xref: /openbmc/linux/sound/soc/codecs/nau8825.c (revision 90741096769bd75152a5fe397343e5893c7d905a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Nuvoton NAU8825 audio codec driver
4  *
5  * Copyright 2015 Google Chromium project.
6  *  Author: Anatol Pomozov <anatol@chromium.org>
7  * Copyright 2015 Nuvoton Technology Corp.
8  *  Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com>
9  */
10 
11 #include <linux/module.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
14 #include <linux/i2c.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 #include <linux/clk.h>
18 #include <linux/acpi.h>
19 #include <linux/math64.h>
20 #include <linux/semaphore.h>
21 
22 #include <sound/initval.h>
23 #include <sound/tlv.h>
24 #include <sound/core.h>
25 #include <sound/pcm.h>
26 #include <sound/pcm_params.h>
27 #include <sound/soc.h>
28 #include <sound/jack.h>
29 
30 
31 #include "nau8825.h"
32 
33 
34 #define NUVOTON_CODEC_DAI "nau8825-hifi"
35 
36 #define NAU_FREF_MAX 13500000
37 #define NAU_FVCO_MAX 124000000
38 #define NAU_FVCO_MIN 90000000
39 
40 /* cross talk suppression detection */
41 #define LOG10_MAGIC 646456993
42 #define GAIN_AUGMENT 22500
43 #define SIDETONE_BASE 207000
44 
45 /* the maximum frequency of CLK_ADC and CLK_DAC */
46 #define CLK_DA_AD_MAX 6144000
47 
48 static int nau8825_configure_sysclk(struct nau8825 *nau8825,
49 		int clk_id, unsigned int freq);
50 static bool nau8825_is_jack_inserted(struct regmap *regmap);
51 
52 struct nau8825_fll {
53 	int mclk_src;
54 	int ratio;
55 	int fll_frac;
56 	int fll_int;
57 	int clk_ref_div;
58 };
59 
60 struct nau8825_fll_attr {
61 	unsigned int param;
62 	unsigned int val;
63 };
64 
65 /* scaling for mclk from sysclk_src output */
66 static const struct nau8825_fll_attr mclk_src_scaling[] = {
67 	{ 1, 0x0 },
68 	{ 2, 0x2 },
69 	{ 4, 0x3 },
70 	{ 8, 0x4 },
71 	{ 16, 0x5 },
72 	{ 32, 0x6 },
73 	{ 3, 0x7 },
74 	{ 6, 0xa },
75 	{ 12, 0xb },
76 	{ 24, 0xc },
77 	{ 48, 0xd },
78 	{ 96, 0xe },
79 	{ 5, 0xf },
80 };
81 
82 /* ratio for input clk freq */
83 static const struct nau8825_fll_attr fll_ratio[] = {
84 	{ 512000, 0x01 },
85 	{ 256000, 0x02 },
86 	{ 128000, 0x04 },
87 	{ 64000, 0x08 },
88 	{ 32000, 0x10 },
89 	{ 8000, 0x20 },
90 	{ 4000, 0x40 },
91 };
92 
93 static const struct nau8825_fll_attr fll_pre_scalar[] = {
94 	{ 1, 0x0 },
95 	{ 2, 0x1 },
96 	{ 4, 0x2 },
97 	{ 8, 0x3 },
98 };
99 
100 /* over sampling rate */
101 struct nau8825_osr_attr {
102 	unsigned int osr;
103 	unsigned int clk_src;
104 };
105 
106 static const struct nau8825_osr_attr osr_dac_sel[] = {
107 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
108 	{ 256, 0 },	/* OSR 256, SRC 1 */
109 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
110 	{ 0, 0 },
111 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
112 };
113 
114 static const struct nau8825_osr_attr osr_adc_sel[] = {
115 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
116 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
117 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
118 	{ 256, 0 },	/* OSR 256, SRC 1 */
119 };
120 
121 static const struct reg_default nau8825_reg_defaults[] = {
122 	{ NAU8825_REG_ENA_CTRL, 0x00ff },
123 	{ NAU8825_REG_IIC_ADDR_SET, 0x0 },
124 	{ NAU8825_REG_CLK_DIVIDER, 0x0050 },
125 	{ NAU8825_REG_FLL1, 0x0 },
126 	{ NAU8825_REG_FLL2, 0x3126 },
127 	{ NAU8825_REG_FLL3, 0x0008 },
128 	{ NAU8825_REG_FLL4, 0x0010 },
129 	{ NAU8825_REG_FLL5, 0x0 },
130 	{ NAU8825_REG_FLL6, 0x6000 },
131 	{ NAU8825_REG_FLL_VCO_RSV, 0xf13c },
132 	{ NAU8825_REG_HSD_CTRL, 0x000c },
133 	{ NAU8825_REG_JACK_DET_CTRL, 0x0 },
134 	{ NAU8825_REG_INTERRUPT_MASK, 0x0 },
135 	{ NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff },
136 	{ NAU8825_REG_SAR_CTRL, 0x0015 },
