xref: /openbmc/linux/sound/soc/codecs/nau8825.c (revision da2ef666)
1 /*
2  * Nuvoton NAU8825 audio codec driver
3  *
4  * Copyright 2015 Google Chromium project.
5  *  Author: Anatol Pomozov <anatol@chromium.org>
6  * Copyright 2015 Nuvoton Technology Corp.
7  *  Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com>
8  *
9  * Licensed under the GPL-2.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/delay.h>
14 #include <linux/init.h>
15 #include <linux/i2c.h>
16 #include <linux/regmap.h>
17 #include <linux/slab.h>
18 #include <linux/clk.h>
19 #include <linux/acpi.h>
20 #include <linux/math64.h>
21 #include <linux/semaphore.h>
22 
23 #include <sound/initval.h>
24 #include <sound/tlv.h>
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 #include <sound/soc.h>
29 #include <sound/jack.h>
30 
31 
32 #include "nau8825.h"
33 
34 
35 #define NUVOTON_CODEC_DAI "nau8825-hifi"
36 
37 #define NAU_FREF_MAX 13500000
38 #define NAU_FVCO_MAX 124000000
39 #define NAU_FVCO_MIN 90000000
40 
41 /* cross talk suppression detection */
42 #define LOG10_MAGIC 646456993
43 #define GAIN_AUGMENT 22500
44 #define SIDETONE_BASE 207000
45 
46 /* the maximum frequency of CLK_ADC and CLK_DAC */
47 #define CLK_DA_AD_MAX 6144000
48 
49 static int nau8825_configure_sysclk(struct nau8825 *nau8825,
50 		int clk_id, unsigned int freq);
51 
52 struct nau8825_fll {
53 	int mclk_src;
54 	int ratio;
55 	int fll_frac;
56 	int fll_int;
57 	int clk_ref_div;
58 };
59 
60 struct nau8825_fll_attr {
61 	unsigned int param;
62 	unsigned int val;
63 };
64 
65 /* scaling for mclk from sysclk_src output */
66 static const struct nau8825_fll_attr mclk_src_scaling[] = {
67 	{ 1, 0x0 },
68 	{ 2, 0x2 },
69 	{ 4, 0x3 },
70 	{ 8, 0x4 },
71 	{ 16, 0x5 },
72 	{ 32, 0x6 },
73 	{ 3, 0x7 },
74 	{ 6, 0xa },
75 	{ 12, 0xb },
76 	{ 24, 0xc },
77 	{ 48, 0xd },
78 	{ 96, 0xe },
79 	{ 5, 0xf },
80 };
81 
82 /* ratio for input clk freq */
83 static const struct nau8825_fll_attr fll_ratio[] = {
84 	{ 512000, 0x01 },
85 	{ 256000, 0x02 },
86 	{ 128000, 0x04 },
87 	{ 64000, 0x08 },
88 	{ 32000, 0x10 },
89 	{ 8000, 0x20 },
90 	{ 4000, 0x40 },
91 };
92 
93 static const struct nau8825_fll_attr fll_pre_scalar[] = {
94 	{ 1, 0x0 },
95 	{ 2, 0x1 },
96 	{ 4, 0x2 },
97 	{ 8, 0x3 },
98 };
99 
100 /* over sampling rate */
101 struct nau8825_osr_attr {
102 	unsigned int osr;
103 	unsigned int clk_src;
104 };
105 
106 static const struct nau8825_osr_attr osr_dac_sel[] = {
107 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
108 	{ 256, 0 },	/* OSR 256, SRC 1 */
109 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
110 	{ 0, 0 },
111 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
112 };
113 
114 static const struct nau8825_osr_attr osr_adc_sel[] = {
115 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
116 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
117 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
118 	{ 256, 0 },	/* OSR 256, SRC 1 */
119 };
120 
121 static const struct reg_default nau8825_reg_defaults[] = {
122 	{ NAU8825_REG_ENA_CTRL, 0x00ff },
123 	{ NAU8825_REG_IIC_ADDR_SET, 0x0 },
124 	{ NAU8825_REG_CLK_DIVIDER, 0x0050 },
125 	{ NAU8825_REG_FLL1, 0x0 },
126 	{ NAU8825_REG_FLL2, 0x3126 },
127 	{ NAU8825_REG_FLL3, 0x0008 },
128 	{ NAU8825_REG_FLL4, 0x0010 },
129 	{ NAU8825_REG_FLL5, 0x0 },
130 	{ NAU8825_REG_FLL6, 0x6000 },
131 	{ NAU8825_REG_FLL_VCO_RSV, 0xf13c },
132 	{ NAU8825_REG_HSD_CTRL, 0x000c },
133 	{ NAU8825_REG_JACK_DET_CTRL, 0x0 },
134 	{ NAU8825_REG_INTERRUPT_MASK, 0x0 },
135 	{ NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff },
136 	{ NAU8825_REG_SAR_CTRL, 0x0015 },
137 	{ NAU8825_REG_KEYDET_CTRL, 0x0110 },
138 	{ NAU8825_REG_VDET_THRESHOLD_1, 0x0 },
139 	{ NAU8825_REG_VDET_THRESHOLD_2, 0x0 },
140 	{ NAU8825_REG_VDET_THRESHOLD_3, 0x0 },
141 	{ NAU8825_REG_VDET_THRESHOLD_4, 0x0 },
142 	{ NAU8825_REG_GPIO34_CTRL, 0x0 },
143 	{ NAU8825_REG_GPIO12_CTRL, 0x0 },
144 	{ NAU8825_REG_TDM_CTRL, 0x0 },
145 	{ NAU8825_REG_I2S_PCM_CTRL1, 0x000b },
146 	{ NAU8825_REG_I2S_PCM_CTRL2, 0x8010 },
147 	{ NAU8825_REG_LEFT_TIME_SLOT, 0x0 },
148 	{ NAU8825_REG_RIGHT_TIME_SLOT, 0x0 },
149 	{ NAU8825_REG_BIQ_CTRL, 0x0 },
150 	{ NAU8825_REG_BIQ_COF1, 0x0 },
151 	{ NAU8825_REG_BIQ_COF2, 0x0 },
152 	{ NAU8825_REG_BIQ_COF3, 0x0 },
153 	{ NAU8825_REG_BIQ_COF4, 0x0 },
154 	{ NAU8825_REG_BIQ_COF5, 0x0 },
155 	{ NAU8825_REG_BIQ_COF6, 0x0 },
156 	{ NAU8825_REG_BIQ_COF7, 0x0 },
157 	{ NAU8825_REG_BIQ_COF8, 0x0 },
158 	{ NAU8825_REG_BIQ_COF9, 0x0 },
159 	{ NAU8825_REG_BIQ_COF10, 0x0 },
160 	{ NAU8825_REG_ADC_RATE, 0x0010 },
161 	{ NAU8825_REG_DAC_CTRL1, 0x0001 },
162 	{ NAU8825_REG_DAC_CTRL2, 0x0 },
163 	{ NAU8825_REG_DAC_DGAIN_CTRL, 0x0 },
164 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
165 	{ NAU8825_REG_MUTE_CTRL, 0x0 },
166 	{ NAU8825_REG_HSVOL_CTRL, 0x0 },
167 	{ NAU8825_REG_DACL_CTRL, 0x02cf },
168 	{ NAU8825_REG_DACR_CTRL, 0x00cf },
169 	{ NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 },
170 	{ NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 },
171 	{ NAU8825_REG_ADC_DRC_SLOPES, 0x25ff },
172 	{ NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 },
173 	{ NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 },
174 	{ NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 },
175 	{ NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 },
176 	{ NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 },
177 	{ NAU8825_REG_IMM_MODE_CTRL, 0x0 },
178 	{ NAU8825_REG_CLASSG_CTRL, 0x0 },
179 	{ NAU8825_REG_OPT_EFUSE_CTRL, 0x0 },
180 	{ NAU8825_REG_MISC_CTRL, 0x0 },
181 	{ NAU8825_REG_BIAS_ADJ, 0x0 },
182 	{ NAU8825_REG_TRIM_SETTINGS, 0x0 },
183 	{ NAU8825_REG_ANALOG_CONTROL_1, 0x0 },
184 	{ NAU8825_REG_ANALOG_CONTROL_2, 0x0 },
185 	{ NAU8825_REG_ANALOG_ADC_1, 0x0011 },
186 	{ NAU8825_REG_ANALOG_ADC_2, 0x0020 },
187 	{ NAU8825_REG_RDAC, 0x0008 },
188 	{ NAU8825_REG_MIC_BIAS, 0x0006 },
189 	{ NAU8825_REG_BOOST, 0x0 },
190 	{ NAU8825_REG_FEPGA, 0x0 },
191 	{ NAU8825_REG_POWER_UP_CONTROL, 0x0 },
192 	{ NAU8825_REG_CHARGE_PUMP, 0x0 },
193 };
194 
195 /* register backup table when cross talk detection */
196 static struct reg_default nau8825_xtalk_baktab[] = {
197 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
198 	{ NAU8825_REG_HSVOL_CTRL, 0 },
199 	{ NAU8825_REG_DACL_CTRL, 0x00cf },
200 	{ NAU8825_REG_DACR_CTRL, 0x02cf },
201 };
202 
203 static const unsigned short logtable[256] = {
204 	0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7,
205 	0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508,
206 	0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6,
207 	0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37,
208 	0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f,
209 	0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41,
210 	0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1,
211 	0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142,
212 	0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68,
213 	0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355,
214 	0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c,
215 	0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490,
216 	0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3,
217 	0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507,
218 	0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe,
219 	0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca,
220 	0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c,
221 	0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7,
222 	0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c,
223 	0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c,
224 	0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a,
225 	0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065,
226 	0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730,
227 	0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc,
228 	0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469,
229 	0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9,
230 	0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c,
231 	0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765,
232 	0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83,
233 	0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387,
234 	0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973,
235 	0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47
236 };
237 
238 /**
239  * nau8825_sema_acquire - acquire the semaphore of nau88l25
240  * @nau8825:  component to register the codec private data with
241  * @timeout: how long in jiffies to wait before failure or zero to wait
242  * until release
243  *
244  * Attempts to acquire the semaphore with number of jiffies. If no more
245  * tasks are allowed to acquire the semaphore, calling this function will
246  * put the task to sleep. If the semaphore is not released within the
247  * specified number of jiffies, this function returns.
248  * If the semaphore is not released within the specified number of jiffies,
249  * this function returns -ETIME. If the sleep is interrupted by a signal,
250  * this function will return -EINTR. It returns 0 if the semaphore was
251  * acquired successfully.
252  *
253  * Acquires the semaphore without jiffies. Try to acquire the semaphore
254  * atomically. Returns 0 if the semaphore has been acquired successfully
255  * or 1 if it it cannot be acquired.
256  */
257 static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout)
258 {
259 	int ret;
260 
261 	if (timeout) {
262 		ret = down_timeout(&nau8825->xtalk_sem, timeout);
263 		if (ret < 0)
264 			dev_warn(nau8825->dev, "Acquire semaphore timeout\n");
265 	} else {
266 		ret = down_trylock(&nau8825->xtalk_sem);
267 		if (ret)
268 			dev_warn(nau8825->dev, "Acquire semaphore fail\n");
269 	}
270 
271 	return ret;
272 }
273 
274 /**
275  * nau8825_sema_release - release the semaphore of nau88l25
276  * @nau8825:  component to register the codec private data with
277  *
278  * Release the semaphore which may be called from any context and
279  * even by tasks which have never called down().
280  */
281 static inline void nau8825_sema_release(struct nau8825 *nau8825)
282 {
283 	up(&nau8825->xtalk_sem);
284 }
285 
286 /**
287  * nau8825_sema_reset - reset the semaphore for nau88l25
288  * @nau8825:  component to register the codec private data with
289  *
290  * Reset the counter of the semaphore. Call this function to restart
291  * a new round task management.
292  */
293 static inline void nau8825_sema_reset(struct nau8825 *nau8825)
294 {
295 	nau8825->xtalk_sem.count = 1;
296 }
297 
298 /**
299  * Ramp up the headphone volume change gradually to target level.
