xref: /openbmc/linux/sound/soc/codecs/nau8825.c (revision e9839402)
1 /*
2  * Nuvoton NAU8825 audio codec driver
3  *
4  * Copyright 2015 Google Chromium project.
5  *  Author: Anatol Pomozov <anatol@chromium.org>
6  * Copyright 2015 Nuvoton Technology Corp.
7  *  Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com>
8  *
9  * Licensed under the GPL-2.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/delay.h>
14 #include <linux/init.h>
15 #include <linux/i2c.h>
16 #include <linux/regmap.h>
17 #include <linux/slab.h>
18 #include <linux/clk.h>
19 #include <linux/acpi.h>
20 #include <linux/math64.h>
21 #include <linux/semaphore.h>
22 
23 #include <sound/initval.h>
24 #include <sound/tlv.h>
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 #include <sound/soc.h>
29 #include <sound/jack.h>
30 
31 
32 #include "nau8825.h"
33 
34 
35 #define NUVOTON_CODEC_DAI "nau8825-hifi"
36 
37 #define NAU_FREF_MAX 13500000
38 #define NAU_FVCO_MAX 124000000
39 #define NAU_FVCO_MIN 90000000
40 
41 /* cross talk suppression detection */
42 #define LOG10_MAGIC 646456993
43 #define GAIN_AUGMENT 22500
44 #define SIDETONE_BASE 207000
45 
46 
47 static int nau8825_configure_sysclk(struct nau8825 *nau8825,
48 		int clk_id, unsigned int freq);
49 
50 struct nau8825_fll {
51 	int mclk_src;
52 	int ratio;
53 	int fll_frac;
54 	int fll_int;
55 	int clk_ref_div;
56 };
57 
58 struct nau8825_fll_attr {
59 	unsigned int param;
60 	unsigned int val;
61 };
62 
63 /* scaling for mclk from sysclk_src output */
64 static const struct nau8825_fll_attr mclk_src_scaling[] = {
65 	{ 1, 0x0 },
66 	{ 2, 0x2 },
67 	{ 4, 0x3 },
68 	{ 8, 0x4 },
69 	{ 16, 0x5 },
70 	{ 32, 0x6 },
71 	{ 3, 0x7 },
72 	{ 6, 0xa },
73 	{ 12, 0xb },
74 	{ 24, 0xc },
75 	{ 48, 0xd },
76 	{ 96, 0xe },
77 	{ 5, 0xf },
78 };
79 
80 /* ratio for input clk freq */
81 static const struct nau8825_fll_attr fll_ratio[] = {
82 	{ 512000, 0x01 },
83 	{ 256000, 0x02 },
84 	{ 128000, 0x04 },
85 	{ 64000, 0x08 },
86 	{ 32000, 0x10 },
87 	{ 8000, 0x20 },
88 	{ 4000, 0x40 },
89 };
90 
91 static const struct nau8825_fll_attr fll_pre_scalar[] = {
92 	{ 1, 0x0 },
93 	{ 2, 0x1 },
94 	{ 4, 0x2 },
95 	{ 8, 0x3 },
96 };
97 
98 static const struct reg_default nau8825_reg_defaults[] = {
99 	{ NAU8825_REG_ENA_CTRL, 0x00ff },
100 	{ NAU8825_REG_IIC_ADDR_SET, 0x0 },
101 	{ NAU8825_REG_CLK_DIVIDER, 0x0050 },
102 	{ NAU8825_REG_FLL1, 0x0 },
103 	{ NAU8825_REG_FLL2, 0x3126 },
104 	{ NAU8825_REG_FLL3, 0x0008 },
105 	{ NAU8825_REG_FLL4, 0x0010 },
106 	{ NAU8825_REG_FLL5, 0x0 },
107 	{ NAU8825_REG_FLL6, 0x6000 },
108 	{ NAU8825_REG_FLL_VCO_RSV, 0xf13c },
109 	{ NAU8825_REG_HSD_CTRL, 0x000c },
110 	{ NAU8825_REG_JACK_DET_CTRL, 0x0 },
111 	{ NAU8825_REG_INTERRUPT_MASK, 0x0 },
112 	{ NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff },
113 	{ NAU8825_REG_SAR_CTRL, 0x0015 },
114 	{ NAU8825_REG_KEYDET_CTRL, 0x0110 },
115 	{ NAU8825_REG_VDET_THRESHOLD_1, 0x0 },
116 	{ NAU8825_REG_VDET_THRESHOLD_2, 0x0 },
117 	{ NAU8825_REG_VDET_THRESHOLD_3, 0x0 },
118 	{ NAU8825_REG_VDET_THRESHOLD_4, 0x0 },
119 	{ NAU8825_REG_GPIO34_CTRL, 0x0 },
120 	{ NAU8825_REG_GPIO12_CTRL, 0x0 },
121 	{ NAU8825_REG_TDM_CTRL, 0x0 },
122 	{ NAU8825_REG_I2S_PCM_CTRL1, 0x000b },
123 	{ NAU8825_REG_I2S_PCM_CTRL2, 0x8010 },
124 	{ NAU8825_REG_LEFT_TIME_SLOT, 0x0 },
125 	{ NAU8825_REG_RIGHT_TIME_SLOT, 0x0 },
126 	{ NAU8825_REG_BIQ_CTRL, 0x0 },
127 	{ NAU8825_REG_BIQ_COF1, 0x0 },
128 	{ NAU8825_REG_BIQ_COF2, 0x0 },
129 	{ NAU8825_REG_BIQ_COF3, 0x0 },
130 	{ NAU8825_REG_BIQ_COF4, 0x0 },
131 	{ NAU8825_REG_BIQ_COF5, 0x0 },
132 	{ NAU8825_REG_BIQ_COF6, 0x0 },
133 	{ NAU8825_REG_BIQ_COF7, 0x0 },
134 	{ NAU8825_REG_BIQ_COF8, 0x0 },
135 	{ NAU8825_REG_BIQ_COF9, 0x0 },
136 	{ NAU8825_REG_BIQ_COF10, 0x0 },
137 	{ NAU8825_REG_ADC_RATE, 0x0010 },
138 	{ NAU8825_REG_DAC_CTRL1, 0x0001 },
139 	{ NAU8825_REG_DAC_CTRL2, 0x0 },
140 	{ NAU8825_REG_DAC_DGAIN_CTRL, 0x0 },
141 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
142 	{ NAU8825_REG_MUTE_CTRL, 0x0 },
143 	{ NAU8825_REG_HSVOL_CTRL, 0x0 },
144 	{ NAU8825_REG_DACL_CTRL, 0x02cf },
145 	{ NAU8825_REG_DACR_CTRL, 0x00cf },
146 	{ NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 },
147 	{ NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 },
148 	{ NAU8825_REG_ADC_DRC_SLOPES, 0x25ff },
149 	{ NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 },
150 	{ NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 },
151 	{ NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 },
152 	{ NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 },
153 	{ NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 },
154 	{ NAU8825_REG_IMM_MODE_CTRL, 0x0 },
155 	{ NAU8825_REG_CLASSG_CTRL, 0x0 },
156 	{ NAU8825_REG_OPT_EFUSE_CTRL, 0x0 },
157 	{ NAU8825_REG_MISC_CTRL, 0x0 },
158 	{ NAU8825_REG_BIAS_ADJ, 0x0 },
159 	{ NAU8825_REG_TRIM_SETTINGS, 0x0 },
160 	{ NAU8825_REG_ANALOG_CONTROL_1, 0x0 },
161 	{ NAU8825_REG_ANALOG_CONTROL_2, 0x0 },
162 	{ NAU8825_REG_ANALOG_ADC_1, 0x0011 },
163 	{ NAU8825_REG_ANALOG_ADC_2, 0x0020 },
164 	{ NAU8825_REG_RDAC, 0x0008 },
165 	{ NAU8825_REG_MIC_BIAS, 0x0006 },
166 	{ NAU8825_REG_BOOST, 0x0 },
167 	{ NAU8825_REG_FEPGA, 0x0 },
168 	{ NAU8825_REG_POWER_UP_CONTROL, 0x0 },
169 	{ NAU8825_REG_CHARGE_PUMP, 0x0 },
170 };
171 
172 /* register backup table when cross talk detection */
173 static struct reg_default nau8825_xtalk_baktab[] = {
174 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0 },
175 	{ NAU8825_REG_HSVOL_CTRL, 0 },
176 	{ NAU8825_REG_DACL_CTRL, 0 },
177 	{ NAU8825_REG_DACR_CTRL, 0 },
178 };
179 
180 static const unsigned short logtable[256] = {
181 	0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7,
182 	0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508,
183 	0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6,
184 	0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37,
185 	0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f,
186 	0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41,
187 	0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1,
188 	0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142,
189 	0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68,
190 	0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355,
191 	0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c,
192 	0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490,
193 	0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3,
194 	0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507,
195 	0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe,
196 	0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca,
197 	0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c,
198 	0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7,
199 	0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c,
200 	0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c,
201 	0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a,
202 	0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065,
203 	0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730,
204 	0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc,
205 	0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469,
206 	0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9,
207 	0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c,
208 	0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765,
209 	0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83,
210 	0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387,
211 	0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973,
212 	0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47
213 };
214 
215 /**
216  * nau8825_sema_acquire - acquire the semaphore of nau88l25
217  * @nau8825:  component to register the codec private data with
218  * @timeout: how long in jiffies to wait before failure or zero to wait
219  * until release
220  *
221  * Attempts to acquire the semaphore with number of jiffies. If no more
222  * tasks are allowed to acquire the semaphore, calling this function will
223  * put the task to sleep. If the semaphore is not released within the
224  * specified number of jiffies, this function returns.
225  * Acquires the semaphore without jiffies. If no more tasks are allowed
226  * to acquire the semaphore, calling this function will put the task to
227  * sleep until the semaphore is released.
228  * If the semaphore is not released within the specified number of jiffies,
229  * this function returns -ETIME.
230  * If the sleep is interrupted by a signal, this function will return -EINTR.
231  * It returns 0 if the semaphore was acquired successfully.
232  */
233 static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout)
234 {
235 	int ret;
236 
237 	if (timeout) {
238 		ret = down_timeout(&nau8825->xtalk_sem, timeout);
239 		if (ret < 0)
240 			dev_warn(nau8825->dev, "Acquire semaphone timeout\n");
241 	} else {
242 		ret = down_interruptible(&nau8825->xtalk_sem);
243 		if (ret < 0)
244 			dev_warn(nau8825->dev, "Acquire semaphone fail\n");
245 	}
246 
247 	return ret;
248 }
249 
250 /**
251  * nau8825_sema_release - release the semaphore of nau88l25
252  * @nau8825:  component to register the codec private data with
253  *
254  * Release the semaphore which may be called from any context and
255  * even by tasks which have never called down().
256  */
257 static inline void nau8825_sema_release(struct nau8825 *nau8825)
258 {
259 	up(&nau8825->xtalk_sem);
260 }
261 
262 /**
263  * nau8825_sema_reset - reset the semaphore for nau88l25
264  * @nau8825:  component to register the codec private data with
265  *
266  * Reset the counter of the semaphore. Call this function to restart
267  * a new round task management.