137 	{ NAU8825_REG_KEYDET_CTRL, 0x0110 },
138 	{ NAU8825_REG_VDET_THRESHOLD_1, 0x0 },
139 	{ NAU8825_REG_VDET_THRESHOLD_2, 0x0 },
140 	{ NAU8825_REG_VDET_THRESHOLD_3, 0x0 },
141 	{ NAU8825_REG_VDET_THRESHOLD_4, 0x0 },
142 	{ NAU8825_REG_GPIO34_CTRL, 0x0 },
143 	{ NAU8825_REG_GPIO12_CTRL, 0x0 },
144 	{ NAU8825_REG_TDM_CTRL, 0x0 },
145 	{ NAU8825_REG_I2S_PCM_CTRL1, 0x000b },
146 	{ NAU8825_REG_I2S_PCM_CTRL2, 0x8010 },
147 	{ NAU8825_REG_LEFT_TIME_SLOT, 0x0 },
148 	{ NAU8825_REG_RIGHT_TIME_SLOT, 0x0 },
149 	{ NAU8825_REG_BIQ_CTRL, 0x0 },
150 	{ NAU8825_REG_BIQ_COF1, 0x0 },
151 	{ NAU8825_REG_BIQ_COF2, 0x0 },
152 	{ NAU8825_REG_BIQ_COF3, 0x0 },
153 	{ NAU8825_REG_BIQ_COF4, 0x0 },
154 	{ NAU8825_REG_BIQ_COF5, 0x0 },
155 	{ NAU8825_REG_BIQ_COF6, 0x0 },
156 	{ NAU8825_REG_BIQ_COF7, 0x0 },
157 	{ NAU8825_REG_BIQ_COF8, 0x0 },
158 	{ NAU8825_REG_BIQ_COF9, 0x0 },
159 	{ NAU8825_REG_BIQ_COF10, 0x0 },
160 	{ NAU8825_REG_ADC_RATE, 0x0010 },
161 	{ NAU8825_REG_DAC_CTRL1, 0x0001 },
162 	{ NAU8825_REG_DAC_CTRL2, 0x0 },
163 	{ NAU8825_REG_DAC_DGAIN_CTRL, 0x0 },
164 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
165 	{ NAU8825_REG_MUTE_CTRL, 0x0 },
166 	{ NAU8825_REG_HSVOL_CTRL, 0x0 },
167 	{ NAU8825_REG_DACL_CTRL, 0x02cf },
168 	{ NAU8825_REG_DACR_CTRL, 0x00cf },
169 	{ NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 },
170 	{ NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 },
171 	{ NAU8825_REG_ADC_DRC_SLOPES, 0x25ff },
172 	{ NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 },
173 	{ NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 },
174 	{ NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 },
175 	{ NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 },
176 	{ NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 },
177 	{ NAU8825_REG_IMM_MODE_CTRL, 0x0 },
178 	{ NAU8825_REG_CLASSG_CTRL, 0x0 },
179 	{ NAU8825_REG_OPT_EFUSE_CTRL, 0x0 },
180 	{ NAU8825_REG_MISC_CTRL, 0x0 },
181 	{ NAU8825_REG_BIAS_ADJ, 0x0 },
182 	{ NAU8825_REG_TRIM_SETTINGS, 0x0 },
183 	{ NAU8825_REG_ANALOG_CONTROL_1, 0x0 },
184 	{ NAU8825_REG_ANALOG_CONTROL_2, 0x0 },
185 	{ NAU8825_REG_ANALOG_ADC_1, 0x0011 },
186 	{ NAU8825_REG_ANALOG_ADC_2, 0x0020 },
187 	{ NAU8825_REG_RDAC, 0x0008 },
188 	{ NAU8825_REG_MIC_BIAS, 0x0006 },
189 	{ NAU8825_REG_BOOST, 0x0 },
190 	{ NAU8825_REG_FEPGA, 0x0 },
191 	{ NAU8825_REG_POWER_UP_CONTROL, 0x0 },
192 	{ NAU8825_REG_CHARGE_PUMP, 0x0 },
193 };
194 
195 /* register backup table when cross talk detection */
196 static struct reg_default nau8825_xtalk_baktab[] = {
197 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
198 	{ NAU8825_REG_HSVOL_CTRL, 0 },
199 	{ NAU8825_REG_DACL_CTRL, 0x00cf },
200 	{ NAU8825_REG_DACR_CTRL, 0x02cf },
201 };
202 
203 static const unsigned short logtable[256] = {
204 	0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7,
205 	0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508,
206 	0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6,
207 	0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37,
208 	0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f,
209 	0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41,
210 	0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1,
211 	0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142,
212 	0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68,
213 	0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355,
214 	0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c,
215 	0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490,
216 	0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3,
217 	0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507,
218 	0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe,
219 	0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca,