300  *
301  * @nau8825:  component to register the codec private data with
302  * @vol_from: the volume to start up
303  * @vol_to: the target volume
304  * @step: the volume span to move on
305  *
306  * The headphone volume is from 0dB to minimum -54dB and -1dB per step.
307  * If the volume changes sharp, there is a pop noise heard in headphone. We
308  * provide the function to ramp up the volume up or down by delaying 10ms
309  * per step.
310  */
311 static void nau8825_hpvol_ramp(struct nau8825 *nau8825,
312 	unsigned int vol_from, unsigned int vol_to, unsigned int step)
313 {
314 	unsigned int value, volume, ramp_up, from, to;
315 
316 	if (vol_from == vol_to || step == 0) {
317 		return;
318 	} else if (vol_from < vol_to) {
319 		ramp_up = true;
320 		from = vol_from;
321 		to = vol_to;
322 	} else {
323 		ramp_up = false;
324 		from = vol_to;
325 		to = vol_from;
326 	}
327 	/* only handle volume from 0dB to minimum -54dB */
328 	if (to > NAU8825_HP_VOL_MIN)
329 		to = NAU8825_HP_VOL_MIN;
330 
331 	for (volume = from; volume < to; volume += step) {
332 		if (ramp_up)
333 			value = volume;
334 		else
335 			value = to - volume + from;
336 		regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
337 			NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
338 			(value << NAU8825_HPL_VOL_SFT) | value);
339 		usleep_range(10000, 10500);
340 	}
341 	if (ramp_up)
342 		value = to;
343 	else
344 		value = from;
345 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
346 		NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
347 		(value << NAU8825_HPL_VOL_SFT) | value);
348 }
349 
350 /**
351  * Computes log10 of a value; the result is round off to 3 decimal. This func-
352  * tion takes reference to dvb-math. The source code locates as the following.
353  * Linux/drivers/media/dvb-core/dvb_math.c
354  *
355  * return log10(value) * 1000
356  */
357 static u32 nau8825_intlog10_dec3(u32 value)
358 {
359 	u32 msb, logentry, significand, interpolation, log10val;
360 	u64 log2val;
361 
362 	/* first detect the msb (count begins at 0) */
363 	msb = fls(value) - 1;
364 	/**
365 	 *      now we use a logtable after the following method:
366 	 *
367 	 *      log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24
368 	 *      where x = msb and therefore 1 <= y < 2
369 	 *      first y is determined by shifting the value left
370 	 *      so that msb is bit 31
371 	 *              0x00231f56 -> 0x8C7D5800
372 	 *      the result is y * 2^31 -> "significand"
373 	 *      then the highest 9 bits are used for a table lookup
374 	 *      the highest bit is discarded because it's always set
375 	 *      the highest nine bits in our example are 100011000
376 	 *      so we would use the entry 0x18
377 	 */
378 	significand = value << (31 - msb);
379 	logentry = (significand >> 23) & 0xff;
380 	/**
381 	 *      last step we do is interpolation because of the
382 	 *      limitations of the log table the error is that part of
383 	 *      the significand which isn't used for lookup then we
384 	 *      compute the ratio between the error and the next table entry
385 	 *      and interpolate it between the log table entry used and the
386 	 *      next one the biggest error possible is 0x7fffff
387 	 *      (in our example it's 0x7D5800)
388 	 *      needed value for next table entry is 0x800000
389 	 *      so the interpolation is
390 	 *      (error / 0x800000) * (logtable_next - logtable_current)
391 	 *      in the implementation the division is moved to the end for
392 	 *      better accuracy there is also an overflow correction if
393 	 *      logtable_next is 256
394 	 */
395 	interpolation = ((significand & 0x7fffff) *
396 		((logtable[(logentry + 1) & 0xff] -
397 		logtable[logentry]) & 0xffff)) >> 15;
398 
399 	log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation);
400 	/**
401 	 *      log10(x) = log2(x) * log10(2)
402 	 */
403 	log10val = (log2val * LOG10_MAGIC) >> 31;
404 	/**
405 	 *      the result is round off to 3 decimal
406 	 */
407 	return log10val / ((1 << 24) / 1000);
408 }
409 
410 /**
411  * computes cross talk suppression sidetone gain.
412  *
413  * @sig_org: orignal signal level
414  * @sig_cros: cross talk signal level
415  *
416  * The orignal and cross talk signal vlues need to be characterized.
417  * Once these values have been characterized, this sidetone value
418  * can be converted to decibel with the equation below.
419  * sidetone = 20 * log (original signal level / crosstalk signal level)
420  *
421  * return cross talk sidetone gain
422  */
423 static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros)
424 {
425 	u32 gain, sidetone;
426 
427 	if (unlikely(sig_org == 0) || unlikely(sig_cros == 0)) {
428 		WARN_ON(1);
429 		return 0;
430 	}
431 
432 	sig_org = nau8825_intlog10_dec3(sig_org);
433 	sig_cros = nau8825_intlog10_dec3(sig_cros);
434 	if (sig_org >= sig_cros)
435 		gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT;
436 	else
437 		gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT;
438 	sidetone = SIDETONE_BASE - gain * 2;
439 	sidetone /= 1000;
440 
441 	return sidetone;
442 }
443 
444 static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg)
445 {
446 	int index;
447 
448 	for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++)
449 		if (nau8825_xtalk_baktab[index].reg == reg)
450 			return index;
451 	return -EINVAL;
452 }
453 
454 static void nau8825_xtalk_backup(struct nau8825 *nau8825)
455 {
456 	int i;
457 
458 	if (nau8825->xtalk_baktab_initialized)
459 		return;
460 
461 	/* Backup some register values to backup table */
462 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++)
463 		regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
464 				&nau8825_xtalk_baktab[i].def);
465 
466 	nau8825->xtalk_baktab_initialized = true;
467 }
468 
469 static void nau8825_xtalk_restore(struct nau8825 *nau8825, bool cause_cancel)
470 {
471 	int i, volume;
472 
473 	if (!nau8825->xtalk_baktab_initialized)
474 		return;
475 
476 	/* Restore register values from backup table; When the driver restores
477 	 * the headphone volume in XTALK_DONE state, it needs recover to
478 	 * original level gradually with 3dB per step for less pop noise.
479 	 * Otherwise, the restore should do ASAP.
480 	 */
481 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) {
482 		if (!cause_cancel && nau8825_xtalk_baktab[i].reg ==
483 			NAU8825_REG_HSVOL_CTRL) {
484 			/* Ramping up the volume change to reduce pop noise */
485 			volume = nau8825_xtalk_baktab[i].def &
486 				NAU8825_HPR_VOL_MASK;
487 			nau8825_hpvol_ramp(nau8825, 0, volume, 3);
488 			continue;
489 		}
490 		regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
491 				nau8825_xtalk_baktab[i].def);
492 	}
493 
494 	nau8825->xtalk_baktab_initialized = false;
495 }
496 
497 static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825)
498 {
499 	/* Enable power of DAC path */
500 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
501 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
502 		NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK |
503 		NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR |
504 		NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC |
505 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK);
506 	/* Prevent startup click by letting charge pump to ramp up and
507 	 * change bump enable
508 	 */
509 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
510 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN,
511 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN);
512 	/* Enable clock sync of DAC and DAC clock */
513 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
514 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN |
515 		NAU8825_RDAC_FS_BCLK_ENB,
516 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN);
517 	/* Power up output driver with 2 stage */
518 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
519 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
520 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L,
521 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
522 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L);
523 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
524 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L,
525 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L);
526 	/* HP outputs not shouted to ground  */
527 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
528 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0);
529 	/* Enable HP boost driver */
530 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
531 		NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS);
532 	/* Enable class G compare path to supply 1.8V or 0.9V. */
533 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL,
534 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN,
535 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN);
536 }
537 
538 static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825)
539 {
540 	/* Power up left ADC and raise 5dB than Vmid for Vref  */
541 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
542 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK,
543 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB);
544 }
545 
546 static void nau8825_xtalk_clock(struct nau8825 *nau8825)
547 {
548 	/* Recover FLL default value */
549 	regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0);
550 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126);
551 	regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008);
552 	regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010);
553 	regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0);
554 	regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000);
555 	/* Enable internal VCO clock for detection signal generated */
556 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
557 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
558 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN,
559 		NAU8825_DCO_EN);
560 	/* Given specific clock frequency of internal clock to
561 	 * generate signal.
562 	 */
563 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
564 		NAU8825_CLK_MCLK_SRC_MASK, 0xf);
565 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
566 		NAU8825_FLL_RATIO_MASK, 0x10);
567 }
568 
569 static void nau8825_xtalk_prepare(struct nau8825 *nau8825)
570 {
571 	int volume, index;
572 
573 	/* Backup those registers changed by cross talk detection */
574 	nau8825_xtalk_backup(nau8825);
575 	/* Config IIS as master to output signal by codec */
576 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
577 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
578 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER |
579 		(0x2 << NAU8825_I2S_LRC_DIV_SFT) | 0x1);
580 	/* Ramp up headphone volume to 0dB to get better performance and
581 	 * avoid pop noise in headphone.
582 	 */
583 	index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL);
584 	if (index != -EINVAL) {
585 		volume = nau8825_xtalk_baktab[index].def &
586 				NAU8825_HPR_VOL_MASK;
587 		nau8825_hpvol_ramp(nau8825, volume, 0, 3);
588 	}
589 	nau8825_xtalk_clock(nau8825);
590 	nau8825_xtalk_prepare_dac(nau8825);
591 	nau8825_xtalk_prepare_adc(nau8825);
592 	/* Config channel path and digital gain */
593 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
594 		NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK,
595 		NAU8825_DACL_CH_SEL_L | 0xab);
596 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
597 		NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK,
598 		NAU8825_DACR_CH_SEL_R | 0xab);
599 	/* Config cross talk parameters and generate the 23Hz sine wave with
600 	 * 1/16 full scale of signal level for impedance measurement.
601 	 */
602 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
603 		NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK |
604 		NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK,
605 		(0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th |
606 		NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN);
607 	/* RMS intrruption enable */
608 	regmap_update_bits(nau8825->regmap,
609 		NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0);
610 	/* Power up left and right DAC */
611 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
612 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0);
613 }
614 
615 static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825)
616 {
617 	/* Disable HP boost driver */
618 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
619 		NAU8825_HP_BOOST_DIS, 0);
620 	/* HP outputs shouted to ground  */
621 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
622 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
623 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
624 	/* Power down left and right DAC */
625 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
626 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
627 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
628 	/* Enable the TESTDAC and  disable L/R HP impedance */
629 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
630 		NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP |
631 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
632 	/* Power down output driver with 2 stage */
633 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
634 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0);
635 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
636 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
637 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0);
638 	/* Disable clock sync of DAC and DAC clock */
639 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
640 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0);
641 	/* Disable charge pump ramp up function and change bump */
642 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
643 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0);
644 	/* Disable power of DAC path */
645 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
646 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
647 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0);
648 	if (!nau8825->irq)
649 		regmap_update_bits(nau8825->regmap,
650 			NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
651 }
652 
653 static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825)
654 {
655 	/* Power down left ADC and restore voltage to Vmid */
656 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
657 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0);
658 }
659 
660 static void nau8825_xtalk_clean(struct nau8825 *nau8825, bool cause_cancel)
661 {
662 	/* Enable internal VCO needed for interruptions */
663 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
664 	nau8825_xtalk_clean_dac(nau8825);
665 	nau8825_xtalk_clean_adc(nau8825);
666 	/* Clear cross talk parameters and disable */
667 	regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0);
668 	/* RMS intrruption disable */
669 	regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK,
670 		NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN);
671 	/* Recover default value for IIS */
672 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
673 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
674 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE);
675 	/* Restore value of specific register for cross talk */
676 	nau8825_xtalk_restore(nau8825, cause_cancel);
677 }
678 
679 static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol)
680 {
681 	/* Apply ADC volume for better cross talk performance */
682 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL,
683 				NAU8825_ADC_DIG_VOL_MASK, vol);
684 	/* Disables JKTIP(HPL) DAC channel for right to left measurement.