268  */
269 static inline void nau8825_sema_reset(struct nau8825 *nau8825)
270 {
271 	nau8825->xtalk_sem.count = 1;
272 }
273 
274 /**
275  * Ramp up the headphone volume change gradually to target level.
276  *
277  * @nau8825:  component to register the codec private data with
278  * @vol_from: the volume to start up
279  * @vol_to: the target volume
280  * @step: the volume span to move on
281  *
282  * The headphone volume is from 0dB to minimum -54dB and -1dB per step.
283  * If the volume changes sharp, there is a pop noise heard in headphone. We
284  * provide the function to ramp up the volume up or down by delaying 10ms
285  * per step.
286  */
287 static void nau8825_hpvol_ramp(struct nau8825 *nau8825,
288 	unsigned int vol_from, unsigned int vol_to, unsigned int step)
289 {
290 	unsigned int value, volume, ramp_up, from, to;
291 
292 	if (vol_from == vol_to || step == 0) {
293 		return;
294 	} else if (vol_from < vol_to) {
295 		ramp_up = true;
296 		from = vol_from;
297 		to = vol_to;
298 	} else {
299 		ramp_up = false;
300 		from = vol_to;
301 		to = vol_from;
302 	}
303 	/* only handle volume from 0dB to minimum -54dB */
304 	if (to > NAU8825_HP_VOL_MIN)
305 		to = NAU8825_HP_VOL_MIN;
306 
307 	for (volume = from; volume < to; volume += step) {
308 		if (ramp_up)
309 			value = volume;
310 		else
311 			value = to - volume + from;
312 		regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
313 			NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
314 			(value << NAU8825_HPL_VOL_SFT) | value);
315 		usleep_range(10000, 10500);
316 	}
317 	if (ramp_up)
318 		value = to;
319 	else
320 		value = from;
321 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
322 		NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
323 		(value << NAU8825_HPL_VOL_SFT) | value);
324 }
325 
326 /**
327  * Computes log10 of a value; the result is round off to 3 decimal. This func-
328  * tion takes reference to dvb-math. The source code locates as the following.
329  * Linux/drivers/media/dvb-core/dvb_math.c
330  *
331  * return log10(value) * 1000
332  */
333 static u32 nau8825_intlog10_dec3(u32 value)
334 {
335 	u32 msb, logentry, significand, interpolation, log10val;
336 	u64 log2val;
337 
338 	/* first detect the msb (count begins at 0) */
339 	msb = fls(value) - 1;
340 	/**
341 	 *      now we use a logtable after the following method:
342 	 *
343 	 *      log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24
344 	 *      where x = msb and therefore 1 <= y < 2
345 	 *      first y is determined by shifting the value left
346 	 *      so that msb is bit 31
347 	 *              0x00231f56 -> 0x8C7D5800
348 	 *      the result is y * 2^31 -> "significand"
349 	 *      then the highest 9 bits are used for a table lookup
350 	 *      the highest bit is discarded because it's always set
351 	 *      the highest nine bits in our example are 100011000
352 	 *      so we would use the entry 0x18
353 	 */
354 	significand = value << (31 - msb);
355 	logentry = (significand >> 23) & 0xff;
356 	/**
357 	 *      last step we do is interpolation because of the
358 	 *      limitations of the log table the error is that part of
359 	 *      the significand which isn't used for lookup then we
360 	 *      compute the ratio between the error and the next table entry
361 	 *      and interpolate it between the log table entry used and the
362 	 *      next one the biggest error possible is 0x7fffff
363 	 *      (in our example it's 0x7D5800)
364 	 *      needed value for next table entry is 0x800000
365 	 *      so the interpolation is
366 	 *      (error / 0x800000) * (logtable_next - logtable_current)
367 	 *      in the implementation the division is moved to the end for
368 	 *      better accuracy there is also an overflow correction if
369 	 *      logtable_next is 256
370 	 */
371 	interpolation = ((significand & 0x7fffff) *
372 		((logtable[(logentry + 1) & 0xff] -
373 		logtable[logentry]) & 0xffff)) >> 15;
374 
375 	log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation);
376 	/**
377 	 *      log10(x) = log2(x) * log10(2)
378 	 */
379 	log10val = (log2val * LOG10_MAGIC) >> 31;
380 	/**
381 	 *      the result is round off to 3 decimal
382 	 */
383 	return log10val / ((1 << 24) / 1000);
384 }
385 
386 /**
387  * computes cross talk suppression sidetone gain.
388  *
389  * @sig_org: orignal signal level
390  * @sig_cros: cross talk signal level
391  *
392  * The orignal and cross talk signal vlues need to be characterized.
393  * Once these values have been characterized, this sidetone value
394  * can be converted to decibel with the equation below.
395  * sidetone = 20 * log (original signal level / crosstalk signal level)
396  *
397  * return cross talk sidetone gain
398  */
399 static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros)
400 {
401 	u32 gain, sidetone;
402 
403 	if (unlikely(sig_org == 0) || unlikely(sig_cros == 0)) {
404 		WARN_ON(1);
405 		return 0;
406 	}
407 
408 	sig_org = nau8825_intlog10_dec3(sig_org);
409 	sig_cros = nau8825_intlog10_dec3(sig_cros);
410 	if (sig_org >= sig_cros)
411 		gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT;
412 	else
413 		gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT;
414 	sidetone = SIDETONE_BASE - gain * 2;
415 	sidetone /= 1000;
416 
417 	return sidetone;
418 }
419 
420 static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg)
421 {
422 	int index;
423 
424 	for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++)
425 		if (nau8825_xtalk_baktab[index].reg == reg)
426 			return index;
427 	return -EINVAL;
428 }
429 
430 static void nau8825_xtalk_backup(struct nau8825 *nau8825)
431 {
432 	int i;
433 
434 	/* Backup some register values to backup table */
435 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++)
436 		regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
437 				&nau8825_xtalk_baktab[i].def);
438 }
439 
440 static void nau8825_xtalk_restore(struct nau8825 *nau8825)
441 {
442 	int i, volume;
443 
444 	/* Restore register values from backup table; When the driver restores
445 	 * the headphone volumem, it needs recover to original level gradually
446 	 * with 3dB per step for less pop noise.
447 	 */
448 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) {
449 		if (nau8825_xtalk_baktab[i].reg == NAU8825_REG_HSVOL_CTRL) {
450 			/* Ramping up the volume change to reduce pop noise */
451 			volume = nau8825_xtalk_baktab[i].def &
452 				NAU8825_HPR_VOL_MASK;
453 			nau8825_hpvol_ramp(nau8825, 0, volume, 3);
454 			continue;
455 		}
456 		regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
457 				nau8825_xtalk_baktab[i].def);
458 	}
459 }
460 
461 static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825)
462 {
463 	/* Enable power of DAC path */
464 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
465 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
466 		NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK |
467 		NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR |
468 		NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC |
469 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK);
470 	/* Prevent startup click by letting charge pump to ramp up and
471 	 * change bump enable
472 	 */
473 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
474 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN,
475 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN);
476 	/* Enable clock sync of DAC and DAC clock */
477 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
478 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN |
479 		NAU8825_RDAC_FS_BCLK_ENB,
480 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN);
481 	/* Power up output driver with 2 stage */
482 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
483 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
484 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L,
485 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
486 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L);
487 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
488 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L,
489 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L);
490 	/* HP outputs not shouted to ground  */
491 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
492 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0);
493 	/* Enable HP boost driver */
494 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
495 		NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS);
496 	/* Enable class G compare path to supply 1.8V or 0.9V. */
497 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL,
498 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN,
499 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN);
500 }
501 
502 static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825)
503 {
504 	/* Power up left ADC and raise 5dB than Vmid for Vref  */
505 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
506 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK,
507 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB);
508 }
509 
510 static void nau8825_xtalk_clock(struct nau8825 *nau8825)
511 {
512 	/* Recover FLL default value */
513 	regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0);
514 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126);
515 	regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008);
516 	regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010);
517 	regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0);
518 	regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000);
519 	/* Enable internal VCO clock for detection signal generated */
520 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
521 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
522 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN,
523 		NAU8825_DCO_EN);
524 	/* Given specific clock frequency of internal clock to
525 	 * generate signal.
526 	 */
527 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
528 		NAU8825_CLK_MCLK_SRC_MASK, 0xf);
529 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
530 		NAU8825_FLL_RATIO_MASK, 0x10);
531 }
532 
533 static void nau8825_xtalk_prepare(struct nau8825 *nau8825)
534 {
535 	int volume, index;
536 
537 	/* Backup those registers changed by cross talk detection */
538 	nau8825_xtalk_backup(nau8825);
539 	/* Config IIS as master to output signal by codec */
540 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
541 		NAU8825_I2S_MS_MASK | NAU8825_I2S_DRV_MASK |
542 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER |
543 		(0x2 << NAU8825_I2S_DRV_SFT) | 0x1);
544 	/* Ramp up headphone volume to 0dB to get better performance and
545 	 * avoid pop noise in headphone.
546 	 */
547 	index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL);
548 	if (index != -EINVAL) {
549 		volume = nau8825_xtalk_baktab[index].def &
550 				NAU8825_HPR_VOL_MASK;
551 		nau8825_hpvol_ramp(nau8825, volume, 0, 3);
552 	}
553 	nau8825_xtalk_clock(nau8825);
554 	nau8825_xtalk_prepare_dac(nau8825);
555 	nau8825_xtalk_prepare_adc(nau8825);
556 	/* Config channel path and digital gain */
557 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
558 		NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK,
559 		NAU8825_DACL_CH_SEL_L | 0xab);
560 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
561 		NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK,
562 		NAU8825_DACR_CH_SEL_R | 0xab);
563 	/* Config cross talk parameters and generate the 23Hz sine wave with
564 	 * 1/16 full scale of signal level for impedance measurement.