220 	0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c,
221 	0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7,
222 	0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c,
223 	0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c,
224 	0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a,
225 	0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065,
226 	0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730,
227 	0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc,
228 	0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469,
229 	0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9,
230 	0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c,
231 	0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765,
232 	0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83,
233 	0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387,
234 	0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973,
235 	0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47
236 };
237 
238 /**
239  * nau8825_sema_acquire - acquire the semaphore of nau88l25
240  * @nau8825:  component to register the codec private data with
241  * @timeout: how long in jiffies to wait before failure or zero to wait
242  * until release
243  *
244  * Attempts to acquire the semaphore with number of jiffies. If no more
245  * tasks are allowed to acquire the semaphore, calling this function will
246  * put the task to sleep. If the semaphore is not released within the
247  * specified number of jiffies, this function returns.
248  * If the semaphore is not released within the specified number of jiffies,
249  * this function returns -ETIME. If the sleep is interrupted by a signal,
250  * this function will return -EINTR. It returns 0 if the semaphore was
251  * acquired successfully.
252  *
253  * Acquires the semaphore without jiffies. Try to acquire the semaphore
254  * atomically. Returns 0 if the semaphore has been acquired successfully
255  * or 1 if it cannot be acquired.
256  */
257 static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout)
258 {
259 	int ret;
260 
261 	if (timeout) {
262 		ret = down_timeout(&nau8825->xtalk_sem, timeout);
263 		if (ret < 0)
264 			dev_warn(nau8825->dev, "Acquire semaphore timeout\n");
265 	} else {
266 		ret = down_trylock(&nau8825->xtalk_sem);
267 		if (ret)
268 			dev_warn(nau8825->dev, "Acquire semaphore fail\n");
269 	}
270 
271 	return ret;
272 }
273 
274 /**
275  * nau8825_sema_release - release the semaphore of nau88l25
276  * @nau8825:  component to register the codec private data with
277  *
278  * Release the semaphore which may be called from any context and
279  * even by tasks which have never called down().
280  */
281 static inline void nau8825_sema_release(struct nau8825 *nau8825)
282 {
283 	up(&nau8825->xtalk_sem);
284 }
285 
286 /**
287  * nau8825_sema_reset - reset the semaphore for nau88l25
288  * @nau8825:  component to register the codec private data with
289  *
290  * Reset the counter of the semaphore. Call this function to restart
291  * a new round task management.
292  */
293 static inline void nau8825_sema_reset(struct nau8825 *nau8825)
294 {
295 	nau8825->xtalk_sem.count = 1;
296 }
297 
298 /**
299  * nau8825_hpvol_ramp - Ramp up the headphone volume change gradually to target level.
300  *
301  * @nau8825:  component to register the codec private data with
302  * @vol_from: the volume to start up
303  * @vol_to: the target volume
304  * @step: the volume span to move on
305  *
306  * The headphone volume is from 0dB to minimum -54dB and -1dB per step.
307  * If the volume changes sharp, there is a pop noise heard in headphone. We
308  * provide the function to ramp up the volume up or down by delaying 10ms
309  * per step.
