xref: /openbmc/linux/sound/soc/codecs/nau8825.c (revision c64d01b3ceba873aa8e8605598cec4a6bc6d1601)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Nuvoton NAU8825 audio codec driver
4  *
5  * Copyright 2015 Google Chromium project.
6  *  Author: Anatol Pomozov <anatol@chromium.org>
7  * Copyright 2015 Nuvoton Technology Corp.
8  *  Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com>
9  */
10 
11 #include <linux/module.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
14 #include <linux/i2c.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 #include <linux/clk.h>
18 #include <linux/acpi.h>
19 #include <linux/math64.h>
20 #include <linux/semaphore.h>
21 
22 #include <sound/initval.h>
23 #include <sound/tlv.h>
24 #include <sound/core.h>
25 #include <sound/pcm.h>
26 #include <sound/pcm_params.h>
27 #include <sound/soc.h>
28 #include <sound/jack.h>
29 
30 
31 #include "nau8825.h"
32 
33 
34 #define NUVOTON_CODEC_DAI "nau8825-hifi"
35 
36 #define NAU_FREF_MAX 13500000
37 #define NAU_FVCO_MAX 124000000
38 #define NAU_FVCO_MIN 90000000
39 
40 /* cross talk suppression detection */
41 #define LOG10_MAGIC 646456993
42 #define GAIN_AUGMENT 22500
43 #define SIDETONE_BASE 207000
44 
45 /* the maximum frequency of CLK_ADC and CLK_DAC */
46 #define CLK_DA_AD_MAX 6144000
47 
48 static int nau8825_configure_sysclk(struct nau8825 *nau8825,
49 		int clk_id, unsigned int freq);
50 static bool nau8825_is_jack_inserted(struct regmap *regmap);
51 
52 struct nau8825_fll {
53 	int mclk_src;
54 	int ratio;
55 	int fll_frac;
56 	int fll_int;
57 	int clk_ref_div;
58 };
59 
60 struct nau8825_fll_attr {
61 	unsigned int param;
62 	unsigned int val;
63 };
64 
65 /* scaling for mclk from sysclk_src output */
66 static const struct nau8825_fll_attr mclk_src_scaling[] = {
67 	{ 1, 0x0 },
68 	{ 2, 0x2 },
69 	{ 4, 0x3 },
70 	{ 8, 0x4 },
71 	{ 16, 0x5 },
72 	{ 32, 0x6 },
73 	{ 3, 0x7 },
74 	{ 6, 0xa },
75 	{ 12, 0xb },
76 	{ 24, 0xc },
77 	{ 48, 0xd },
78 	{ 96, 0xe },
79 	{ 5, 0xf },
80 };
81 
82 /* ratio for input clk freq */
83 static const struct nau8825_fll_attr fll_ratio[] = {
84 	{ 512000, 0x01 },
85 	{ 256000, 0x02 },
86 	{ 128000, 0x04 },
87 	{ 64000, 0x08 },
88 	{ 32000, 0x10 },
89 	{ 8000, 0x20 },
90 	{ 4000, 0x40 },
91 };
92 
93 static const struct nau8825_fll_attr fll_pre_scalar[] = {
94 	{ 1, 0x0 },
95 	{ 2, 0x1 },
96 	{ 4, 0x2 },
97 	{ 8, 0x3 },
98 };
99 
100 /* over sampling rate */
101 struct nau8825_osr_attr {
102 	unsigned int osr;
103 	unsigned int clk_src;
104 };
105 
106 static const struct nau8825_osr_attr osr_dac_sel[] = {
107 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
108 	{ 256, 0 },	/* OSR 256, SRC 1 */
109 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
110 	{ 0, 0 },
111 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
112 };
113 
114 static const struct nau8825_osr_attr osr_adc_sel[] = {
115 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
116 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
117 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
118 	{ 256, 0 },	/* OSR 256, SRC 1 */
119 };
120 
121 static const struct reg_default nau8825_reg_defaults[] = {
122 	{ NAU8825_REG_ENA_CTRL, 0x00ff },
123 	{ NAU8825_REG_IIC_ADDR_SET, 0x0 },
124 	{ NAU8825_REG_CLK_DIVIDER, 0x0050 },
125 	{ NAU8825_REG_FLL1, 0x0 },
126 	{ NAU8825_REG_FLL2, 0x3126 },
127 	{ NAU8825_REG_FLL3, 0x0008 },
128 	{ NAU8825_REG_FLL4, 0x0010 },
129 	{ NAU8825_REG_FLL5, 0x0 },
130 	{ NAU8825_REG_FLL6, 0x6000 },
131 	{ NAU8825_REG_FLL_VCO_RSV, 0xf13c },
132 	{ NAU8825_REG_HSD_CTRL, 0x000c },
133 	{ NAU8825_REG_JACK_DET_CTRL, 0x0 },
134 	{ NAU8825_REG_INTERRUPT_MASK, 0x0 },
135 	{ NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff },
136 	{ NAU8825_REG_SAR_CTRL, 0x0015 },
137 	{ NAU8825_REG_KEYDET_CTRL, 0x0110 },
138 	{ NAU8825_REG_VDET_THRESHOLD_1, 0x0 },
139 	{ NAU8825_REG_VDET_THRESHOLD_2, 0x0 },
140 	{ NAU8825_REG_VDET_THRESHOLD_3, 0x0 },
141 	{ NAU8825_REG_VDET_THRESHOLD_4, 0x0 },
142 	{ NAU8825_REG_GPIO34_CTRL, 0x0 },
143 	{ NAU8825_REG_GPIO12_CTRL, 0x0 },
144 	{ NAU8825_REG_TDM_CTRL, 0x0 },
145 	{ NAU8825_REG_I2S_PCM_CTRL1, 0x000b },
146 	{ NAU8825_REG_I2S_PCM_CTRL2, 0x8010 },
147 	{ NAU8825_REG_LEFT_TIME_SLOT, 0x0 },
148 	{ NAU8825_REG_RIGHT_TIME_SLOT, 0x0 },
149 	{ NAU8825_REG_BIQ_CTRL, 0x0 },
150 	{ NAU8825_REG_BIQ_COF1, 0x0 },
151 	{ NAU8825_REG_BIQ_COF2, 0x0 },
152 	{ NAU8825_REG_BIQ_COF3, 0x0 },
153 	{ NAU8825_REG_BIQ_COF4, 0x0 },
154 	{ NAU8825_REG_BIQ_COF5, 0x0 },
155 	{ NAU8825_REG_BIQ_COF6, 0x0 },
156 	{ NAU8825_REG_BIQ_COF7, 0x0 },
157 	{ NAU8825_REG_BIQ_COF8, 0x0 },
158 	{ NAU8825_REG_BIQ_COF9, 0x0 },
159 	{ NAU8825_REG_BIQ_COF10, 0x0 },
160 	{ NAU8825_REG_ADC_RATE, 0x0010 },
161 	{ NAU8825_REG_DAC_CTRL1, 0x0001 },
162 	{ NAU8825_REG_DAC_CTRL2, 0x0 },
163 	{ NAU8825_REG_DAC_DGAIN_CTRL, 0x0 },
164 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
165 	{ NAU8825_REG_MUTE_CTRL, 0x0 },
166 	{ NAU8825_REG_HSVOL_CTRL, 0x0 },
167 	{ NAU8825_REG_DACL_CTRL, 0x02cf },
168 	{ NAU8825_REG_DACR_CTRL, 0x00cf },
169 	{ NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 },
170 	{ NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 },
171 	{ NAU8825_REG_ADC_DRC_SLOPES, 0x25ff },
172 	{ NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 },
173 	{ NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 },
174 	{ NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 },
175 	{ NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 },
176 	{ NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 },
177 	{ NAU8825_REG_IMM_MODE_CTRL, 0x0 },
178 	{ NAU8825_REG_CLASSG_CTRL, 0x0 },
179 	{ NAU8825_REG_OPT_EFUSE_CTRL, 0x0 },
180 	{ NAU8825_REG_MISC_CTRL, 0x0 },
181 	{ NAU8825_REG_BIAS_ADJ, 0x0 },
182 	{ NAU8825_REG_TRIM_SETTINGS, 0x0 },
183 	{ NAU8825_REG_ANALOG_CONTROL_1, 0x0 },
184 	{ NAU8825_REG_ANALOG_CONTROL_2, 0x0 },
185 	{ NAU8825_REG_ANALOG_ADC_1, 0x0011 },
186 	{ NAU8825_REG_ANALOG_ADC_2, 0x0020 },
187 	{ NAU8825_REG_RDAC, 0x0008 },
188 	{ NAU8825_REG_MIC_BIAS, 0x0006 },
189 	{ NAU8825_REG_BOOST, 0x0 },
190 	{ NAU8825_REG_FEPGA, 0x0 },
191 	{ NAU8825_REG_POWER_UP_CONTROL, 0x0 },
192 	{ NAU8825_REG_CHARGE_PUMP, 0x0 },
193 };
194 
195 /* register backup table when cross talk detection */
196 static struct reg_default nau8825_xtalk_baktab[] = {
197 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
198 	{ NAU8825_REG_HSVOL_CTRL, 0 },
199 	{ NAU8825_REG_DACL_CTRL, 0x00cf },
200 	{ NAU8825_REG_DACR_CTRL, 0x02cf },
201 };
202 
203 static const unsigned short logtable[256] = {
204 	0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7,
205 	0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508,
206 	0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6,
207 	0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37,
208 	0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f,
209 	0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41,
210 	0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1,
211 	0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142,
212 	0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68,
213 	0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355,
214 	0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c,
215 	0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490,
216 	0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3,
217 	0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507,
218 	0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe,
219 	0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca,
220 	0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c,
221 	0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7,
222 	0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c,
223 	0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c,
224 	0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a,
225 	0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065,
226 	0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730,
227 	0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc,
228 	0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469,
229 	0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9,
230 	0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c,
231 	0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765,
232 	0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83,
233 	0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387,
234 	0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973,
235 	0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47
236 };
237 
238 /**
239  * nau8825_sema_acquire - acquire the semaphore of nau88l25
240  * @nau8825:  component to register the codec private data with
241  * @timeout: how long in jiffies to wait before failure or zero to wait
242  * until release
243  *
244  * Attempts to acquire the semaphore with number of jiffies. If no more
245  * tasks are allowed to acquire the semaphore, calling this function will
246  * put the task to sleep. If the semaphore is not released within the
247  * specified number of jiffies, this function returns.
248  * If the semaphore is not released within the specified number of jiffies,
249  * this function returns -ETIME. If the sleep is interrupted by a signal,
250  * this function will return -EINTR. It returns 0 if the semaphore was
251  * acquired successfully.
252  *
253  * Acquires the semaphore without jiffies. Try to acquire the semaphore
254  * atomically. Returns 0 if the semaphore has been acquired successfully
255  * or 1 if it cannot be acquired.
256  */
257 static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout)
258 {
259 	int ret;
260 
261 	if (timeout) {
262 		ret = down_timeout(&nau8825->xtalk_sem, timeout);
263 		if (ret < 0)
264 			dev_warn(nau8825->dev, "Acquire semaphore timeout\n");
265 	} else {
266 		ret = down_trylock(&nau8825->xtalk_sem);
267 		if (ret)
268 			dev_warn(nau8825->dev, "Acquire semaphore fail\n");
269 	}
270 
271 	return ret;
272 }
273 
274 /**
275  * nau8825_sema_release - release the semaphore of nau88l25
276  * @nau8825:  component to register the codec private data with
277  *
278  * Release the semaphore which may be called from any context and
279  * even by tasks which have never called down().
280  */
281 static inline void nau8825_sema_release(struct nau8825 *nau8825)
282 {
283 	up(&nau8825->xtalk_sem);
284 }
285 
286 /**
287  * nau8825_sema_reset - reset the semaphore for nau88l25
288  * @nau8825:  component to register the codec private data with
289  *
290  * Reset the counter of the semaphore. Call this function to restart
291  * a new round task management.
292  */
293 static inline void nau8825_sema_reset(struct nau8825 *nau8825)
294 {
295 	nau8825->xtalk_sem.count = 1;
296 }
297 
298 /**
299  * nau8825_hpvol_ramp - Ramp up the headphone volume change gradually to target level.
300  *
301  * @nau8825:  component to register the codec private data with
302  * @vol_from: the volume to start up
303  * @vol_to: the target volume
304  * @step: the volume span to move on
305  *
306  * The headphone volume is from 0dB to minimum -54dB and -1dB per step.