565 	 */
566 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
567 		NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK |
568 		NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK,
569 		(0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th |
570 		NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN);
571 	/* RMS intrruption enable */
572 	regmap_update_bits(nau8825->regmap,
573 		NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0);
574 	/* Power up left and right DAC */
575 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
576 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0);
577 }
578 
579 static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825)
580 {
581 	/* Disable HP boost driver */
582 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
583 		NAU8825_HP_BOOST_DIS, 0);
584 	/* HP outputs shouted to ground  */
585 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
586 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
587 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
588 	/* Power down left and right DAC */
589 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
590 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
591 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
592 	/* Enable the TESTDAC and  disable L/R HP impedance */
593 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
594 		NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP |
595 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
596 	/* Power down output driver with 2 stage */
597 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
598 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0);
599 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
600 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
601 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0);
602 	/* Disable clock sync of DAC and DAC clock */
603 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
604 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0);
605 	/* Disable charge pump ramp up function and change bump */
606 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
607 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0);
608 	/* Disable power of DAC path */
609 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
610 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
611 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0);
612 	if (!nau8825->irq)
613 		regmap_update_bits(nau8825->regmap,
614 			NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
615 }
616 
617 static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825)
618 {
619 	/* Power down left ADC and restore voltage to Vmid */
620 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
621 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0);
622 }
623 
624 static void nau8825_xtalk_clean(struct nau8825 *nau8825)
625 {
626 	/* Enable internal VCO needed for interruptions */
627 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
628 	nau8825_xtalk_clean_dac(nau8825);
629 	nau8825_xtalk_clean_adc(nau8825);
630 	/* Clear cross talk parameters and disable */
631 	regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0);
632 	/* RMS intrruption disable */
633 	regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK,
634 		NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN);
635 	/* Recover default value for IIS */
636 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
637 		NAU8825_I2S_MS_MASK | NAU8825_I2S_DRV_MASK |
638 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE);
639 	/* Restore value of specific register for cross talk */
640 	nau8825_xtalk_restore(nau8825);
641 }
642 
643 static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol)
644 {
645 	/* Apply ADC volume for better cross talk performance */
646 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL,
647 				NAU8825_ADC_DIG_VOL_MASK, vol);
648 	/* Disables JKTIP(HPL) DAC channel for right to left measurement.
649 	 * Do it before sending signal in order to erase pop noise.
650 	 */
651 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
652 		NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN,
653 		NAU8825_BIAS_TESTDACL_EN);
654 	switch (nau8825->xtalk_state) {
655 	case NAU8825_XTALK_HPR_R2L:
656 		/* Enable right headphone impedance */
657 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
658 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
659 			NAU8825_BIAS_HPR_IMP);
660 		break;
661 	case NAU8825_XTALK_HPL_R2L:
662 		/* Enable left headphone impedance */
663 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
664 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
665 			NAU8825_BIAS_HPL_IMP);
666 		break;
667 	default:
668 		break;
669 	}
670 	msleep(100);
671 	/* Impedance measurement mode enable */
672 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
673 				NAU8825_IMM_EN, NAU8825_IMM_EN);
674 }
675 
676 static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825)
677 {
678 	/* Impedance measurement mode disable */
679 	regmap_update_bits(nau8825->regmap,
680 		NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0);
681 }
682 
683 /* The cross talk measurement function can reduce cross talk across the
684  * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal
685  * level to determine what cross talk reduction gain is. This system works by
686  * sending a 23Hz -24dBV sine wave into the headset output DAC and through
687  * the PGA. The output of the PGA is then connected to an internal current
688  * sense which measures the attenuated 23Hz signal and passing the output to
689  * an ADC which converts the measurement to a binary code. With two separated
690  * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data
691  * can be separated read in IMM_RMS_L for HSR and HSL after each measurement.
692  * Thus, the measurement function has four states to complete whole sequence.
693  * 1. Prepare state : Prepare the resource for detection and transfer to HPR
694  *     IMM stat to make JKR1(HPR) impedance measure.
695  * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer
696  *     to HPL IMM state to make JKTIP(HPL) impedance measure.
697  * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and
698  *     transfer to IMM state to determine suppression sidetone gain.
699  * 4. IMM state : Computes cross talk suppression sidetone gain with orignal
700  *     and cross talk signal level. Apply this gain and then restore codec
701  *     configuration. Then transfer to Done state for ending.
702  */
703 static void nau8825_xtalk_measure(struct nau8825 *nau8825)
704 {
705 	u32 sidetone;
706 
707 	switch (nau8825->xtalk_state) {
708 	case NAU8825_XTALK_PREPARE:
709 		/* In prepare state, set up clock, intrruption, DAC path, ADC
710 		 * path and cross talk detection parameters for preparation.
711 		 */
712 		nau8825_xtalk_prepare(nau8825);
713 		msleep(280);
714 		/* Trigger right headphone impedance detection */
715 		nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L;
716 		nau8825_xtalk_imm_start(nau8825, 0x00d2);
717 		break;
718 	case NAU8825_XTALK_HPR_R2L:
719 		/* In right headphone IMM state, read out right headphone
720 		 * impedance measure result, and then start up left side.
721 		 */
722 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
723 			&nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
724 		dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n",
725 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
726 		/* Disable then re-enable IMM mode to update */
727 		nau8825_xtalk_imm_stop(nau8825);
728 		/* Trigger left headphone impedance detection */
729 		nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L;
730 		nau8825_xtalk_imm_start(nau8825, 0x00ff);
731 		break;
732 	case NAU8825_XTALK_HPL_R2L:
733 		/* In left headphone IMM state, read out left headphone
734 		 * impedance measure result, and delay some time to wait
735 		 * detection sine wave output finish. Then, we can calculate
736 		 * the cross talk suppresstion side tone according to the L/R
737 		 * headphone imedance.
738 		 */
739 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
740 			&nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
741 		dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n",
742 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
743 		nau8825_xtalk_imm_stop(nau8825);
744 		msleep(150);
745 		nau8825->xtalk_state = NAU8825_XTALK_IMM;
746 		break;
747 	case NAU8825_XTALK_IMM:
748 		/* In impedance measure state, the orignal and cross talk
749 		 * signal level vlues are ready. The side tone gain is deter-
750 		 * mined with these signal level. After all, restore codec
751 		 * configuration.
752 		 */
753 		sidetone = nau8825_xtalk_sidetone(
754 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L],
755 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
756 		dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone);
757 		regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL,
758 					(sidetone << 8) | sidetone);
759 		nau8825_xtalk_clean(nau8825);
760 		nau8825->xtalk_state = NAU8825_XTALK_DONE;
761 		break;
762 	default:
763 		break;
764 	}
765 }
766 
767 static void nau8825_xtalk_work(struct work_struct *work)
768 {
769 	struct nau8825 *nau8825 = container_of(
770 		work, struct nau8825, xtalk_work);
771 
772 	nau8825_xtalk_measure(nau8825);
773 	/* To determine the cross talk side tone gain when reach
774 	 * the impedance measure state.
775 	 */
776 	if (nau8825->xtalk_state == NAU8825_XTALK_IMM)
777 		nau8825_xtalk_measure(nau8825);
778 
779 	/* Delay jack report until cross talk detection process
780 	 * completed. It can avoid application to do playback
781 	 * preparation before cross talk detection is still working.
782 	 * Meanwhile, the protection of the cross talk detection
783 	 * is released.
784 	 */
785 	if (nau8825->xtalk_state == NAU8825_XTALK_DONE) {
786 		snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event,
787 				nau8825->xtalk_event_mask);
788 		nau8825_sema_release(nau8825);
789 		nau8825->xtalk_protect = false;
790 	}
791 }
792 
793 static void nau8825_xtalk_cancel(struct nau8825 *nau8825)
794 {
795 	/* If the xtalk_protect is true, that means the process is still
796 	 * on going. The driver forces to cancel the cross talk task and
797 	 * restores the configuration to original status.
798 	 */
799 	if (nau8825->xtalk_protect) {
800 		cancel_work_sync(&nau8825->xtalk_work);
801 		nau8825_xtalk_clean(nau8825);
802 	}
803 	/* Reset parameters for cross talk suppression function */
804 	nau8825_sema_reset(nau8825);
805 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
806 	nau8825->xtalk_protect = false;
807 }
808 
809 static bool nau8825_readable_reg(struct device *dev, unsigned int reg)
810 {
811 	switch (reg) {
812 	case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV:
813 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
814 	case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL:
815 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
816 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
817 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
818 	case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R:
819 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
820 	case NAU8825_REG_MISC_CTRL:
821 	case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS:
822 	case NAU8825_REG_BIAS_ADJ:
823 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
824 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
825 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
826 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS:
827 		return true;
828 	default:
829 		return false;
830 	}
831 
832 }
833 
834 static bool nau8825_writeable_reg(struct device *dev, unsigned int reg)
835 {
836 	switch (reg) {
837 	case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV:
838 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
839 	case NAU8825_REG_INTERRUPT_MASK:
840 	case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL:
841 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
842 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
843 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
844 	case NAU8825_REG_IMM_MODE_CTRL:
845 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
846 	case NAU8825_REG_MISC_CTRL:
847 	case NAU8825_REG_BIAS_ADJ:
848 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
849 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
850 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
851 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP:
852 		return true;
853 	default:
854 		return false;
855 	}
856 }
857 
858 static bool nau8825_volatile_reg(struct device *dev, unsigned int reg)
859 {
860 	switch (reg) {
861 	case NAU8825_REG_RESET:
862 	case NAU8825_REG_IRQ_STATUS:
863 	case NAU8825_REG_INT_CLR_KEY_STATUS:
864 	case NAU8825_REG_IMM_RMS_L:
865 	case NAU8825_REG_IMM_RMS_R:
866 	case NAU8825_REG_I2C_DEVICE_ID:
867 	case NAU8825_REG_SARDOUT_RAM_STATUS:
868 	case NAU8825_REG_CHARGE_PUMP_INPUT_READ:
869 	case NAU8825_REG_GENERAL_STATUS:
870 	case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10:
871 		return true;
872 	default:
873 		return false;
874 	}
875 }
876 
877 static int nau8825_adc_event(struct snd_soc_dapm_widget *w,
878 		struct snd_kcontrol *kcontrol, int event)
879 {
880 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
881 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
882 
883 	switch (event) {
884 	case SND_SOC_DAPM_POST_PMU:
885 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
886 			NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
887 		break;
888 	case SND_SOC_DAPM_POST_PMD:
889 		if (!nau8825->irq)
890 			regmap_update_bits(nau8825->regmap,
891 				NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
892 		break;
893 	default:
894 		return -EINVAL;
895 	}
896 
897 	return 0;
898 }
899 
900 static int nau8825_pump_event(struct snd_soc_dapm_widget *w,
901 	struct snd_kcontrol *kcontrol, int event)
902 {
903 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
904 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
905 
906 	switch (event) {
907 	case SND_SOC_DAPM_POST_PMU:
908 		/* Prevent startup click by letting charge pump to ramp up */
909 		msleep(10);
910 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