685 	 * Do it before sending signal in order to erase pop noise.
686 	 */
687 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
688 		NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN,
689 		NAU8825_BIAS_TESTDACL_EN);
690 	switch (nau8825->xtalk_state) {
691 	case NAU8825_XTALK_HPR_R2L:
692 		/* Enable right headphone impedance */
693 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
694 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
695 			NAU8825_BIAS_HPR_IMP);
696 		break;
697 	case NAU8825_XTALK_HPL_R2L:
698 		/* Enable left headphone impedance */
699 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
700 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
701 			NAU8825_BIAS_HPL_IMP);
702 		break;
703 	default:
704 		break;
705 	}
706 	msleep(100);
707 	/* Impedance measurement mode enable */
708 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
709 				NAU8825_IMM_EN, NAU8825_IMM_EN);
710 }
711 
712 static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825)
713 {
714 	/* Impedance measurement mode disable */
715 	regmap_update_bits(nau8825->regmap,
716 		NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0);
717 }
718 
719 /* The cross talk measurement function can reduce cross talk across the
720  * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal
721  * level to determine what cross talk reduction gain is. This system works by
722  * sending a 23Hz -24dBV sine wave into the headset output DAC and through
723  * the PGA. The output of the PGA is then connected to an internal current
724  * sense which measures the attenuated 23Hz signal and passing the output to
725  * an ADC which converts the measurement to a binary code. With two separated
726  * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data
727  * can be separated read in IMM_RMS_L for HSR and HSL after each measurement.
728  * Thus, the measurement function has four states to complete whole sequence.
729  * 1. Prepare state : Prepare the resource for detection and transfer to HPR
730  *     IMM stat to make JKR1(HPR) impedance measure.
731  * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer
732  *     to HPL IMM state to make JKTIP(HPL) impedance measure.
733  * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and
734  *     transfer to IMM state to determine suppression sidetone gain.
735  * 4. IMM state : Computes cross talk suppression sidetone gain with orignal
736  *     and cross talk signal level. Apply this gain and then restore codec
737  *     configuration. Then transfer to Done state for ending.
738  */
739 static void nau8825_xtalk_measure(struct nau8825 *nau8825)
740 {
741 	u32 sidetone;
742 
743 	switch (nau8825->xtalk_state) {
744 	case NAU8825_XTALK_PREPARE:
745 		/* In prepare state, set up clock, intrruption, DAC path, ADC
746 		 * path and cross talk detection parameters for preparation.
747 		 */
748 		nau8825_xtalk_prepare(nau8825);
749 		msleep(280);
750 		/* Trigger right headphone impedance detection */
751 		nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L;
752 		nau8825_xtalk_imm_start(nau8825, 0x00d2);
753 		break;
754 	case NAU8825_XTALK_HPR_R2L:
755 		/* In right headphone IMM state, read out right headphone
756 		 * impedance measure result, and then start up left side.
757 		 */
758 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
759 			&nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
760 		dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n",
761 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
762 		/* Disable then re-enable IMM mode to update */
763 		nau8825_xtalk_imm_stop(nau8825);
764 		/* Trigger left headphone impedance detection */
765 		nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L;
766 		nau8825_xtalk_imm_start(nau8825, 0x00ff);
767 		break;
768 	case NAU8825_XTALK_HPL_R2L:
769 		/* In left headphone IMM state, read out left headphone
770 		 * impedance measure result, and delay some time to wait
771 		 * detection sine wave output finish. Then, we can calculate
772 		 * the cross talk suppresstion side tone according to the L/R
773 		 * headphone imedance.
774 		 */
775 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
776 			&nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
777 		dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n",
778 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
779 		nau8825_xtalk_imm_stop(nau8825);
780 		msleep(150);
781 		nau8825->xtalk_state = NAU8825_XTALK_IMM;
782 		break;
783 	case NAU8825_XTALK_IMM:
784 		/* In impedance measure state, the orignal and cross talk
785 		 * signal level vlues are ready. The side tone gain is deter-
786 		 * mined with these signal level. After all, restore codec
787 		 * configuration.
788 		 */
789 		sidetone = nau8825_xtalk_sidetone(
790 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L],
791 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
792 		dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone);
793 		regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL,
794 					(sidetone << 8) | sidetone);
795 		nau8825_xtalk_clean(nau8825, false);
796 		nau8825->xtalk_state = NAU8825_XTALK_DONE;
797 		break;
798 	default:
799 		break;
800 	}
801 }
802 
803 static void nau8825_xtalk_work(struct work_struct *work)
804 {
805 	struct nau8825 *nau8825 = container_of(
806 		work, struct nau8825, xtalk_work);
807 
808 	nau8825_xtalk_measure(nau8825);
809 	/* To determine the cross talk side tone gain when reach
810 	 * the impedance measure state.
811 	 */
812 	if (nau8825->xtalk_state == NAU8825_XTALK_IMM)
813 		nau8825_xtalk_measure(nau8825);
814 
815 	/* Delay jack report until cross talk detection process
816 	 * completed. It can avoid application to do playback
817 	 * preparation before cross talk detection is still working.
818 	 * Meanwhile, the protection of the cross talk detection
819 	 * is released.
820 	 */
821 	if (nau8825->xtalk_state == NAU8825_XTALK_DONE) {
822 		snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event,
823 				nau8825->xtalk_event_mask);
824 		nau8825_sema_release(nau8825);
825 		nau8825->xtalk_protect = false;
826 	}
827 }
828 
829 static void nau8825_xtalk_cancel(struct nau8825 *nau8825)
830 {
831 	/* If the crosstalk is eanbled and the process is on going,
832 	 * the driver forces to cancel the crosstalk task and
833 	 * restores the configuration to original status.
834 	 */
835 	if (nau8825->xtalk_enable && nau8825->xtalk_state !=
836 		NAU8825_XTALK_DONE) {
837 		cancel_work_sync(&nau8825->xtalk_work);
838 		nau8825_xtalk_clean(nau8825, true);
839 	}
840 	/* Reset parameters for cross talk suppression function */
841 	nau8825_sema_reset(nau8825);
842 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
843 	nau8825->xtalk_protect = false;
844 }
845 
846 static bool nau8825_readable_reg(struct device *dev, unsigned int reg)
847 {
848 	switch (reg) {
849 	case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV:
850 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
851 	case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL:
852 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
853 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
854 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
855 	case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R:
856 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
857 	case NAU8825_REG_MISC_CTRL:
858 	case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS:
859 	case NAU8825_REG_BIAS_ADJ:
860 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
861 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
862 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
863 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS:
864 		return true;
865 	default:
866 		return false;
867 	}
868 
869 }
870 
871 static bool nau8825_writeable_reg(struct device *dev, unsigned int reg)
872 {
873 	switch (reg) {
874 	case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV:
875 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
876 	case NAU8825_REG_INTERRUPT_MASK:
877 	case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL:
878 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
879 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
880 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
881 	case NAU8825_REG_IMM_MODE_CTRL:
882 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
883 	case NAU8825_REG_MISC_CTRL:
884 	case NAU8825_REG_BIAS_ADJ:
885 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
886 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
887 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
888 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP:
889 		return true;
890 	default:
891 		return false;
892 	}
893 }
894 
895 static bool nau8825_volatile_reg(struct device *dev, unsigned int reg)
896 {
897 	switch (reg) {
898 	case NAU8825_REG_RESET:
899 	case NAU8825_REG_IRQ_STATUS:
900 	case NAU8825_REG_INT_CLR_KEY_STATUS:
901 	case NAU8825_REG_IMM_RMS_L:
902 	case NAU8825_REG_IMM_RMS_R:
903 	case NAU8825_REG_I2C_DEVICE_ID:
904 	case NAU8825_REG_SARDOUT_RAM_STATUS:
905 	case NAU8825_REG_CHARGE_PUMP_INPUT_READ:
906 	case NAU8825_REG_GENERAL_STATUS:
907 	case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10:
908 		return true;
909 	default:
910 		return false;
911 	}
912 }
913 
914 static int nau8825_adc_event(struct snd_soc_dapm_widget *w,
915 		struct snd_kcontrol *kcontrol, int event)
916 {
917 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
918 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
919 
920 	switch (event) {
921 	case SND_SOC_DAPM_POST_PMU:
922 		msleep(125);
923 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
924 			NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
925 		break;
926 	case SND_SOC_DAPM_POST_PMD:
927 		if (!nau8825->irq)
928 			regmap_update_bits(nau8825->regmap,
929 				NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
930 		break;
931 	default:
932 		return -EINVAL;
933 	}
934 
935 	return 0;
936 }
937 
938 static int nau8825_pump_event(struct snd_soc_dapm_widget *w,
939 	struct snd_kcontrol *kcontrol, int event)
940 {
941 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
942 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
943 
944 	switch (event) {
945 	case SND_SOC_DAPM_POST_PMU:
946 		/* Prevent startup click by letting charge pump to ramp up */
947 		msleep(10);
948 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
949 			NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW);
950 		break;
951 	case SND_SOC_DAPM_PRE_PMD:
952 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
953 			NAU8825_JAMNODCLOW, 0);
954 		break;
955 	default:
956 		return -EINVAL;
957 	}
958 
959 	return 0;
960 }
961 
962 static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w,
963 	struct snd_kcontrol *kcontrol, int event)
964 {
965 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
966 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
967 
968 	switch (event) {
969 	case SND_SOC_DAPM_PRE_PMU:
970 		/* Disables the TESTDAC to let DAC signal pass through. */
971 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
972 			NAU8825_BIAS_TESTDAC_EN, 0);
973 		break;
974 	case SND_SOC_DAPM_POST_PMD:
975 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
976 			NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
977 		break;
978 	default:
979 		return -EINVAL;
980 	}
981 
982 	return 0;
983 }
984 
985 static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol,
986 				     struct snd_ctl_elem_value *ucontrol)
987 {
988 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
989 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
990 
991 	if (!component->regmap)
992 		return -EINVAL;
993 
994 	regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1,
995 		ucontrol->value.bytes.data, params->max);
996 	return 0;
997 }
998 
999 static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol,
1000 				     struct snd_ctl_elem_value *ucontrol)
1001 {
1002 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1003 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
1004 	void *data;
1005 
1006 	if (!component->regmap)
1007 		return -EINVAL;
1008 
1009 	data = kmemdup(ucontrol->value.bytes.data,
1010 		params->max, GFP_KERNEL | GFP_DMA);
1011 	if (!data)
1012 		return -ENOMEM;
1013 
1014 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1015 		NAU8825_BIQ_WRT_EN, 0);
1016 	regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1,
1017 		data, params->max);
1018 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1019 		NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN);
1020 
1021 	kfree(data);
1022 	return 0;
1023 }
1024 
1025 static const char * const nau8825_biq_path[] = {
1026 	"ADC", "DAC"
1027 };
1028 
1029 static const struct soc_enum nau8825_biq_path_enum =
1030 	SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT,
1031 		ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path);
1032 
1033 static const char * const nau8825_adc_decimation[] = {
1034 	"32", "64", "128", "256"
1035 };
1036 
1037 static const struct soc_enum nau8825_adc_decimation_enum =
1038 	SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT,
1039 		ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation);
1040 
1041 static const char * const nau8825_dac_oversampl[] = {
1042 	"64", "256", "128", "", "32"
1043 };
1044 
1045 static const struct soc_enum nau8825_dac_oversampl_enum =
1046 	SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT,
1047 		ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl);
1048 
1049 static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400);
1050 static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0);
1051 static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0);
1052 static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
1053 static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400);
1054 
1055 static const struct snd_kcontrol_new nau8825_controls[] = {
1056 	SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1057 		0, 0xff, 0, adc_vol_tlv),
1058 	SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1059 		12, 8, 0x0f, 0, sidetone_vol_tlv),
1060 	SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL,
1061 		6, 0, 0x3f, 1, dac_vol_tlv),
1062 	SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL,
1063 		8, 37, 0, fepga_gain_tlv),
1064 	SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL,
1065 		0, 8, 0xff, 0, crosstalk_vol_tlv),
1066 
1067 	SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum),
1068 	SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum),
1069 	/* programmable biquad filter */
1070 	SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum),
1071 	SND_SOC_BYTES_EXT("BIQ Coefficients", 20,
1072 		  nau8825_biq_coeff_get, nau8825_biq_coeff_put),
1073 };
1074 
1075 /* DAC Mux 0x33[9] and 0x34[9] */
1076 static const char * const nau8825_dac_src[] = {
1077 	"DACL", "DACR",
1078 };
1079 
1080 static SOC_ENUM_SINGLE_DECL(
1081 	nau8825_dacl_enum, NAU8825_REG_DACL_CTRL,
1082 	NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src);
1083 
1084 static SOC_ENUM_SINGLE_DECL(
1085 	nau8825_dacr_enum, NAU8825_REG_DACR_CTRL,
1086 	NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src);
1087 
1088 static const struct snd_kcontrol_new nau8825_dacl_mux =
1089 	SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum);
1090 
1091 static const struct snd_kcontrol_new nau8825_dacr_mux =
1092 	SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum);
1093 
1094 
1095 static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = {
1096 	SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2,
1097 		15, 1),
1098 
1099 	SND_SOC_DAPM_INPUT("MIC"),
1100 	SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0),
1101 
1102 	SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0,
1103 		NULL, 0),
1104 
1105 	SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0,
1106 		nau8825_adc_event, SND_SOC_DAPM_POST_PMU |
1107 		SND_SOC_DAPM_POST_PMD),
1108 	SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0),
1109 	SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL,
1110 		0),
1111 
1112 	/* ADC for button press detection. A dapm supply widget is used to
1113 	 * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON
1114 	 * during suspend.