307  * If the volume changes sharp, there is a pop noise heard in headphone. We
308  * provide the function to ramp up the volume up or down by delaying 10ms
309  * per step.
310  */
311 static void nau8825_hpvol_ramp(struct nau8825 *nau8825,
312 	unsigned int vol_from, unsigned int vol_to, unsigned int step)
313 {
314 	unsigned int value, volume, ramp_up, from, to;
315 
316 	if (vol_from == vol_to || step == 0) {
317 		return;
318 	} else if (vol_from < vol_to) {
319 		ramp_up = true;
320 		from = vol_from;
321 		to = vol_to;
322 	} else {
323 		ramp_up = false;
324 		from = vol_to;
325 		to = vol_from;
326 	}
327 	/* only handle volume from 0dB to minimum -54dB */
328 	if (to > NAU8825_HP_VOL_MIN)
329 		to = NAU8825_HP_VOL_MIN;
330 
331 	for (volume = from; volume < to; volume += step) {
332 		if (ramp_up)
333 			value = volume;
334 		else
335 			value = to - volume + from;
336 		regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
337 			NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
338 			(value << NAU8825_HPL_VOL_SFT) | value);
339 		usleep_range(10000, 10500);
340 	}
341 	if (ramp_up)
342 		value = to;
343 	else
344 		value = from;
345 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
346 		NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
347 		(value << NAU8825_HPL_VOL_SFT) | value);
348 }
349 
350 /**
351  * nau8825_intlog10_dec3 - Computes log10 of a value
352  * the result is round off to 3 decimal. This function takes reference to
353  * dvb-math. The source code locates as the following.
354  * Linux/drivers/media/dvb-core/dvb_math.c
355  * @value:  input for log10
356  *
357  * return log10(value) * 1000
358  */
359 static u32 nau8825_intlog10_dec3(u32 value)
360 {
361 	u32 msb, logentry, significand, interpolation, log10val;
362 	u64 log2val;
363 
364 	/* first detect the msb (count begins at 0) */
365 	msb = fls(value) - 1;
366 	/**
367 	 *      now we use a logtable after the following method:
368 	 *
369 	 *      log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24
370 	 *      where x = msb and therefore 1 <= y < 2
371 	 *      first y is determined by shifting the value left
372 	 *      so that msb is bit 31
373 	 *              0x00231f56 -> 0x8C7D5800
374 	 *      the result is y * 2^31 -> "significand"
375 	 *      then the highest 9 bits are used for a table lookup
376 	 *      the highest bit is discarded because it's always set
377 	 *      the highest nine bits in our example are 100011000
378 	 *      so we would use the entry 0x18
379 	 */
380 	significand = value << (31 - msb);
381 	logentry = (significand >> 23) & 0xff;
382 	/**
383 	 *      last step we do is interpolation because of the
384 	 *      limitations of the log table the error is that part of
385 	 *      the significand which isn't used for lookup then we
386 	 *      compute the ratio between the error and the next table entry
387 	 *      and interpolate it between the log table entry used and the
388 	 *      next one the biggest error possible is 0x7fffff
389 	 *      (in our example it's 0x7D5800)
390 	 *      needed value for next table entry is 0x800000
391 	 *      so the interpolation is
392 	 *      (error / 0x800000) * (logtable_next - logtable_current)
393 	 *      in the implementation the division is moved to the end for
394 	 *      better accuracy there is also an overflow correction if
395 	 *      logtable_next is 256
396 	 */
397 	interpolation = ((significand & 0x7fffff) *
398 		((logtable[(logentry + 1) & 0xff] -
399 		logtable[logentry]) & 0xffff)) >> 15;
400 
401 	log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation);
402 	/**
403 	 *      log10(x) = log2(x) * log10(2)
404 	 */
405 	log10val = (log2val * LOG10_MAGIC) >> 31;
406 	/**
407 	 *      the result is round off to 3 decimal
408 	 */
409 	return log10val / ((1 << 24) / 1000);
410 }
411 
412 /**
413  * nau8825_xtalk_sidetone - computes cross talk suppression sidetone gain.
414  *
415  * @sig_org: orignal signal level
416  * @sig_cros: cross talk signal level
417  *
418  * The orignal and cross talk signal vlues need to be characterized.
419  * Once these values have been characterized, this sidetone value
420  * can be converted to decibel with the equation below.
421  * sidetone = 20 * log (original signal level / crosstalk signal level)
422  *
423  * return cross talk sidetone gain
424  */
425 static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros)
426 {
427 	u32 gain, sidetone;
428 
429 	if (WARN_ON(sig_org == 0 || sig_cros == 0))
430 		return 0;
431 
432 	sig_org = nau8825_intlog10_dec3(sig_org);
433 	sig_cros = nau8825_intlog10_dec3(sig_cros);
434 	if (sig_org >= sig_cros)
435 		gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT;
436 	else
437 		gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT;
438 	sidetone = SIDETONE_BASE - gain * 2;
439 	sidetone /= 1000;
440 
441 	return sidetone;
442 }
443 
444 static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg)
445 {
446 	int index;
447 
448 	for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++)
449 		if (nau8825_xtalk_baktab[index].reg == reg)
450 			return index;
451 	return -EINVAL;
452 }
453 
454 static void nau8825_xtalk_backup(struct nau8825 *nau8825)
455 {
456 	int i;
457 
458 	if (nau8825->xtalk_baktab_initialized)
459 		return;
460 
461 	/* Backup some register values to backup table */
462 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++)
463 		regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
464 				&nau8825_xtalk_baktab[i].def);
465 
466 	nau8825->xtalk_baktab_initialized = true;
467 }
468 
469 static void nau8825_xtalk_restore(struct nau8825 *nau8825, bool cause_cancel)
470 {
471 	int i, volume;
472 
473 	if (!nau8825->xtalk_baktab_initialized)
474 		return;
475 
476 	/* Restore register values from backup table; When the driver restores
477 	 * the headphone volume in XTALK_DONE state, it needs recover to
478 	 * original level gradually with 3dB per step for less pop noise.
479 	 * Otherwise, the restore should do ASAP.
480 	 */
481 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) {
482 		if (!cause_cancel && nau8825_xtalk_baktab[i].reg ==
483 			NAU8825_REG_HSVOL_CTRL) {
484 			/* Ramping up the volume change to reduce pop noise */
485 			volume = nau8825_xtalk_baktab[i].def &
486 				NAU8825_HPR_VOL_MASK;
487 			nau8825_hpvol_ramp(nau8825, 0, volume, 3);
488 			continue;
489 		}
490 		regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
491 				nau8825_xtalk_baktab[i].def);
492 	}
493 
494 	nau8825->xtalk_baktab_initialized = false;
495 }
496 
497 static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825)
498 {
499 	/* Enable power of DAC path */
500 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
501 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
502 		NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK |
503 		NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR |
504 		NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC |
505 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK);
506 	/* Prevent startup click by letting charge pump to ramp up and
507 	 * change bump enable
508 	 */
509 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
510 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN,
511 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN);
512 	/* Enable clock sync of DAC and DAC clock */
513 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
514 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN |
515 		NAU8825_RDAC_FS_BCLK_ENB,
516 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN);
517 	/* Power up output driver with 2 stage */
518 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
519 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
520 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L,
521 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
522 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L);
523 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
524 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L,
525 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L);
526 	/* HP outputs not shouted to ground  */
527 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
528 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0);
529 	/* Enable HP boost driver */
530 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
531 		NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS);
532 	/* Enable class G compare path to supply 1.8V or 0.9V. */
533 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL,
534 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN,
535 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN);
536 }
537 
538 static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825)
539 {
540 	/* Power up left ADC and raise 5dB than Vmid for Vref  */
541 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
542 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK,
543 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB);
544 }
545 
546 static void nau8825_xtalk_clock(struct nau8825 *nau8825)
547 {
548 	/* Recover FLL default value */
549 	regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0);
550 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126);
551 	regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008);
552 	regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010);
553 	regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0);
554 	regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000);
555 	/* Enable internal VCO clock for detection signal generated */
556 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
557 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
558 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN,
559 		NAU8825_DCO_EN);
560 	/* Given specific clock frequency of internal clock to
561 	 * generate signal.
562 	 */
563 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
564 		NAU8825_CLK_MCLK_SRC_MASK, 0xf);
565 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
566 		NAU8825_FLL_RATIO_MASK, 0x10);
567 }
568 
569 static void nau8825_xtalk_prepare(struct nau8825 *nau8825)
570 {
571 	int volume, index;
572 
573 	/* Backup those registers changed by cross talk detection */
574 	nau8825_xtalk_backup(nau8825);
575 	/* Config IIS as master to output signal by codec */
576 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
577 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
578 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER |
579 		(0x2 << NAU8825_I2S_LRC_DIV_SFT) | 0x1);
580 	/* Ramp up headphone volume to 0dB to get better performance and
581 	 * avoid pop noise in headphone.
582 	 */
583 	index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL);
584 	if (index != -EINVAL) {
585 		volume = nau8825_xtalk_baktab[index].def &
586 				NAU8825_HPR_VOL_MASK;
587 		nau8825_hpvol_ramp(nau8825, volume, 0, 3);
588 	}
589 	nau8825_xtalk_clock(nau8825);
590 	nau8825_xtalk_prepare_dac(nau8825);
591 	nau8825_xtalk_prepare_adc(nau8825);
592 	/* Config channel path and digital gain */
593 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
594 		NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK,
595 		NAU8825_DACL_CH_SEL_L | 0xab);
596 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
597 		NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK,
598 		NAU8825_DACR_CH_SEL_R | 0xab);
599 	/* Config cross talk parameters and generate the 23Hz sine wave with
600 	 * 1/16 full scale of signal level for impedance measurement.
601 	 */
602 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
603 		NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK |
604 		NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK,
605 		(0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th |
606 		NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN);
607 	/* RMS intrruption enable */
608 	regmap_update_bits(nau8825->regmap,
609 		NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0);
610 	/* Power up left and right DAC */
611 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
612 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0);
613 }
614 
615 static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825)
616 {
617 	/* Disable HP boost driver */
618 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
619 		NAU8825_HP_BOOST_DIS, 0);
620 	/* HP outputs shouted to ground  */
621 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
622 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
623 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
624 	/* Power down left and right DAC */
625 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
626 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
627 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
628 	/* Enable the TESTDAC and  disable L/R HP impedance */
629 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
630 		NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP |
631 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
632 	/* Power down output driver with 2 stage */
633 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
634 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0);
635 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
636 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
637 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0);
638 	/* Disable clock sync of DAC and DAC clock */
639 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
640 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0);
641 	/* Disable charge pump ramp up function and change bump */
642 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
643 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0);
644 	/* Disable power of DAC path */
645 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
646 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
647 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0);
648 	if (!nau8825->irq)
649 		regmap_update_bits(nau8825->regmap,
650 			NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
651 }
652 
653 static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825)
654 {
655 	/* Power down left ADC and restore voltage to Vmid */
656 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
657 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0);
658 }
659 
660 static void nau8825_xtalk_clean(struct nau8825 *nau8825, bool cause_cancel)
661 {
662 	/* Enable internal VCO needed for interruptions */
663 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
664 	nau8825_xtalk_clean_dac(nau8825);
665 	nau8825_xtalk_clean_adc(nau8825);
666 	/* Clear cross talk parameters and disable */
667 	regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0);
668 	/* RMS intrruption disable */
669 	regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK,
670 		NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN);
671 	/* Recover default value for IIS */
672 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
673 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
674 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE);
675 	/* Restore value of specific register for cross talk */
676 	nau8825_xtalk_restore(nau8825, cause_cancel);
677 }
678 
679 static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol)
680 {
681 	/* Apply ADC volume for better cross talk performance */
682 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL,
683 				NAU8825_ADC_DIG_VOL_MASK, vol);
684 	/* Disables JKTIP(HPL) DAC channel for right to left measurement.
685 	 * Do it before sending signal in order to erase pop noise.