911 			NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW);
912 		break;
913 	case SND_SOC_DAPM_PRE_PMD:
914 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
915 			NAU8825_JAMNODCLOW, 0);
916 		break;
917 	default:
918 		return -EINVAL;
919 	}
920 
921 	return 0;
922 }
923 
924 static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w,
925 	struct snd_kcontrol *kcontrol, int event)
926 {
927 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
928 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
929 
930 	switch (event) {
931 	case SND_SOC_DAPM_PRE_PMU:
932 		/* Disables the TESTDAC to let DAC signal pass through. */
933 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
934 			NAU8825_BIAS_TESTDAC_EN, 0);
935 		break;
936 	case SND_SOC_DAPM_POST_PMD:
937 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
938 			NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
939 		break;
940 	default:
941 		return -EINVAL;
942 	}
943 
944 	return 0;
945 }
946 
947 static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol,
948 				     struct snd_ctl_elem_value *ucontrol)
949 {
950 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
951 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
952 
953 	if (!component->regmap)
954 		return -EINVAL;
955 
956 	regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1,
957 		ucontrol->value.bytes.data, params->max);
958 	return 0;
959 }
960 
961 static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol,
962 				     struct snd_ctl_elem_value *ucontrol)
963 {
964 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
965 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
966 	void *data;
967 
968 	if (!component->regmap)
969 		return -EINVAL;
970 
971 	data = kmemdup(ucontrol->value.bytes.data,
972 		params->max, GFP_KERNEL | GFP_DMA);
973 	if (!data)
974 		return -ENOMEM;
975 
976 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
977 		NAU8825_BIQ_WRT_EN, 0);
978 	regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1,
979 		data, params->max);
980 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
981 		NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN);
982 
983 	kfree(data);
984 	return 0;
985 }
986 
987 static const char * const nau8825_biq_path[] = {
988 	"ADC", "DAC"
989 };
990 
991 static const struct soc_enum nau8825_biq_path_enum =
992 	SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT,
993 		ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path);
994 
995 static const char * const nau8825_adc_decimation[] = {
996 	"32", "64", "128", "256"
997 };
998 
999 static const struct soc_enum nau8825_adc_decimation_enum =
1000 	SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT,
1001 		ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation);
1002 
1003 static const char * const nau8825_dac_oversampl[] = {
1004 	"64", "256", "128", "", "32"
1005 };
1006 
1007 static const struct soc_enum nau8825_dac_oversampl_enum =
1008 	SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT,
1009 		ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl);
1010 
1011 static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400);
1012 static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0);
1013 static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0);
1014 static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
1015 static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400);
1016 
1017 static const struct snd_kcontrol_new nau8825_controls[] = {
1018 	SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1019 		0, 0xff, 0, adc_vol_tlv),
1020 	SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1021 		12, 8, 0x0f, 0, sidetone_vol_tlv),
1022 	SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL,
1023 		6, 0, 0x3f, 1, dac_vol_tlv),
1024 	SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL,
1025 		8, 37, 0, fepga_gain_tlv),
1026 	SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL,
1027 		0, 8, 0xff, 0, crosstalk_vol_tlv),
1028 
1029 	SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum),
1030 	SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum),
1031 	/* programmable biquad filter */
1032 	SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum),
1033 	SND_SOC_BYTES_EXT("BIQ Coefficients", 20,
1034 		  nau8825_biq_coeff_get, nau8825_biq_coeff_put),
1035 };
1036 
1037 /* DAC Mux 0x33[9] and 0x34[9] */
1038 static const char * const nau8825_dac_src[] = {
1039 	"DACL", "DACR",
1040 };
1041 
1042 static SOC_ENUM_SINGLE_DECL(
1043 	nau8825_dacl_enum, NAU8825_REG_DACL_CTRL,
1044 	NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src);
1045 
1046 static SOC_ENUM_SINGLE_DECL(
1047 	nau8825_dacr_enum, NAU8825_REG_DACR_CTRL,
1048 	NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src);
1049 
1050 static const struct snd_kcontrol_new nau8825_dacl_mux =
1051 	SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum);
1052 
1053 static const struct snd_kcontrol_new nau8825_dacr_mux =
1054 	SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum);
1055 
1056 
1057 static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = {
1058 	SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2,
1059 		15, 1),
1060 
1061 	SND_SOC_DAPM_INPUT("MIC"),
1062 	SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0),
1063 
1064 	SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0,
1065 		NULL, 0),
1066 
1067 	SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0,
1068 		nau8825_adc_event, SND_SOC_DAPM_POST_PMU |
1069 		SND_SOC_DAPM_POST_PMD),
1070 	SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0),
1071 	SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL,
1072 		0),
1073 
1074 	/* ADC for button press detection. A dapm supply widget is used to
1075 	 * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON
1076 	 * during suspend.
1077 	 */
1078 	SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL,
1079 		NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0),
1080 
1081 	SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0),
1082 	SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0),
1083 	SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0),
1084 	SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0),
1085 
1086 	SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL,
1087 		NAU8825_ENABLE_DACR_SFT, 0),
1088 	SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL,
1089 		NAU8825_ENABLE_DACL_SFT, 0),
1090 	SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0),
1091 
1092 	SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux),
1093 	SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux),
1094 
1095 	SND_SOC_DAPM_PGA_S("HP amp L", 0,
1096 		NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0),
1097 	SND_SOC_DAPM_PGA_S("HP amp R", 0,
1098 		NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0),
1099 
1100 	SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0,
1101 		nau8825_pump_event, SND_SOC_DAPM_POST_PMU |
1102 		SND_SOC_DAPM_PRE_PMD),
1103 
1104 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4,
1105 		NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0),
1106 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4,
1107 		NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0),
1108 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5,
1109 		NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0),
1110 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5,
1111 		NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0),
1112 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6,
1113 		NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0),
1114 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6,
1115 		NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0),
1116 
1117 	SND_SOC_DAPM_PGA_S("Output DACL", 7,
1118 		NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event,
1119 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1120 	SND_SOC_DAPM_PGA_S("Output DACR", 7,
1121 		NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event,
1122 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1123 
1124 	/* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */
1125 	SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8,
1126 		NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0),
1127 	SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8,
1128 		NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0),
1129 
1130 	/* High current HPOL/R boost driver */
1131 	SND_SOC_DAPM_PGA_S("HP Boost Driver", 9,
1132 		NAU8825_REG_BOOST, 9, 1, NULL, 0),
1133 
1134 	/* Class G operation control*/
1135 	SND_SOC_DAPM_PGA_S("Class G", 10,
1136 		NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0),
1137 
1138 	SND_SOC_DAPM_OUTPUT("HPOL"),
1139 	SND_SOC_DAPM_OUTPUT("HPOR"),
1140 };
1141 
1142 static const struct snd_soc_dapm_route nau8825_dapm_routes[] = {
1143 	{"Frontend PGA", NULL, "MIC"},
1144 	{"ADC", NULL, "Frontend PGA"},
1145 	{"ADC", NULL, "ADC Clock"},
1146 	{"ADC", NULL, "ADC Power"},
1147 	{"AIFTX", NULL, "ADC"},
1148 
1149 	{"DDACL", NULL, "Playback"},
1150 	{"DDACR", NULL, "Playback"},
1151 	{"DDACL", NULL, "DDAC Clock"},
1152 	{"DDACR", NULL, "DDAC Clock"},
1153 	{"DACL Mux", "DACL", "DDACL"},
1154 	{"DACL Mux", "DACR", "DDACR"},
1155 	{"DACR Mux", "DACL", "DDACL"},
1156 	{"DACR Mux", "DACR", "DDACR"},
1157 	{"HP amp L", NULL, "DACL Mux"},
1158 	{"HP amp R", NULL, "DACR Mux"},
1159 	{"Charge Pump", NULL, "HP amp L"},
1160 	{"Charge Pump", NULL, "HP amp R"},
1161 	{"ADACL", NULL, "Charge Pump"},
1162 	{"ADACR", NULL, "Charge Pump"},
1163 	{"ADACL Clock", NULL, "ADACL"},
1164 	{"ADACR Clock", NULL, "ADACR"},
1165 	{"Output Driver L Stage 1", NULL, "ADACL Clock"},
1166 	{"Output Driver R Stage 1", NULL, "ADACR Clock"},
1167 	{"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"},
1168 	{"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"},
1169 	{"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"},
1170 	{"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"},
1171 	{"Output DACL", NULL, "Output Driver L Stage 3"},
1172 	{"Output DACR", NULL, "Output Driver R Stage 3"},
1173 	{"HPOL Pulldown", NULL, "Output DACL"},
1174 	{"HPOR Pulldown", NULL, "Output DACR"},
1175 	{"HP Boost Driver", NULL, "HPOL Pulldown"},
1176 	{"HP Boost Driver", NULL, "HPOR Pulldown"},
1177 	{"Class G", NULL, "HP Boost Driver"},
1178 	{"HPOL", NULL, "Class G"},
1179 	{"HPOR", NULL, "Class G"},
1180 };
1181 
1182 static int nau8825_hw_params(struct snd_pcm_substream *substream,
1183 				struct snd_pcm_hw_params *params,
1184 				struct snd_soc_dai *dai)
1185 {
1186 	struct snd_soc_codec *codec = dai->codec;
1187 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1188 	unsigned int val_len = 0;
1189 
1190 	nau8825_sema_acquire(nau8825, 2 * HZ);
1191 
1192 	switch (params_width(params)) {
1193 	case 16:
1194 		val_len |= NAU8825_I2S_DL_16;
1195 		break;
1196 	case 20:
1197 		val_len |= NAU8825_I2S_DL_20;
1198 		break;
1199 	case 24:
1200 		val_len |= NAU8825_I2S_DL_24;
1201 		break;
1202 	case 32:
1203 		val_len |= NAU8825_I2S_DL_32;
1204 		break;
1205 	default:
1206 		return -EINVAL;
1207 	}
1208 
1209 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1210 		NAU8825_I2S_DL_MASK, val_len);
1211 
1212 	/* Release the semaphone. */
1213 	nau8825_sema_release(nau8825);
1214 
1215 	return 0;
1216 }
1217 
1218 static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
1219 {
1220 	struct snd_soc_codec *codec = codec_dai->codec;
1221 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1222 	unsigned int ctrl1_val = 0, ctrl2_val = 0;
1223 
1224 	nau8825_sema_acquire(nau8825, 2 * HZ);
1225 
1226 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1227 	case SND_SOC_DAIFMT_CBM_CFM:
1228 		ctrl2_val |= NAU8825_I2S_MS_MASTER;
1229 		break;
1230 	case SND_SOC_DAIFMT_CBS_CFS:
1231 		break;
1232 	default:
1233 		return -EINVAL;
1234 	}
1235 
1236 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1237 	case SND_SOC_DAIFMT_NB_NF:
1238 		break;
1239 	case SND_SOC_DAIFMT_IB_NF:
1240 		ctrl1_val |= NAU8825_I2S_BP_INV;
1241 		break;
1242 	default:
1243 		return -EINVAL;
1244 	}
1245 
1246 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1247 	case SND_SOC_DAIFMT_I2S:
1248 		ctrl1_val |= NAU8825_I2S_DF_I2S;
1249 		break;
1250 	case SND_SOC_DAIFMT_LEFT_J:
1251 		ctrl1_val |= NAU8825_I2S_DF_LEFT;
1252 		break;
1253 	case SND_SOC_DAIFMT_RIGHT_J:
1254 		ctrl1_val |= NAU8825_I2S_DF_RIGTH;
1255 		break;
1256 	case SND_SOC_DAIFMT_DSP_A:
1257 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1258 		break;
1259 	case SND_SOC_DAIFMT_DSP_B:
1260 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1261 		ctrl1_val |= NAU8825_I2S_PCMB_EN;
1262 		break;
1263 	default:
1264 		return -EINVAL;
1265 	}
1266 
1267 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1268 		NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK |
1269 		NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK,
1270 		ctrl1_val);
1271 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1272 		NAU8825_I2S_MS_MASK, ctrl2_val);
1273 
1274 	/* Release the semaphone. */
1275 	nau8825_sema_release(nau8825);
1276 
1277 	return 0;
1278 }
1279 
1280 static const struct snd_soc_dai_ops nau8825_dai_ops = {
1281 	.hw_params	= nau8825_hw_params,
1282 	.set_fmt	= nau8825_set_dai_fmt,
1283 };
1284 
1285 #define NAU8825_RATES	SNDRV_PCM_RATE_8000_192000
1286 #define NAU8825_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
1287 			 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1288 
1289 static struct snd_soc_dai_driver nau8825_dai = {
1290 	.name = "nau8825-hifi",
1291 	.playback = {
1292 		.stream_name	 = "Playback",
1293 		.channels_min	 = 1,
1294 		.channels_max	 = 2,
1295 		.rates		 = NAU8825_RATES,
1296 		.formats	 = NAU8825_FORMATS,
1297 	},
1298 	.capture = {
1299 		.stream_name	 = "Capture",
1300 		.channels_min	 = 1,
1301 		.channels_max	 = 1,
1302 		.rates		 = NAU8825_RATES,
1303 		.formats	 = NAU8825_FORMATS,
1304 	},
1305 	.ops = &nau8825_dai_ops,
1306 };
1307 
1308 /**
1309  * nau8825_enable_jack_detect - Specify a jack for event reporting
1310  *
1311  * @component:  component to register the jack with
1312  * @jack: jack to use to report headset and button events on
1313  *
1314  * After this function has been called the headset insert/remove and button
1315  * events will be routed to the given jack.  Jack can be null to stop
1316  * reporting.
