1348 
1349 	return 0;
1350 }
1351 
1352 static const struct snd_soc_dai_ops nau8825_dai_ops = {
1353 	.hw_params	= nau8825_hw_params,
1354 	.set_fmt	= nau8825_set_dai_fmt,
1355 };
1356 
1357 #define NAU8825_RATES	SNDRV_PCM_RATE_8000_192000
1358 #define NAU8825_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
1359 			 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1360 
1361 static struct snd_soc_dai_driver nau8825_dai = {
1362 	.name = "nau8825-hifi",
1363 	.playback = {
1364 		.stream_name	 = "Playback",
1365 		.channels_min	 = 1,
1366 		.channels_max	 = 2,
1367 		.rates		 = NAU8825_RATES,
1368 		.formats	 = NAU8825_FORMATS,
1369 	},
1370 	.capture = {
1371 		.stream_name	 = "Capture",
1372 		.channels_min	 = 1,
1373 		.channels_max	 = 1,
1374 		.rates		 = NAU8825_RATES,
1375 		.formats	 = NAU8825_FORMATS,
1376 	},
1377 	.ops = &nau8825_dai_ops,
1378 };
1379 
1380 /**
1381  * nau8825_enable_jack_detect - Specify a jack for event reporting
1382  *
1383  * @component:  component to register the jack with
1384  * @jack: jack to use to report headset and button events on
1385  *
1386  * After this function has been called the headset insert/remove and button
1387  * events will be routed to the given jack.  Jack can be null to stop
1388  * reporting.
1389  */
1390 int nau8825_enable_jack_detect(struct snd_soc_codec *codec,
1391 				struct snd_soc_jack *jack)
1392 {
1393 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1394 	struct regmap *regmap = nau8825->regmap;
1395 
1396 	nau8825->jack = jack;
1397 
1398 	/* Ground HP Outputs[1:0], needed for headset auto detection
1399 	 * Enable Automatic Mic/Gnd switching reading on insert interrupt[6]
1400 	 */
1401 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1402 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
1403 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
1404 
1405 	return 0;
1406 }
1407 EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect);
1408 
1409 
1410 static bool nau8825_is_jack_inserted(struct regmap *regmap)
1411 {
1412 	bool active_high, is_high;
1413 	int status, jkdet;
1414 
1415 	regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet);
1416 	active_high = jkdet & NAU8825_JACK_POLARITY;
1417 	regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status);
1418 	is_high = status & NAU8825_GPIO2JD1;
1419 	/* return jack connection status according to jack insertion logic
1420 	 * active high or active low.
1421 	 */
1422 	return active_high == is_high;
1423 }
1424 
1425 static void nau8825_restart_jack_detection(struct regmap *regmap)
1426 {
1427 	/* this will restart the entire jack detection process including MIC/GND
1428 	 * switching and create interrupts. We have to go from 0 to 1 and back
1429 	 * to 0 to restart.
1430 	 */
1431 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1432 		NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART);
1433 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1434 		NAU8825_JACK_DET_RESTART, 0);
1435 }
1436 
1437 static void nau8825_int_status_clear_all(struct regmap *regmap)
1438 {
1439 	int active_irq, clear_irq, i;
1440 
1441 	/* Reset the intrruption status from rightmost bit if the corres-
1442 	 * ponding irq event occurs.
1443 	 */
1444 	regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq);
1445 	for (i = 0; i < NAU8825_REG_DATA_LEN; i++) {
1446 		clear_irq = (0x1 << i);
1447 		if (active_irq & clear_irq)
1448 			regmap_write(regmap,
1449 				NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1450 	}
1451 }
1452 
1453 static void nau8825_eject_jack(struct nau8825 *nau8825)
1454 {
1455 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1456 	struct regmap *regmap = nau8825->regmap;
1457 
1458 	/* Force to cancel the cross talk detection process */
1459 	nau8825_xtalk_cancel(nau8825);
1460 
1461 	snd_soc_dapm_disable_pin(dapm, "SAR");
1462 	snd_soc_dapm_disable_pin(dapm, "MICBIAS");
1463 	/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
1464 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1465 		NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
1466 	/* ground HPL/HPR, MICGRND1/2 */
1467 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf);
1468 
1469 	snd_soc_dapm_sync(dapm);
1470 
1471 	/* Clear all interruption status */
1472 	nau8825_int_status_clear_all(regmap);
1473 
1474 	/* Enable the insertion interruption, disable the ejection inter-
1475 	 * ruption, and then bypass de-bounce circuit.
1476 	 */
1477 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
1478 		NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS,
1479 		NAU8825_IRQ_EJECT_DIS);
1480 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1481 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1482 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN,
1483 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1484 		NAU8825_IRQ_HEADSET_COMPLETE_EN);
1485 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1486 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
1487 
1488 	/* Disable ADC needed for interruptions at audo mode */
1489 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1490 		NAU8825_ENABLE_ADC, 0);
1491 
1492 	/* Close clock for jack type detection at manual mode */
1493 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1494 }
1495 
1496 /* Enable audo mode interruptions with internal clock. */
1497 static void nau8825_setup_auto_irq(struct nau8825 *nau8825)
1498 {
1499 	struct regmap *regmap = nau8825->regmap;
1500 
1501 	/* Enable headset jack type detection complete interruption and
1502 	 * jack ejection interruption.
1503 	 */
1504 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1505 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0);
1506 
1507 	/* Enable internal VCO needed for interruptions */
1508 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
1509 
1510 	/* Enable ADC needed for interruptions */
1511 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1512 		NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
1513 
1514 	/* Chip needs one FSCLK cycle in order to generate interruptions,
1515 	 * as we cannot guarantee one will be provided by the system. Turning
1516 	 * master mode on then off enables us to generate that FSCLK cycle
1517 	 * with a minimum of contention on the clock bus.