686 	 */
687 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
688 		NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN,
689 		NAU8825_BIAS_TESTDACL_EN);
690 	switch (nau8825->xtalk_state) {
691 	case NAU8825_XTALK_HPR_R2L:
692 		/* Enable right headphone impedance */
693 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
694 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
695 			NAU8825_BIAS_HPR_IMP);
696 		break;
697 	case NAU8825_XTALK_HPL_R2L:
698 		/* Enable left headphone impedance */
699 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
700 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
701 			NAU8825_BIAS_HPL_IMP);
702 		break;
703 	default:
704 		break;
705 	}
706 	msleep(100);
707 	/* Impedance measurement mode enable */
708 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
709 				NAU8825_IMM_EN, NAU8825_IMM_EN);
710 }
711 
712 static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825)
713 {
714 	/* Impedance measurement mode disable */
715 	regmap_update_bits(nau8825->regmap,
716 		NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0);
717 }
718 
719 /* The cross talk measurement function can reduce cross talk across the
720  * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal
721  * level to determine what cross talk reduction gain is. This system works by
722  * sending a 23Hz -24dBV sine wave into the headset output DAC and through
723  * the PGA. The output of the PGA is then connected to an internal current
724  * sense which measures the attenuated 23Hz signal and passing the output to
725  * an ADC which converts the measurement to a binary code. With two separated
726  * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data
727  * can be separated read in IMM_RMS_L for HSR and HSL after each measurement.
728  * Thus, the measurement function has four states to complete whole sequence.
729  * 1. Prepare state : Prepare the resource for detection and transfer to HPR
730  *     IMM stat to make JKR1(HPR) impedance measure.
731  * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer
732  *     to HPL IMM state to make JKTIP(HPL) impedance measure.
733  * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and
734  *     transfer to IMM state to determine suppression sidetone gain.
735  * 4. IMM state : Computes cross talk suppression sidetone gain with orignal
736  *     and cross talk signal level. Apply this gain and then restore codec
737  *     configuration. Then transfer to Done state for ending.
738  */
739 static void nau8825_xtalk_measure(struct nau8825 *nau8825)
740 {
741 	u32 sidetone;
742 
743 	switch (nau8825->xtalk_state) {
744 	case NAU8825_XTALK_PREPARE:
745 		/* In prepare state, set up clock, intrruption, DAC path, ADC
746 		 * path and cross talk detection parameters for preparation.
747 		 */
748 		nau8825_xtalk_prepare(nau8825);
749 		msleep(280);
750 		/* Trigger right headphone impedance detection */
751 		nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L;
752 		nau8825_xtalk_imm_start(nau8825, 0x00d2);
753 		break;
754 	case NAU8825_XTALK_HPR_R2L:
755 		/* In right headphone IMM state, read out right headphone
756 		 * impedance measure result, and then start up left side.
757 		 */
758 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
759 			&nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
760 		dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n",
761 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
762 		/* Disable then re-enable IMM mode to update */
763 		nau8825_xtalk_imm_stop(nau8825);
764 		/* Trigger left headphone impedance detection */
765 		nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L;
766 		nau8825_xtalk_imm_start(nau8825, 0x00ff);
767 		break;
768 	case NAU8825_XTALK_HPL_R2L:
769 		/* In left headphone IMM state, read out left headphone
770 		 * impedance measure result, and delay some time to wait
771 		 * detection sine wave output finish. Then, we can calculate
772 		 * the cross talk suppresstion side tone according to the L/R
773 		 * headphone imedance.
774 		 */
775 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
776 			&nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
777 		dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n",
778 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
779 		nau8825_xtalk_imm_stop(nau8825);
780 		msleep(150);
781 		nau8825->xtalk_state = NAU8825_XTALK_IMM;
782 		break;
783 	case NAU8825_XTALK_IMM:
784 		/* In impedance measure state, the orignal and cross talk
785 		 * signal level vlues are ready. The side tone gain is deter-
786 		 * mined with these signal level. After all, restore codec
787 		 * configuration.
788 		 */
789 		sidetone = nau8825_xtalk_sidetone(
790 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L],
791 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
792 		dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone);
793 		regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL,
794 					(sidetone << 8) | sidetone);
795 		nau8825_xtalk_clean(nau8825, false);
796 		nau8825->xtalk_state = NAU8825_XTALK_DONE;
797 		break;
798 	default:
799 		break;
800 	}
801 }
802 
803 static void nau8825_xtalk_work(struct work_struct *work)
804 {
805 	struct nau8825 *nau8825 = container_of(
806 		work, struct nau8825, xtalk_work);
807 
808 	nau8825_xtalk_measure(nau8825);
809 	/* To determine the cross talk side tone gain when reach
810 	 * the impedance measure state.
811 	 */
812 	if (nau8825->xtalk_state == NAU8825_XTALK_IMM)
813 		nau8825_xtalk_measure(nau8825);
814 
815 	/* Delay jack report until cross talk detection process
816 	 * completed. It can avoid application to do playback
817 	 * preparation before cross talk detection is still working.
818 	 * Meanwhile, the protection of the cross talk detection
819 	 * is released.
820 	 */
821 	if (nau8825->xtalk_state == NAU8825_XTALK_DONE) {
822 		snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event,
823 				nau8825->xtalk_event_mask);
824 		nau8825_sema_release(nau8825);
825 		nau8825->xtalk_protect = false;
826 	}
827 }
828 
829 static void nau8825_xtalk_cancel(struct nau8825 *nau8825)
830 {
831 	/* If the crosstalk is eanbled and the process is on going,
832 	 * the driver forces to cancel the crosstalk task and
833 	 * restores the configuration to original status.
834 	 */
835 	if (nau8825->xtalk_enable && nau8825->xtalk_state !=
836 		NAU8825_XTALK_DONE) {
837 		cancel_work_sync(&nau8825->xtalk_work);
838 		nau8825_xtalk_clean(nau8825, true);
839 	}
840 	/* Reset parameters for cross talk suppression function */
841 	nau8825_sema_reset(nau8825);
842 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
843 	nau8825->xtalk_protect = false;
844 }
845 
846 static bool nau8825_readable_reg(struct device *dev, unsigned int reg)
847 {
848 	switch (reg) {
849 	case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV:
850 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
851 	case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL:
852 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
853 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
854 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
855 	case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R:
856 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
857 	case NAU8825_REG_MISC_CTRL:
858 	case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS:
859 	case NAU8825_REG_BIAS_ADJ:
860 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
861 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
862 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
863 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS:
864 		return true;
865 	default:
866 		return false;
867 	}
868 
869 }
870 
871 static bool nau8825_writeable_reg(struct device *dev, unsigned int reg)
872 {
873 	switch (reg) {
874 	case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV:
875 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
876 	case NAU8825_REG_INTERRUPT_MASK:
877 	case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL:
878 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
879 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
880 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
881 	case NAU8825_REG_IMM_MODE_CTRL:
882 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
883 	case NAU8825_REG_MISC_CTRL:
884 	case NAU8825_REG_BIAS_ADJ:
885 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
886 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
887 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
888 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP:
889 		return true;
890 	default:
891 		return false;
892 	}
893 }
894 
895 static bool nau8825_volatile_reg(struct device *dev, unsigned int reg)
896 {
897 	switch (reg) {
898 	case NAU8825_REG_RESET:
899 	case NAU8825_REG_IRQ_STATUS:
900 	case NAU8825_REG_INT_CLR_KEY_STATUS:
901 	case NAU8825_REG_IMM_RMS_L:
902 	case NAU8825_REG_IMM_RMS_R:
903 	case NAU8825_REG_I2C_DEVICE_ID:
904 	case NAU8825_REG_SARDOUT_RAM_STATUS:
905 	case NAU8825_REG_CHARGE_PUMP_INPUT_READ:
906 	case NAU8825_REG_GENERAL_STATUS:
907 	case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10:
908 		return true;
909 	default:
910 		return false;
911 	}
912 }
913 
914 static int nau8825_adc_event(struct snd_soc_dapm_widget *w,
915 		struct snd_kcontrol *kcontrol, int event)
916 {
917 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
918 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
919 
920 	switch (event) {
921 	case SND_SOC_DAPM_POST_PMU:
922 		msleep(125);
923 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
924 			NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
925 		break;
926 	case SND_SOC_DAPM_POST_PMD:
927 		if (!nau8825->irq)
928 			regmap_update_bits(nau8825->regmap,
929 				NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
930 		break;
931 	default:
932 		return -EINVAL;
933 	}
934 
935 	return 0;
936 }
937 
938 static int nau8825_pump_event(struct snd_soc_dapm_widget *w,
939 	struct snd_kcontrol *kcontrol, int event)
940 {
941 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
942 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
943 
944 	switch (event) {
945 	case SND_SOC_DAPM_POST_PMU:
946 		/* Prevent startup click by letting charge pump to ramp up */
947 		msleep(10);
948 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
949 			NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW);
950 		break;
951 	case SND_SOC_DAPM_PRE_PMD:
952 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
953 			NAU8825_JAMNODCLOW, 0);
954 		break;
955 	default:
956 		return -EINVAL;
957 	}
958 
959 	return 0;
960 }
961 
962 static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w,
963 	struct snd_kcontrol *kcontrol, int event)
964 {
965 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
966 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
967 
968 	switch (event) {
969 	case SND_SOC_DAPM_PRE_PMU:
970 		/* Disables the TESTDAC to let DAC signal pass through. */
971 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
972 			NAU8825_BIAS_TESTDAC_EN, 0);
973 		break;
974 	case SND_SOC_DAPM_POST_PMD:
975 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
976 			NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
977 		break;
978 	default:
979 		return -EINVAL;
980 	}
981 
982 	return 0;
983 }
984 
985 static int system_clock_control(struct snd_soc_dapm_widget *w,
986 				struct snd_kcontrol *k, int  event)
987 {
988 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
989 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
990 	struct regmap *regmap = nau8825->regmap;
991 
992 	if (SND_SOC_DAPM_EVENT_OFF(event)) {
993 		dev_dbg(nau8825->dev, "system clock control : POWER OFF\n");
994 		/* Set clock source to disable or internal clock before the
995 		 * playback or capture end. Codec needs clock for Jack
996 		 * detection and button press if jack inserted; otherwise,
997 		 * the clock should be closed.
998 		 */
999 		if (nau8825_is_jack_inserted(regmap)) {
1000 			nau8825_configure_sysclk(nau8825,
1001 						 NAU8825_CLK_INTERNAL, 0);
1002 		} else {
1003 			nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1004 		}
1005 	}
1006 
1007 	return 0;
1008 }
1009 
1010 static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol,
1011 				     struct snd_ctl_elem_value *ucontrol)
1012 {
1013 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1014 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
1015 
1016 	if (!component->regmap)
1017 		return -EINVAL;
1018 
1019 	regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1,
1020 		ucontrol->value.bytes.data, params->max);
1021 	return 0;
1022 }
1023 
1024 static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol,
1025 				     struct snd_ctl_elem_value *ucontrol)
1026 {
1027 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1028 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
1029 	void *data;
1030 
1031 	if (!component->regmap)
1032 		return -EINVAL;
1033 
1034 	data = kmemdup(ucontrol->value.bytes.data,
1035 		params->max, GFP_KERNEL | GFP_DMA);
1036 	if (!data)
1037 		return -ENOMEM;
1038 
1039 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1040 		NAU8825_BIQ_WRT_EN, 0);
1041 	regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1,
1042 		data, params->max);
1043 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1044 		NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN);
1045 
1046 	kfree(data);
1047 	return 0;
1048 }
1049 
1050 static const char * const nau8825_biq_path[] = {
1051 	"ADC", "DAC"
1052 };
1053 
1054 static const struct soc_enum nau8825_biq_path_enum =
1055 	SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT,
1056 		ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path);
1057 
1058 static const char * const nau8825_adc_decimation[] = {
1059 	"32", "64", "128", "256"
1060 };
1061 
1062 static const struct soc_enum nau8825_adc_decimation_enum =
1063 	SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT,
1064 		ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation);
1065 
1066 static const char * const nau8825_dac_oversampl[] = {
1067 	"64", "256", "128", "", "32"
1068 };
1069 
1070 static const struct soc_enum nau8825_dac_oversampl_enum =
1071 	SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT,
1072 		ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl);
1073 
1074 static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400);
1075 static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0);
1076 static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0);
1077 static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
1078 static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400);
1079 
1080 static const struct snd_kcontrol_new nau8825_controls[] = {
1081 	SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1082 		0, 0xff, 0, adc_vol_tlv),
1083 	SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1084 		12, 8, 0x0f, 0, sidetone_vol_tlv),
1085 	SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL,
1086 		6, 0, 0x3f, 1, dac_vol_tlv),
1087 	SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL,
1088 		8, 37, 0, fepga_gain_tlv),
1089 	SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL,
1090 		0, 8, 0xff, 0, crosstalk_vol_tlv),
1091 
1092 	SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum),
1093 	SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum),
1094 	/* programmable biquad filter */
1095 	SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum),
1096 	SND_SOC_BYTES_EXT("BIQ Coefficients", 20,
1097 		  nau8825_biq_coeff_get, nau8825_biq_coeff_put),
1098 };
1099 
1100 /* DAC Mux 0x33[9] and 0x34[9] */
1101 static const char * const nau8825_dac_src[] = {
1102 	"DACL", "DACR",
1103 };
1104 
1105 static SOC_ENUM_SINGLE_DECL(
1106 	nau8825_dacl_enum, NAU8825_REG_DACL_CTRL,
1107 	NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src);
1108 
1109 static SOC_ENUM_SINGLE_DECL(
1110 	nau8825_dacr_enum, NAU8825_REG_DACR_CTRL,
1111 	NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src);
1112 
1113 static const struct snd_kcontrol_new nau8825_dacl_mux =
1114 	SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum);
1115 
1116 static const struct snd_kcontrol_new nau8825_dacr_mux =
1117 	SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum);
1118 
1119 
1120 static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = {
1121 	SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2,
1122 		15, 1),
1123 	SND_SOC_DAPM_AIF_IN("AIFRX", "Playback", 0, SND_SOC_NOPM, 0, 0),
1124 	SND_SOC_DAPM_SUPPLY("System Clock", SND_SOC_NOPM, 0, 0,
1125 			    system_clock_control, SND_SOC_DAPM_POST_PMD),
1126 
1127 	SND_SOC_DAPM_INPUT("MIC"),
1128 	SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0),
1129 
1130 	SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0,
1131 		NULL, 0),
1132 
1133 	SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0,
1134 		nau8825_adc_event, SND_SOC_DAPM_POST_PMU |
1135 		SND_SOC_DAPM_POST_PMD),
1136 	SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0),
1137 	SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL,
1138 		0),
1139 
1140 	/* ADC for button press detection. A dapm supply widget is used to
1141 	 * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON
1142 	 * during suspend.