1317  */
1318 int nau8825_enable_jack_detect(struct snd_soc_codec *codec,
1319 				struct snd_soc_jack *jack)
1320 {
1321 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1322 	struct regmap *regmap = nau8825->regmap;
1323 
1324 	nau8825->jack = jack;
1325 
1326 	/* Ground HP Outputs[1:0], needed for headset auto detection
1327 	 * Enable Automatic Mic/Gnd switching reading on insert interrupt[6]
1328 	 */
1329 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1330 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
1331 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
1332 
1333 	return 0;
1334 }
1335 EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect);
1336 
1337 
1338 static bool nau8825_is_jack_inserted(struct regmap *regmap)
1339 {
1340 	bool active_high, is_high;
1341 	int status, jkdet;
1342 
1343 	regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet);
1344 	active_high = jkdet & NAU8825_JACK_POLARITY;
1345 	regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status);
1346 	is_high = status & NAU8825_GPIO2JD1;
1347 	/* return jack connection status according to jack insertion logic
1348 	 * active high or active low.
1349 	 */
1350 	return active_high == is_high;
1351 }
1352 
1353 static void nau8825_restart_jack_detection(struct regmap *regmap)
1354 {
1355 	/* this will restart the entire jack detection process including MIC/GND
1356 	 * switching and create interrupts. We have to go from 0 to 1 and back
1357 	 * to 0 to restart.
1358 	 */
1359 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1360 		NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART);
1361 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1362 		NAU8825_JACK_DET_RESTART, 0);
1363 }
1364 
1365 static void nau8825_int_status_clear_all(struct regmap *regmap)
1366 {
1367 	int active_irq, clear_irq, i;
1368 
1369 	/* Reset the intrruption status from rightmost bit if the corres-
1370 	 * ponding irq event occurs.
1371 	 */
1372 	regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq);
1373 	for (i = 0; i < NAU8825_REG_DATA_LEN; i++) {
1374 		clear_irq = (0x1 << i);
1375 		if (active_irq & clear_irq)
1376 			regmap_write(regmap,
1377 				NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1378 	}
1379 }
1380 
1381 static void nau8825_eject_jack(struct nau8825 *nau8825)
1382 {
1383 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1384 	struct regmap *regmap = nau8825->regmap;
1385 
1386 	/* Force to cancel the cross talk detection process */
1387 	nau8825_xtalk_cancel(nau8825);
1388 
1389 	snd_soc_dapm_disable_pin(dapm, "SAR");
1390 	snd_soc_dapm_disable_pin(dapm, "MICBIAS");
1391 	/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
1392 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1393 		NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
1394 	/* ground HPL/HPR, MICGRND1/2 */
1395 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf);
1396 
1397 	snd_soc_dapm_sync(dapm);
1398 
1399 	/* Clear all interruption status */
1400 	nau8825_int_status_clear_all(regmap);
1401 
1402 	/* Enable the insertion interruption, disable the ejection inter-
1403 	 * ruption, and then bypass de-bounce circuit.
1404 	 */
1405 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
1406 		NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS,
1407 		NAU8825_IRQ_EJECT_DIS);
1408 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1409 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1410 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN,
1411 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1412 		NAU8825_IRQ_HEADSET_COMPLETE_EN);
1413 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1414 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
1415 
1416 	/* Disable ADC needed for interruptions at audo mode */
1417 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1418 		NAU8825_ENABLE_ADC, 0);
1419 
1420 	/* Close clock for jack type detection at manual mode */
1421 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1422 }
1423 
1424 /* Enable audo mode interruptions with internal clock. */
1425 static void nau8825_setup_auto_irq(struct nau8825 *nau8825)
1426 {
1427 	struct regmap *regmap = nau8825->regmap;
1428 
1429 	/* Enable headset jack type detection complete interruption and
1430 	 * jack ejection interruption.
1431 	 */
1432 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1433 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0);
1434 
1435 	/* Enable internal VCO needed for interruptions */
1436 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
1437 
1438 	/* Enable ADC needed for interruptions */
1439 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1440 		NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
1441 
1442 	/* Chip needs one FSCLK cycle in order to generate interruptions,
1443 	 * as we cannot guarantee one will be provided by the system. Turning
1444 	 * master mode on then off enables us to generate that FSCLK cycle
1445 	 * with a minimum of contention on the clock bus.
1446 	 */
1447 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1448 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER);
1449 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1450 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE);
1451 
1452 	/* Not bypass de-bounce circuit */
1453 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1454 		NAU8825_JACK_DET_DB_BYPASS, 0);
1455 
1456 	/* Unmask all interruptions */
1457 	regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0);
1458 
1459 	/* Restart the jack detection process at auto mode */
1460 	nau8825_restart_jack_detection(regmap);
1461 }
1462 
1463 static int nau8825_button_decode(int value)
1464 {
1465 	int buttons = 0;
1466 
1467 	/* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */
1468 	if (value & BIT(0))
1469 		buttons |= SND_JACK_BTN_0;
1470 	if (value & BIT(1))
1471 		buttons |= SND_JACK_BTN_1;
1472 	if (value & BIT(2))
1473 		buttons |= SND_JACK_BTN_2;
1474 	if (value & BIT(3))
1475 		buttons |= SND_JACK_BTN_3;
1476 	if (value & BIT(4))
1477 		buttons |= SND_JACK_BTN_4;
1478 	if (value & BIT(5))
1479 		buttons |= SND_JACK_BTN_5;
1480 
1481 	return buttons;
1482 }
1483 
1484 static int nau8825_jack_insert(struct nau8825 *nau8825)
1485 {
1486 	struct regmap *regmap = nau8825->regmap;
1487 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1488 	int jack_status_reg, mic_detected;
1489 	int type = 0;
1490 
1491 	regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg);
1492 	mic_detected = (jack_status_reg >> 10) & 3;
1493 	/* The JKSLV and JKR2 all detected in high impedance headset */
1494 	if (mic_detected == 0x3)
1495 		nau8825->high_imped = true;
1496 	else
1497 		nau8825->high_imped = false;
1498 
1499 	switch (mic_detected) {
1500 	case 0:
1501 		/* no mic */
1502 		type = SND_JACK_HEADPHONE;
1503 		break;
1504 	case 1:
1505 		dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n");
1506 		type = SND_JACK_HEADSET;
1507 
1508 		/* Unground MICGND1 */
1509 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1510 			1 << 2);
1511 		/* Attach 2kOhm Resistor from MICBIAS to MICGND1 */
1512 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1513 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1514 			NAU8825_MICBIAS_JKR2);
1515 		/* Attach SARADC to MICGND1 */
1516 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1517 			NAU8825_SAR_INPUT_MASK,
1518 			NAU8825_SAR_INPUT_JKR2);
1519 
1520 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1521 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1522 		snd_soc_dapm_sync(dapm);
1523 		break;
1524 	case 2:
1525 	case 3:
1526 		dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n");
1527 		type = SND_JACK_HEADSET;
1528 
1529 		/* Unground MICGND2 */
1530 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1531 			2 << 2);
1532 		/* Attach 2kOhm Resistor from MICBIAS to MICGND2 */
1533 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1534 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1535 			NAU8825_MICBIAS_JKSLV);
1536 		/* Attach SARADC to MICGND2 */
1537 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1538 			NAU8825_SAR_INPUT_MASK,
1539 			NAU8825_SAR_INPUT_JKSLV);
1540 
1541 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1542 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1543 		snd_soc_dapm_sync(dapm);
1544 		break;
1545 	}
1546 
1547 	/* Leaving HPOL/R grounded after jack insert by default. They will be
1548 	 * ungrounded as part of the widget power up sequence at the beginning
1549 	 * of playback to reduce pop.
1550 	 */
1551 	return type;
1552 }
1553 
1554 #define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \
1555 		SND_JACK_BTN_2 | SND_JACK_BTN_3)
1556 
1557 static irqreturn_t nau8825_interrupt(int irq, void *data)
1558 {
1559 	struct nau8825 *nau8825 = (struct nau8825 *)data;
1560 	struct regmap *regmap = nau8825->regmap;
1561 	int active_irq, clear_irq = 0, event = 0, event_mask = 0;
1562 
1563 	if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) {
1564 		dev_err(nau8825->dev, "failed to read irq status\n");
1565 		return IRQ_NONE;
1566 	}
1567 
1568 	if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) ==
1569 		NAU8825_JACK_EJECTION_DETECTED) {
1570 
1571 		nau8825_eject_jack(nau8825);
1572 		event_mask |= SND_JACK_HEADSET;
1573 		clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK;
1574 	} else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) {
1575 		int key_status;
1576 
1577 		regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS,
1578 			&key_status);
1579 
1580 		/* upper 8 bits of the register are for short pressed keys,
1581 		 * lower 8 bits - for long pressed buttons
1582 		 */
1583 		nau8825->button_pressed = nau8825_button_decode(
1584 			key_status >> 8);
1585 
1586 		event |= nau8825->button_pressed;
1587 		event_mask |= NAU8825_BUTTONS;
1588 		clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ;
1589 	} else if (active_irq & NAU8825_KEY_RELEASE_IRQ) {
1590 		event_mask = NAU8825_BUTTONS;
1591 		clear_irq = NAU8825_KEY_RELEASE_IRQ;
1592 	} else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) {
1593 		if (nau8825_is_jack_inserted(regmap)) {
1594 			event |= nau8825_jack_insert(nau8825);
1595 			if (!nau8825->high_imped) {
1596 				/* Apply the cross talk suppression in the
1597 				 * headset without high impedance.