1518 	 */
1519 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1520 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER);
1521 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1522 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE);
1523 
1524 	/* Not bypass de-bounce circuit */
1525 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1526 		NAU8825_JACK_DET_DB_BYPASS, 0);
1527 
1528 	/* Unmask all interruptions */
1529 	regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0);
1530 
1531 	/* Restart the jack detection process at auto mode */
1532 	nau8825_restart_jack_detection(regmap);
1533 }
1534 
1535 static int nau8825_button_decode(int value)
1536 {
1537 	int buttons = 0;
1538 
1539 	/* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */
1540 	if (value & BIT(0))
1541 		buttons |= SND_JACK_BTN_0;
1542 	if (value & BIT(1))
1543 		buttons |= SND_JACK_BTN_1;
1544 	if (value & BIT(2))
1545 		buttons |= SND_JACK_BTN_2;
1546 	if (value & BIT(3))
1547 		buttons |= SND_JACK_BTN_3;
1548 	if (value & BIT(4))
1549 		buttons |= SND_JACK_BTN_4;
1550 	if (value & BIT(5))
1551 		buttons |= SND_JACK_BTN_5;
1552 
1553 	return buttons;
1554 }
1555 
1556 static int nau8825_jack_insert(struct nau8825 *nau8825)
1557 {
1558 	struct regmap *regmap = nau8825->regmap;
1559 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1560 	int jack_status_reg, mic_detected;
1561 	int type = 0;
1562 
1563 	regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg);
1564 	mic_detected = (jack_status_reg >> 10) & 3;
1565 	/* The JKSLV and JKR2 all detected in high impedance headset */
1566 	if (mic_detected == 0x3)
1567 		nau8825->high_imped = true;
1568 	else
1569 		nau8825->high_imped = false;
1570 
1571 	switch (mic_detected) {
1572 	case 0:
1573 		/* no mic */
1574 		type = SND_JACK_HEADPHONE;
1575 		break;
1576 	case 1:
1577 		dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n");
1578 		type = SND_JACK_HEADSET;
1579 
1580 		/* Unground MICGND1 */
1581 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1582 			1 << 2);
1583 		/* Attach 2kOhm Resistor from MICBIAS to MICGND1 */
1584 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1585 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1586 			NAU8825_MICBIAS_JKR2);
1587 		/* Attach SARADC to MICGND1 */
1588 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1589 			NAU8825_SAR_INPUT_MASK,
1590 			NAU8825_SAR_INPUT_JKR2);
1591 
1592 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1593 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1594 		snd_soc_dapm_sync(dapm);
1595 		break;
1596 	case 2:
1597 	case 3:
1598 		dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n");
1599 		type = SND_JACK_HEADSET;
1600 
1601 		/* Unground MICGND2 */
1602 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1603 			2 << 2);
1604 		/* Attach 2kOhm Resistor from MICBIAS to MICGND2 */
1605 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1606 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1607 			NAU8825_MICBIAS_JKSLV);
1608 		/* Attach SARADC to MICGND2 */
1609 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1610 			NAU8825_SAR_INPUT_MASK,
1611 			NAU8825_SAR_INPUT_JKSLV);
1612 
1613 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1614 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1615 		snd_soc_dapm_sync(dapm);
1616 		break;
1617 	}
1618 
1619 	/* Leaving HPOL/R grounded after jack insert by default. They will be
1620 	 * ungrounded as part of the widget power up sequence at the beginning
1621 	 * of playback to reduce pop.
1622 	 */
1623 	return type;
1624 }
1625 
1626 #define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \
1627 		SND_JACK_BTN_2 | SND_JACK_BTN_3)
1628 
1629 static irqreturn_t nau8825_interrupt(int irq, void *data)
1630 {
1631 	struct nau8825 *nau8825 = (struct nau8825 *)data;
1632 	struct regmap *regmap = nau8825->regmap;
1633 	int active_irq, clear_irq = 0, event = 0, event_mask = 0;
1634 
1635 	if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) {
1636 		dev_err(nau8825->dev, "failed to read irq status\n");
1637 		return IRQ_NONE;
1638 	}
1639 
1640 	if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) ==
1641 		NAU8825_JACK_EJECTION_DETECTED) {
1642 
1643 		nau8825_eject_jack(nau8825);
1644 		event_mask |= SND_JACK_HEADSET;
1645 		clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK;
1646 	} else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) {
1647 		int key_status;
1648 
1649 		regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS,
1650 			&key_status);
1651 
1652 		/* upper 8 bits of the register are for short pressed keys,
1653 		 * lower 8 bits - for long pressed buttons
1654 		 */
1655 		nau8825->button_pressed = nau8825_button_decode(
1656 			key_status >> 8);
1657 
1658 		event |= nau8825->button_pressed;
1659 		event_mask |= NAU8825_BUTTONS;
1660 		clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ;
1661 	} else if (active_irq & NAU8825_KEY_RELEASE_IRQ) {
1662 		event_mask = NAU8825_BUTTONS;
1663 		clear_irq = NAU8825_KEY_RELEASE_IRQ;
1664 	} else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) {
1665 		if (nau8825_is_jack_inserted(regmap)) {
1666 			event |= nau8825_jack_insert(nau8825);
1667 			if (!nau8825->high_imped) {
1668 				/* Apply the cross talk suppression in the
1669 				 * headset without high impedance.
1670 				 */
1671 				if (!nau8825->xtalk_protect) {
1672 					/* Raise protection for cross talk de-
1673 					 * tection if no protection before.
1674 					 * The driver has to cancel the pro-
1675 					 * cess and restore changes if process
1676 					 * is ongoing when ejection.