1143 	 */
1144 	SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL,
1145 		NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0),
1146 
1147 	SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0),
1148 	SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0),
1149 	SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0),
1150 	SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0),
1151 
1152 	SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL,
1153 		NAU8825_ENABLE_DACR_SFT, 0),
1154 	SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL,
1155 		NAU8825_ENABLE_DACL_SFT, 0),
1156 	SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0),
1157 
1158 	SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux),
1159 	SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux),
1160 
1161 	SND_SOC_DAPM_PGA_S("HP amp L", 0,
1162 		NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0),
1163 	SND_SOC_DAPM_PGA_S("HP amp R", 0,
1164 		NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0),
1165 
1166 	SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0,
1167 		nau8825_pump_event, SND_SOC_DAPM_POST_PMU |
1168 		SND_SOC_DAPM_PRE_PMD),
1169 
1170 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4,
1171 		NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0),
1172 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4,
1173 		NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0),
1174 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5,
1175 		NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0),
1176 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5,
1177 		NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0),
1178 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6,
1179 		NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0),
1180 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6,
1181 		NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0),
1182 
1183 	SND_SOC_DAPM_PGA_S("Output DACL", 7,
1184 		NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event,
1185 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1186 	SND_SOC_DAPM_PGA_S("Output DACR", 7,
1187 		NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event,
1188 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1189 
1190 	/* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */
1191 	SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8,
1192 		NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0),
1193 	SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8,
1194 		NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0),
1195 
1196 	/* High current HPOL/R boost driver */
1197 	SND_SOC_DAPM_PGA_S("HP Boost Driver", 9,
1198 		NAU8825_REG_BOOST, 9, 1, NULL, 0),
1199 
1200 	/* Class G operation control*/
1201 	SND_SOC_DAPM_PGA_S("Class G", 10,
1202 		NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0),
1203 
1204 	SND_SOC_DAPM_OUTPUT("HPOL"),
1205 	SND_SOC_DAPM_OUTPUT("HPOR"),
1206 };
1207 
1208 static const struct snd_soc_dapm_route nau8825_dapm_routes[] = {
1209 	{"Frontend PGA", NULL, "MIC"},
1210 	{"ADC", NULL, "Frontend PGA"},
1211 	{"ADC", NULL, "ADC Clock"},
1212 	{"ADC", NULL, "ADC Power"},
1213 	{"AIFTX", NULL, "ADC"},
1214 	{"AIFTX", NULL, "System Clock"},
1215 
1216 	{"AIFRX", NULL, "System Clock"},
1217 	{"DDACL", NULL, "AIFRX"},
1218 	{"DDACR", NULL, "AIFRX"},
1219 	{"DDACL", NULL, "DDAC Clock"},
1220 	{"DDACR", NULL, "DDAC Clock"},
1221 	{"DACL Mux", "DACL", "DDACL"},
1222 	{"DACL Mux", "DACR", "DDACR"},
1223 	{"DACR Mux", "DACL", "DDACL"},
1224 	{"DACR Mux", "DACR", "DDACR"},
1225 	{"HP amp L", NULL, "DACL Mux"},
1226 	{"HP amp R", NULL, "DACR Mux"},
1227 	{"Charge Pump", NULL, "HP amp L"},
1228 	{"Charge Pump", NULL, "HP amp R"},
1229 	{"ADACL", NULL, "Charge Pump"},
1230 	{"ADACR", NULL, "Charge Pump"},
1231 	{"ADACL Clock", NULL, "ADACL"},
1232 	{"ADACR Clock", NULL, "ADACR"},
1233 	{"Output Driver L Stage 1", NULL, "ADACL Clock"},
1234 	{"Output Driver R Stage 1", NULL, "ADACR Clock"},
1235 	{"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"},
1236 	{"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"},
1237 	{"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"},
1238 	{"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"},
1239 	{"Output DACL", NULL, "Output Driver L Stage 3"},
1240 	{"Output DACR", NULL, "Output Driver R Stage 3"},
1241 	{"HPOL Pulldown", NULL, "Output DACL"},
1242 	{"HPOR Pulldown", NULL, "Output DACR"},
1243 	{"HP Boost Driver", NULL, "HPOL Pulldown"},
1244 	{"HP Boost Driver", NULL, "HPOR Pulldown"},
1245 	{"Class G", NULL, "HP Boost Driver"},
1246 	{"HPOL", NULL, "Class G"},
1247 	{"HPOR", NULL, "Class G"},
1248 };
1249 
1250 static int nau8825_clock_check(struct nau8825 *nau8825,
1251 	int stream, int rate, int osr)
1252 {
1253 	int osrate;
1254 
1255 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
1256 		if (osr >= ARRAY_SIZE(osr_dac_sel))
1257 			return -EINVAL;
1258 		osrate = osr_dac_sel[osr].osr;
1259 	} else {
1260 		if (osr >= ARRAY_SIZE(osr_adc_sel))
1261 			return -EINVAL;
1262 		osrate = osr_adc_sel[osr].osr;
1263 	}
1264 
1265 	if (!osrate || rate * osr > CLK_DA_AD_MAX) {
1266 		dev_err(nau8825->dev, "exceed the maximum frequency of CLK_ADC or CLK_DAC\n");
1267 		return -EINVAL;
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 static int nau8825_hw_params(struct snd_pcm_substream *substream,
1274 				struct snd_pcm_hw_params *params,
1275 				struct snd_soc_dai *dai)
1276 {
1277 	struct snd_soc_component *component = dai->component;
1278 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1279 	unsigned int val_len = 0, osr, ctrl_val, bclk_fs, bclk_div;
1280 
1281 	nau8825_sema_acquire(nau8825, 3 * HZ);
1282 
1283 	/* CLK_DAC or CLK_ADC = OSR * FS
1284 	 * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR)
1285 	 * multiplied by the audio sample rate (Fs). Note that the OSR and Fs
1286 	 * values must be selected such that the maximum frequency is less
1287 	 * than 6.144 MHz.
1288 	 */
1289 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1290 		regmap_read(nau8825->regmap, NAU8825_REG_DAC_CTRL1, &osr);
1291 		osr &= NAU8825_DAC_OVERSAMPLE_MASK;
1292 		if (nau8825_clock_check(nau8825, substream->stream,
1293 			params_rate(params), osr)) {
1294 			nau8825_sema_release(nau8825);
1295 			return -EINVAL;
1296 		}
1297 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1298 			NAU8825_CLK_DAC_SRC_MASK,
1299 			osr_dac_sel[osr].clk_src << NAU8825_CLK_DAC_SRC_SFT);
1300 	} else {
1301 		regmap_read(nau8825->regmap, NAU8825_REG_ADC_RATE, &osr);
1302 		osr &= NAU8825_ADC_SYNC_DOWN_MASK;
1303 		if (nau8825_clock_check(nau8825, substream->stream,
1304 			params_rate(params), osr)) {
1305 			nau8825_sema_release(nau8825);
1306 			return -EINVAL;
1307 		}
1308 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1309 			NAU8825_CLK_ADC_SRC_MASK,
1310 			osr_adc_sel[osr].clk_src << NAU8825_CLK_ADC_SRC_SFT);
1311 	}
1312 
1313 	/* make BCLK and LRC divde configuration if the codec as master. */
1314 	regmap_read(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, &ctrl_val);
1315 	if (ctrl_val & NAU8825_I2S_MS_MASTER) {
1316 		/* get the bclk and fs ratio */
1317 		bclk_fs = snd_soc_params_to_bclk(params) / params_rate(params);
1318 		if (bclk_fs <= 32)
1319 			bclk_div = 2;
1320 		else if (bclk_fs <= 64)
1321 			bclk_div = 1;
1322 		else if (bclk_fs <= 128)
1323 			bclk_div = 0;
1324 		else {
1325 			nau8825_sema_release(nau8825);
1326 			return -EINVAL;
1327 		}
1328 		regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1329 			NAU8825_I2S_LRC_DIV_MASK | NAU8825_I2S_BLK_DIV_MASK,
1330 			((bclk_div + 1) << NAU8825_I2S_LRC_DIV_SFT) | bclk_div);
1331 	}
1332 
1333 	switch (params_width(params)) {
1334 	case 16:
1335 		val_len |= NAU8825_I2S_DL_16;
1336 		break;
1337 	case 20:
1338 		val_len |= NAU8825_I2S_DL_20;
1339 		break;
1340 	case 24:
1341 		val_len |= NAU8825_I2S_DL_24;
1342 		break;
1343 	case 32:
1344 		val_len |= NAU8825_I2S_DL_32;
1345 		break;
1346 	default:
1347 		nau8825_sema_release(nau8825);
1348 		return -EINVAL;
1349 	}
1350 
1351 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1352 		NAU8825_I2S_DL_MASK, val_len);
1353 
1354 	/* Release the semaphore. */
1355 	nau8825_sema_release(nau8825);
1356 
1357 	return 0;
1358 }
1359 
1360 static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
1361 {
1362 	struct snd_soc_component *component = codec_dai->component;
1363 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1364 	unsigned int ctrl1_val = 0, ctrl2_val = 0;
1365 
1366 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1367 	case SND_SOC_DAIFMT_CBM_CFM:
1368 		ctrl2_val |= NAU8825_I2S_MS_MASTER;
1369 		break;
1370 	case SND_SOC_DAIFMT_CBS_CFS:
1371 		break;
1372 	default:
1373 		return -EINVAL;
1374 	}
1375 
1376 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1377 	case SND_SOC_DAIFMT_NB_NF:
1378 		break;
1379 	case SND_SOC_DAIFMT_IB_NF:
1380 		ctrl1_val |= NAU8825_I2S_BP_INV;
1381 		break;
1382 	default:
1383 		return -EINVAL;
1384 	}
1385 
1386 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1387 	case SND_SOC_DAIFMT_I2S:
1388 		ctrl1_val |= NAU8825_I2S_DF_I2S;
1389 		break;
1390 	case SND_SOC_DAIFMT_LEFT_J:
1391 		ctrl1_val |= NAU8825_I2S_DF_LEFT;
1392 		break;
1393 	case SND_SOC_DAIFMT_RIGHT_J:
1394 		ctrl1_val |= NAU8825_I2S_DF_RIGTH;
1395 		break;
1396 	case SND_SOC_DAIFMT_DSP_A:
1397 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1398 		break;
1399 	case SND_SOC_DAIFMT_DSP_B:
1400 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1401 		ctrl1_val |= NAU8825_I2S_PCMB_EN;
1402 		break;
1403 	default:
1404 		return -EINVAL;
1405 	}
1406 
1407 	nau8825_sema_acquire(nau8825, 3 * HZ);
1408 
1409 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1410 		NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK |
1411 		NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK,
1412 		ctrl1_val);
1413 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1414 		NAU8825_I2S_MS_MASK, ctrl2_val);
1415 
1416 	/* Release the semaphore. */
1417 	nau8825_sema_release(nau8825);
1418 
1419 	return 0;
1420 }
1421 
1422 static const struct snd_soc_dai_ops nau8825_dai_ops = {
1423 	.hw_params	= nau8825_hw_params,
1424 	.set_fmt	= nau8825_set_dai_fmt,
1425 };
1426 
1427 #define NAU8825_RATES	SNDRV_PCM_RATE_8000_192000
1428 #define NAU8825_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
1429 			 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1430 
1431 static struct snd_soc_dai_driver nau8825_dai = {
1432 	.name = "nau8825-hifi",
1433 	.playback = {
1434 		.stream_name	 = "Playback",
1435 		.channels_min	 = 1,
1436 		.channels_max	 = 2,
1437 		.rates		 = NAU8825_RATES,
1438 		.formats	 = NAU8825_FORMATS,
1439 	},
1440 	.capture = {
1441 		.stream_name	 = "Capture",
1442 		.channels_min	 = 1,
1443 		.channels_max	 = 1,
1444 		.rates		 = NAU8825_RATES,
1445 		.formats	 = NAU8825_FORMATS,
1446 	},
1447 	.ops = &nau8825_dai_ops,
1448 };
1449 
1450 /**
1451  * nau8825_enable_jack_detect - Specify a jack for event reporting
1452  *
1453  * @component:  component to register the jack with
1454  * @jack: jack to use to report headset and button events on
1455  *
1456  * After this function has been called the headset insert/remove and button
1457  * events will be routed to the given jack.  Jack can be null to stop
1458  * reporting.