1115 	 */
1116 	SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL,
1117 		NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0),
1118 
1119 	SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0),
1120 	SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0),
1121 	SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0),
1122 	SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0),
1123 
1124 	SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL,
1125 		NAU8825_ENABLE_DACR_SFT, 0),
1126 	SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL,
1127 		NAU8825_ENABLE_DACL_SFT, 0),
1128 	SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0),
1129 
1130 	SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux),
1131 	SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux),
1132 
1133 	SND_SOC_DAPM_PGA_S("HP amp L", 0,
1134 		NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0),
1135 	SND_SOC_DAPM_PGA_S("HP amp R", 0,
1136 		NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0),
1137 
1138 	SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0,
1139 		nau8825_pump_event, SND_SOC_DAPM_POST_PMU |
1140 		SND_SOC_DAPM_PRE_PMD),
1141 
1142 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4,
1143 		NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0),
1144 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4,
1145 		NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0),
1146 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5,
1147 		NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0),
1148 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5,
1149 		NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0),
1150 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6,
1151 		NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0),
1152 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6,
1153 		NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0),
1154 
1155 	SND_SOC_DAPM_PGA_S("Output DACL", 7,
1156 		NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event,
1157 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1158 	SND_SOC_DAPM_PGA_S("Output DACR", 7,
1159 		NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event,
1160 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1161 
1162 	/* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */
1163 	SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8,
1164 		NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0),
1165 	SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8,
1166 		NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0),
1167 
1168 	/* High current HPOL/R boost driver */
1169 	SND_SOC_DAPM_PGA_S("HP Boost Driver", 9,
1170 		NAU8825_REG_BOOST, 9, 1, NULL, 0),
1171 
1172 	/* Class G operation control*/
1173 	SND_SOC_DAPM_PGA_S("Class G", 10,
1174 		NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0),
1175 
1176 	SND_SOC_DAPM_OUTPUT("HPOL"),
1177 	SND_SOC_DAPM_OUTPUT("HPOR"),
1178 };
1179 
1180 static const struct snd_soc_dapm_route nau8825_dapm_routes[] = {
1181 	{"Frontend PGA", NULL, "MIC"},
1182 	{"ADC", NULL, "Frontend PGA"},
1183 	{"ADC", NULL, "ADC Clock"},
1184 	{"ADC", NULL, "ADC Power"},
1185 	{"AIFTX", NULL, "ADC"},
1186 
1187 	{"DDACL", NULL, "Playback"},
1188 	{"DDACR", NULL, "Playback"},
1189 	{"DDACL", NULL, "DDAC Clock"},
1190 	{"DDACR", NULL, "DDAC Clock"},
1191 	{"DACL Mux", "DACL", "DDACL"},
1192 	{"DACL Mux", "DACR", "DDACR"},
1193 	{"DACR Mux", "DACL", "DDACL"},
1194 	{"DACR Mux", "DACR", "DDACR"},
1195 	{"HP amp L", NULL, "DACL Mux"},
1196 	{"HP amp R", NULL, "DACR Mux"},
1197 	{"Charge Pump", NULL, "HP amp L"},
1198 	{"Charge Pump", NULL, "HP amp R"},
1199 	{"ADACL", NULL, "Charge Pump"},
1200 	{"ADACR", NULL, "Charge Pump"},
1201 	{"ADACL Clock", NULL, "ADACL"},
1202 	{"ADACR Clock", NULL, "ADACR"},
1203 	{"Output Driver L Stage 1", NULL, "ADACL Clock"},
1204 	{"Output Driver R Stage 1", NULL, "ADACR Clock"},
1205 	{"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"},
1206 	{"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"},
1207 	{"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"},
1208 	{"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"},
1209 	{"Output DACL", NULL, "Output Driver L Stage 3"},
1210 	{"Output DACR", NULL, "Output Driver R Stage 3"},
1211 	{"HPOL Pulldown", NULL, "Output DACL"},
1212 	{"HPOR Pulldown", NULL, "Output DACR"},
1213 	{"HP Boost Driver", NULL, "HPOL Pulldown"},
1214 	{"HP Boost Driver", NULL, "HPOR Pulldown"},
1215 	{"Class G", NULL, "HP Boost Driver"},
1216 	{"HPOL", NULL, "Class G"},
1217 	{"HPOR", NULL, "Class G"},
1218 };
1219 
1220 static int nau8825_clock_check(struct nau8825 *nau8825,
1221 	int stream, int rate, int osr)
1222 {
1223 	int osrate;
1224 
1225 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
1226 		if (osr >= ARRAY_SIZE(osr_dac_sel))
1227 			return -EINVAL;
1228 		osrate = osr_dac_sel[osr].osr;
1229 	} else {
1230 		if (osr >= ARRAY_SIZE(osr_adc_sel))
1231 			return -EINVAL;
1232 		osrate = osr_adc_sel[osr].osr;
1233 	}
1234 
1235 	if (!osrate || rate * osr > CLK_DA_AD_MAX) {
1236 		dev_err(nau8825->dev, "exceed the maximum frequency of CLK_ADC or CLK_DAC\n");
1237 		return -EINVAL;
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 static int nau8825_hw_params(struct snd_pcm_substream *substream,
1244 				struct snd_pcm_hw_params *params,
1245 				struct snd_soc_dai *dai)
1246 {
1247 	struct snd_soc_component *component = dai->component;
1248 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1249 	unsigned int val_len = 0, osr, ctrl_val, bclk_fs, bclk_div;
1250 
1251 	nau8825_sema_acquire(nau8825, 3 * HZ);
1252 
1253 	/* CLK_DAC or CLK_ADC = OSR * FS
1254 	 * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR)
1255 	 * multiplied by the audio sample rate (Fs). Note that the OSR and Fs
1256 	 * values must be selected such that the maximum frequency is less
1257 	 * than 6.144 MHz.
1258 	 */
1259 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1260 		regmap_read(nau8825->regmap, NAU8825_REG_DAC_CTRL1, &osr);
1261 		osr &= NAU8825_DAC_OVERSAMPLE_MASK;
1262 		if (nau8825_clock_check(nau8825, substream->stream,
1263 			params_rate(params), osr)) {
1264 			nau8825_sema_release(nau8825);
1265 			return -EINVAL;
1266 		}
1267 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1268 			NAU8825_CLK_DAC_SRC_MASK,
1269 			osr_dac_sel[osr].clk_src << NAU8825_CLK_DAC_SRC_SFT);
1270 	} else {
1271 		regmap_read(nau8825->regmap, NAU8825_REG_ADC_RATE, &osr);
1272 		osr &= NAU8825_ADC_SYNC_DOWN_MASK;
1273 		if (nau8825_clock_check(nau8825, substream->stream,
1274 			params_rate(params), osr)) {
1275 			nau8825_sema_release(nau8825);
1276 			return -EINVAL;
1277 		}
1278 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1279 			NAU8825_CLK_ADC_SRC_MASK,
1280 			osr_adc_sel[osr].clk_src << NAU8825_CLK_ADC_SRC_SFT);
1281 	}
1282 
1283 	/* make BCLK and LRC divde configuration if the codec as master. */
1284 	regmap_read(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, &ctrl_val);
1285 	if (ctrl_val & NAU8825_I2S_MS_MASTER) {
1286 		/* get the bclk and fs ratio */
1287 		bclk_fs = snd_soc_params_to_bclk(params) / params_rate(params);
1288 		if (bclk_fs <= 32)
1289 			bclk_div = 2;
1290 		else if (bclk_fs <= 64)
1291 			bclk_div = 1;
1292 		else if (bclk_fs <= 128)
1293 			bclk_div = 0;
1294 		else {
1295 			nau8825_sema_release(nau8825);
1296 			return -EINVAL;
1297 		}
1298 		regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1299 			NAU8825_I2S_LRC_DIV_MASK | NAU8825_I2S_BLK_DIV_MASK,
1300 			((bclk_div + 1) << NAU8825_I2S_LRC_DIV_SFT) | bclk_div);
1301 	}
1302 
1303 	switch (params_width(params)) {
1304 	case 16:
1305 		val_len |= NAU8825_I2S_DL_16;
1306 		break;
1307 	case 20:
1308 		val_len |= NAU8825_I2S_DL_20;
1309 		break;
1310 	case 24:
1311 		val_len |= NAU8825_I2S_DL_24;
1312 		break;
1313 	case 32:
1314 		val_len |= NAU8825_I2S_DL_32;
1315 		break;
1316 	default:
1317 		nau8825_sema_release(nau8825);
1318 		return -EINVAL;
1319 	}
1320 
1321 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1322 		NAU8825_I2S_DL_MASK, val_len);
1323 
1324 	/* Release the semaphore. */
1325 	nau8825_sema_release(nau8825);
1326 
1327 	return 0;
1328 }
1329 
1330 static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
1331 {
1332 	struct snd_soc_component *component = codec_dai->component;
1333 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1334 	unsigned int ctrl1_val = 0, ctrl2_val = 0;
1335 
1336 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1337 	case SND_SOC_DAIFMT_CBM_CFM:
1338 		ctrl2_val |= NAU8825_I2S_MS_MASTER;
1339 		break;
1340 	case SND_SOC_DAIFMT_CBS_CFS:
1341 		break;
1342 	default:
1343 		return -EINVAL;
1344 	}
1345 
1346 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1347 	case SND_SOC_DAIFMT_NB_NF:
1348 		break;
1349 	case SND_SOC_DAIFMT_IB_NF:
1350 		ctrl1_val |= NAU8825_I2S_BP_INV;
1351 		break;
1352 	default:
1353 		return -EINVAL;
1354 	}
1355 
1356 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1357 	case SND_SOC_DAIFMT_I2S:
1358 		ctrl1_val |= NAU8825_I2S_DF_I2S;
1359 		break;
1360 	case SND_SOC_DAIFMT_LEFT_J:
1361 		ctrl1_val |= NAU8825_I2S_DF_LEFT;
1362 		break;
1363 	case SND_SOC_DAIFMT_RIGHT_J:
1364 		ctrl1_val |= NAU8825_I2S_DF_RIGTH;
1365 		break;
1366 	case SND_SOC_DAIFMT_DSP_A:
1367 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1368 		break;
1369 	case SND_SOC_DAIFMT_DSP_B:
1370 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1371 		ctrl1_val |= NAU8825_I2S_PCMB_EN;
1372 		break;
1373 	default:
1374 		return -EINVAL;
1375 	}
1376 
1377 	nau8825_sema_acquire(nau8825, 3 * HZ);
1378 
1379 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1380 		NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK |
1381 		NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK,
1382 		ctrl1_val);
1383 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1384 		NAU8825_I2S_MS_MASK, ctrl2_val);
1385 
1386 	/* Release the semaphore. */
1387 	nau8825_sema_release(nau8825);
1388 
1389 	return 0;
1390 }
1391 
1392 static const struct snd_soc_dai_ops nau8825_dai_ops = {
1393 	.hw_params	= nau8825_hw_params,
1394 	.set_fmt	= nau8825_set_dai_fmt,
1395 };
1396 
1397 #define NAU8825_RATES	SNDRV_PCM_RATE_8000_192000
1398 #define NAU8825_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
1399 			 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1400 
1401 static struct snd_soc_dai_driver nau8825_dai = {
1402 	.name = "nau8825-hifi",
1403 	.playback = {
1404 		.stream_name	 = "Playback",
1405 		.channels_min	 = 1,
1406 		.channels_max	 = 2,
1407 		.rates		 = NAU8825_RATES,
1408 		.formats	 = NAU8825_FORMATS,
1409 	},
1410 	.capture = {
1411 		.stream_name	 = "Capture",
1412 		.channels_min	 = 1,
1413 		.channels_max	 = 1,
1414 		.rates		 = NAU8825_RATES,
1415 		.formats	 = NAU8825_FORMATS,
1416 	},
1417 	.ops = &nau8825_dai_ops,
1418 };
1419 
1420 /**
1421  * nau8825_enable_jack_detect - Specify a jack for event reporting
1422  *
1423  * @component:  component to register the jack with
1424  * @jack: jack to use to report headset and button events on
1425  *
1426  * After this function has been called the headset insert/remove and button
1427  * events will be routed to the given jack.  Jack can be null to stop
1428  * reporting.