1677 					 */
1678 					int ret;
1679 					nau8825->xtalk_protect = true;
1680 					ret = nau8825_sema_acquire(nau8825, 0);
1681 					if (ret < 0)
1682 						nau8825->xtalk_protect = false;
1683 				}
1684 				/* Startup cross talk detection process */
1685 				nau8825->xtalk_state = NAU8825_XTALK_PREPARE;
1686 				schedule_work(&nau8825->xtalk_work);
1687 			} else {
1688 				/* The cross talk suppression shouldn't apply
1689 				 * in the headset with high impedance. Thus,
1690 				 * relieve the protection raised before.
1691 				 */
1692 				if (nau8825->xtalk_protect) {
1693 					nau8825_sema_release(nau8825);
1694 					nau8825->xtalk_protect = false;
1695 				}
1696 			}
1697 		} else {
1698 			dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n");
1699 			nau8825_eject_jack(nau8825);
1700 		}
1701 
1702 		event_mask |= SND_JACK_HEADSET;
1703 		clear_irq = NAU8825_HEADSET_COMPLETION_IRQ;
1704 		/* Record the interruption report event for driver to report
1705 		 * the event later. The jack report will delay until cross
1706 		 * talk detection process is done.
1707 		 */
1708 		if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) {
1709 			nau8825->xtalk_event = event;
1710 			nau8825->xtalk_event_mask = event_mask;
1711 		}
1712 	} else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) {
1713 		schedule_work(&nau8825->xtalk_work);
1714 		clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ;
1715 	} else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) ==
1716 		NAU8825_JACK_INSERTION_DETECTED) {
1717 		/* One more step to check GPIO status directly. Thus, the
1718 		 * driver can confirm the real insertion interruption because
1719 		 * the intrruption at manual mode has bypassed debounce
1720 		 * circuit which can get rid of unstable status.
1721 		 */
1722 		if (nau8825_is_jack_inserted(regmap)) {
1723 			/* Turn off insertion interruption at manual mode */
1724 			regmap_update_bits(regmap,
1725 				NAU8825_REG_INTERRUPT_DIS_CTRL,
1726 				NAU8825_IRQ_INSERT_DIS,
1727 				NAU8825_IRQ_INSERT_DIS);
1728 			regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1729 				NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN);
1730 			/* Enable interruption for jack type detection at audo
1731 			 * mode which can detect microphone and jack type.
1732 			 */
1733 			nau8825_setup_auto_irq(nau8825);
1734 		}
1735 	}
1736 
1737 	if (!clear_irq)
1738 		clear_irq = active_irq;
1739 	/* clears the rightmost interruption */
1740 	regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1741 
1742 	/* Delay jack report until cross talk detection is done. It can avoid
1743 	 * application to do playback preparation when cross talk detection
1744 	 * process is still working. Otherwise, the resource like clock and
1745 	 * power will be issued by them at the same time and conflict happens.
1746 	 */
1747 	if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE)
1748 		snd_soc_jack_report(nau8825->jack, event, event_mask);
1749 
1750 	return IRQ_HANDLED;
1751 }
1752 
1753 static void nau8825_setup_buttons(struct nau8825 *nau8825)
1754 {
1755 	struct regmap *regmap = nau8825->regmap;
1756 
1757 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1758 		NAU8825_SAR_TRACKING_GAIN_MASK,
1759 		nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT);
1760 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1761 		NAU8825_SAR_COMPARE_TIME_MASK,
1762 		nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT);
1763 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1764 		NAU8825_SAR_SAMPLING_TIME_MASK,
1765 		nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT);
1766 
1767 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1768 		NAU8825_KEYDET_LEVELS_NR_MASK,
1769 		(nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT);
1770 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1771 		NAU8825_KEYDET_HYSTERESIS_MASK,
1772 		nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT);
1773 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1774 		NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK,
1775 		nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT);
1776 
1777 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1,
1778 		(nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]);
1779 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2,
1780 		(nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]);
1781 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3,
1782 		(nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]);
1783 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4,
1784 		(nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]);
1785 
1786 	/* Enable short press and release interruptions */
1787 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1788 		NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN,
1789 		0);
1790 }
1791 
1792 static void nau8825_init_regs(struct nau8825 *nau8825)
1793 {
1794 	struct regmap *regmap = nau8825->regmap;
1795 
1796 	/* Latch IIC LSB value */
1797 	regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001);
1798 	/* Enable Bias/Vmid */
1799 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1800 		NAU8825_BIAS_VMID, NAU8825_BIAS_VMID);
1801 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
1802 		NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN);
1803 
1804 	/* VMID Tieoff */
1805 	regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ,
1806 		NAU8825_BIAS_VMID_SEL_MASK,
1807 		nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT);
1808 	/* Disable Boost Driver, Automatic Short circuit protection enable */
1809 	regmap_update_bits(regmap, NAU8825_REG_BOOST,
1810 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1811 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN,
1812 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1813 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN);
1814 
1815 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1816 		NAU8825_JKDET_OUTPUT_EN,
1817 		nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN);
1818 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1819 		NAU8825_JKDET_PULL_EN,
1820 		nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN);
1821 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1822 		NAU8825_JKDET_PULL_UP,
1823 		nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0);
1824 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1825 		NAU8825_JACK_POLARITY,
1826 		/* jkdet_polarity - 1  is for active-low */
1827 		nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY);
1828 
1829 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1830 		NAU8825_JACK_INSERT_DEBOUNCE_MASK,
1831 		nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT);
1832 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1833 		NAU8825_JACK_EJECT_DEBOUNCE_MASK,
1834 		nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT);
1835 
1836 	/* Mask unneeded IRQs: 1 - disable, 0 - enable */
1837 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff);
1838 
1839 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1840 		NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage);
1841 
1842 	if (nau8825->sar_threshold_num)
1843 		nau8825_setup_buttons(nau8825);
1844 
1845 	/* Default oversampling/decimations settings are unusable
1846 	 * (audible hiss). Set it to something better.