310  */
311 static void nau8825_hpvol_ramp(struct nau8825 *nau8825,
312 	unsigned int vol_from, unsigned int vol_to, unsigned int step)
313 {
314 	unsigned int value, volume, ramp_up, from, to;
315 
316 	if (vol_from == vol_to || step == 0) {
317 		return;
318 	} else if (vol_from < vol_to) {
319 		ramp_up = true;
320 		from = vol_from;
321 		to = vol_to;
322 	} else {
323 		ramp_up = false;
324 		from = vol_to;
325 		to = vol_from;
326 	}
327 	/* only handle volume from 0dB to minimum -54dB */
328 	if (to > NAU8825_HP_VOL_MIN)
329 		to = NAU8825_HP_VOL_MIN;
330 
331 	for (volume = from; volume < to; volume += step) {
332 		if (ramp_up)
333 			value = volume;
334 		else
335 			value = to - volume + from;
336 		regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
337 			NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
338 			(value << NAU8825_HPL_VOL_SFT) | value);
339 		usleep_range(10000, 10500);
340 	}
341 	if (ramp_up)
342 		value = to;
343 	else
344 		value = from;
345 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
346 		NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
347 		(value << NAU8825_HPL_VOL_SFT) | value);
348 }
349 
350 /**
351  * nau8825_intlog10_dec3 - Computes log10 of a value
352  * the result is round off to 3 decimal. This function takes reference to
353  * dvb-math. The source code locates as the following.
354  * Linux/drivers/media/dvb-core/dvb_math.c
355  * @value:  input for log10
356  *
357  * return log10(value) * 1000
358  */
359 static u32 nau8825_intlog10_dec3(u32 value)
360 {
361 	u32 msb, logentry, significand, interpolation, log10val;
362 	u64 log2val;
363 
364 	/* first detect the msb (count begins at 0) */
365 	msb = fls(value) - 1;
366 	/**
367 	 *      now we use a logtable after the following method:
368 	 *
369 	 *      log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24
370 	 *      where x = msb and therefore 1 <= y < 2
371 	 *      first y is determined by shifting the value left
372 	 *      so that msb is bit 31
373 	 *              0x00231f56 -> 0x8C7D5800
374 	 *      the result is y * 2^31 -> "significand"
375 	 *      then the highest 9 bits are used for a table lookup
376 	 *      the highest bit is discarded because it's always set
377 	 *      the highest nine bits in our example are 100011000
378 	 *      so we would use the entry 0x18
379 	 */
380 	significand = value << (31 - msb);
381 	logentry = (significand >> 23) & 0xff;
382 	/**
383 	 *      last step we do is interpolation because of the
384 	 *      limitations of the log table the error is that part of
385 	 *      the significand which isn't used for lookup then we
386 	 *      compute the ratio between the error and the next table entry
387 	 *      and interpolate it between the log table entry used and the
388 	 *      next one the biggest error possible is 0x7fffff
389 	 *      (in our example it's 0x7D5800)
390 	 *      needed value for next table entry is 0x800000
391 	 *      so the interpolation is
392 	 *      (error / 0x800000) * (logtable_next - logtable_current)
393 	 *      in the implementation the division is moved to the end for
394 	 *      better accuracy there is also an overflow correction if
395 	 *      logtable_next is 256
396 	 */
397 	interpolation = ((significand & 0x7fffff) *
398 		((logtable[(logentry + 1) & 0xff] -
399 		logtable[logentry]) & 0xffff)) >> 15;
400 
401 	log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation);
402 	/**
403 	 *      log10(x) = log2(x) * log10(2)
404 	 */
405 	log10val = (log2val * LOG10_MAGIC) >> 31;
406 	/**
407 	 *      the result is round off to 3 decimal
408 	 */
409 	return log10val / ((1 << 24) / 1000);
410 }
411 
412 /**
413  * nau8825_xtalk_sidetone - computes cross talk suppression sidetone gain.
414  *
415  * @sig_org: orignal signal level
416  * @sig_cros: cross talk signal level
417  *
418  * The orignal and cross talk signal vlues need to be characterized.
419  * Once these values have been characterized, this sidetone value
420  * can be converted to decibel with the equation below.