1598 				 */
1599 				if (!nau8825->xtalk_protect) {
1600 					/* Raise protection for cross talk de-
1601 					 * tection if no protection before.
1602 					 * The driver has to cancel the pro-
1603 					 * cess and restore changes if process
1604 					 * is ongoing when ejection.
1605 					 */
1606 					int ret;
1607 					nau8825->xtalk_protect = true;
1608 					ret = nau8825_sema_acquire(nau8825, 0);
1609 					if (ret < 0)
1610 						nau8825->xtalk_protect = false;
1611 				}
1612 				/* Startup cross talk detection process */
1613 				nau8825->xtalk_state = NAU8825_XTALK_PREPARE;
1614 				schedule_work(&nau8825->xtalk_work);
1615 			} else {
1616 				/* The cross talk suppression shouldn't apply
1617 				 * in the headset with high impedance. Thus,
1618 				 * relieve the protection raised before.
1619 				 */
1620 				if (nau8825->xtalk_protect) {
1621 					nau8825_sema_release(nau8825);
1622 					nau8825->xtalk_protect = false;
1623 				}
1624 			}
1625 		} else {
1626 			dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n");
1627 			nau8825_eject_jack(nau8825);
1628 		}
1629 
1630 		event_mask |= SND_JACK_HEADSET;
1631 		clear_irq = NAU8825_HEADSET_COMPLETION_IRQ;
1632 		/* Record the interruption report event for driver to report
1633 		 * the event later. The jack report will delay until cross
1634 		 * talk detection process is done.
1635 		 */
1636 		if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) {
1637 			nau8825->xtalk_event = event;
1638 			nau8825->xtalk_event_mask = event_mask;
1639 		}
1640 	} else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) {
1641 		schedule_work(&nau8825->xtalk_work);
1642 		clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ;
1643 	} else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) ==
1644 		NAU8825_JACK_INSERTION_DETECTED) {
1645 		/* One more step to check GPIO status directly. Thus, the
1646 		 * driver can confirm the real insertion interruption because
1647 		 * the intrruption at manual mode has bypassed debounce
1648 		 * circuit which can get rid of unstable status.
1649 		 */
1650 		if (nau8825_is_jack_inserted(regmap)) {
1651 			/* Turn off insertion interruption at manual mode */
1652 			regmap_update_bits(regmap,
1653 				NAU8825_REG_INTERRUPT_DIS_CTRL,
1654 				NAU8825_IRQ_INSERT_DIS,
1655 				NAU8825_IRQ_INSERT_DIS);
1656 			regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1657 				NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN);
1658 			/* Enable interruption for jack type detection at audo
1659 			 * mode which can detect microphone and jack type.
1660 			 */
1661 			nau8825_setup_auto_irq(nau8825);
1662 		}
1663 	}
1664 
1665 	if (!clear_irq)
1666 		clear_irq = active_irq;
1667 	/* clears the rightmost interruption */
1668 	regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1669 
1670 	/* Delay jack report until cross talk detection is done. It can avoid
1671 	 * application to do playback preparation when cross talk detection
1672 	 * process is still working. Otherwise, the resource like clock and
1673 	 * power will be issued by them at the same time and conflict happens.
1674 	 */
1675 	if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE)
1676 		snd_soc_jack_report(nau8825->jack, event, event_mask);
1677 
1678 	return IRQ_HANDLED;
1679 }
1680 
1681 static void nau8825_setup_buttons(struct nau8825 *nau8825)
1682 {
1683 	struct regmap *regmap = nau8825->regmap;
1684 
1685 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1686 		NAU8825_SAR_TRACKING_GAIN_MASK,
1687 		nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT);
1688 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1689 		NAU8825_SAR_COMPARE_TIME_MASK,
1690 		nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT);
1691 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1692 		NAU8825_SAR_SAMPLING_TIME_MASK,
1693 		nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT);
1694 
1695 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1696 		NAU8825_KEYDET_LEVELS_NR_MASK,
1697 		(nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT);
1698 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1699 		NAU8825_KEYDET_HYSTERESIS_MASK,
1700 		nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT);
1701 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1702 		NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK,
1703 		nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT);
1704 
1705 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1,
1706 		(nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]);
1707 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2,
1708 		(nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]);
1709 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3,
1710 		(nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]);
1711 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4,
1712 		(nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]);
1713 
1714 	/* Enable short press and release interruptions */
1715 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1716 		NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN,
1717 		0);
1718 }
1719 
1720 static void nau8825_init_regs(struct nau8825 *nau8825)
1721 {
1722 	struct regmap *regmap = nau8825->regmap;
1723 
1724 	/* Latch IIC LSB value */
1725 	regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001);
1726 	/* Enable Bias/Vmid */
1727 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1728 		NAU8825_BIAS_VMID, NAU8825_BIAS_VMID);
1729 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
1730 		NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN);
1731 
1732 	/* VMID Tieoff */
1733 	regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ,
1734 		NAU8825_BIAS_VMID_SEL_MASK,
1735 		nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT);
1736 	/* Disable Boost Driver, Automatic Short circuit protection enable */
1737 	regmap_update_bits(regmap, NAU8825_REG_BOOST,
1738 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1739 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN,
1740 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1741 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN);
1742 
1743 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1744 		NAU8825_JKDET_OUTPUT_EN,
1745 		nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN);
1746 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1747 		NAU8825_JKDET_PULL_EN,
1748 		nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN);
1749 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1750 		NAU8825_JKDET_PULL_UP,
1751 		nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0);
1752 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1753 		NAU8825_JACK_POLARITY,
1754 		/* jkdet_polarity - 1  is for active-low */
1755 		nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY);
1756 
1757 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1758 		NAU8825_JACK_INSERT_DEBOUNCE_MASK,
1759 		nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT);
1760 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1761 		NAU8825_JACK_EJECT_DEBOUNCE_MASK,
1762 		nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT);
1763 
1764 	/* Mask unneeded IRQs: 1 - disable, 0 - enable */
1765 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff);
1766 
1767 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1768 		NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage);
1769 
1770 	if (nau8825->sar_threshold_num)
1771 		nau8825_setup_buttons(nau8825);
1772 
1773 	/* Default oversampling/decimations settings are unusable
1774 	 * (audible hiss). Set it to something better.
1775 	 */
1776 	regmap_update_bits(regmap, NAU8825_REG_ADC_RATE,
1777 		NAU8825_ADC_SYNC_DOWN_MASK, NAU8825_ADC_SYNC_DOWN_128);
1778 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1779 		NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_128);
1780 	/* Disable DACR/L power */
1781 	regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP,
1782 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
1783 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
1784 	/* Enable TESTDAC. This sets the analog DAC inputs to a '0' input
1785 	 * signal to avoid any glitches due to power up transients in both
1786 	 * the analog and digital DAC circuit.
1787 	 */
1788 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1789 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
1790 	/* CICCLP off */
1791 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1792 		NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF);
1793 
1794 	/* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */
1795 	regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2,
1796 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1797 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB,
1798 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1799 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB);
1800 	/* Class G timer 64ms */
1801 	regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL,
1802 		NAU8825_CLASSG_TIMER_MASK,
1803 		0x20 << NAU8825_CLASSG_TIMER_SFT);
1804 	/* DAC clock delay 2ns, VREF */
1805 	regmap_update_bits(regmap, NAU8825_REG_RDAC,
1806 		NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK,
1807 		(0x2 << NAU8825_RDAC_CLK_DELAY_SFT) |
1808 		(0x3 << NAU8825_RDAC_VREF_SFT));
1809 	/* Config L/R channel */
1810 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
1811 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L);
1812 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
1813 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R);
1814 }
1815 
1816 static const struct regmap_config nau8825_regmap_config = {
1817 	.val_bits = NAU8825_REG_DATA_LEN,
1818 	.reg_bits = NAU8825_REG_ADDR_LEN,
1819 
1820 	.max_register = NAU8825_REG_MAX,
1821 	.readable_reg = nau8825_readable_reg,
1822 	.writeable_reg = nau8825_writeable_reg,
1823 	.volatile_reg = nau8825_volatile_reg,
1824 
1825 	.cache_type = REGCACHE_RBTREE,
1826 	.reg_defaults = nau8825_reg_defaults,
1827 	.num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults),
1828 };
1829 
1830 static int nau8825_codec_probe(struct snd_soc_codec *codec)
1831 {
1832 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1833 	struct snd_soc_dapm_context *dapm = snd_soc_codec_get_dapm(codec);
1834 
1835 	nau8825->dapm = dapm;
1836 
1837 	return 0;
1838 }
1839 
1840 static int nau8825_codec_remove(struct snd_soc_codec *codec)
1841 {
1842 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1843 
1844 	/* Cancel and reset cross tak suppresstion detection funciton */
1845 	nau8825_xtalk_cancel(nau8825);
1846 
1847 	return 0;
1848 }
1849 
1850 /**
1851  * nau8825_calc_fll_param - Calculate FLL parameters.
1852  * @fll_in: external clock provided to codec.
1853  * @fs: sampling rate.
1854  * @fll_param: Pointer to structure of FLL parameters.
1855  *
1856  * Calculate FLL parameters to configure codec.
1857  *
1858  * Returns 0 for success or negative error code.
1859  */
1860 static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs,
1861 		struct nau8825_fll *fll_param)
1862 {
1863 	u64 fvco, fvco_max;
1864 	unsigned int fref, i, fvco_sel;
1865 
1866 	/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
1867 	 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
1868 	 * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK
1869 	 */
1870 	for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
1871 		fref = fll_in / fll_pre_scalar[i].param;
1872 		if (fref <= NAU_FREF_MAX)
1873 			break;
1874 	}
1875 	if (i == ARRAY_SIZE(fll_pre_scalar))
1876 		return -EINVAL;
1877 	fll_param->clk_ref_div = fll_pre_scalar[i].val;
1878 
1879 	/* Choose the FLL ratio based on FREF */
1880 	for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
1881 		if (fref >= fll_ratio[i].param)
1882 			break;
1883 	}
1884 	if (i == ARRAY_SIZE(fll_ratio))
1885 		return -EINVAL;
1886 	fll_param->ratio = fll_ratio[i].val;
1887 
1888 	/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
1889 	 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be
1890 	 * guaranteed across the full range of operation.
1891 	 * FDCO = freq_out * 2 * mclk_src_scaling
1892 	 */
1893 	fvco_max = 0;
1894 	fvco_sel = ARRAY_SIZE(mclk_src_scaling);
1895 	for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
1896 		fvco = 256 * fs * 2 * mclk_src_scaling[i].param;
1897 		if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
1898 			fvco_max < fvco) {
1899 			fvco_max = fvco;
1900 			fvco_sel = i;
1901 		}
1902 	}
1903 	if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
1904 		return -EINVAL;
1905 	fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
1906 
1907 	/* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
1908 	 * input based on FDCO, FREF and FLL ratio.