1847 	 */
1848 	regmap_update_bits(regmap, NAU8825_REG_ADC_RATE,
1849 		NAU8825_ADC_SYNC_DOWN_MASK | NAU8825_ADC_SINC4_EN,
1850 		NAU8825_ADC_SYNC_DOWN_64);
1851 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1852 		NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_64);
1853 	/* Disable DACR/L power */
1854 	regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP,
1855 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
1856 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
1857 	/* Enable TESTDAC. This sets the analog DAC inputs to a '0' input
1858 	 * signal to avoid any glitches due to power up transients in both
1859 	 * the analog and digital DAC circuit.
1860 	 */
1861 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1862 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
1863 	/* CICCLP off */
1864 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1865 		NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF);
1866 
1867 	/* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */
1868 	regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2,
1869 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1870 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB,
1871 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1872 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB);
1873 	/* Class G timer 64ms */
1874 	regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL,
1875 		NAU8825_CLASSG_TIMER_MASK,
1876 		0x20 << NAU8825_CLASSG_TIMER_SFT);
1877 	/* DAC clock delay 2ns, VREF */
1878 	regmap_update_bits(regmap, NAU8825_REG_RDAC,
1879 		NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK,
1880 		(0x2 << NAU8825_RDAC_CLK_DELAY_SFT) |
1881 		(0x3 << NAU8825_RDAC_VREF_SFT));
1882 	/* Config L/R channel */
1883 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
1884 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L);
1885 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
1886 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R);
1887 	/* Disable short Frame Sync detection logic */
1888 	regmap_update_bits(regmap, NAU8825_REG_LEFT_TIME_SLOT,
1889 		NAU8825_DIS_FS_SHORT_DET, NAU8825_DIS_FS_SHORT_DET);
1890 }
1891 
1892 static const struct regmap_config nau8825_regmap_config = {
1893 	.val_bits = NAU8825_REG_DATA_LEN,
1894 	.reg_bits = NAU8825_REG_ADDR_LEN,
1895 
1896 	.max_register = NAU8825_REG_MAX,
1897 	.readable_reg = nau8825_readable_reg,
1898 	.writeable_reg = nau8825_writeable_reg,
1899 	.volatile_reg = nau8825_volatile_reg,
1900 
1901 	.cache_type = REGCACHE_RBTREE,
1902 	.reg_defaults = nau8825_reg_defaults,
1903 	.num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults),
1904 };
1905 
1906 static int nau8825_codec_probe(struct snd_soc_codec *codec)
1907 {
1908 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1909 	struct snd_soc_dapm_context *dapm = snd_soc_codec_get_dapm(codec);
1910 
1911 	nau8825->dapm = dapm;
1912 
1913 	return 0;
1914 }
1915 
1916 static int nau8825_codec_remove(struct snd_soc_codec *codec)
1917 {
1918 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1919 
1920 	/* Cancel and reset cross tak suppresstion detection funciton */
1921 	nau8825_xtalk_cancel(nau8825);
1922 
1923 	return 0;
1924 }
1925 
1926 /**
1927  * nau8825_calc_fll_param - Calculate FLL parameters.
1928  * @fll_in: external clock provided to codec.
1929  * @fs: sampling rate.
1930  * @fll_param: Pointer to structure of FLL parameters.
1931  *
1932  * Calculate FLL parameters to configure codec.
1933  *
1934  * Returns 0 for success or negative error code.
1935  */
1936 static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs,
1937 		struct nau8825_fll *fll_param)
1938 {
1939 	u64 fvco, fvco_max;
1940 	unsigned int fref, i, fvco_sel;
1941 
1942 	/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
1943 	 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
1944 	 * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK
1945 	 */
1946 	for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
1947 		fref = fll_in / fll_pre_scalar[i].param;
1948 		if (fref <= NAU_FREF_MAX)
1949 			break;
1950 	}
1951 	if (i == ARRAY_SIZE(fll_pre_scalar))
1952 		return -EINVAL;
1953 	fll_param->clk_ref_div = fll_pre_scalar[i].val;
1954 
1955 	/* Choose the FLL ratio based on FREF */
1956 	for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
1957 		if (fref >= fll_ratio[i].param)
1958 			break;
1959 	}
1960 	if (i == ARRAY_SIZE(fll_ratio))
1961 		return -EINVAL;
1962 	fll_param->ratio = fll_ratio[i].val;
1963 
1964 	/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
1965 	 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be
1966 	 * guaranteed across the full range of operation.
1967 	 * FDCO = freq_out * 2 * mclk_src_scaling
1968 	 */
1969 	fvco_max = 0;
1970 	fvco_sel = ARRAY_SIZE(mclk_src_scaling);
1971 	for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
1972 		fvco = 256 * fs * 2 * mclk_src_scaling[i].param;
1973 		if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
1974 			fvco_max < fvco) {
1975 			fvco_max = fvco;
1976 			fvco_sel = i;
1977 		}
1978 	}
1979 	if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
1980 		return -EINVAL;
1981 	fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
1982 
1983 	/* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
1984 	 * input based on FDCO, FREF and FLL ratio.