1429  */
1430 int nau8825_enable_jack_detect(struct snd_soc_component *component,
1431 				struct snd_soc_jack *jack)
1432 {
1433 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1434 	struct regmap *regmap = nau8825->regmap;
1435 
1436 	nau8825->jack = jack;
1437 
1438 	/* Ground HP Outputs[1:0], needed for headset auto detection
1439 	 * Enable Automatic Mic/Gnd switching reading on insert interrupt[6]
1440 	 */
1441 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1442 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
1443 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
1444 
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect);
1448 
1449 
1450 static bool nau8825_is_jack_inserted(struct regmap *regmap)
1451 {
1452 	bool active_high, is_high;
1453 	int status, jkdet;
1454 
1455 	regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet);
1456 	active_high = jkdet & NAU8825_JACK_POLARITY;
1457 	regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status);
1458 	is_high = status & NAU8825_GPIO2JD1;
1459 	/* return jack connection status according to jack insertion logic
1460 	 * active high or active low.
1461 	 */
1462 	return active_high == is_high;
1463 }
1464 
1465 static void nau8825_restart_jack_detection(struct regmap *regmap)
1466 {
1467 	/* this will restart the entire jack detection process including MIC/GND
1468 	 * switching and create interrupts. We have to go from 0 to 1 and back
1469 	 * to 0 to restart.
1470 	 */
1471 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1472 		NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART);
1473 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1474 		NAU8825_JACK_DET_RESTART, 0);
1475 }
1476 
1477 static void nau8825_int_status_clear_all(struct regmap *regmap)
1478 {
1479 	int active_irq, clear_irq, i;
1480 
1481 	/* Reset the intrruption status from rightmost bit if the corres-
1482 	 * ponding irq event occurs.
1483 	 */
1484 	regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq);
1485 	for (i = 0; i < NAU8825_REG_DATA_LEN; i++) {
1486 		clear_irq = (0x1 << i);
1487 		if (active_irq & clear_irq)
1488 			regmap_write(regmap,
1489 				NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1490 	}
1491 }
1492 
1493 static void nau8825_eject_jack(struct nau8825 *nau8825)
1494 {
1495 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1496 	struct regmap *regmap = nau8825->regmap;
1497 
1498 	/* Force to cancel the cross talk detection process */
1499 	nau8825_xtalk_cancel(nau8825);
1500 
1501 	snd_soc_dapm_disable_pin(dapm, "SAR");
1502 	snd_soc_dapm_disable_pin(dapm, "MICBIAS");
1503 	/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
1504 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1505 		NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
1506 	/* ground HPL/HPR, MICGRND1/2 */
1507 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf);
1508 
1509 	snd_soc_dapm_sync(dapm);
1510 
1511 	/* Clear all interruption status */
1512 	nau8825_int_status_clear_all(regmap);
1513 
1514 	/* Enable the insertion interruption, disable the ejection inter-
1515 	 * ruption, and then bypass de-bounce circuit.
1516 	 */
1517 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
1518 		NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS,
1519 		NAU8825_IRQ_EJECT_DIS);
1520 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1521 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1522 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN,
1523 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1524 		NAU8825_IRQ_HEADSET_COMPLETE_EN);
1525 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1526 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
1527 
1528 	/* Disable ADC needed for interruptions at audo mode */
1529 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1530 		NAU8825_ENABLE_ADC, 0);
1531 
1532 	/* Close clock for jack type detection at manual mode */
1533 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1534 }
1535 
1536 /* Enable audo mode interruptions with internal clock. */
1537 static void nau8825_setup_auto_irq(struct nau8825 *nau8825)
1538 {
1539 	struct regmap *regmap = nau8825->regmap;
1540 
1541 	/* Enable headset jack type detection complete interruption and
1542 	 * jack ejection interruption.
1543 	 */
1544 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1545 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0);
1546 
1547 	/* Enable internal VCO needed for interruptions */
1548 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
1549 
1550 	/* Enable ADC needed for interruptions */
1551 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1552 		NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
1553 
1554 	/* Chip needs one FSCLK cycle in order to generate interruptions,
1555 	 * as we cannot guarantee one will be provided by the system. Turning
1556 	 * master mode on then off enables us to generate that FSCLK cycle
1557 	 * with a minimum of contention on the clock bus.
1558 	 */
1559 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1560 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER);
1561 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1562 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE);
1563 
1564 	/* Not bypass de-bounce circuit */
1565 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1566 		NAU8825_JACK_DET_DB_BYPASS, 0);
1567 
1568 	/* Unmask all interruptions */
1569 	regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0);
1570 
1571 	/* Restart the jack detection process at auto mode */
1572 	nau8825_restart_jack_detection(regmap);
1573 }
1574 
1575 static int nau8825_button_decode(int value)
1576 {
1577 	int buttons = 0;
1578 
1579 	/* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */
1580 	if (value & BIT(0))
1581 		buttons |= SND_JACK_BTN_0;
1582 	if (value & BIT(1))
1583 		buttons |= SND_JACK_BTN_1;
1584 	if (value & BIT(2))
1585 		buttons |= SND_JACK_BTN_2;
1586 	if (value & BIT(3))
1587 		buttons |= SND_JACK_BTN_3;
1588 	if (value & BIT(4))
1589 		buttons |= SND_JACK_BTN_4;
1590 	if (value & BIT(5))
1591 		buttons |= SND_JACK_BTN_5;
1592 
1593 	return buttons;
1594 }
1595 
1596 static int nau8825_jack_insert(struct nau8825 *nau8825)
1597 {
1598 	struct regmap *regmap = nau8825->regmap;
1599 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1600 	int jack_status_reg, mic_detected;
1601 	int type = 0;
1602 
1603 	regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg);
1604 	mic_detected = (jack_status_reg >> 10) & 3;
1605 	/* The JKSLV and JKR2 all detected in high impedance headset */
1606 	if (mic_detected == 0x3)
1607 		nau8825->high_imped = true;
1608 	else
1609 		nau8825->high_imped = false;
1610 
1611 	switch (mic_detected) {
1612 	case 0:
1613 		/* no mic */
1614 		type = SND_JACK_HEADPHONE;
1615 		break;
1616 	case 1:
1617 		dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n");
1618 		type = SND_JACK_HEADSET;
1619 
1620 		/* Unground MICGND1 */
1621 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1622 			1 << 2);
1623 		/* Attach 2kOhm Resistor from MICBIAS to MICGND1 */
1624 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1625 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1626 			NAU8825_MICBIAS_JKR2);
1627 		/* Attach SARADC to MICGND1 */
1628 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1629 			NAU8825_SAR_INPUT_MASK,
1630 			NAU8825_SAR_INPUT_JKR2);
1631 
1632 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1633 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1634 		snd_soc_dapm_sync(dapm);
1635 		break;
1636 	case 2:
1637 		dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n");
1638 		type = SND_JACK_HEADSET;
1639 
1640 		/* Unground MICGND2 */
1641 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1642 			2 << 2);
1643 		/* Attach 2kOhm Resistor from MICBIAS to MICGND2 */
1644 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1645 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1646 			NAU8825_MICBIAS_JKSLV);
1647 		/* Attach SARADC to MICGND2 */
1648 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1649 			NAU8825_SAR_INPUT_MASK,
1650 			NAU8825_SAR_INPUT_JKSLV);
1651 
1652 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1653 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1654 		snd_soc_dapm_sync(dapm);
1655 		break;
1656 	case 3:
1657 		/* detect error case */
1658 		dev_err(nau8825->dev, "detection error; disable mic function\n");
1659 		type = SND_JACK_HEADPHONE;
1660 		break;
1661 	}
1662 
1663 	/* Leaving HPOL/R grounded after jack insert by default. They will be
1664 	 * ungrounded as part of the widget power up sequence at the beginning
1665 	 * of playback to reduce pop.
1666 	 */
1667 	return type;
1668 }
1669 
1670 #define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \
1671 		SND_JACK_BTN_2 | SND_JACK_BTN_3)
1672 
1673 static irqreturn_t nau8825_interrupt(int irq, void *data)
1674 {
1675 	struct nau8825 *nau8825 = (struct nau8825 *)data;
1676 	struct regmap *regmap = nau8825->regmap;
1677 	int active_irq, clear_irq = 0, event = 0, event_mask = 0;
1678 
1679 	if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) {
1680 		dev_err(nau8825->dev, "failed to read irq status\n");
1681 		return IRQ_NONE;
1682 	}
1683 
1684 	if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) ==
1685 		NAU8825_JACK_EJECTION_DETECTED) {
1686 
1687 		nau8825_eject_jack(nau8825);
1688 		event_mask |= SND_JACK_HEADSET;
1689 		clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK;
1690 	} else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) {
1691 		int key_status;
1692 
1693 		regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS,
1694 			&key_status);
1695 
1696 		/* upper 8 bits of the register are for short pressed keys,
1697 		 * lower 8 bits - for long pressed buttons
1698 		 */
1699 		nau8825->button_pressed = nau8825_button_decode(
1700 			key_status >> 8);
1701 
1702 		event |= nau8825->button_pressed;
1703 		event_mask |= NAU8825_BUTTONS;
1704 		clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ;
1705 	} else if (active_irq & NAU8825_KEY_RELEASE_IRQ) {
1706 		event_mask = NAU8825_BUTTONS;
1707 		clear_irq = NAU8825_KEY_RELEASE_IRQ;
1708 	} else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) {
1709 		if (nau8825_is_jack_inserted(regmap)) {
1710 			event |= nau8825_jack_insert(nau8825);
1711 			if (nau8825->xtalk_enable && !nau8825->high_imped) {
1712 				/* Apply the cross talk suppression in the
1713 				 * headset without high impedance.
1714 				 */
1715 				if (!nau8825->xtalk_protect) {
1716 					/* Raise protection for cross talk de-
1717 					 * tection if no protection before.
1718 					 * The driver has to cancel the pro-
1719 					 * cess and restore changes if process
1720 					 * is ongoing when ejection.
1721 					 */
1722 					int ret;
1723 					nau8825->xtalk_protect = true;
1724 					ret = nau8825_sema_acquire(nau8825, 0);
1725 					if (ret)
1726 						nau8825->xtalk_protect = false;
1727 				}
1728 				/* Startup cross talk detection process */
1729 				if (nau8825->xtalk_protect) {
1730 					nau8825->xtalk_state =
1731 						NAU8825_XTALK_PREPARE;
1732 					schedule_work(&nau8825->xtalk_work);
1733 				}
1734 			} else {
1735 				/* The cross talk suppression shouldn't apply
1736 				 * in the headset with high impedance. Thus,
1737 				 * relieve the protection raised before.