1909 	 */
1910 	fvco = div_u64(fvco_max << 16, fref * fll_param->ratio);
1911 	fll_param->fll_int = (fvco >> 16) & 0x3FF;
1912 	fll_param->fll_frac = fvco & 0xFFFF;
1913 	return 0;
1914 }
1915 
1916 static void nau8825_fll_apply(struct nau8825 *nau8825,
1917 		struct nau8825_fll *fll_param)
1918 {
1919 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1920 		NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK,
1921 		NAU8825_CLK_SRC_MCLK | fll_param->mclk_src);
1922 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
1923 			NAU8825_FLL_RATIO_MASK, fll_param->ratio);
1924 	/* FLL 16-bit fractional input */
1925 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac);
1926 	/* FLL 10-bit integer input */
1927 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3,
1928 			NAU8825_FLL_INTEGER_MASK, fll_param->fll_int);
1929 	/* FLL pre-scaler */
1930 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4,
1931 			NAU8825_FLL_REF_DIV_MASK, fll_param->clk_ref_div);
1932 	/* select divided VCO input */
1933 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
1934 		NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF);
1935 	/* Disable free-running mode */
1936 	regmap_update_bits(nau8825->regmap,
1937 		NAU8825_REG_FLL6, NAU8825_DCO_EN, 0);
1938 	if (fll_param->fll_frac) {
1939 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
1940 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
1941 			NAU8825_FLL_FTR_SW_MASK,
1942 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
1943 			NAU8825_FLL_FTR_SW_FILTER);
1944 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
1945 			NAU8825_SDM_EN, NAU8825_SDM_EN);
1946 	} else {
1947 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
1948 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
1949 			NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU);
1950 		regmap_update_bits(nau8825->regmap,
1951 			NAU8825_REG_FLL6, NAU8825_SDM_EN, 0);
1952 	}
1953 }
1954 
1955 /* freq_out must be 256*Fs in order to achieve the best performance */
1956 static int nau8825_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
1957 		unsigned int freq_in, unsigned int freq_out)
1958 {
1959 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1960 	struct nau8825_fll fll_param;
1961 	int ret, fs;
1962 
1963 	fs = freq_out / 256;
1964 	ret = nau8825_calc_fll_param(freq_in, fs, &fll_param);
1965 	if (ret < 0) {
1966 		dev_err(codec->dev, "Unsupported input clock %d\n", freq_in);
1967 		return ret;
1968 	}
1969 	dev_dbg(codec->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
1970 		fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
1971 		fll_param.fll_int, fll_param.clk_ref_div);
1972 
1973 	nau8825_fll_apply(nau8825, &fll_param);
1974 	mdelay(2);
1975 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1976 			NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
1977 	return 0;
1978 }
1979 
1980 static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq)
1981 {
1982 	int ret = 0;
1983 
1984 	nau8825->mclk = devm_clk_get(nau8825->dev, "mclk");
1985 	if (IS_ERR(nau8825->mclk)) {
1986 		dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally");
1987 		return 0;
1988 	}
1989 
1990 	if (!nau8825->mclk_freq) {
1991 		ret = clk_prepare_enable(nau8825->mclk);
1992 		if (ret) {
1993 			dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
1994 			return ret;
1995 		}
1996 	}
1997 
1998 	if (nau8825->mclk_freq != freq) {
1999 		freq = clk_round_rate(nau8825->mclk, freq);
2000 		ret = clk_set_rate(nau8825->mclk, freq);
2001 		if (ret) {
2002 			dev_err(nau8825->dev, "Unable to set mclk rate\n");
2003 			return ret;
2004 		}
2005 		nau8825->mclk_freq = freq;
2006 	}
2007 
2008 	return 0;
2009 }
2010 
2011 static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap)
2012 {
2013 	regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2014 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK);
2015 	regmap_update_bits(regmap, NAU8825_REG_FLL6,
2016 		NAU8825_DCO_EN, 0);
2017 }
2018 
2019 static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id,
2020 	unsigned int freq)
2021 {
2022 	struct regmap *regmap = nau8825->regmap;
2023 	int ret;
2024 
2025 	switch (clk_id) {
2026 	case NAU8825_CLK_DIS:
2027 		/* Clock provided externally and disable internal VCO clock */
2028 		nau8825_configure_mclk_as_sysclk(regmap);
2029 		if (nau8825->mclk_freq) {
2030 			clk_disable_unprepare(nau8825->mclk);
2031 			nau8825->mclk_freq = 0;
2032 		}
2033 
2034 		break;
2035 	case NAU8825_CLK_MCLK:
2036 		/* Acquire the semaphone to synchronize the playback and
2037 		 * interrupt handler. In order to avoid the playback inter-
2038 		 * fered by cross talk process, the driver make the playback
2039 		 * preparation halted until cross talk process finish.
2040 		 */
2041 		nau8825_sema_acquire(nau8825, 2 * HZ);
2042 		nau8825_configure_mclk_as_sysclk(regmap);
2043 		/* MCLK not changed by clock tree */
2044 		regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2045 			NAU8825_CLK_MCLK_SRC_MASK, 0);
2046 		/* Release the semaphone. */
2047 		nau8825_sema_release(nau8825);
2048 
2049 		ret = nau8825_mclk_prepare(nau8825, freq);
2050 		if (ret)
2051 			return ret;
2052 
2053 		break;
2054 	case NAU8825_CLK_INTERNAL:
2055 		if (nau8825_is_jack_inserted(nau8825->regmap)) {
2056 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2057 				NAU8825_DCO_EN, NAU8825_DCO_EN);
2058 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2059 				NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2060 			/* Decrease the VCO frequency for power saving */
2061 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2062 				NAU8825_CLK_MCLK_SRC_MASK, 0xf);
2063 			regmap_update_bits(regmap, NAU8825_REG_FLL1,
2064 				NAU8825_FLL_RATIO_MASK, 0x10);
2065 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2066 				NAU8825_SDM_EN, NAU8825_SDM_EN);
2067 		} else {
2068 			/* The clock turns off intentionally for power saving
2069 			 * when no headset connected.
2070 			 */
2071 			nau8825_configure_mclk_as_sysclk(regmap);
2072 			dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n");
2073 		}
2074 		if (nau8825->mclk_freq) {
2075 			clk_disable_unprepare(nau8825->mclk);
2076 			nau8825->mclk_freq = 0;
2077 		}
2078 
2079 		break;
2080 	case NAU8825_CLK_FLL_MCLK:
2081 		/* Acquire the semaphone to synchronize the playback and
2082 		 * interrupt handler. In order to avoid the playback inter-
2083 		 * fered by cross talk process, the driver make the playback
2084 		 * preparation halted until cross talk process finish.
2085 		 */
2086 		nau8825_sema_acquire(nau8825, 2 * HZ);
2087 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2088 			NAU8825_FLL_CLK_SRC_MASK, NAU8825_FLL_CLK_SRC_MCLK);
2089 		/* Release the semaphone. */
2090 		nau8825_sema_release(nau8825);
2091 
2092 		ret = nau8825_mclk_prepare(nau8825, freq);
2093 		if (ret)
2094 			return ret;
2095 
2096 		break;
2097 	case NAU8825_CLK_FLL_BLK:
2098 		/* Acquire the semaphone to synchronize the playback and
2099 		 * interrupt handler. In order to avoid the playback inter-
2100 		 * fered by cross talk process, the driver make the playback
2101 		 * preparation halted until cross talk process finish.
2102 		 */
2103 		nau8825_sema_acquire(nau8825, 2 * HZ);
2104 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2105 			NAU8825_FLL_CLK_SRC_MASK, NAU8825_FLL_CLK_SRC_BLK);
2106 		/* Release the semaphone. */
2107 		nau8825_sema_release(nau8825);
2108 
2109 		if (nau8825->mclk_freq) {
2110 			clk_disable_unprepare(nau8825->mclk);
2111 			nau8825->mclk_freq = 0;
2112 		}
2113 
2114 		break;
2115 	case NAU8825_CLK_FLL_FS:
2116 		/* Acquire the semaphone to synchronize the playback and
2117 		 * interrupt handler. In order to avoid the playback inter-
2118 		 * fered by cross talk process, the driver make the playback
2119 		 * preparation halted until cross talk process finish.
2120 		 */
2121 		nau8825_sema_acquire(nau8825, 2 * HZ);
2122 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2123 			NAU8825_FLL_CLK_SRC_MASK, NAU8825_FLL_CLK_SRC_FS);
2124 		/* Release the semaphone. */
2125 		nau8825_sema_release(nau8825);
2126 
2127 		if (nau8825->mclk_freq) {
2128 			clk_disable_unprepare(nau8825->mclk);
2129 			nau8825->mclk_freq = 0;
2130 		}
2131 
2132 		break;
2133 	default:
2134 		dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id);
2135 		return -EINVAL;
2136 	}
2137 
2138 	dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq,
2139 		clk_id);
2140 	return 0;
2141 }
2142 
2143 static int nau8825_set_sysclk(struct snd_soc_codec *codec, int clk_id,
2144 	int source, unsigned int freq, int dir)
2145 {
2146 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2147 
2148 	return nau8825_configure_sysclk(nau8825, clk_id, freq);
2149 }
2150 
2151 static int nau8825_resume_setup(struct nau8825 *nau8825)
2152 {
2153 	struct regmap *regmap = nau8825->regmap;
2154 
2155 	/* Close clock when jack type detection at manual mode */
2156 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
2157 
2158 	/* Clear all interruption status */
2159 	nau8825_int_status_clear_all(regmap);
2160 
2161 	/* Enable both insertion and ejection interruptions, and then
2162 	 * bypass de-bounce circuit.
2163 	 */
2164 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2165 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN |
2166 		NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN,
2167 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN);
2168 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2169 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
2170 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
2171 		NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0);
2172 
2173 	return 0;
2174 }
2175 
2176 static int nau8825_set_bias_level(struct snd_soc_codec *codec,
2177 				   enum snd_soc_bias_level level)
2178 {
2179 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2180 	int ret;
2181 
2182 	switch (level) {
2183 	case SND_SOC_BIAS_ON:
2184 		break;
2185 
2186 	case SND_SOC_BIAS_PREPARE:
2187 		break;
2188 
2189 	case SND_SOC_BIAS_STANDBY:
2190 		if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) {
2191 			if (nau8825->mclk_freq) {
2192 				ret = clk_prepare_enable(nau8825->mclk);
2193 				if (ret) {
2194 					dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2195 					return ret;
2196 				}
2197 			}
2198 			/* Setup codec configuration after resume */
2199 			nau8825_resume_setup(nau8825);
2200 		}
2201 		break;
2202 
2203 	case SND_SOC_BIAS_OFF:
2204 		/* Cancel and reset cross talk detection funciton */
2205 		nau8825_xtalk_cancel(nau8825);
2206 		/* Turn off all interruptions before system shutdown. Keep the
2207 		 * interruption quiet before resume setup completes.