1985 	 */
1986 	fvco = div_u64(fvco_max << 16, fref * fll_param->ratio);
1987 	fll_param->fll_int = (fvco >> 16) & 0x3FF;
1988 	fll_param->fll_frac = fvco & 0xFFFF;
1989 	return 0;
1990 }
1991 
1992 static void nau8825_fll_apply(struct nau8825 *nau8825,
1993 		struct nau8825_fll *fll_param)
1994 {
1995 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1996 		NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK,
1997 		NAU8825_CLK_SRC_MCLK | fll_param->mclk_src);
1998 	/* Make DSP operate at high speed for better performance. */
1999 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
2000 		NAU8825_FLL_RATIO_MASK | NAU8825_ICTRL_LATCH_MASK,
2001 		fll_param->ratio | (0x6 << NAU8825_ICTRL_LATCH_SFT));
2002 	/* FLL 16-bit fractional input */
2003 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac);
2004 	/* FLL 10-bit integer input */
2005 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3,
2006 			NAU8825_FLL_INTEGER_MASK, fll_param->fll_int);
2007 	/* FLL pre-scaler */
2008 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4,
2009 			NAU8825_FLL_REF_DIV_MASK,
2010 			fll_param->clk_ref_div << NAU8825_FLL_REF_DIV_SFT);
2011 	/* select divided VCO input */
2012 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2013 		NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF);
2014 	/* Disable free-running mode */
2015 	regmap_update_bits(nau8825->regmap,
2016 		NAU8825_REG_FLL6, NAU8825_DCO_EN, 0);
2017 	if (fll_param->fll_frac) {
2018 		/* set FLL loop filter enable and cutoff frequency at 500Khz */
2019 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2020 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2021 			NAU8825_FLL_FTR_SW_MASK,
2022 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2023 			NAU8825_FLL_FTR_SW_FILTER);
2024 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2025 			NAU8825_SDM_EN | NAU8825_CUTOFF500,
2026 			NAU8825_SDM_EN | NAU8825_CUTOFF500);
2027 	} else {
2028 		/* disable FLL loop filter and cutoff frequency */
2029 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2030 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2031 			NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU);
2032 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2033 			NAU8825_SDM_EN | NAU8825_CUTOFF500, 0);
2034 	}
2035 }
2036 
2037 /* freq_out must be 256*Fs in order to achieve the best performance */
2038 static int nau8825_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
2039 		unsigned int freq_in, unsigned int freq_out)
2040 {
2041 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2042 	struct nau8825_fll fll_param;
2043 	int ret, fs;
2044 
2045 	fs = freq_out / 256;
2046 	ret = nau8825_calc_fll_param(freq_in, fs, &fll_param);
2047 	if (ret < 0) {
2048 		dev_err(codec->dev, "Unsupported input clock %d\n", freq_in);
2049 		return ret;
2050 	}
2051 	dev_dbg(codec->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
2052 		fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
2053 		fll_param.fll_int, fll_param.clk_ref_div);
2054 
2055 	nau8825_fll_apply(nau8825, &fll_param);
2056 	mdelay(2);
2057 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2058 			NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2059 	return 0;
2060 }
2061 
2062 static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq)
2063 {
2064 	int ret = 0;
2065 
2066 	nau8825->mclk = devm_clk_get(nau8825->dev, "mclk");
2067 	if (IS_ERR(nau8825->mclk)) {
2068 		dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally");
2069 		return 0;
2070 	}
2071 
2072 	if (!nau8825->mclk_freq) {
2073 		ret = clk_prepare_enable(nau8825->mclk);
2074 		if (ret) {
2075 			dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2076 			return ret;
2077 		}
2078 	}
2079 
2080 	if (nau8825->mclk_freq != freq) {
2081 		freq = clk_round_rate(nau8825->mclk, freq);
2082 		ret = clk_set_rate(nau8825->mclk, freq);
2083 		if (ret) {
2084 			dev_err(nau8825->dev, "Unable to set mclk rate\n");
2085 			return ret;
2086 		}
2087 		nau8825->mclk_freq = freq;
2088 	}
2089 
2090 	return 0;
2091 }
2092 
2093 static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap)
2094 {
2095 	regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2096 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK);
2097 	regmap_update_bits(regmap, NAU8825_REG_FLL6,
2098 		NAU8825_DCO_EN, 0);
2099 	/* Make DSP operate as default setting for power saving. */
2100 	regmap_update_bits(regmap, NAU8825_REG_FLL1,
2101 		NAU8825_ICTRL_LATCH_MASK, 0);
2102 }
2103 
2104 static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id,
2105 	unsigned int freq)
2106 {
2107 	struct regmap *regmap = nau8825->regmap;
2108 	int ret;
2109 
2110 	switch (clk_id) {
2111 	case NAU8825_CLK_DIS:
2112 		/* Clock provided externally and disable internal VCO clock */
2113 		nau8825_configure_mclk_as_sysclk(regmap);
2114 		if (nau8825->mclk_freq) {
2115 			clk_disable_unprepare(nau8825->mclk);
2116 			nau8825->mclk_freq = 0;
2117 		}
2118 
2119 		break;
2120 	case NAU8825_CLK_MCLK:
2121 		/* Acquire the semaphone to synchronize the playback and
2122 		 * interrupt handler. In order to avoid the playback inter-
2123 		 * fered by cross talk process, the driver make the playback
2124 		 * preparation halted until cross talk process finish.
2125 		 */
2126 		nau8825_sema_acquire(nau8825, 3 * HZ);
2127 		nau8825_configure_mclk_as_sysclk(regmap);
2128 		/* MCLK not changed by clock tree */
2129 		regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2130 			NAU8825_CLK_MCLK_SRC_MASK, 0);
2131 		/* Release the semaphone. */
2132 		nau8825_sema_release(nau8825);
2133 
2134 		ret = nau8825_mclk_prepare(nau8825, freq);
2135 		if (ret)
2136 			return ret;
2137 
2138 		break;
2139 	case NAU8825_CLK_INTERNAL:
2140 		if (nau8825_is_jack_inserted(nau8825->regmap)) {
2141 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2142 				NAU8825_DCO_EN, NAU8825_DCO_EN);
2143 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2144 				NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2145 			/* Decrease the VCO frequency and make DSP operate
2146 			 * as default setting for power saving.