421  * sidetone = 20 * log (original signal level / crosstalk signal level)
422  *
423  * return cross talk sidetone gain
424  */
425 static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros)
426 {
427 	u32 gain, sidetone;
428 
429 	if (WARN_ON(sig_org == 0 || sig_cros == 0))
430 		return 0;
431 
432 	sig_org = nau8825_intlog10_dec3(sig_org);
433 	sig_cros = nau8825_intlog10_dec3(sig_cros);
434 	if (sig_org >= sig_cros)
435 		gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT;
436 	else
437 		gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT;
438 	sidetone = SIDETONE_BASE - gain * 2;
439 	sidetone /= 1000;
440 
441 	return sidetone;
442 }
443 
444 static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg)
445 {
446 	int index;
447 
448 	for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++)
449 		if (nau8825_xtalk_baktab[index].reg == reg)
450 			return index;
451 	return -EINVAL;
452 }
453 
454 static void nau8825_xtalk_backup(struct nau8825 *nau8825)
455 {
456 	int i;
457 
458 	if (nau8825->xtalk_baktab_initialized)
459 		return;
460 
461 	/* Backup some register values to backup table */
462 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++)
463 		regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
464 				&nau8825_xtalk_baktab[i].def);
465 
466 	nau8825->xtalk_baktab_initialized = true;
467 }
468 
469 static void nau8825_xtalk_restore(struct nau8825 *nau8825, bool cause_cancel)
470 {
471 	int i, volume;
472 
473 	if (!nau8825->xtalk_baktab_initialized)
474 		return;
475 
476 	/* Restore register values from backup table; When the driver restores
477 	 * the headphone volume in XTALK_DONE state, it needs recover to
478 	 * original level gradually with 3dB per step for less pop noise.
479 	 * Otherwise, the restore should do ASAP.
480 	 */
481 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) {
482 		if (!cause_cancel && nau8825_xtalk_baktab[i].reg ==
483 			NAU8825_REG_HSVOL_CTRL) {
484 			/* Ramping up the volume change to reduce pop noise */
485 			volume = nau8825_xtalk_baktab[i].def &
486 				NAU8825_HPR_VOL_MASK;
487 			nau8825_hpvol_ramp(nau8825, 0, volume, 3);
488 			continue;
489 		}
490 		regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
491 				nau8825_xtalk_baktab[i].def);
492 	}
493 
494 	nau8825->xtalk_baktab_initialized = false;
495 }
496 
497 static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825)
498 {
499 	/* Enable power of DAC path */
500 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
501 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
502 		NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK |
503 		NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR |
504 		NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC |
505 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK);
506 	/* Prevent startup click by letting charge pump to ramp up and
507 	 * change bump enable
508 	 */
509 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
510 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN,
511 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN);
512 	/* Enable clock sync of DAC and DAC clock */
513 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
514 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN |
515 		NAU8825_RDAC_FS_BCLK_ENB,
516 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN);
517 	/* Power up output driver with 2 stage */
518 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
519 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
520 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L,
521 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
522 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L);
523 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
524 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L,
525 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L);
526 	/* HP outputs not shouted to ground  */
527 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
528 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0);
529 	/* Enable HP boost driver */
530 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
531 		NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS);
532 	/* Enable class G compare path to supply 1.8V or 0.9V. */
533 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL,
534 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN,
535 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN);
536 }
537 
538 static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825)
539 {
540 	/* Power up left ADC and raise 5dB than Vmid for Vref  */
541 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
542 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK,
543 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB);
544 }
545 
546 static void nau8825_xtalk_clock(struct nau8825 *nau8825)
547 {
548 	/* Recover FLL default value */
549 	regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0);
550 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126);
551 	regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008);
552 	regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010);
553 	regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0);
554 	regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000);
555 	/* Enable internal VCO clock for detection signal generated */
556 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
557 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
558 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN,
559 		NAU8825_DCO_EN);
560 	/* Given specific clock frequency of internal clock to
561 	 * generate signal.
562 	 */
563 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
564 		NAU8825_CLK_MCLK_SRC_MASK, 0xf);
565 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
566 		NAU8825_FLL_RATIO_MASK, 0x10);
567 }
568 
569 static void nau8825_xtalk_prepare(struct nau8825 *nau8825)
570 {
571 	int volume, index;
572 
573 	/* Backup those registers changed by cross talk detection */
574 	nau8825_xtalk_backup(nau8825);
575 	/* Config IIS as master to output signal by codec */
576 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
577 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
578 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER |
579 		(0x2 << NAU8825_I2S_LRC_DIV_SFT) | 0x1);
580 	/* Ramp up headphone volume to 0dB to get better performance and
581 	 * avoid pop noise in headphone.