1459  */
1460 int nau8825_enable_jack_detect(struct snd_soc_component *component,
1461 				struct snd_soc_jack *jack)
1462 {
1463 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1464 	struct regmap *regmap = nau8825->regmap;
1465 
1466 	nau8825->jack = jack;
1467 
1468 	if (!nau8825->jack) {
1469 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1470 				   NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R |
1471 				   NAU8825_SPKR_DWN1L, 0);
1472 		return 0;
1473 	}
1474 	/* Ground HP Outputs[1:0], needed for headset auto detection
1475 	 * Enable Automatic Mic/Gnd switching reading on insert interrupt[6]
1476 	 */
1477 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1478 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
1479 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
1480 
1481 	return 0;
1482 }
1483 EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect);
1484 
1485 
1486 static bool nau8825_is_jack_inserted(struct regmap *regmap)
1487 {
1488 	bool active_high, is_high;
1489 	int status, jkdet;
1490 
1491 	regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet);
1492 	active_high = jkdet & NAU8825_JACK_POLARITY;
1493 	regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status);
1494 	is_high = status & NAU8825_GPIO2JD1;
1495 	/* return jack connection status according to jack insertion logic
1496 	 * active high or active low.
1497 	 */
1498 	return active_high == is_high;
1499 }
1500 
1501 static void nau8825_restart_jack_detection(struct regmap *regmap)
1502 {
1503 	/* this will restart the entire jack detection process including MIC/GND
1504 	 * switching and create interrupts. We have to go from 0 to 1 and back
1505 	 * to 0 to restart.
1506 	 */
1507 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1508 		NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART);
1509 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1510 		NAU8825_JACK_DET_RESTART, 0);
1511 }
1512 
1513 static void nau8825_int_status_clear_all(struct regmap *regmap)
1514 {
1515 	int active_irq, clear_irq, i;
1516 
1517 	/* Reset the intrruption status from rightmost bit if the corres-
1518 	 * ponding irq event occurs.
1519 	 */
1520 	regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq);
1521 	for (i = 0; i < NAU8825_REG_DATA_LEN; i++) {
1522 		clear_irq = (0x1 << i);
1523 		if (active_irq & clear_irq)
1524 			regmap_write(regmap,
1525 				NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1526 	}
1527 }
1528 
1529 static void nau8825_eject_jack(struct nau8825 *nau8825)
1530 {
1531 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1532 	struct regmap *regmap = nau8825->regmap;
1533 
1534 	/* Force to cancel the cross talk detection process */
1535 	nau8825_xtalk_cancel(nau8825);
1536 
1537 	snd_soc_dapm_disable_pin(dapm, "SAR");
1538 	snd_soc_dapm_disable_pin(dapm, "MICBIAS");
1539 	/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
1540 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1541 		NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
1542 	/* ground HPL/HPR, MICGRND1/2 */
1543 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf);
1544 
1545 	snd_soc_dapm_sync(dapm);
1546 
1547 	/* Clear all interruption status */
1548 	nau8825_int_status_clear_all(regmap);
1549 
1550 	/* Enable the insertion interruption, disable the ejection inter-
1551 	 * ruption, and then bypass de-bounce circuit.
1552 	 */
1553 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
1554 		NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS,
1555 		NAU8825_IRQ_EJECT_DIS);
1556 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1557 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1558 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN,
1559 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1560 		NAU8825_IRQ_HEADSET_COMPLETE_EN);
1561 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1562 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
1563 
1564 	/* Disable ADC needed for interruptions at audo mode */
1565 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1566 		NAU8825_ENABLE_ADC, 0);
1567 
1568 	/* Close clock for jack type detection at manual mode */
1569 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1570 }
1571 
1572 /* Enable audo mode interruptions with internal clock. */
1573 static void nau8825_setup_auto_irq(struct nau8825 *nau8825)
1574 {
1575 	struct regmap *regmap = nau8825->regmap;
1576 
1577 	/* Enable headset jack type detection complete interruption and
1578 	 * jack ejection interruption.
1579 	 */
1580 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1581 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0);
1582 
1583 	/* Enable internal VCO needed for interruptions */
1584 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
1585 
1586 	/* Enable ADC needed for interruptions */
1587 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1588 		NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
1589 
1590 	/* Chip needs one FSCLK cycle in order to generate interruptions,
1591 	 * as we cannot guarantee one will be provided by the system. Turning
1592 	 * master mode on then off enables us to generate that FSCLK cycle
1593 	 * with a minimum of contention on the clock bus.
1594 	 */
1595 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1596 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER);
1597 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1598 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE);
1599 
1600 	/* Not bypass de-bounce circuit */
1601 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1602 		NAU8825_JACK_DET_DB_BYPASS, 0);
1603 
1604 	/* Unmask all interruptions */
1605 	regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0);
1606 
1607 	/* Restart the jack detection process at auto mode */
1608 	nau8825_restart_jack_detection(regmap);
1609 }
1610 
1611 static int nau8825_button_decode(int value)
1612 {
1613 	int buttons = 0;
1614 
1615 	/* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */
1616 	if (value & BIT(0))
1617 		buttons |= SND_JACK_BTN_0;
1618 	if (value & BIT(1))
1619 		buttons |= SND_JACK_BTN_1;
1620 	if (value & BIT(2))
1621 		buttons |= SND_JACK_BTN_2;
1622 	if (value & BIT(3))
1623 		buttons |= SND_JACK_BTN_3;
1624 	if (value & BIT(4))
1625 		buttons |= SND_JACK_BTN_4;
1626 	if (value & BIT(5))
1627 		buttons |= SND_JACK_BTN_5;
1628 
1629 	return buttons;
1630 }
1631 
1632 static int nau8825_jack_insert(struct nau8825 *nau8825)
1633 {
1634 	struct regmap *regmap = nau8825->regmap;
1635 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1636 	int jack_status_reg, mic_detected;
1637 	int type = 0;
1638 
1639 	regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg);
1640 	mic_detected = (jack_status_reg >> 10) & 3;
1641 	/* The JKSLV and JKR2 all detected in high impedance headset */
1642 	if (mic_detected == 0x3)
1643 		nau8825->high_imped = true;
1644 	else
1645 		nau8825->high_imped = false;
1646 
1647 	switch (mic_detected) {
1648 	case 0:
1649 		/* no mic */
1650 		type = SND_JACK_HEADPHONE;
1651 		break;
1652 	case 1:
1653 		dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n");
1654 		type = SND_JACK_HEADSET;
1655 
1656 		/* Unground MICGND1 */
1657 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1658 			1 << 2);
1659 		/* Attach 2kOhm Resistor from MICBIAS to MICGND1 */
1660 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1661 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1662 			NAU8825_MICBIAS_JKR2);
1663 		/* Attach SARADC to MICGND1 */
1664 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1665 			NAU8825_SAR_INPUT_MASK,
1666 			NAU8825_SAR_INPUT_JKR2);
1667 
1668 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1669 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1670 		snd_soc_dapm_sync(dapm);
1671 		break;
1672 	case 2:
1673 		dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n");
1674 		type = SND_JACK_HEADSET;
1675 
1676 		/* Unground MICGND2 */
1677 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1678 			2 << 2);
1679 		/* Attach 2kOhm Resistor from MICBIAS to MICGND2 */
1680 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1681 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1682 			NAU8825_MICBIAS_JKSLV);
1683 		/* Attach SARADC to MICGND2 */
1684 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1685 			NAU8825_SAR_INPUT_MASK,
1686 			NAU8825_SAR_INPUT_JKSLV);
1687 
1688 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1689 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1690 		snd_soc_dapm_sync(dapm);
1691 		break;
1692 	case 3:
1693 		/* detect error case */
1694 		dev_err(nau8825->dev, "detection error; disable mic function\n");
1695 		type = SND_JACK_HEADPHONE;
1696 		break;
1697 	}
1698 
1699 	/* Leaving HPOL/R grounded after jack insert by default. They will be
1700 	 * ungrounded as part of the widget power up sequence at the beginning
1701 	 * of playback to reduce pop.
1702 	 */
1703 	return type;
1704 }
1705 
1706 #define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \
1707 		SND_JACK_BTN_2 | SND_JACK_BTN_3)
1708 
1709 static irqreturn_t nau8825_interrupt(int irq, void *data)
1710 {
1711 	struct nau8825 *nau8825 = (struct nau8825 *)data;
1712 	struct regmap *regmap = nau8825->regmap;
1713 	int active_irq, clear_irq = 0, event = 0, event_mask = 0;
1714 
1715 	if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) {
1716 		dev_err(nau8825->dev, "failed to read irq status\n");
1717 		return IRQ_NONE;
1718 	}
1719 
1720 	if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) ==
1721 		NAU8825_JACK_EJECTION_DETECTED) {
1722 
1723 		nau8825_eject_jack(nau8825);
1724 		event_mask |= SND_JACK_HEADSET;
1725 		clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK;
1726 	} else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) {
1727 		int key_status;
1728 
1729 		regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS,
1730 			&key_status);
1731 
1732 		/* upper 8 bits of the register are for short pressed keys,
1733 		 * lower 8 bits - for long pressed buttons
1734 		 */
1735 		nau8825->button_pressed = nau8825_button_decode(
1736 			key_status >> 8);
1737 
1738 		event |= nau8825->button_pressed;
1739 		event_mask |= NAU8825_BUTTONS;
1740 		clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ;
1741 	} else if (active_irq & NAU8825_KEY_RELEASE_IRQ) {
1742 		event_mask = NAU8825_BUTTONS;
1743 		clear_irq = NAU8825_KEY_RELEASE_IRQ;
1744 	} else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) {
1745 		if (nau8825_is_jack_inserted(regmap)) {
1746 			event |= nau8825_jack_insert(nau8825);
1747 			if (nau8825->xtalk_enable && !nau8825->high_imped) {
1748 				/* Apply the cross talk suppression in the
1749 				 * headset without high impedance.
1750 				 */
1751 				if (!nau8825->xtalk_protect) {
1752 					/* Raise protection for cross talk de-
1753 					 * tection if no protection before.
1754 					 * The driver has to cancel the pro-
1755 					 * cess and restore changes if process
1756 					 * is ongoing when ejection.