2208 		 */
2209 		regmap_write(nau8825->regmap,
2210 			NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff);
2211 		/* Disable ADC needed for interruptions at audo mode */
2212 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
2213 			NAU8825_ENABLE_ADC, 0);
2214 		if (nau8825->mclk_freq)
2215 			clk_disable_unprepare(nau8825->mclk);
2216 		break;
2217 	}
2218 	return 0;
2219 }
2220 
2221 static int __maybe_unused nau8825_suspend(struct snd_soc_codec *codec)
2222 {
2223 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2224 
2225 	disable_irq(nau8825->irq);
2226 	snd_soc_codec_force_bias_level(codec, SND_SOC_BIAS_OFF);
2227 	regcache_cache_only(nau8825->regmap, true);
2228 	regcache_mark_dirty(nau8825->regmap);
2229 
2230 	return 0;
2231 }
2232 
2233 static int __maybe_unused nau8825_resume(struct snd_soc_codec *codec)
2234 {
2235 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2236 	int ret;
2237 
2238 	regcache_cache_only(nau8825->regmap, false);
2239 	regcache_sync(nau8825->regmap);
2240 	nau8825->xtalk_protect = true;
2241 	ret = nau8825_sema_acquire(nau8825, 0);
2242 	if (ret < 0)
2243 		nau8825->xtalk_protect = false;
2244 	enable_irq(nau8825->irq);
2245 
2246 	return 0;
2247 }
2248 
2249 static struct snd_soc_codec_driver nau8825_codec_driver = {
2250 	.probe = nau8825_codec_probe,
2251 	.remove = nau8825_codec_remove,
2252 	.set_sysclk = nau8825_set_sysclk,
2253 	.set_pll = nau8825_set_pll,
2254 	.set_bias_level = nau8825_set_bias_level,
2255 	.suspend_bias_off = true,
2256 	.suspend = nau8825_suspend,
2257 	.resume = nau8825_resume,
2258 
2259 	.component_driver = {
2260 		.controls		= nau8825_controls,
2261 		.num_controls		= ARRAY_SIZE(nau8825_controls),
2262 		.dapm_widgets		= nau8825_dapm_widgets,
2263 		.num_dapm_widgets	= ARRAY_SIZE(nau8825_dapm_widgets),
2264 		.dapm_routes		= nau8825_dapm_routes,
2265 		.num_dapm_routes	= ARRAY_SIZE(nau8825_dapm_routes),
2266 	},
2267 };
2268 
2269 static void nau8825_reset_chip(struct regmap *regmap)
2270 {
2271 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2272 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2273 }
2274 
2275 static void nau8825_print_device_properties(struct nau8825 *nau8825)
2276 {
2277 	int i;
2278 	struct device *dev = nau8825->dev;
2279 
2280 	dev_dbg(dev, "jkdet-enable:         %d\n", nau8825->jkdet_enable);
2281 	dev_dbg(dev, "jkdet-pull-enable:    %d\n", nau8825->jkdet_pull_enable);
2282 	dev_dbg(dev, "jkdet-pull-up:        %d\n", nau8825->jkdet_pull_up);
2283 	dev_dbg(dev, "jkdet-polarity:       %d\n", nau8825->jkdet_polarity);
2284 	dev_dbg(dev, "micbias-voltage:      %d\n", nau8825->micbias_voltage);
2285 	dev_dbg(dev, "vref-impedance:       %d\n", nau8825->vref_impedance);
2286 
2287 	dev_dbg(dev, "sar-threshold-num:    %d\n", nau8825->sar_threshold_num);
2288 	for (i = 0; i < nau8825->sar_threshold_num; i++)
2289 		dev_dbg(dev, "sar-threshold[%d]=%d\n", i,
2290 				nau8825->sar_threshold[i]);
2291 
2292 	dev_dbg(dev, "sar-hysteresis:       %d\n", nau8825->sar_hysteresis);
2293 	dev_dbg(dev, "sar-voltage:          %d\n", nau8825->sar_voltage);
2294 	dev_dbg(dev, "sar-compare-time:     %d\n", nau8825->sar_compare_time);
2295 	dev_dbg(dev, "sar-sampling-time:    %d\n", nau8825->sar_sampling_time);
2296 	dev_dbg(dev, "short-key-debounce:   %d\n", nau8825->key_debounce);
2297 	dev_dbg(dev, "jack-insert-debounce: %d\n",
2298 			nau8825->jack_insert_debounce);
2299 	dev_dbg(dev, "jack-eject-debounce:  %d\n",
2300 			nau8825->jack_eject_debounce);
2301 }
2302 
2303 static int nau8825_read_device_properties(struct device *dev,
2304 	struct nau8825 *nau8825) {
2305 
2306 	nau8825->jkdet_enable = device_property_read_bool(dev,
2307 		"nuvoton,jkdet-enable");
2308 	nau8825->jkdet_pull_enable = device_property_read_bool(dev,
2309 		"nuvoton,jkdet-pull-enable");
2310 	nau8825->jkdet_pull_up = device_property_read_bool(dev,
2311 		"nuvoton,jkdet-pull-up");
2312 	device_property_read_u32(dev, "nuvoton,jkdet-polarity",
2313 		&nau8825->jkdet_polarity);
2314 	device_property_read_u32(dev, "nuvoton,micbias-voltage",
2315 		&nau8825->micbias_voltage);
2316 	device_property_read_u32(dev, "nuvoton,vref-impedance",
2317 		&nau8825->vref_impedance);
2318 	device_property_read_u32(dev, "nuvoton,sar-threshold-num",
2319 		&nau8825->sar_threshold_num);
2320 	device_property_read_u32_array(dev, "nuvoton,sar-threshold",
2321 		nau8825->sar_threshold, nau8825->sar_threshold_num);
2322 	device_property_read_u32(dev, "nuvoton,sar-hysteresis",
2323 		&nau8825->sar_hysteresis);
2324 	device_property_read_u32(dev, "nuvoton,sar-voltage",
2325 		&nau8825->sar_voltage);
2326 	device_property_read_u32(dev, "nuvoton,sar-compare-time",
2327 		&nau8825->sar_compare_time);
2328 	device_property_read_u32(dev, "nuvoton,sar-sampling-time",
2329 		&nau8825->sar_sampling_time);
2330 	device_property_read_u32(dev, "nuvoton,short-key-debounce",
2331 		&nau8825->key_debounce);
2332 	device_property_read_u32(dev, "nuvoton,jack-insert-debounce",
2333 		&nau8825->jack_insert_debounce);
2334 	device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
2335 		&nau8825->jack_eject_debounce);
2336 
2337 	nau8825->mclk = devm_clk_get(dev, "mclk");
2338 	if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) {
2339 		return -EPROBE_DEFER;
2340 	} else if (PTR_ERR(nau8825->mclk) == -ENOENT) {
2341 		/* The MCLK is managed externally or not used at all */
2342 		nau8825->mclk = NULL;
2343 		dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally");
2344 	} else if (IS_ERR(nau8825->mclk)) {
2345 		return -EINVAL;
2346 	}
2347 
2348 	return 0;
2349 }
2350 
2351 static int nau8825_setup_irq(struct nau8825 *nau8825)
2352 {
2353 	int ret;
2354 
2355 	ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL,
2356 		nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2357 		"nau8825", nau8825);
2358 
2359 	if (ret) {
2360 		dev_err(nau8825->dev, "Cannot request irq %d (%d)\n",
2361 			nau8825->irq, ret);
2362 		return ret;
2363 	}
2364 
2365 	return 0;
2366 }
2367 
2368 static int nau8825_i2c_probe(struct i2c_client *i2c,
2369 	const struct i2c_device_id *id)
2370 {
2371 	struct device *dev = &i2c->dev;
2372 	struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev);
2373 	int ret, value;
2374 
2375 	if (!nau8825) {
2376 		nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL);
2377 		if (!nau8825)
2378 			return -ENOMEM;
2379 		ret = nau8825_read_device_properties(dev, nau8825);
2380 		if (ret)
2381 			return ret;
2382 	}
2383 
2384 	i2c_set_clientdata(i2c, nau8825);
2385 
2386 	nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config);
2387 	if (IS_ERR(nau8825->regmap))
2388 		return PTR_ERR(nau8825->regmap);
2389 	nau8825->dev = dev;
2390 	nau8825->irq = i2c->irq;
2391 	/* Initiate parameters, semaphone and work queue which are needed in
2392 	 * cross talk suppression measurment function.
2393 	 */
2394 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
2395 	nau8825->xtalk_protect = false;
2396 	sema_init(&nau8825->xtalk_sem, 1);
2397 	INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work);
2398 
2399 	nau8825_print_device_properties(nau8825);
2400 
2401 	nau8825_reset_chip(nau8825->regmap);
2402 	ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value);
2403 	if (ret < 0) {
2404 		dev_err(dev, "Failed to read device id from the NAU8825: %d\n",
2405 			ret);
2406 		return ret;
2407 	}
2408 	if ((value & NAU8825_SOFTWARE_ID_MASK) !=
2409 			NAU8825_SOFTWARE_ID_NAU8825) {
2410 		dev_err(dev, "Not a NAU8825 chip\n");
2411 		return -ENODEV;
2412 	}
2413 
2414 	nau8825_init_regs(nau8825);
2415 
2416 	if (i2c->irq)
2417 		nau8825_setup_irq(nau8825);
2418 
2419 	return snd_soc_register_codec(&i2c->dev, &nau8825_codec_driver,
2420 		&nau8825_dai, 1);
2421 }
2422 
2423 static int nau8825_i2c_remove(struct i2c_client *client)
2424 {
2425 	snd_soc_unregister_codec(&client->dev);
2426 	return 0;
2427 }
2428 
2429 static const struct i2c_device_id nau8825_i2c_ids[] = {
2430 	{ "nau8825", 0 },
2431 	{ }
2432 };
2433 MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids);
2434 
2435 #ifdef CONFIG_OF
2436 static const struct of_device_id nau8825_of_ids[] = {
2437 	{ .compatible = "nuvoton,nau8825", },
2438 	{}
2439 };
2440 MODULE_DEVICE_TABLE(of, nau8825_of_ids);
2441 #endif
2442 
2443 #ifdef CONFIG_ACPI
2444 static const struct acpi_device_id nau8825_acpi_match[] = {
2445 	{ "10508825", 0 },
2446 	{},
2447 };
2448 MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match);
2449 #endif
2450 
2451 static struct i2c_driver nau8825_driver = {
2452 	.driver = {
2453 		.name = "nau8825",
2454 		.of_match_table = of_match_ptr(nau8825_of_ids),
2455 		.acpi_match_table = ACPI_PTR(nau8825_acpi_match),
2456 	},
2457 	.probe = nau8825_i2c_probe,
2458 	.remove = nau8825_i2c_remove,
2459 	.id_table = nau8825_i2c_ids,
2460 };
2461 module_i2c_driver(nau8825_driver);
2462 
2463 MODULE_DESCRIPTION("ASoC nau8825 driver");
2464 MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>");
2465 MODULE_LICENSE("GPL");
2466