582 	 */
583 	index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL);
584 	if (index != -EINVAL) {
585 		volume = nau8825_xtalk_baktab[index].def &
586 				NAU8825_HPR_VOL_MASK;
587 		nau8825_hpvol_ramp(nau8825, volume, 0, 3);
588 	}
589 	nau8825_xtalk_clock(nau8825);
590 	nau8825_xtalk_prepare_dac(nau8825);
591 	nau8825_xtalk_prepare_adc(nau8825);
592 	/* Config channel path and digital gain */
593 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
594 		NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK,
595 		NAU8825_DACL_CH_SEL_L | 0xab);
596 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
597 		NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK,
598 		NAU8825_DACR_CH_SEL_R | 0xab);
599 	/* Config cross talk parameters and generate the 23Hz sine wave with
600 	 * 1/16 full scale of signal level for impedance measurement.
601 	 */
602 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
603 		NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK |
604 		NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK,
605 		(0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th |
606 		NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN);
607 	/* RMS intrruption enable */
608 	regmap_update_bits(nau8825->regmap,
609 		NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0);
610 	/* Power up left and right DAC */
611 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
612 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0);
613 }
614 
615 static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825)
616 {
617 	/* Disable HP boost driver */
618 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
619 		NAU8825_HP_BOOST_DIS, 0);
620 	/* HP outputs shouted to ground  */
621 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
622 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
623 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
624 	/* Power down left and right DAC */
625 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
626 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
627 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
628 	/* Enable the TESTDAC and  disable L/R HP impedance */
629 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
630 		NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP |
631 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
632 	/* Power down output driver with 2 stage */
633 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
634 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0);
635 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
636 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
637 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0);
638 	/* Disable clock sync of DAC and DAC clock */
639 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
640 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0);
641 	/* Disable charge pump ramp up function and change bump */
642 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
643 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0);
644 	/* Disable power of DAC path */
645 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
646 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
647 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0);
648 	if (!nau8825->irq)
649 		regmap_update_bits(nau8825->regmap,
650 			NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
651 }
652 
653 static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825)
654 {
655 	/* Power down left ADC and restore voltage to Vmid */
656 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
657 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0);
658 }
659 
660 static void nau8825_xtalk_clean(struct nau8825 *nau8825, bool cause_cancel)
661 {
662 	/* Enable internal VCO needed for interruptions */
663 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
664 	nau8825_xtalk_clean_dac(nau8825);
665 	nau8825_xtalk_clean_adc(nau8825);
666 	/* Clear cross talk parameters and disable */
667 	regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0);
668 	/* RMS intrruption disable */
669 	regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK,
670 		NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN);
671 	/* Recover default value for IIS */
672 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
673 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
674 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE);
675 	/* Restore value of specific register for cross talk */
676 	nau8825_xtalk_restore(nau8825, cause_cancel);
677 }
678 
679 static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol)
680 {
681 	/* Apply ADC volume for better cross talk performance */
682 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL,
683 				NAU8825_ADC_DIG_VOL_MASK, vol);
684 	/* Disables JKTIP(HPL) DAC channel for right to left measurement.
685 	 * Do it before sending signal in order to erase pop noise.
686 	 */
687 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
688 		NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN,
689 		NAU8825_BIAS_TESTDACL_EN);
690 	switch (nau8825->xtalk_state) {
691 	case NAU8825_XTALK_HPR_R2L:
692 		/* Enable right headphone impedance */
693 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
694 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
695 			NAU8825_BIAS_HPR_IMP);
696 		break;
697 	case NAU8825_XTALK_HPL_R2L:
698 		/* Enable left headphone impedance */
699 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
700 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
701 			NAU8825_BIAS_HPL_IMP);
702 		break;
703 	default:
704 		break;
705 	}
706 	msleep(100);
707 	/* Impedance measurement mode enable */
708 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
709 				NAU8825_IMM_EN, NAU8825_IMM_EN);
710 }
711 
712 static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825)
713 {
714 	/* Impedance measurement mode disable */
715 	regmap_update_bits(nau8825->regmap,
716 		NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0);
717 }
718 
719 /* The cross talk measurement function can reduce cross talk across the
720  * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal
721  * level to determine what cross talk reduction gain is. This system works by
722  * sending a 23Hz -24dBV sine wave into the headset output DAC and through
723  * the PGA. The output of the PGA is then connected to an internal current
724  * sense which measures the attenuated 23Hz signal and passing the output to
725  * an ADC which converts the measurement to a binary code. With two separated
726  * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data
727  * can be separated read in IMM_RMS_L for HSR and HSL after each measurement.