1757 					 */
1758 					int ret;
1759 					nau8825->xtalk_protect = true;
1760 					ret = nau8825_sema_acquire(nau8825, 0);
1761 					if (ret)
1762 						nau8825->xtalk_protect = false;
1763 				}
1764 				/* Startup cross talk detection process */
1765 				if (nau8825->xtalk_protect) {
1766 					nau8825->xtalk_state =
1767 						NAU8825_XTALK_PREPARE;
1768 					schedule_work(&nau8825->xtalk_work);
1769 				}
1770 			} else {
1771 				/* The cross talk suppression shouldn't apply
1772 				 * in the headset with high impedance. Thus,
1773 				 * relieve the protection raised before.
1774 				 */
1775 				if (nau8825->xtalk_protect) {
1776 					nau8825_sema_release(nau8825);
1777 					nau8825->xtalk_protect = false;
1778 				}
1779 			}
1780 		} else {
1781 			dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n");
1782 			nau8825_eject_jack(nau8825);
1783 		}
1784 
1785 		event_mask |= SND_JACK_HEADSET;
1786 		clear_irq = NAU8825_HEADSET_COMPLETION_IRQ;
1787 		/* Record the interruption report event for driver to report
1788 		 * the event later. The jack report will delay until cross
1789 		 * talk detection process is done.
1790 		 */
1791 		if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) {
1792 			nau8825->xtalk_event = event;
1793 			nau8825->xtalk_event_mask = event_mask;
1794 		}
1795 	} else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) {
1796 		/* crosstalk detection enable and process on going */
1797 		if (nau8825->xtalk_enable && nau8825->xtalk_protect)
1798 			schedule_work(&nau8825->xtalk_work);
1799 		clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ;
1800 	} else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) ==
1801 		NAU8825_JACK_INSERTION_DETECTED) {
1802 		/* One more step to check GPIO status directly. Thus, the
1803 		 * driver can confirm the real insertion interruption because
1804 		 * the intrruption at manual mode has bypassed debounce
1805 		 * circuit which can get rid of unstable status.
1806 		 */
1807 		if (nau8825_is_jack_inserted(regmap)) {
1808 			/* Turn off insertion interruption at manual mode */
1809 			regmap_update_bits(regmap,
1810 				NAU8825_REG_INTERRUPT_DIS_CTRL,
1811 				NAU8825_IRQ_INSERT_DIS,
1812 				NAU8825_IRQ_INSERT_DIS);
1813 			regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1814 				NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN);
1815 			/* Enable interruption for jack type detection at audo
1816 			 * mode which can detect microphone and jack type.
1817 			 */
1818 			nau8825_setup_auto_irq(nau8825);
1819 		}
1820 	}
1821 
1822 	if (!clear_irq)
1823 		clear_irq = active_irq;
1824 	/* clears the rightmost interruption */
1825 	regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1826 
1827 	/* Delay jack report until cross talk detection is done. It can avoid
1828 	 * application to do playback preparation when cross talk detection
1829 	 * process is still working. Otherwise, the resource like clock and
1830 	 * power will be issued by them at the same time and conflict happens.
1831 	 */
1832 	if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE)
1833 		snd_soc_jack_report(nau8825->jack, event, event_mask);
1834 
1835 	return IRQ_HANDLED;
1836 }
1837 
1838 static void nau8825_setup_buttons(struct nau8825 *nau8825)
1839 {
1840 	struct regmap *regmap = nau8825->regmap;
1841 
1842 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1843 		NAU8825_SAR_TRACKING_GAIN_MASK,
1844 		nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT);
1845 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1846 		NAU8825_SAR_COMPARE_TIME_MASK,
1847 		nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT);
1848 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1849 		NAU8825_SAR_SAMPLING_TIME_MASK,
1850 		nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT);
1851 
1852 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1853 		NAU8825_KEYDET_LEVELS_NR_MASK,
1854 		(nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT);
1855 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1856 		NAU8825_KEYDET_HYSTERESIS_MASK,
1857 		nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT);
1858 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1859 		NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK,
1860 		nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT);
1861 
1862 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1,
1863 		(nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]);
1864 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2,
1865 		(nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]);
1866 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3,
1867 		(nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]);
1868 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4,
1869 		(nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]);
1870 
1871 	/* Enable short press and release interruptions */
1872 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1873 		NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN,
1874 		0);
1875 }
1876 
1877 static void nau8825_init_regs(struct nau8825 *nau8825)
1878 {
1879 	struct regmap *regmap = nau8825->regmap;
1880 
1881 	/* Latch IIC LSB value */
1882 	regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001);
1883 	/* Enable Bias/Vmid */
1884 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1885 		NAU8825_BIAS_VMID, NAU8825_BIAS_VMID);
1886 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
1887 		NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN);
1888 
1889 	/* VMID Tieoff */
1890 	regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ,
1891 		NAU8825_BIAS_VMID_SEL_MASK,
1892 		nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT);
1893 	/* Disable Boost Driver, Automatic Short circuit protection enable */
1894 	regmap_update_bits(regmap, NAU8825_REG_BOOST,
1895 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1896 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN,
1897 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1898 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN);
1899 
1900 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1901 		NAU8825_JKDET_OUTPUT_EN,
1902 		nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN);
1903 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1904 		NAU8825_JKDET_PULL_EN,
1905 		nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN);
1906 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1907 		NAU8825_JKDET_PULL_UP,
1908 		nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0);
1909 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1910 		NAU8825_JACK_POLARITY,
1911 		/* jkdet_polarity - 1  is for active-low */
1912 		nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY);
1913 
1914 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1915 		NAU8825_JACK_INSERT_DEBOUNCE_MASK,
1916 		nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT);
1917 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1918 		NAU8825_JACK_EJECT_DEBOUNCE_MASK,
1919 		nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT);
1920 
1921 	/* Pull up IRQ pin */
1922 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1923 		NAU8825_IRQ_PIN_PULLUP | NAU8825_IRQ_PIN_PULL_EN,
1924 		NAU8825_IRQ_PIN_PULLUP | NAU8825_IRQ_PIN_PULL_EN);
1925 	/* Mask unneeded IRQs: 1 - disable, 0 - enable */
1926 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff);
1927 
1928 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1929 		NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage);
1930 
1931 	if (nau8825->sar_threshold_num)
1932 		nau8825_setup_buttons(nau8825);
1933 
1934 	/* Default oversampling/decimations settings are unusable
1935 	 * (audible hiss). Set it to something better.
1936 	 */
1937 	regmap_update_bits(regmap, NAU8825_REG_ADC_RATE,
1938 		NAU8825_ADC_SYNC_DOWN_MASK | NAU8825_ADC_SINC4_EN,
1939 		NAU8825_ADC_SYNC_DOWN_64);
1940 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1941 		NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_64);
1942 	/* Disable DACR/L power */
1943 	regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP,
1944 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
1945 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
1946 	/* Enable TESTDAC. This sets the analog DAC inputs to a '0' input
1947 	 * signal to avoid any glitches due to power up transients in both
1948 	 * the analog and digital DAC circuit.
1949 	 */
1950 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1951 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
1952 	/* CICCLP off */
1953 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1954 		NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF);
1955 
1956 	/* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */
1957 	regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2,
1958 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1959 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB,
1960 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1961 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB);
1962 	/* Class G timer 64ms */
1963 	regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL,
1964 		NAU8825_CLASSG_TIMER_MASK,
1965 		0x20 << NAU8825_CLASSG_TIMER_SFT);
1966 	/* DAC clock delay 2ns, VREF */
1967 	regmap_update_bits(regmap, NAU8825_REG_RDAC,
1968 		NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK,
1969 		(0x2 << NAU8825_RDAC_CLK_DELAY_SFT) |
1970 		(0x3 << NAU8825_RDAC_VREF_SFT));
1971 	/* Config L/R channel */
1972 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
1973 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L);
1974 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
1975 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R);
1976 	/* Disable short Frame Sync detection logic */
1977 	regmap_update_bits(regmap, NAU8825_REG_LEFT_TIME_SLOT,
1978 		NAU8825_DIS_FS_SHORT_DET, NAU8825_DIS_FS_SHORT_DET);
1979 }
1980 
1981 static const struct regmap_config nau8825_regmap_config = {
1982 	.val_bits = NAU8825_REG_DATA_LEN,
1983 	.reg_bits = NAU8825_REG_ADDR_LEN,
1984 
1985 	.max_register = NAU8825_REG_MAX,
1986 	.readable_reg = nau8825_readable_reg,
1987 	.writeable_reg = nau8825_writeable_reg,
1988 	.volatile_reg = nau8825_volatile_reg,
1989 
1990 	.cache_type = REGCACHE_RBTREE,
1991 	.reg_defaults = nau8825_reg_defaults,
1992 	.num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults),
1993 };
1994 
1995 static int nau8825_component_probe(struct snd_soc_component *component)
1996 {
1997 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1998 	struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
1999 
2000 	nau8825->dapm = dapm;
2001 
2002 	return 0;
2003 }
2004 
2005 static void nau8825_component_remove(struct snd_soc_component *component)
2006 {
2007 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2008 
2009 	/* Cancel and reset cross tak suppresstion detection funciton */
2010 	nau8825_xtalk_cancel(nau8825);
2011 }
2012 
2013 /**
2014  * nau8825_calc_fll_param - Calculate FLL parameters.
2015  * @fll_in: external clock provided to codec.
2016  * @fs: sampling rate.
2017  * @fll_param: Pointer to structure of FLL parameters.
2018  *
2019  * Calculate FLL parameters to configure codec.
2020  *
2021  * Returns 0 for success or negative error code.
2022  */
2023 static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs,
2024 		struct nau8825_fll *fll_param)
2025 {
2026 	u64 fvco, fvco_max;
2027 	unsigned int fref, i, fvco_sel;
2028 
2029 	/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
2030 	 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
2031 	 * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK
2032 	 */
2033 	for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
2034 		fref = fll_in / fll_pre_scalar[i].param;
2035 		if (fref <= NAU_FREF_MAX)
2036 			break;
2037 	}
2038 	if (i == ARRAY_SIZE(fll_pre_scalar))
2039 		return -EINVAL;
2040 	fll_param->clk_ref_div = fll_pre_scalar[i].val;
2041 
2042 	/* Choose the FLL ratio based on FREF */
2043 	for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
2044 		if (fref >= fll_ratio[i].param)
2045 			break;
2046 	}
2047 	if (i == ARRAY_SIZE(fll_ratio))
2048 		return -EINVAL;
2049 	fll_param->ratio = fll_ratio[i].val;
2050 
2051 	/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
2052 	 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be
2053 	 * guaranteed across the full range of operation.
2054 	 * FDCO = freq_out * 2 * mclk_src_scaling
2055 	 */
2056 	fvco_max = 0;
2057 	fvco_sel = ARRAY_SIZE(mclk_src_scaling);
2058 	for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
2059 		fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param;
2060 		if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
2061 			fvco_max < fvco) {
2062 			fvco_max = fvco;
2063 			fvco_sel = i;
2064 		}
2065 	}
2066 	if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
2067 		return -EINVAL;
2068 	fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
2069 
2070 	/* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
2071 	 * input based on FDCO, FREF and FLL ratio.