1738 				 */
1739 				if (nau8825->xtalk_protect) {
1740 					nau8825_sema_release(nau8825);
1741 					nau8825->xtalk_protect = false;
1742 				}
1743 			}
1744 		} else {
1745 			dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n");
1746 			nau8825_eject_jack(nau8825);
1747 		}
1748 
1749 		event_mask |= SND_JACK_HEADSET;
1750 		clear_irq = NAU8825_HEADSET_COMPLETION_IRQ;
1751 		/* Record the interruption report event for driver to report
1752 		 * the event later. The jack report will delay until cross
1753 		 * talk detection process is done.
1754 		 */
1755 		if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) {
1756 			nau8825->xtalk_event = event;
1757 			nau8825->xtalk_event_mask = event_mask;
1758 		}
1759 	} else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) {
1760 		/* crosstalk detection enable and process on going */
1761 		if (nau8825->xtalk_enable && nau8825->xtalk_protect)
1762 			schedule_work(&nau8825->xtalk_work);
1763 		clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ;
1764 	} else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) ==
1765 		NAU8825_JACK_INSERTION_DETECTED) {
1766 		/* One more step to check GPIO status directly. Thus, the
1767 		 * driver can confirm the real insertion interruption because
1768 		 * the intrruption at manual mode has bypassed debounce
1769 		 * circuit which can get rid of unstable status.
1770 		 */
1771 		if (nau8825_is_jack_inserted(regmap)) {
1772 			/* Turn off insertion interruption at manual mode */
1773 			regmap_update_bits(regmap,
1774 				NAU8825_REG_INTERRUPT_DIS_CTRL,
1775 				NAU8825_IRQ_INSERT_DIS,
1776 				NAU8825_IRQ_INSERT_DIS);
1777 			regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1778 				NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN);
1779 			/* Enable interruption for jack type detection at audo
1780 			 * mode which can detect microphone and jack type.
1781 			 */
1782 			nau8825_setup_auto_irq(nau8825);
1783 		}
1784 	}
1785 
1786 	if (!clear_irq)
1787 		clear_irq = active_irq;
1788 	/* clears the rightmost interruption */
1789 	regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1790 
1791 	/* Delay jack report until cross talk detection is done. It can avoid
1792 	 * application to do playback preparation when cross talk detection
1793 	 * process is still working. Otherwise, the resource like clock and
1794 	 * power will be issued by them at the same time and conflict happens.
1795 	 */
1796 	if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE)
1797 		snd_soc_jack_report(nau8825->jack, event, event_mask);
1798 
1799 	return IRQ_HANDLED;
1800 }
1801 
1802 static void nau8825_setup_buttons(struct nau8825 *nau8825)
1803 {
1804 	struct regmap *regmap = nau8825->regmap;
1805 
1806 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1807 		NAU8825_SAR_TRACKING_GAIN_MASK,
1808 		nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT);
1809 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1810 		NAU8825_SAR_COMPARE_TIME_MASK,
1811 		nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT);
1812 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1813 		NAU8825_SAR_SAMPLING_TIME_MASK,
1814 		nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT);
1815 
1816 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1817 		NAU8825_KEYDET_LEVELS_NR_MASK,
1818 		(nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT);
1819 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1820 		NAU8825_KEYDET_HYSTERESIS_MASK,
1821 		nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT);
1822 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1823 		NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK,
1824 		nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT);
1825 
1826 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1,
1827 		(nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]);
1828 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2,
1829 		(nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]);
1830 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3,
1831 		(nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]);
1832 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4,
1833 		(nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]);
1834 
1835 	/* Enable short press and release interruptions */
1836 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1837 		NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN,
1838 		0);
1839 }
1840 
1841 static void nau8825_init_regs(struct nau8825 *nau8825)
1842 {
1843 	struct regmap *regmap = nau8825->regmap;
1844 
1845 	/* Latch IIC LSB value */
1846 	regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001);
1847 	/* Enable Bias/Vmid */
1848 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1849 		NAU8825_BIAS_VMID, NAU8825_BIAS_VMID);
1850 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
1851 		NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN);
1852 
1853 	/* VMID Tieoff */
1854 	regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ,
1855 		NAU8825_BIAS_VMID_SEL_MASK,
1856 		nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT);
1857 	/* Disable Boost Driver, Automatic Short circuit protection enable */
1858 	regmap_update_bits(regmap, NAU8825_REG_BOOST,
1859 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1860 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN,
1861 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1862 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN);
1863 
1864 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1865 		NAU8825_JKDET_OUTPUT_EN,
1866 		nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN);
1867 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1868 		NAU8825_JKDET_PULL_EN,
1869 		nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN);
1870 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1871 		NAU8825_JKDET_PULL_UP,
1872 		nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0);
1873 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1874 		NAU8825_JACK_POLARITY,
1875 		/* jkdet_polarity - 1  is for active-low */
1876 		nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY);
1877 
1878 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1879 		NAU8825_JACK_INSERT_DEBOUNCE_MASK,
1880 		nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT);
1881 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1882 		NAU8825_JACK_EJECT_DEBOUNCE_MASK,
1883 		nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT);
1884 
1885 	/* Mask unneeded IRQs: 1 - disable, 0 - enable */
1886 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff);
1887 
1888 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1889 		NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage);
1890 
1891 	if (nau8825->sar_threshold_num)
1892 		nau8825_setup_buttons(nau8825);
1893 
1894 	/* Default oversampling/decimations settings are unusable
1895 	 * (audible hiss). Set it to something better.
1896 	 */
1897 	regmap_update_bits(regmap, NAU8825_REG_ADC_RATE,
1898 		NAU8825_ADC_SYNC_DOWN_MASK | NAU8825_ADC_SINC4_EN,
1899 		NAU8825_ADC_SYNC_DOWN_64);
1900 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1901 		NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_64);
1902 	/* Disable DACR/L power */
1903 	regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP,
1904 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
1905 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
1906 	/* Enable TESTDAC. This sets the analog DAC inputs to a '0' input
1907 	 * signal to avoid any glitches due to power up transients in both
1908 	 * the analog and digital DAC circuit.
1909 	 */
1910 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1911 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
1912 	/* CICCLP off */
1913 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1914 		NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF);
1915 
1916 	/* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */
1917 	regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2,
1918 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1919 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB,
1920 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1921 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB);
1922 	/* Class G timer 64ms */
1923 	regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL,
1924 		NAU8825_CLASSG_TIMER_MASK,
1925 		0x20 << NAU8825_CLASSG_TIMER_SFT);
1926 	/* DAC clock delay 2ns, VREF */
1927 	regmap_update_bits(regmap, NAU8825_REG_RDAC,
1928 		NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK,
1929 		(0x2 << NAU8825_RDAC_CLK_DELAY_SFT) |
1930 		(0x3 << NAU8825_RDAC_VREF_SFT));
1931 	/* Config L/R channel */
1932 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
1933 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L);
1934 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
1935 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R);
1936 	/* Disable short Frame Sync detection logic */
1937 	regmap_update_bits(regmap, NAU8825_REG_LEFT_TIME_SLOT,
1938 		NAU8825_DIS_FS_SHORT_DET, NAU8825_DIS_FS_SHORT_DET);
1939 }
1940 
1941 static const struct regmap_config nau8825_regmap_config = {
1942 	.val_bits = NAU8825_REG_DATA_LEN,
1943 	.reg_bits = NAU8825_REG_ADDR_LEN,
1944 
1945 	.max_register = NAU8825_REG_MAX,
1946 	.readable_reg = nau8825_readable_reg,
1947 	.writeable_reg = nau8825_writeable_reg,
1948 	.volatile_reg = nau8825_volatile_reg,
1949 
1950 	.cache_type = REGCACHE_RBTREE,
1951 	.reg_defaults = nau8825_reg_defaults,
1952 	.num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults),
1953 };
1954 
1955 static int nau8825_component_probe(struct snd_soc_component *component)
1956 {
1957 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1958 	struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
1959 
1960 	nau8825->dapm = dapm;
1961 
1962 	return 0;
1963 }
1964 
1965 static void nau8825_component_remove(struct snd_soc_component *component)
1966 {
1967 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1968 
1969 	/* Cancel and reset cross tak suppresstion detection funciton */
1970 	nau8825_xtalk_cancel(nau8825);
1971 }
1972 
1973 /**
1974  * nau8825_calc_fll_param - Calculate FLL parameters.
1975  * @fll_in: external clock provided to codec.
1976  * @fs: sampling rate.
1977  * @fll_param: Pointer to structure of FLL parameters.
1978  *
1979  * Calculate FLL parameters to configure codec.
1980  *
1981  * Returns 0 for success or negative error code.
1982  */
1983 static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs,
1984 		struct nau8825_fll *fll_param)
1985 {
1986 	u64 fvco, fvco_max;
1987 	unsigned int fref, i, fvco_sel;
1988 
1989 	/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
1990 	 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
1991 	 * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK
1992 	 */
1993 	for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
1994 		fref = fll_in / fll_pre_scalar[i].param;
1995 		if (fref <= NAU_FREF_MAX)
1996 			break;
1997 	}
1998 	if (i == ARRAY_SIZE(fll_pre_scalar))
1999 		return -EINVAL;
2000 	fll_param->clk_ref_div = fll_pre_scalar[i].val;
2001 
2002 	/* Choose the FLL ratio based on FREF */
2003 	for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
2004 		if (fref >= fll_ratio[i].param)
2005 			break;
2006 	}
2007 	if (i == ARRAY_SIZE(fll_ratio))
2008 		return -EINVAL;
2009 	fll_param->ratio = fll_ratio[i].val;
2010 
2011 	/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
2012 	 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be
2013 	 * guaranteed across the full range of operation.
2014 	 * FDCO = freq_out * 2 * mclk_src_scaling
2015 	 */
2016 	fvco_max = 0;
2017 	fvco_sel = ARRAY_SIZE(mclk_src_scaling);
2018 	for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
2019 		fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param;
2020 		if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
2021 			fvco_max < fvco) {
2022 			fvco_max = fvco;
2023 			fvco_sel = i;
2024 		}
2025 	}
2026 	if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
2027 		return -EINVAL;
2028 	fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
2029 
2030 	/* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
2031 	 * input based on FDCO, FREF and FLL ratio.