2147 			 */
2148 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2149 				NAU8825_CLK_MCLK_SRC_MASK, 0xf);
2150 			regmap_update_bits(regmap, NAU8825_REG_FLL1,
2151 				NAU8825_ICTRL_LATCH_MASK |
2152 				NAU8825_FLL_RATIO_MASK, 0x10);
2153 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2154 				NAU8825_SDM_EN, NAU8825_SDM_EN);
2155 		} else {
2156 			/* The clock turns off intentionally for power saving
2157 			 * when no headset connected.
2158 			 */
2159 			nau8825_configure_mclk_as_sysclk(regmap);
2160 			dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n");
2161 		}
2162 		if (nau8825->mclk_freq) {
2163 			clk_disable_unprepare(nau8825->mclk);
2164 			nau8825->mclk_freq = 0;
2165 		}
2166 
2167 		break;
2168 	case NAU8825_CLK_FLL_MCLK:
2169 		/* Acquire the semaphone to synchronize the playback and
2170 		 * interrupt handler. In order to avoid the playback inter-
2171 		 * fered by cross talk process, the driver make the playback
2172 		 * preparation halted until cross talk process finish.
2173 		 */
2174 		nau8825_sema_acquire(nau8825, 3 * HZ);
2175 		/* Higher FLL reference input frequency can only set lower
2176 		 * gain error, such as 0000 for input reference from MCLK
2177 		 * 12.288Mhz.
2178 		 */
2179 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2180 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2181 			NAU8825_FLL_CLK_SRC_MCLK | 0);
2182 		/* Release the semaphone. */
2183 		nau8825_sema_release(nau8825);
2184 
2185 		ret = nau8825_mclk_prepare(nau8825, freq);
2186 		if (ret)
2187 			return ret;
2188 
2189 		break;
2190 	case NAU8825_CLK_FLL_BLK:
2191 		/* Acquire the semaphone to synchronize the playback and
2192 		 * interrupt handler. In order to avoid the playback inter-
2193 		 * fered by cross talk process, the driver make the playback
2194 		 * preparation halted until cross talk process finish.
2195 		 */
2196 		nau8825_sema_acquire(nau8825, 3 * HZ);
2197 		/* If FLL reference input is from low frequency source,
2198 		 * higher error gain can apply such as 0xf which has
2199 		 * the most sensitive gain error correction threshold,
2200 		 * Therefore, FLL has the most accurate DCO to
2201 		 * target frequency.
2202 		 */
2203 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2204 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2205 			NAU8825_FLL_CLK_SRC_BLK |
2206 			(0xf << NAU8825_GAIN_ERR_SFT));
2207 		/* Release the semaphone. */
2208 		nau8825_sema_release(nau8825);
2209 
2210 		if (nau8825->mclk_freq) {
2211 			clk_disable_unprepare(nau8825->mclk);
2212 			nau8825->mclk_freq = 0;
2213 		}
2214 
2215 		break;
2216 	case NAU8825_CLK_FLL_FS:
2217 		/* Acquire the semaphone to synchronize the playback and
2218 		 * interrupt handler. In order to avoid the playback inter-
2219 		 * fered by cross talk process, the driver make the playback
2220 		 * preparation halted until cross talk process finish.
2221 		 */
2222 		nau8825_sema_acquire(nau8825, 3 * HZ);
2223 		/* If FLL reference input is from low frequency source,
2224 		 * higher error gain can apply such as 0xf which has
2225 		 * the most sensitive gain error correction threshold,
2226 		 * Therefore, FLL has the most accurate DCO to
2227 		 * target frequency.
2228 		 */
2229 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2230 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2231 			NAU8825_FLL_CLK_SRC_FS |
2232 			(0xf << NAU8825_GAIN_ERR_SFT));
2233 		/* Release the semaphone. */
2234 		nau8825_sema_release(nau8825);
2235 
2236 		if (nau8825->mclk_freq) {
2237 			clk_disable_unprepare(nau8825->mclk);
2238 			nau8825->mclk_freq = 0;
2239 		}
2240 
2241 		break;
2242 	default:
2243 		dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id);
2244 		return -EINVAL;
2245 	}
2246 
2247 	dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq,
2248 		clk_id);
2249 	return 0;
2250 }
2251 
2252 static int nau8825_set_sysclk(struct snd_soc_codec *codec, int clk_id,
2253 	int source, unsigned int freq, int dir)
2254 {
2255 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2256 
2257 	return nau8825_configure_sysclk(nau8825, clk_id, freq);
2258 }
2259 
2260 static int nau8825_resume_setup(struct nau8825 *nau8825)
2261 {
2262 	struct regmap *regmap = nau8825->regmap;
2263 
2264 	/* Close clock when jack type detection at manual mode */
2265 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
2266 
2267 	/* Clear all interruption status */
2268 	nau8825_int_status_clear_all(regmap);
2269 
2270 	/* Enable both insertion and ejection interruptions, and then
2271 	 * bypass de-bounce circuit.
2272 	 */
2273 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2274 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN |
2275 		NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN,
2276 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN);
2277 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2278 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
2279 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
2280 		NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0);
2281 
2282 	return 0;
2283 }
2284 
2285 static int nau8825_set_bias_level(struct snd_soc_codec *codec,
2286 				   enum snd_soc_bias_level level)
2287 {
2288 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2289 	int ret;
2290 
2291 	switch (level) {
2292 	case SND_SOC_BIAS_ON:
2293 		break;
2294 
2295 	case SND_SOC_BIAS_PREPARE:
2296 		break;
2297 
2298 	case SND_SOC_BIAS_STANDBY:
2299 		if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) {
2300 			if (nau8825->mclk_freq) {
2301 				ret = clk_prepare_enable(nau8825->mclk);
2302 				if (ret) {
2303 					dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2304 					return ret;
2305 				}
2306 			}
2307 			/* Setup codec configuration after resume */
2308 			nau8825_resume_setup(nau8825);
2309 		}
2310 		break;
2311 
2312 	case SND_SOC_BIAS_OFF:
2313 		/* Cancel and reset cross talk detection funciton */
2314 		nau8825_xtalk_cancel(nau8825);
2315 		/* Turn off all interruptions before system shutdown. Keep the
2316 		 * interruption quiet before resume setup completes.