2072 	 */
2073 	fvco = div_u64(fvco_max << 16, fref * fll_param->ratio);
2074 	fll_param->fll_int = (fvco >> 16) & 0x3FF;
2075 	fll_param->fll_frac = fvco & 0xFFFF;
2076 	return 0;
2077 }
2078 
2079 static void nau8825_fll_apply(struct nau8825 *nau8825,
2080 		struct nau8825_fll *fll_param)
2081 {
2082 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2083 		NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK,
2084 		NAU8825_CLK_SRC_MCLK | fll_param->mclk_src);
2085 	/* Make DSP operate at high speed for better performance. */
2086 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
2087 		NAU8825_FLL_RATIO_MASK | NAU8825_ICTRL_LATCH_MASK,
2088 		fll_param->ratio | (0x6 << NAU8825_ICTRL_LATCH_SFT));
2089 	/* FLL 16-bit fractional input */
2090 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac);
2091 	/* FLL 10-bit integer input */
2092 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3,
2093 			NAU8825_FLL_INTEGER_MASK, fll_param->fll_int);
2094 	/* FLL pre-scaler */
2095 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4,
2096 			NAU8825_FLL_REF_DIV_MASK,
2097 			fll_param->clk_ref_div << NAU8825_FLL_REF_DIV_SFT);
2098 	/* select divided VCO input */
2099 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2100 		NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF);
2101 	/* Disable free-running mode */
2102 	regmap_update_bits(nau8825->regmap,
2103 		NAU8825_REG_FLL6, NAU8825_DCO_EN, 0);
2104 	if (fll_param->fll_frac) {
2105 		/* set FLL loop filter enable and cutoff frequency at 500Khz */
2106 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2107 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2108 			NAU8825_FLL_FTR_SW_MASK,
2109 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2110 			NAU8825_FLL_FTR_SW_FILTER);
2111 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2112 			NAU8825_SDM_EN | NAU8825_CUTOFF500,
2113 			NAU8825_SDM_EN | NAU8825_CUTOFF500);
2114 	} else {
2115 		/* disable FLL loop filter and cutoff frequency */
2116 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2117 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2118 			NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU);
2119 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2120 			NAU8825_SDM_EN | NAU8825_CUTOFF500, 0);
2121 	}
2122 }
2123 
2124 /* freq_out must be 256*Fs in order to achieve the best performance */
2125 static int nau8825_set_pll(struct snd_soc_component *component, int pll_id, int source,
2126 		unsigned int freq_in, unsigned int freq_out)
2127 {
2128 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2129 	struct nau8825_fll fll_param;
2130 	int ret, fs;
2131 
2132 	fs = freq_out / 256;
2133 	ret = nau8825_calc_fll_param(freq_in, fs, &fll_param);
2134 	if (ret < 0) {
2135 		dev_err(component->dev, "Unsupported input clock %d\n", freq_in);
2136 		return ret;
2137 	}
2138 	dev_dbg(component->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
2139 		fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
2140 		fll_param.fll_int, fll_param.clk_ref_div);
2141 
2142 	nau8825_fll_apply(nau8825, &fll_param);
2143 	mdelay(2);
2144 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2145 			NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2146 	return 0;
2147 }
2148 
2149 static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq)
2150 {
2151 	int ret;
2152 
2153 	nau8825->mclk = devm_clk_get(nau8825->dev, "mclk");
2154 	if (IS_ERR(nau8825->mclk)) {
2155 		dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally");
2156 		return 0;
2157 	}
2158 
2159 	if (!nau8825->mclk_freq) {
2160 		ret = clk_prepare_enable(nau8825->mclk);
2161 		if (ret) {
2162 			dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2163 			return ret;
2164 		}
2165 	}
2166 
2167 	if (nau8825->mclk_freq != freq) {
2168 		freq = clk_round_rate(nau8825->mclk, freq);
2169 		ret = clk_set_rate(nau8825->mclk, freq);
2170 		if (ret) {
2171 			dev_err(nau8825->dev, "Unable to set mclk rate\n");
2172 			return ret;
2173 		}
2174 		nau8825->mclk_freq = freq;
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap)
2181 {
2182 	regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2183 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK);
2184 	regmap_update_bits(regmap, NAU8825_REG_FLL6,
2185 		NAU8825_DCO_EN, 0);
2186 	/* Make DSP operate as default setting for power saving. */
2187 	regmap_update_bits(regmap, NAU8825_REG_FLL1,
2188 		NAU8825_ICTRL_LATCH_MASK, 0);
2189 }
2190 
2191 static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id,
2192 	unsigned int freq)
2193 {
2194 	struct regmap *regmap = nau8825->regmap;
2195 	int ret;
2196 
2197 	switch (clk_id) {
2198 	case NAU8825_CLK_DIS:
2199 		/* Clock provided externally and disable internal VCO clock */
2200 		nau8825_configure_mclk_as_sysclk(regmap);
2201 		if (nau8825->mclk_freq) {
2202 			clk_disable_unprepare(nau8825->mclk);
2203 			nau8825->mclk_freq = 0;
2204 		}
2205 
2206 		break;
2207 	case NAU8825_CLK_MCLK:
2208 		/* Acquire the semaphore to synchronize the playback and
2209 		 * interrupt handler. In order to avoid the playback inter-
2210 		 * fered by cross talk process, the driver make the playback
2211 		 * preparation halted until cross talk process finish.
2212 		 */
2213 		nau8825_sema_acquire(nau8825, 3 * HZ);
2214 		nau8825_configure_mclk_as_sysclk(regmap);
2215 		/* MCLK not changed by clock tree */
2216 		regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2217 			NAU8825_CLK_MCLK_SRC_MASK, 0);
2218 		/* Release the semaphore. */
2219 		nau8825_sema_release(nau8825);
2220 
2221 		ret = nau8825_mclk_prepare(nau8825, freq);
2222 		if (ret)
2223 			return ret;
2224 
2225 		break;
2226 	case NAU8825_CLK_INTERNAL:
2227 		if (nau8825_is_jack_inserted(nau8825->regmap)) {
2228 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2229 				NAU8825_DCO_EN, NAU8825_DCO_EN);
2230 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2231 				NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2232 			/* Decrease the VCO frequency and make DSP operate
2233 			 * as default setting for power saving.
2234 			 */
2235 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2236 				NAU8825_CLK_MCLK_SRC_MASK, 0xf);
2237 			regmap_update_bits(regmap, NAU8825_REG_FLL1,
2238 				NAU8825_ICTRL_LATCH_MASK |
2239 				NAU8825_FLL_RATIO_MASK, 0x10);
2240 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2241 				NAU8825_SDM_EN, NAU8825_SDM_EN);
2242 		} else {
2243 			/* The clock turns off intentionally for power saving
2244 			 * when no headset connected.
2245 			 */
2246 			nau8825_configure_mclk_as_sysclk(regmap);
2247 			dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n");
2248 		}
2249 		if (nau8825->mclk_freq) {
2250 			clk_disable_unprepare(nau8825->mclk);
2251 			nau8825->mclk_freq = 0;
2252 		}
2253 
2254 		break;
2255 	case NAU8825_CLK_FLL_MCLK:
2256 		/* Acquire the semaphore to synchronize the playback and
2257 		 * interrupt handler. In order to avoid the playback inter-
2258 		 * fered by cross talk process, the driver make the playback
2259 		 * preparation halted until cross talk process finish.
2260 		 */
2261 		nau8825_sema_acquire(nau8825, 3 * HZ);
2262 		/* Higher FLL reference input frequency can only set lower
2263 		 * gain error, such as 0000 for input reference from MCLK
2264 		 * 12.288Mhz.
2265 		 */
2266 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2267 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2268 			NAU8825_FLL_CLK_SRC_MCLK | 0);
2269 		/* Release the semaphore. */
2270 		nau8825_sema_release(nau8825);
2271 
2272 		ret = nau8825_mclk_prepare(nau8825, freq);
2273 		if (ret)
2274 			return ret;
2275 
2276 		break;
2277 	case NAU8825_CLK_FLL_BLK:
2278 		/* Acquire the semaphore to synchronize the playback and
2279 		 * interrupt handler. In order to avoid the playback inter-
2280 		 * fered by cross talk process, the driver make the playback
2281 		 * preparation halted until cross talk process finish.
2282 		 */
2283 		nau8825_sema_acquire(nau8825, 3 * HZ);
2284 		/* If FLL reference input is from low frequency source,
2285 		 * higher error gain can apply such as 0xf which has
2286 		 * the most sensitive gain error correction threshold,
2287 		 * Therefore, FLL has the most accurate DCO to
2288 		 * target frequency.
2289 		 */
2290 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2291 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2292 			NAU8825_FLL_CLK_SRC_BLK |
2293 			(0xf << NAU8825_GAIN_ERR_SFT));
2294 		/* Release the semaphore. */
2295 		nau8825_sema_release(nau8825);
2296 
2297 		if (nau8825->mclk_freq) {
2298 			clk_disable_unprepare(nau8825->mclk);
2299 			nau8825->mclk_freq = 0;
2300 		}
2301 
2302 		break;
2303 	case NAU8825_CLK_FLL_FS:
2304 		/* Acquire the semaphore to synchronize the playback and
2305 		 * interrupt handler. In order to avoid the playback inter-
2306 		 * fered by cross talk process, the driver make the playback
2307 		 * preparation halted until cross talk process finish.
2308 		 */
2309 		nau8825_sema_acquire(nau8825, 3 * HZ);
2310 		/* If FLL reference input is from low frequency source,
2311 		 * higher error gain can apply such as 0xf which has
2312 		 * the most sensitive gain error correction threshold,
2313 		 * Therefore, FLL has the most accurate DCO to
2314 		 * target frequency.
2315 		 */
2316 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2317 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2318 			NAU8825_FLL_CLK_SRC_FS |
2319 			(0xf << NAU8825_GAIN_ERR_SFT));
2320 		/* Release the semaphore. */
2321 		nau8825_sema_release(nau8825);
2322 
2323 		if (nau8825->mclk_freq) {
2324 			clk_disable_unprepare(nau8825->mclk);
2325 			nau8825->mclk_freq = 0;
2326 		}
2327 
2328 		break;
2329 	default:
2330 		dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id);
2331 		return -EINVAL;
2332 	}
2333 
2334 	dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq,
2335 		clk_id);
2336 	return 0;
2337 }
2338 
2339 static int nau8825_set_sysclk(struct snd_soc_component *component, int clk_id,
2340 	int source, unsigned int freq, int dir)
2341 {
2342 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2343 
2344 	return nau8825_configure_sysclk(nau8825, clk_id, freq);
2345 }
2346 
2347 static int nau8825_resume_setup(struct nau8825 *nau8825)
2348 {
2349 	struct regmap *regmap = nau8825->regmap;
2350 
2351 	/* Close clock when jack type detection at manual mode */
2352 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
2353 
2354 	/* Clear all interruption status */
2355 	nau8825_int_status_clear_all(regmap);
2356 
2357 	/* Enable both insertion and ejection interruptions, and then
2358 	 * bypass de-bounce circuit.
2359 	 */
2360 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2361 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN |
2362 		NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN,
2363 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN);
2364 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2365 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
2366 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
2367 		NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0);
2368 
2369 	return 0;
2370 }
2371 
2372 static int nau8825_set_bias_level(struct snd_soc_component *component,
2373 				   enum snd_soc_bias_level level)
2374 {
2375 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2376 	int ret;
2377 
2378 	switch (level) {
2379 	case SND_SOC_BIAS_ON:
2380 		break;
2381 
2382 	case SND_SOC_BIAS_PREPARE:
2383 		break;
2384 
2385 	case SND_SOC_BIAS_STANDBY:
2386 		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
2387 			if (nau8825->mclk_freq) {
2388 				ret = clk_prepare_enable(nau8825->mclk);
2389 				if (ret) {
2390 					dev_err(nau8825->dev, "Unable to prepare component mclk\n");
2391 					return ret;
2392 				}
2393 			}
2394 			/* Setup codec configuration after resume */
2395 			nau8825_resume_setup(nau8825);
2396 		}
2397 		break;
2398 
2399 	case SND_SOC_BIAS_OFF:
2400 		/* Reset the configuration of jack type for detection */
2401 		/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
2402 		regmap_update_bits(nau8825->regmap, NAU8825_REG_MIC_BIAS,
2403 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
2404 		/* ground HPL/HPR, MICGRND1/2 */
2405 		regmap_update_bits(nau8825->regmap,
2406 			NAU8825_REG_HSD_CTRL, 0xf, 0xf);
2407 		/* Cancel and reset cross talk detection funciton */
2408 		nau8825_xtalk_cancel(nau8825);
2409 		/* Turn off all interruptions before system shutdown. Keep the
2410 		 * interruption quiet before resume setup completes.