2032 	 */
2033 	fvco = div_u64(fvco_max << 16, fref * fll_param->ratio);
2034 	fll_param->fll_int = (fvco >> 16) & 0x3FF;
2035 	fll_param->fll_frac = fvco & 0xFFFF;
2036 	return 0;
2037 }
2038 
2039 static void nau8825_fll_apply(struct nau8825 *nau8825,
2040 		struct nau8825_fll *fll_param)
2041 {
2042 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2043 		NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK,
2044 		NAU8825_CLK_SRC_MCLK | fll_param->mclk_src);
2045 	/* Make DSP operate at high speed for better performance. */
2046 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
2047 		NAU8825_FLL_RATIO_MASK | NAU8825_ICTRL_LATCH_MASK,
2048 		fll_param->ratio | (0x6 << NAU8825_ICTRL_LATCH_SFT));
2049 	/* FLL 16-bit fractional input */
2050 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac);
2051 	/* FLL 10-bit integer input */
2052 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3,
2053 			NAU8825_FLL_INTEGER_MASK, fll_param->fll_int);
2054 	/* FLL pre-scaler */
2055 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4,
2056 			NAU8825_FLL_REF_DIV_MASK,
2057 			fll_param->clk_ref_div << NAU8825_FLL_REF_DIV_SFT);
2058 	/* select divided VCO input */
2059 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2060 		NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF);
2061 	/* Disable free-running mode */
2062 	regmap_update_bits(nau8825->regmap,
2063 		NAU8825_REG_FLL6, NAU8825_DCO_EN, 0);
2064 	if (fll_param->fll_frac) {
2065 		/* set FLL loop filter enable and cutoff frequency at 500Khz */
2066 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2067 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2068 			NAU8825_FLL_FTR_SW_MASK,
2069 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2070 			NAU8825_FLL_FTR_SW_FILTER);
2071 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2072 			NAU8825_SDM_EN | NAU8825_CUTOFF500,
2073 			NAU8825_SDM_EN | NAU8825_CUTOFF500);
2074 	} else {
2075 		/* disable FLL loop filter and cutoff frequency */
2076 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2077 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2078 			NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU);
2079 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2080 			NAU8825_SDM_EN | NAU8825_CUTOFF500, 0);
2081 	}
2082 }
2083 
2084 /* freq_out must be 256*Fs in order to achieve the best performance */
2085 static int nau8825_set_pll(struct snd_soc_component *component, int pll_id, int source,
2086 		unsigned int freq_in, unsigned int freq_out)
2087 {
2088 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2089 	struct nau8825_fll fll_param;
2090 	int ret, fs;
2091 
2092 	fs = freq_out / 256;
2093 	ret = nau8825_calc_fll_param(freq_in, fs, &fll_param);
2094 	if (ret < 0) {
2095 		dev_err(component->dev, "Unsupported input clock %d\n", freq_in);
2096 		return ret;
2097 	}
2098 	dev_dbg(component->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
2099 		fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
2100 		fll_param.fll_int, fll_param.clk_ref_div);
2101 
2102 	nau8825_fll_apply(nau8825, &fll_param);
2103 	mdelay(2);
2104 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2105 			NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2106 	return 0;
2107 }
2108 
2109 static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq)
2110 {
2111 	int ret = 0;
2112 
2113 	nau8825->mclk = devm_clk_get(nau8825->dev, "mclk");
2114 	if (IS_ERR(nau8825->mclk)) {
2115 		dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally");
2116 		return 0;
2117 	}
2118 
2119 	if (!nau8825->mclk_freq) {
2120 		ret = clk_prepare_enable(nau8825->mclk);
2121 		if (ret) {
2122 			dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2123 			return ret;
2124 		}
2125 	}
2126 
2127 	if (nau8825->mclk_freq != freq) {
2128 		freq = clk_round_rate(nau8825->mclk, freq);
2129 		ret = clk_set_rate(nau8825->mclk, freq);
2130 		if (ret) {
2131 			dev_err(nau8825->dev, "Unable to set mclk rate\n");
2132 			return ret;
2133 		}
2134 		nau8825->mclk_freq = freq;
2135 	}
2136 
2137 	return 0;
2138 }
2139 
2140 static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap)
2141 {
2142 	regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2143 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK);
2144 	regmap_update_bits(regmap, NAU8825_REG_FLL6,
2145 		NAU8825_DCO_EN, 0);
2146 	/* Make DSP operate as default setting for power saving. */
2147 	regmap_update_bits(regmap, NAU8825_REG_FLL1,
2148 		NAU8825_ICTRL_LATCH_MASK, 0);
2149 }
2150 
2151 static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id,
2152 	unsigned int freq)
2153 {
2154 	struct regmap *regmap = nau8825->regmap;
2155 	int ret;
2156 
2157 	switch (clk_id) {
2158 	case NAU8825_CLK_DIS:
2159 		/* Clock provided externally and disable internal VCO clock */
2160 		nau8825_configure_mclk_as_sysclk(regmap);
2161 		if (nau8825->mclk_freq) {
2162 			clk_disable_unprepare(nau8825->mclk);
2163 			nau8825->mclk_freq = 0;
2164 		}
2165 
2166 		break;
2167 	case NAU8825_CLK_MCLK:
2168 		/* Acquire the semaphore to synchronize the playback and
2169 		 * interrupt handler. In order to avoid the playback inter-
2170 		 * fered by cross talk process, the driver make the playback
2171 		 * preparation halted until cross talk process finish.
2172 		 */
2173 		nau8825_sema_acquire(nau8825, 3 * HZ);
2174 		nau8825_configure_mclk_as_sysclk(regmap);
2175 		/* MCLK not changed by clock tree */
2176 		regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2177 			NAU8825_CLK_MCLK_SRC_MASK, 0);
2178 		/* Release the semaphore. */
2179 		nau8825_sema_release(nau8825);
2180 
2181 		ret = nau8825_mclk_prepare(nau8825, freq);
2182 		if (ret)
2183 			return ret;
2184 
2185 		break;
2186 	case NAU8825_CLK_INTERNAL:
2187 		if (nau8825_is_jack_inserted(nau8825->regmap)) {
2188 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2189 				NAU8825_DCO_EN, NAU8825_DCO_EN);
2190 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2191 				NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2192 			/* Decrease the VCO frequency and make DSP operate
2193 			 * as default setting for power saving.
2194 			 */
2195 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2196 				NAU8825_CLK_MCLK_SRC_MASK, 0xf);
2197 			regmap_update_bits(regmap, NAU8825_REG_FLL1,
2198 				NAU8825_ICTRL_LATCH_MASK |
2199 				NAU8825_FLL_RATIO_MASK, 0x10);
2200 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2201 				NAU8825_SDM_EN, NAU8825_SDM_EN);
2202 		} else {
2203 			/* The clock turns off intentionally for power saving
2204 			 * when no headset connected.
2205 			 */
2206 			nau8825_configure_mclk_as_sysclk(regmap);
2207 			dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n");
2208 		}
2209 		if (nau8825->mclk_freq) {
2210 			clk_disable_unprepare(nau8825->mclk);
2211 			nau8825->mclk_freq = 0;
2212 		}
2213 
2214 		break;
2215 	case NAU8825_CLK_FLL_MCLK:
2216 		/* Acquire the semaphore to synchronize the playback and
2217 		 * interrupt handler. In order to avoid the playback inter-
2218 		 * fered by cross talk process, the driver make the playback
2219 		 * preparation halted until cross talk process finish.
2220 		 */
2221 		nau8825_sema_acquire(nau8825, 3 * HZ);
2222 		/* Higher FLL reference input frequency can only set lower
2223 		 * gain error, such as 0000 for input reference from MCLK
2224 		 * 12.288Mhz.
2225 		 */
2226 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2227 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2228 			NAU8825_FLL_CLK_SRC_MCLK | 0);
2229 		/* Release the semaphore. */
2230 		nau8825_sema_release(nau8825);
2231 
2232 		ret = nau8825_mclk_prepare(nau8825, freq);
2233 		if (ret)
2234 			return ret;
2235 
2236 		break;
2237 	case NAU8825_CLK_FLL_BLK:
2238 		/* Acquire the semaphore to synchronize the playback and
2239 		 * interrupt handler. In order to avoid the playback inter-
2240 		 * fered by cross talk process, the driver make the playback
2241 		 * preparation halted until cross talk process finish.
2242 		 */
2243 		nau8825_sema_acquire(nau8825, 3 * HZ);
2244 		/* If FLL reference input is from low frequency source,
2245 		 * higher error gain can apply such as 0xf which has
2246 		 * the most sensitive gain error correction threshold,
2247 		 * Therefore, FLL has the most accurate DCO to
2248 		 * target frequency.
2249 		 */
2250 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2251 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2252 			NAU8825_FLL_CLK_SRC_BLK |
2253 			(0xf << NAU8825_GAIN_ERR_SFT));
2254 		/* Release the semaphore. */
2255 		nau8825_sema_release(nau8825);
2256 
2257 		if (nau8825->mclk_freq) {
2258 			clk_disable_unprepare(nau8825->mclk);
2259 			nau8825->mclk_freq = 0;
2260 		}
2261 
2262 		break;
2263 	case NAU8825_CLK_FLL_FS:
2264 		/* Acquire the semaphore to synchronize the playback and
2265 		 * interrupt handler. In order to avoid the playback inter-
2266 		 * fered by cross talk process, the driver make the playback
2267 		 * preparation halted until cross talk process finish.
2268 		 */
2269 		nau8825_sema_acquire(nau8825, 3 * HZ);
2270 		/* If FLL reference input is from low frequency source,
2271 		 * higher error gain can apply such as 0xf which has
2272 		 * the most sensitive gain error correction threshold,
2273 		 * Therefore, FLL has the most accurate DCO to
2274 		 * target frequency.
2275 		 */
2276 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2277 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2278 			NAU8825_FLL_CLK_SRC_FS |
2279 			(0xf << NAU8825_GAIN_ERR_SFT));
2280 		/* Release the semaphore. */
2281 		nau8825_sema_release(nau8825);
2282 
2283 		if (nau8825->mclk_freq) {
2284 			clk_disable_unprepare(nau8825->mclk);
2285 			nau8825->mclk_freq = 0;
2286 		}
2287 
2288 		break;
2289 	default:
2290 		dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id);
2291 		return -EINVAL;
2292 	}
2293 
2294 	dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq,
2295 		clk_id);
2296 	return 0;
2297 }
2298 
2299 static int nau8825_set_sysclk(struct snd_soc_component *component, int clk_id,
2300 	int source, unsigned int freq, int dir)
2301 {
2302 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2303 
2304 	return nau8825_configure_sysclk(nau8825, clk_id, freq);
2305 }
2306 
2307 static int nau8825_resume_setup(struct nau8825 *nau8825)
2308 {
2309 	struct regmap *regmap = nau8825->regmap;
2310 
2311 	/* Close clock when jack type detection at manual mode */
2312 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
2313 
2314 	/* Clear all interruption status */
2315 	nau8825_int_status_clear_all(regmap);
2316 
2317 	/* Enable both insertion and ejection interruptions, and then
2318 	 * bypass de-bounce circuit.
2319 	 */
2320 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2321 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN |
2322 		NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN,
2323 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN);
2324 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2325 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
2326 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
2327 		NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0);
2328 
2329 	return 0;
2330 }
2331 
2332 static int nau8825_set_bias_level(struct snd_soc_component *component,
2333 				   enum snd_soc_bias_level level)
2334 {
2335 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2336 	int ret;
2337 
2338 	switch (level) {
2339 	case SND_SOC_BIAS_ON:
2340 		break;
2341 
2342 	case SND_SOC_BIAS_PREPARE:
2343 		break;
2344 
2345 	case SND_SOC_BIAS_STANDBY:
2346 		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
2347 			if (nau8825->mclk_freq) {
2348 				ret = clk_prepare_enable(nau8825->mclk);
2349 				if (ret) {
2350 					dev_err(nau8825->dev, "Unable to prepare component mclk\n");
2351 					return ret;
2352 				}
2353 			}
2354 			/* Setup codec configuration after resume */
2355 			nau8825_resume_setup(nau8825);
2356 		}
2357 		break;
2358 
2359 	case SND_SOC_BIAS_OFF:
2360 		/* Reset the configuration of jack type for detection */
2361 		/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
2362 		regmap_update_bits(nau8825->regmap, NAU8825_REG_MIC_BIAS,
2363 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
2364 		/* ground HPL/HPR, MICGRND1/2 */
2365 		regmap_update_bits(nau8825->regmap,
2366 			NAU8825_REG_HSD_CTRL, 0xf, 0xf);
2367 		/* Cancel and reset cross talk detection funciton */
2368 		nau8825_xtalk_cancel(nau8825);
2369 		/* Turn off all interruptions before system shutdown. Keep the
2370 		 * interruption quiet before resume setup completes.