728  * Thus, the measurement function has four states to complete whole sequence.
729  * 1. Prepare state : Prepare the resource for detection and transfer to HPR
730  *     IMM stat to make JKR1(HPR) impedance measure.
731  * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer
732  *     to HPL IMM state to make JKTIP(HPL) impedance measure.
733  * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and
734  *     transfer to IMM state to determine suppression sidetone gain.
735  * 4. IMM state : Computes cross talk suppression sidetone gain with orignal
736  *     and cross talk signal level. Apply this gain and then restore codec
737  *     configuration. Then transfer to Done state for ending.
738  */
739 static void nau8825_xtalk_measure(struct nau8825 *nau8825)
740 {
741 	u32 sidetone;
742 
743 	switch (nau8825->xtalk_state) {
744 	case NAU8825_XTALK_PREPARE:
745 		/* In prepare state, set up clock, intrruption, DAC path, ADC
746 		 * path and cross talk detection parameters for preparation.
747 		 */
748 		nau8825_xtalk_prepare(nau8825);
749 		msleep(280);
750 		/* Trigger right headphone impedance detection */
751 		nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L;
752 		nau8825_xtalk_imm_start(nau8825, 0x00d2);
753 		break;
754 	case NAU8825_XTALK_HPR_R2L:
755 		/* In right headphone IMM state, read out right headphone
756 		 * impedance measure result, and then start up left side.
757 		 */
758 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
759 			&nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
760 		dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n",
761 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
762 		/* Disable then re-enable IMM mode to update */
763 		nau8825_xtalk_imm_stop(nau8825);
764 		/* Trigger left headphone impedance detection */
765 		nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L;
766 		nau8825_xtalk_imm_start(nau8825, 0x00ff);
767 		break;
768 	case NAU8825_XTALK_HPL_R2L:
769 		/* In left headphone IMM state, read out left headphone
770 		 * impedance measure result, and delay some time to wait
771 		 * detection sine wave output finish. Then, we can calculate
772 		 * the cross talk suppresstion side tone according to the L/R
773 		 * headphone imedance.
774 		 */
775 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
776 			&nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
777 		dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n",
778 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
779 		nau8825_xtalk_imm_stop(nau8825);
780 		msleep(150);
781 		nau8825->xtalk_state = NAU8825_XTALK_IMM;
782 		break;
783 	case NAU8825_XTALK_IMM:
784 		/* In impedance measure state, the orignal and cross talk
785 		 * signal level vlues are ready. The side tone gain is deter-
786 		 * mined with these signal level. After all, restore codec
787 		 * configuration.
788 		 */
789 		sidetone = nau8825_xtalk_sidetone(
790 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L],
791 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
792 		dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone);
793 		regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL,
794 					(sidetone << 8) | sidetone);
795 		nau8825_xtalk_clean(nau8825, false);
796 		nau8825->xtalk_state = NAU8825_XTALK_DONE;
797 		break;
798 	default:
799 		break;
800 	}
801 }
802 
803 static void nau8825_xtalk_work(struct work_struct *work)
804 {
805 	struct nau8825 *nau8825 = container_of(
806 		work, struct nau8825, xtalk_work);
807 
808 	nau8825_xtalk_measure(nau8825);
809 	/* To determine the cross talk side tone gain when reach
810 	 * the impedance measure state.
811 	 */
812 	if (nau8825->xtalk_state == NAU8825_XTALK_IMM)
813 		nau8825_xtalk_measure(nau8825);
814 
815 	/* Delay jack report until cross talk detection process
816 	 * completed. It can avoid application to do playback
817 	 * preparation before cross talk detection is still working.