2411 		 */
2412 		regmap_write(nau8825->regmap,
2413 			NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff);
2414 		/* Disable ADC needed for interruptions at audo mode */
2415 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
2416 			NAU8825_ENABLE_ADC, 0);
2417 		if (nau8825->mclk_freq)
2418 			clk_disable_unprepare(nau8825->mclk);
2419 		break;
2420 	}
2421 	return 0;
2422 }
2423 
2424 static int __maybe_unused nau8825_suspend(struct snd_soc_component *component)
2425 {
2426 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2427 
2428 	disable_irq(nau8825->irq);
2429 	snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF);
2430 	/* Power down codec power; don't suppoet button wakeup */
2431 	snd_soc_dapm_disable_pin(nau8825->dapm, "SAR");
2432 	snd_soc_dapm_disable_pin(nau8825->dapm, "MICBIAS");
2433 	snd_soc_dapm_sync(nau8825->dapm);
2434 	regcache_cache_only(nau8825->regmap, true);
2435 	regcache_mark_dirty(nau8825->regmap);
2436 
2437 	return 0;
2438 }
2439 
2440 static int __maybe_unused nau8825_resume(struct snd_soc_component *component)
2441 {
2442 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2443 	int ret;
2444 
2445 	regcache_cache_only(nau8825->regmap, false);
2446 	regcache_sync(nau8825->regmap);
2447 	nau8825->xtalk_protect = true;
2448 	ret = nau8825_sema_acquire(nau8825, 0);
2449 	if (ret)
2450 		nau8825->xtalk_protect = false;
2451 	enable_irq(nau8825->irq);
2452 
2453 	return 0;
2454 }
2455 
2456 static int nau8825_set_jack(struct snd_soc_component *component,
2457 			    struct snd_soc_jack *jack, void *data)
2458 {
2459 	return nau8825_enable_jack_detect(component, jack);
2460 }
2461 
2462 static const struct snd_soc_component_driver nau8825_component_driver = {
2463 	.probe			= nau8825_component_probe,
2464 	.remove			= nau8825_component_remove,
2465 	.set_sysclk		= nau8825_set_sysclk,
2466 	.set_pll		= nau8825_set_pll,
2467 	.set_bias_level		= nau8825_set_bias_level,
2468 	.suspend		= nau8825_suspend,
2469 	.resume			= nau8825_resume,
2470 	.controls		= nau8825_controls,
2471 	.num_controls		= ARRAY_SIZE(nau8825_controls),
2472 	.dapm_widgets		= nau8825_dapm_widgets,
2473 	.num_dapm_widgets	= ARRAY_SIZE(nau8825_dapm_widgets),
2474 	.dapm_routes		= nau8825_dapm_routes,
2475 	.num_dapm_routes	= ARRAY_SIZE(nau8825_dapm_routes),
2476 	.set_jack		= nau8825_set_jack,
2477 	.suspend_bias_off	= 1,
2478 	.idle_bias_on		= 1,
2479 	.use_pmdown_time	= 1,
2480 	.endianness		= 1,
2481 	.non_legacy_dai_naming	= 1,
2482 };
2483 
2484 static void nau8825_reset_chip(struct regmap *regmap)
2485 {
2486 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2487 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2488 }
2489 
2490 static void nau8825_print_device_properties(struct nau8825 *nau8825)
2491 {
2492 	int i;
2493 	struct device *dev = nau8825->dev;
2494 
2495 	dev_dbg(dev, "jkdet-enable:         %d\n", nau8825->jkdet_enable);
2496 	dev_dbg(dev, "jkdet-pull-enable:    %d\n", nau8825->jkdet_pull_enable);
2497 	dev_dbg(dev, "jkdet-pull-up:        %d\n", nau8825->jkdet_pull_up);
2498 	dev_dbg(dev, "jkdet-polarity:       %d\n", nau8825->jkdet_polarity);
2499 	dev_dbg(dev, "micbias-voltage:      %d\n", nau8825->micbias_voltage);
2500 	dev_dbg(dev, "vref-impedance:       %d\n", nau8825->vref_impedance);
2501 
2502 	dev_dbg(dev, "sar-threshold-num:    %d\n", nau8825->sar_threshold_num);
2503 	for (i = 0; i < nau8825->sar_threshold_num; i++)
2504 		dev_dbg(dev, "sar-threshold[%d]=%d\n", i,
2505 				nau8825->sar_threshold[i]);
2506 
2507 	dev_dbg(dev, "sar-hysteresis:       %d\n", nau8825->sar_hysteresis);
2508 	dev_dbg(dev, "sar-voltage:          %d\n", nau8825->sar_voltage);
2509 	dev_dbg(dev, "sar-compare-time:     %d\n", nau8825->sar_compare_time);
2510 	dev_dbg(dev, "sar-sampling-time:    %d\n", nau8825->sar_sampling_time);
2511 	dev_dbg(dev, "short-key-debounce:   %d\n", nau8825->key_debounce);
2512 	dev_dbg(dev, "jack-insert-debounce: %d\n",
2513 			nau8825->jack_insert_debounce);
2514 	dev_dbg(dev, "jack-eject-debounce:  %d\n",
2515 			nau8825->jack_eject_debounce);
2516 	dev_dbg(dev, "crosstalk-enable:     %d\n",
2517 			nau8825->xtalk_enable);
2518 }
2519 
2520 static int nau8825_read_device_properties(struct device *dev,
2521 	struct nau8825 *nau8825) {
2522 	int ret;
2523 
2524 	nau8825->jkdet_enable = device_property_read_bool(dev,
2525 		"nuvoton,jkdet-enable");
2526 	nau8825->jkdet_pull_enable = device_property_read_bool(dev,
2527 		"nuvoton,jkdet-pull-enable");
2528 	nau8825->jkdet_pull_up = device_property_read_bool(dev,
2529 		"nuvoton,jkdet-pull-up");
2530 	ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity",
2531 		&nau8825->jkdet_polarity);
2532 	if (ret)
2533 		nau8825->jkdet_polarity = 1;
2534 	ret = device_property_read_u32(dev, "nuvoton,micbias-voltage",
2535 		&nau8825->micbias_voltage);
2536 	if (ret)
2537 		nau8825->micbias_voltage = 6;
2538 	ret = device_property_read_u32(dev, "nuvoton,vref-impedance",
2539 		&nau8825->vref_impedance);
2540 	if (ret)
2541 		nau8825->vref_impedance = 2;
2542 	ret = device_property_read_u32(dev, "nuvoton,sar-threshold-num",
2543 		&nau8825->sar_threshold_num);
2544 	if (ret)
2545 		nau8825->sar_threshold_num = 4;
2546 	ret = device_property_read_u32_array(dev, "nuvoton,sar-threshold",
2547 		nau8825->sar_threshold, nau8825->sar_threshold_num);
2548 	if (ret) {
2549 		nau8825->sar_threshold[0] = 0x08;
2550 		nau8825->sar_threshold[1] = 0x12;
2551 		nau8825->sar_threshold[2] = 0x26;
2552 		nau8825->sar_threshold[3] = 0x73;
2553 	}
2554 	ret = device_property_read_u32(dev, "nuvoton,sar-hysteresis",
2555 		&nau8825->sar_hysteresis);
2556 	if (ret)
2557 		nau8825->sar_hysteresis = 0;
2558 	ret = device_property_read_u32(dev, "nuvoton,sar-voltage",
2559 		&nau8825->sar_voltage);
2560 	if (ret)
2561 		nau8825->sar_voltage = 6;
2562 	ret = device_property_read_u32(dev, "nuvoton,sar-compare-time",
2563 		&nau8825->sar_compare_time);
2564 	if (ret)
2565 		nau8825->sar_compare_time = 1;
2566 	ret = device_property_read_u32(dev, "nuvoton,sar-sampling-time",
2567 		&nau8825->sar_sampling_time);
2568 	if (ret)
2569 		nau8825->sar_sampling_time = 1;
2570 	ret = device_property_read_u32(dev, "nuvoton,short-key-debounce",
2571 		&nau8825->key_debounce);
2572 	if (ret)
2573 		nau8825->key_debounce = 3;
2574 	ret = device_property_read_u32(dev, "nuvoton,jack-insert-debounce",
2575 		&nau8825->jack_insert_debounce);
2576 	if (ret)
2577 		nau8825->jack_insert_debounce = 7;
2578 	ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
2579 		&nau8825->jack_eject_debounce);
2580 	if (ret)
2581 		nau8825->jack_eject_debounce = 0;
2582 	nau8825->xtalk_enable = device_property_read_bool(dev,
2583 		"nuvoton,crosstalk-enable");
2584 
2585 	nau8825->mclk = devm_clk_get(dev, "mclk");
2586 	if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) {
2587 		return -EPROBE_DEFER;
2588 	} else if (PTR_ERR(nau8825->mclk) == -ENOENT) {
2589 		/* The MCLK is managed externally or not used at all */
2590 		nau8825->mclk = NULL;
2591 		dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally");
2592 	} else if (IS_ERR(nau8825->mclk)) {
2593 		return -EINVAL;
2594 	}
2595 
2596 	return 0;
2597 }
2598 
2599 static int nau8825_setup_irq(struct nau8825 *nau8825)
2600 {
2601 	int ret;
2602 
2603 	ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL,
2604 		nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2605 		"nau8825", nau8825);
2606 
2607 	if (ret) {
2608 		dev_err(nau8825->dev, "Cannot request irq %d (%d)\n",
2609 			nau8825->irq, ret);
2610 		return ret;
2611 	}
2612 
2613 	return 0;
2614 }
2615 
2616 static int nau8825_i2c_probe(struct i2c_client *i2c,
2617 	const struct i2c_device_id *id)
2618 {
2619 	struct device *dev = &i2c->dev;
2620 	struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev);
2621 	int ret, value;
2622 
2623 	if (!nau8825) {
2624 		nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL);
2625 		if (!nau8825)
2626 			return -ENOMEM;
2627 		ret = nau8825_read_device_properties(dev, nau8825);
2628 		if (ret)
2629 			return ret;
2630 	}
2631 
2632 	i2c_set_clientdata(i2c, nau8825);
2633 
2634 	nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config);
2635 	if (IS_ERR(nau8825->regmap))
2636 		return PTR_ERR(nau8825->regmap);
2637 	nau8825->dev = dev;
2638 	nau8825->irq = i2c->irq;
2639 	/* Initiate parameters, semaphore and work queue which are needed in
2640 	 * cross talk suppression measurment function.
2641 	 */
2642 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
2643 	nau8825->xtalk_protect = false;
2644 	nau8825->xtalk_baktab_initialized = false;
2645 	sema_init(&nau8825->xtalk_sem, 1);
2646 	INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work);
2647 
2648 	nau8825_print_device_properties(nau8825);
2649 
2650 	nau8825_reset_chip(nau8825->regmap);
2651 	ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value);
2652 	if (ret < 0) {
2653 		dev_err(dev, "Failed to read device id from the NAU8825: %d\n",
2654 			ret);
2655 		return ret;
2656 	}
2657 	if ((value & NAU8825_SOFTWARE_ID_MASK) !=
2658 			NAU8825_SOFTWARE_ID_NAU8825) {
2659 		dev_err(dev, "Not a NAU8825 chip\n");
2660 		return -ENODEV;
2661 	}
2662 
2663 	nau8825_init_regs(nau8825);
2664 
2665 	if (i2c->irq)
2666 		nau8825_setup_irq(nau8825);
2667 
2668 	return devm_snd_soc_register_component(&i2c->dev,
2669 		&nau8825_component_driver,
2670 		&nau8825_dai, 1);
2671 }
2672 
2673 static int nau8825_i2c_remove(struct i2c_client *client)
2674 {
2675 	return 0;
2676 }
2677 
2678 static const struct i2c_device_id nau8825_i2c_ids[] = {
2679 	{ "nau8825", 0 },
2680 	{ }
2681 };
2682 MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids);
2683 
2684 #ifdef CONFIG_OF
2685 static const struct of_device_id nau8825_of_ids[] = {
2686 	{ .compatible = "nuvoton,nau8825", },
2687 	{}
2688 };
2689 MODULE_DEVICE_TABLE(of, nau8825_of_ids);
2690 #endif
2691 
2692 #ifdef CONFIG_ACPI
2693 static const struct acpi_device_id nau8825_acpi_match[] = {
2694 	{ "10508825", 0 },
2695 	{},
2696 };
2697 MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match);
2698 #endif
2699 
2700 static struct i2c_driver nau8825_driver = {
2701 	.driver = {
2702 		.name = "nau8825",
2703 		.of_match_table = of_match_ptr(nau8825_of_ids),
2704 		.acpi_match_table = ACPI_PTR(nau8825_acpi_match),
2705 	},
2706 	.probe = nau8825_i2c_probe,
2707 	.remove = nau8825_i2c_remove,
2708 	.id_table = nau8825_i2c_ids,
2709 };
2710 module_i2c_driver(nau8825_driver);
2711 
2712 MODULE_DESCRIPTION("ASoC nau8825 driver");
2713 MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>");
2714 MODULE_LICENSE("GPL");
2715