2317 		 */
2318 		regmap_write(nau8825->regmap,
2319 			NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff);
2320 		/* Disable ADC needed for interruptions at audo mode */
2321 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
2322 			NAU8825_ENABLE_ADC, 0);
2323 		if (nau8825->mclk_freq)
2324 			clk_disable_unprepare(nau8825->mclk);
2325 		break;
2326 	}
2327 	return 0;
2328 }
2329 
2330 static int __maybe_unused nau8825_suspend(struct snd_soc_codec *codec)
2331 {
2332 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2333 
2334 	disable_irq(nau8825->irq);
2335 	snd_soc_codec_force_bias_level(codec, SND_SOC_BIAS_OFF);
2336 	regcache_cache_only(nau8825->regmap, true);
2337 	regcache_mark_dirty(nau8825->regmap);
2338 
2339 	return 0;
2340 }
2341 
2342 static int __maybe_unused nau8825_resume(struct snd_soc_codec *codec)
2343 {
2344 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2345 	int ret;
2346 
2347 	regcache_cache_only(nau8825->regmap, false);
2348 	regcache_sync(nau8825->regmap);
2349 	nau8825->xtalk_protect = true;
2350 	ret = nau8825_sema_acquire(nau8825, 0);
2351 	if (ret < 0)
2352 		nau8825->xtalk_protect = false;
2353 	enable_irq(nau8825->irq);
2354 
2355 	return 0;
2356 }
2357 
2358 static struct snd_soc_codec_driver nau8825_codec_driver = {
2359 	.probe = nau8825_codec_probe,
2360 	.remove = nau8825_codec_remove,
2361 	.set_sysclk = nau8825_set_sysclk,
2362 	.set_pll = nau8825_set_pll,
2363 	.set_bias_level = nau8825_set_bias_level,
2364 	.suspend_bias_off = true,
2365 	.suspend = nau8825_suspend,
2366 	.resume = nau8825_resume,
2367 
2368 	.component_driver = {
2369 		.controls		= nau8825_controls,
2370 		.num_controls		= ARRAY_SIZE(nau8825_controls),
2371 		.dapm_widgets		= nau8825_dapm_widgets,
2372 		.num_dapm_widgets	= ARRAY_SIZE(nau8825_dapm_widgets),
2373 		.dapm_routes		= nau8825_dapm_routes,
2374 		.num_dapm_routes	= ARRAY_SIZE(nau8825_dapm_routes),
2375 	},
2376 };
2377 
2378 static void nau8825_reset_chip(struct regmap *regmap)
2379 {
2380 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2381 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2382 }
2383 
2384 static void nau8825_print_device_properties(struct nau8825 *nau8825)
2385 {
2386 	int i;
2387 	struct device *dev = nau8825->dev;
2388 
2389 	dev_dbg(dev, "jkdet-enable:         %d\n", nau8825->jkdet_enable);
2390 	dev_dbg(dev, "jkdet-pull-enable:    %d\n", nau8825->jkdet_pull_enable);
2391 	dev_dbg(dev, "jkdet-pull-up:        %d\n", nau8825->jkdet_pull_up);
2392 	dev_dbg(dev, "jkdet-polarity:       %d\n", nau8825->jkdet_polarity);
2393 	dev_dbg(dev, "micbias-voltage:      %d\n", nau8825->micbias_voltage);
2394 	dev_dbg(dev, "vref-impedance:       %d\n", nau8825->vref_impedance);
2395 
2396 	dev_dbg(dev, "sar-threshold-num:    %d\n", nau8825->sar_threshold_num);
2397 	for (i = 0; i < nau8825->sar_threshold_num; i++)
2398 		dev_dbg(dev, "sar-threshold[%d]=%d\n", i,
2399 				nau8825->sar_threshold[i]);
2400 
2401 	dev_dbg(dev, "sar-hysteresis:       %d\n", nau8825->sar_hysteresis);
2402 	dev_dbg(dev, "sar-voltage:          %d\n", nau8825->sar_voltage);
2403 	dev_dbg(dev, "sar-compare-time:     %d\n", nau8825->sar_compare_time);
2404 	dev_dbg(dev, "sar-sampling-time:    %d\n", nau8825->sar_sampling_time);
2405 	dev_dbg(dev, "short-key-debounce:   %d\n", nau8825->key_debounce);
2406 	dev_dbg(dev, "jack-insert-debounce: %d\n",
2407 			nau8825->jack_insert_debounce);
2408 	dev_dbg(dev, "jack-eject-debounce:  %d\n",
2409 			nau8825->jack_eject_debounce);
2410 }
2411 
2412 static int nau8825_read_device_properties(struct device *dev,
2413 	struct nau8825 *nau8825) {
2414 
2415 	nau8825->jkdet_enable = device_property_read_bool(dev,
2416 		"nuvoton,jkdet-enable");
2417 	nau8825->jkdet_pull_enable = device_property_read_bool(dev,
2418 		"nuvoton,jkdet-pull-enable");
2419 	nau8825->jkdet_pull_up = device_property_read_bool(dev,
2420 		"nuvoton,jkdet-pull-up");
2421 	device_property_read_u32(dev, "nuvoton,jkdet-polarity",
2422 		&nau8825->jkdet_polarity);
2423 	device_property_read_u32(dev, "nuvoton,micbias-voltage",
2424 		&nau8825->micbias_voltage);
2425 	device_property_read_u32(dev, "nuvoton,vref-impedance",
2426 		&nau8825->vref_impedance);
2427 	device_property_read_u32(dev, "nuvoton,sar-threshold-num",
2428 		&nau8825->sar_threshold_num);
2429 	device_property_read_u32_array(dev, "nuvoton,sar-threshold",
2430 		nau8825->sar_threshold, nau8825->sar_threshold_num);
2431 	device_property_read_u32(dev, "nuvoton,sar-hysteresis",