2371 		 */
2372 		regmap_write(nau8825->regmap,
2373 			NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff);
2374 		/* Disable ADC needed for interruptions at audo mode */
2375 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
2376 			NAU8825_ENABLE_ADC, 0);
2377 		if (nau8825->mclk_freq)
2378 			clk_disable_unprepare(nau8825->mclk);
2379 		break;
2380 	}
2381 	return 0;
2382 }
2383 
2384 static int __maybe_unused nau8825_suspend(struct snd_soc_component *component)
2385 {
2386 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2387 
2388 	disable_irq(nau8825->irq);
2389 	snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF);
2390 	/* Power down codec power; don't suppoet button wakeup */
2391 	snd_soc_dapm_disable_pin(nau8825->dapm, "SAR");
2392 	snd_soc_dapm_disable_pin(nau8825->dapm, "MICBIAS");
2393 	snd_soc_dapm_sync(nau8825->dapm);
2394 	regcache_cache_only(nau8825->regmap, true);
2395 	regcache_mark_dirty(nau8825->regmap);
2396 
2397 	return 0;
2398 }
2399 
2400 static int __maybe_unused nau8825_resume(struct snd_soc_component *component)
2401 {
2402 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2403 	int ret;
2404 
2405 	regcache_cache_only(nau8825->regmap, false);
2406 	regcache_sync(nau8825->regmap);
2407 	nau8825->xtalk_protect = true;
2408 	ret = nau8825_sema_acquire(nau8825, 0);
2409 	if (ret)
2410 		nau8825->xtalk_protect = false;
2411 	enable_irq(nau8825->irq);
2412 
2413 	return 0;
2414 }
2415 
2416 static const struct snd_soc_component_driver nau8825_component_driver = {
2417 	.probe			= nau8825_component_probe,
2418 	.remove			= nau8825_component_remove,
2419 	.set_sysclk		= nau8825_set_sysclk,
2420 	.set_pll		= nau8825_set_pll,
2421 	.set_bias_level		= nau8825_set_bias_level,
2422 	.suspend		= nau8825_suspend,
2423 	.resume			= nau8825_resume,
2424 	.controls		= nau8825_controls,
2425 	.num_controls		= ARRAY_SIZE(nau8825_controls),
2426 	.dapm_widgets		= nau8825_dapm_widgets,
2427 	.num_dapm_widgets	= ARRAY_SIZE(nau8825_dapm_widgets),
2428 	.dapm_routes		= nau8825_dapm_routes,
2429 	.num_dapm_routes	= ARRAY_SIZE(nau8825_dapm_routes),
2430 	.suspend_bias_off	= 1,
2431 	.idle_bias_on		= 1,
2432 	.use_pmdown_time	= 1,
2433 	.endianness		= 1,
2434 	.non_legacy_dai_naming	= 1,
2435 };
2436 
2437 static void nau8825_reset_chip(struct regmap *regmap)
2438 {
2439 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2440 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2441 }
2442 
2443 static void nau8825_print_device_properties(struct nau8825 *nau8825)
2444 {
2445 	int i;
2446 	struct device *dev = nau8825->dev;
2447 
2448 	dev_dbg(dev, "jkdet-enable:         %d\n", nau8825->jkdet_enable);
2449 	dev_dbg(dev, "jkdet-pull-enable:    %d\n", nau8825->jkdet_pull_enable);
2450 	dev_dbg(dev, "jkdet-pull-up:        %d\n", nau8825->jkdet_pull_up);
2451 	dev_dbg(dev, "jkdet-polarity:       %d\n", nau8825->jkdet_polarity);
2452 	dev_dbg(dev, "micbias-voltage:      %d\n", nau8825->micbias_voltage);
2453 	dev_dbg(dev, "vref-impedance:       %d\n", nau8825->vref_impedance);
2454 
2455 	dev_dbg(dev, "sar-threshold-num:    %d\n", nau8825->sar_threshold_num);
2456 	for (i = 0; i < nau8825->sar_threshold_num; i++)
2457 		dev_dbg(dev, "sar-threshold[%d]=%d\n", i,
2458 				nau8825->sar_threshold[i]);
2459 
2460 	dev_dbg(dev, "sar-hysteresis:       %d\n", nau8825->sar_hysteresis);
2461 	dev_dbg(dev, "sar-voltage:          %d\n", nau8825->sar_voltage);
2462 	dev_dbg(dev, "sar-compare-time:     %d\n", nau8825->sar_compare_time);
2463 	dev_dbg(dev, "sar-sampling-time:    %d\n", nau8825->sar_sampling_time);
2464 	dev_dbg(dev, "short-key-debounce:   %d\n", nau8825->key_debounce);
2465 	dev_dbg(dev, "jack-insert-debounce: %d\n",
2466 			nau8825->jack_insert_debounce);
2467 	dev_dbg(dev, "jack-eject-debounce:  %d\n",
2468 			nau8825->jack_eject_debounce);
2469 	dev_dbg(dev, "crosstalk-enable:     %d\n",
2470 			nau8825->xtalk_enable);
2471 }
2472 
2473 static int nau8825_read_device_properties(struct device *dev,
2474 	struct nau8825 *nau8825) {
2475 	int ret;
2476 
2477 	nau8825->jkdet_enable = device_property_read_bool(dev,
2478 		"nuvoton,jkdet-enable");
2479 	nau8825->jkdet_pull_enable = device_property_read_bool(dev,
2480 		"nuvoton,jkdet-pull-enable");
2481 	nau8825->jkdet_pull_up = device_property_read_bool(dev,
2482 		"nuvoton,jkdet-pull-up");
2483 	ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity",
2484 		&nau8825->jkdet_polarity);
2485 	if (ret)
2486 		nau8825->jkdet_polarity = 1;
2487 	ret = device_property_read_u32(dev, "nuvoton,micbias-voltage",
2488 		&nau8825->micbias_voltage);
2489 	if (ret)
2490 		nau8825->micbias_voltage = 6;
2491 	ret = device_property_read_u32(dev, "nuvoton,vref-impedance",
2492 		&nau8825->vref_impedance);
2493 	if (ret)
2494 		nau8825->vref_impedance = 2;
2495 	ret = device_property_read_u32(dev, "nuvoton,sar-threshold-num",
2496 		&nau8825->sar_threshold_num);
2497 	if (ret)
2498 		nau8825->sar_threshold_num = 4;
2499 	ret = device_property_read_u32_array(dev, "nuvoton,sar-threshold",
2500 		nau8825->sar_threshold, nau8825->sar_threshold_num);
2501 	if (ret) {
2502 		nau8825->sar_threshold[0] = 0x08;
2503 		nau8825->sar_threshold[1] = 0x12;
2504 		nau8825->sar_threshold[2] = 0x26;
2505 		nau8825->sar_threshold[3] = 0x73;
2506 	}
2507 	ret = device_property_read_u32(dev, "nuvoton,sar-hysteresis",
2508 		&nau8825->sar_hysteresis);
2509 	if (ret)
2510 		nau8825->sar_hysteresis = 0;
2511 	ret = device_property_read_u32(dev, "nuvoton,sar-voltage",
2512 		&nau8825->sar_voltage);
2513 	if (ret)
2514 		nau8825->sar_voltage = 6;
2515 	ret = device_property_read_u32(dev, "nuvoton,sar-compare-time",
2516 		&nau8825->sar_compare_time);
2517 	if (ret)
2518 		nau8825->sar_compare_time = 1;
2519 	ret = device_property_read_u32(dev, "nuvoton,sar-sampling-time",
2520 		&nau8825->sar_sampling_time);
2521 	if (ret)
2522 		nau8825->sar_sampling_time = 1;
2523 	ret = device_property_read_u32(dev, "nuvoton,short-key-debounce",
2524 		&nau8825->key_debounce);
2525 	if (ret)
2526 		nau8825->key_debounce = 3;
2527 	ret = device_property_read_u32(dev, "nuvoton,jack-insert-debounce",
2528 		&nau8825->jack_insert_debounce);
2529 	if (ret)
2530 		nau8825->jack_insert_debounce = 7;
2531 	ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
2532 		&nau8825->jack_eject_debounce);
2533 	if (ret)
2534 		nau8825->jack_eject_debounce = 0;
2535 	nau8825->xtalk_enable = device_property_read_bool(dev,
2536 		"nuvoton,crosstalk-enable");
2537 
2538 	nau8825->mclk = devm_clk_get(dev, "mclk");
2539 	if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) {
2540 		return -EPROBE_DEFER;
2541 	} else if (PTR_ERR(nau8825->mclk) == -ENOENT) {
2542 		/* The MCLK is managed externally or not used at all */
2543 		nau8825->mclk = NULL;
2544 		dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally");
2545 	} else if (IS_ERR(nau8825->mclk)) {
2546 		return -EINVAL;
2547 	}
2548 
2549 	return 0;
2550 }
2551 
2552 static int nau8825_setup_irq(struct nau8825 *nau8825)
2553 {
2554 	int ret;
2555 
2556 	ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL,
2557 		nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2558 		"nau8825", nau8825);
2559 
2560 	if (ret) {
2561 		dev_err(nau8825->dev, "Cannot request irq %d (%d)\n",
2562 			nau8825->irq, ret);
2563 		return ret;
2564 	}
2565 
2566 	return 0;
2567 }
2568 
2569 static int nau8825_i2c_probe(struct i2c_client *i2c,
2570 	const struct i2c_device_id *id)
2571 {
2572 	struct device *dev = &i2c->dev;
2573 	struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev);
2574 	int ret, value;
2575 
2576 	if (!nau8825) {
2577 		nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL);
2578 		if (!nau8825)
2579 			return -ENOMEM;
2580 		ret = nau8825_read_device_properties(dev, nau8825);
2581 		if (ret)
2582 			return ret;
2583 	}
2584 
2585 	i2c_set_clientdata(i2c, nau8825);
2586 
2587 	nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config);
2588 	if (IS_ERR(nau8825->regmap))
2589 		return PTR_ERR(nau8825->regmap);
2590 	nau8825->dev = dev;
2591 	nau8825->irq = i2c->irq;
2592 	/* Initiate parameters, semaphore and work queue which are needed in
2593 	 * cross talk suppression measurment function.
2594 	 */
2595 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
2596 	nau8825->xtalk_protect = false;
2597 	nau8825->xtalk_baktab_initialized = false;
2598 	sema_init(&nau8825->xtalk_sem, 1);
2599 	INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work);
2600 
2601 	nau8825_print_device_properties(nau8825);
2602 
2603 	nau8825_reset_chip(nau8825->regmap);
2604 	ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value);
2605 	if (ret < 0) {
2606 		dev_err(dev, "Failed to read device id from the NAU8825: %d\n",
2607 			ret);
2608 		return ret;
2609 	}
2610 	if ((value & NAU8825_SOFTWARE_ID_MASK) !=
2611 			NAU8825_SOFTWARE_ID_NAU8825) {
2612 		dev_err(dev, "Not a NAU8825 chip\n");
2613 		return -ENODEV;
2614 	}
2615 
2616 	nau8825_init_regs(nau8825);
2617 
2618 	if (i2c->irq)
2619 		nau8825_setup_irq(nau8825);
2620 
2621 	return devm_snd_soc_register_component(&i2c->dev,
2622 		&nau8825_component_driver,
2623 		&nau8825_dai, 1);
2624 }
2625 
2626 static int nau8825_i2c_remove(struct i2c_client *client)
2627 {
2628 	return 0;
2629 }
2630 
2631 static const struct i2c_device_id nau8825_i2c_ids[] = {
2632 	{ "nau8825", 0 },
2633 	{ }
2634 };
2635 MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids);
2636 
2637 #ifdef CONFIG_OF
2638 static const struct of_device_id nau8825_of_ids[] = {
2639 	{ .compatible = "nuvoton,nau8825", },
2640 	{}
2641 };
2642 MODULE_DEVICE_TABLE(of, nau8825_of_ids);
2643 #endif
2644 
2645 #ifdef CONFIG_ACPI
2646 static const struct acpi_device_id nau8825_acpi_match[] = {
2647 	{ "10508825", 0 },
2648 	{},
2649 };
2650 MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match);
2651 #endif
2652 
2653 static struct i2c_driver nau8825_driver = {
2654 	.driver = {
2655 		.name = "nau8825",
2656 		.of_match_table = of_match_ptr(nau8825_of_ids),
2657 		.acpi_match_table = ACPI_PTR(nau8825_acpi_match),
2658 	},
2659 	.probe = nau8825_i2c_probe,
2660 	.remove = nau8825_i2c_remove,
2661 	.id_table = nau8825_i2c_ids,
2662 };
2663 module_i2c_driver(nau8825_driver);
2664 
2665 MODULE_DESCRIPTION("ASoC nau8825 driver");
2666 MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>");
2667 MODULE_LICENSE("GPL");
2668