2432 		&nau8825->sar_hysteresis);
2433 	device_property_read_u32(dev, "nuvoton,sar-voltage",
2434 		&nau8825->sar_voltage);
2435 	device_property_read_u32(dev, "nuvoton,sar-compare-time",
2436 		&nau8825->sar_compare_time);
2437 	device_property_read_u32(dev, "nuvoton,sar-sampling-time",
2438 		&nau8825->sar_sampling_time);
2439 	device_property_read_u32(dev, "nuvoton,short-key-debounce",
2440 		&nau8825->key_debounce);
2441 	device_property_read_u32(dev, "nuvoton,jack-insert-debounce",
2442 		&nau8825->jack_insert_debounce);
2443 	device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
2444 		&nau8825->jack_eject_debounce);
2445 
2446 	nau8825->mclk = devm_clk_get(dev, "mclk");
2447 	if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) {
2448 		return -EPROBE_DEFER;
2449 	} else if (PTR_ERR(nau8825->mclk) == -ENOENT) {
2450 		/* The MCLK is managed externally or not used at all */
2451 		nau8825->mclk = NULL;
2452 		dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally");
2453 	} else if (IS_ERR(nau8825->mclk)) {
2454 		return -EINVAL;
2455 	}
2456 
2457 	return 0;
2458 }
2459 
2460 static int nau8825_setup_irq(struct nau8825 *nau8825)
2461 {
2462 	int ret;
2463 
2464 	ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL,
2465 		nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2466 		"nau8825", nau8825);
2467 
2468 	if (ret) {
2469 		dev_err(nau8825->dev, "Cannot request irq %d (%d)\n",
2470 			nau8825->irq, ret);
2471 		return ret;
2472 	}
2473 
2474 	return 0;
2475 }
2476 
2477 static int nau8825_i2c_probe(struct i2c_client *i2c,
2478 	const struct i2c_device_id *id)
2479 {
2480 	struct device *dev = &i2c->dev;
2481 	struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev);
2482 	int ret, value;
2483 
2484 	if (!nau8825) {
2485 		nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL);
2486 		if (!nau8825)
2487 			return -ENOMEM;
2488 		ret = nau8825_read_device_properties(dev, nau8825);
2489 		if (ret)
2490 			return ret;
2491 	}
2492 
2493 	i2c_set_clientdata(i2c, nau8825);
2494 
2495 	nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config);
2496 	if (IS_ERR(nau8825->regmap))
2497 		return PTR_ERR(nau8825->regmap);
2498 	nau8825->dev = dev;
2499 	nau8825->irq = i2c->irq;
2500 	/* Initiate parameters, semaphone and work queue which are needed in
2501 	 * cross talk suppression measurment function.
2502 	 */
2503 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
2504 	nau8825->xtalk_protect = false;
2505 	sema_init(&nau8825->xtalk_sem, 1);
2506 	INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work);
2507 
2508 	nau8825_print_device_properties(nau8825);
2509 
2510 	nau8825_reset_chip(nau8825->regmap);
2511 	ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value);
2512 	if (ret < 0) {
2513 		dev_err(dev, "Failed to read device id from the NAU8825: %d\n",
2514 			ret);
2515 		return ret;
2516 	}
2517 	if ((value & NAU8825_SOFTWARE_ID_MASK) !=
2518 			NAU8825_SOFTWARE_ID_NAU8825) {
2519 		dev_err(dev, "Not a NAU8825 chip\n");
2520 		return -ENODEV;
2521 	}
2522 
2523 	nau8825_init_regs(nau8825);
2524 
2525 	if (i2c->irq)
2526 		nau8825_setup_irq(nau8825);
2527 
2528 	return snd_soc_register_codec(&i2c->dev, &nau8825_codec_driver,
2529 		&nau8825_dai, 1);
2530 }
2531 
2532 static int nau8825_i2c_remove(struct i2c_client *client)
2533 {
2534 	snd_soc_unregister_codec(&client->dev);
2535 	return 0;
2536 }
2537 
2538 static const struct i2c_device_id nau8825_i2c_ids[] = {
2539 	{ "nau8825", 0 },
2540 	{ }
2541 };
2542 MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids);
2543 
2544 #ifdef CONFIG_OF
2545 static const struct of_device_id nau8825_of_ids[] = {
2546 	{ .compatible = "nuvoton,nau8825", },
2547 	{}
2548 };
2549 MODULE_DEVICE_TABLE(of, nau8825_of_ids);
2550 #endif
2551 
2552 #ifdef CONFIG_ACPI
2553 static const struct acpi_device_id nau8825_acpi_match[] = {
2554 	{ "10508825", 0 },
2555 	{},
2556 };
2557 MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match);
2558 #endif
2559 
2560 static struct i2c_driver nau8825_driver = {
2561 	.driver = {
2562 		.name = "nau8825",
2563 		.of_match_table = of_match_ptr(nau8825_of_ids),
2564 		.acpi_match_table = ACPI_PTR(nau8825_acpi_match),
2565 	},
2566 	.probe = nau8825_i2c_probe,
2567 	.remove = nau8825_i2c_remove,
2568 	.id_table = nau8825_i2c_ids,
2569 };
2570 module_i2c_driver(nau8825_driver);
2571 
2572 MODULE_DESCRIPTION("ASoC nau8825 driver");
2573 MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>");
2574 MODULE_LICENSE("GPL");
2575