818 	 * Meanwhile, the protection of the cross talk detection
819 	 * is released.
820 	 */
821 	if (nau8825->xtalk_state == NAU8825_XTALK_DONE) {
822 		snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event,
823 				nau8825->xtalk_event_mask);
824 		nau8825_sema_release(nau8825);
825 		nau8825->xtalk_protect = false;
826 	}
827 }
828 
829 static void nau8825_xtalk_cancel(struct nau8825 *nau8825)
830 {
831 	/* If the crosstalk is eanbled and the process is on going,
832 	 * the driver forces to cancel the crosstalk task and
833 	 * restores the configuration to original status.
834 	 */
835 	if (nau8825->xtalk_enable && nau8825->xtalk_state !=
836 		NAU8825_XTALK_DONE) {
837 		cancel_work_sync(&nau8825->xtalk_work);
838 		nau8825_xtalk_clean(nau8825, true);
839 	}
840 	/* Reset parameters for cross talk suppression function */
841 	nau8825_sema_reset(nau8825);
842 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
843 	nau8825->xtalk_protect = false;
844 }
845 
846 static bool nau8825_readable_reg(struct device *dev, unsigned int reg)
847 {
848 	switch (reg) {
849 	case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV:
850 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
851 	case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL:
852 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
853 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
854 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
855 	case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R:
856 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
857 	case NAU8825_REG_MISC_CTRL:
858 	case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS:
859 	case NAU8825_REG_BIAS_ADJ:
860 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
861 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
862 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
863 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS:
864 		return true;
865 	default:
866 		return false;
867 	}
868 
869 }
870 
871 static bool nau8825_writeable_reg(struct device *dev, unsigned int reg)
872 {
873 	switch (reg) {
874 	case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV:
875 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
876 	case NAU8825_REG_INTERRUPT_MASK:
877 	case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL:
878 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
879 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
880 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
881 	case NAU8825_REG_IMM_MODE_CTRL:
882 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
883 	case NAU8825_REG_MISC_CTRL:
884 	case NAU8825_REG_BIAS_ADJ:
885 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
886 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
887 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
888 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP:
889 		return true;
890 	default:
891 		return false;
892 	}
893 }
894 
895 static bool nau8825_volatile_reg(struct device *dev, unsigned int reg)
896 {
897 	switch (reg) {
898 	case NAU8825_REG_RESET:
899 	case NAU8825_REG_IRQ_STATUS:
900 	case NAU8825_REG_INT_CLR_KEY_STATUS:
901 	case NAU8825_REG_IMM_RMS_L:
902 	case NAU8825_REG_IMM_RMS_R:
903 	case NAU8825_REG_I2C_DEVICE_ID:
904 	case NAU8825_REG_SARDOUT_RAM_STATUS:
905 	case NAU8825_REG_CHARGE_PUMP_INPUT_READ:
906 	case NAU8825_REG_GENERAL_STATUS:
907 	case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10:
908 		return true;
909 	default:
910 		return false;
911 	}
912 }
913 
914 static int nau8825_adc_event(struct snd_soc_dapm_widget *w,
915 		struct snd_kcontrol *kcontrol, int event)
916 {
917 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
918 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
919 
920 	switch (event) {
921 	case SND_SOC_DAPM_POST_PMU:
922 		msleep(125);
923 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
924 			NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
925 		break;
926 	case SND_SOC_DAPM_POST_PMD:
927 		if (!nau8825->irq)
928 			regmap_update_bits(nau8825->regmap,
929 				NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
930 		break;
931 	default:
932 		return -EINVAL;
933 	}
934 
935 	return 0;
936 }
937 
938 static int nau8825_pump_event(struct snd_soc_dapm_widget *w,
939 	struct snd_kcontrol *kcontrol, int event)
940 {
941 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
942 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
943 
944 	switch (event) {
945 	case SND_SOC_DAPM_POST_PMU:
946 		/* Prevent startup click by letting charge pump to ramp up */
947 		msleep(10);
948 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
949 			NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW);
950 		break;
951 	case SND_SOC_DAPM_PRE_PMD:
952 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
953 			NAU8825_JAMNODCLOW, 0);
954 		break;
955 	default:
956 		return -EINVAL;
957 	}
958 
959 	return 0;
960 }
961 
962 static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w,
963 	struct snd_kcontrol *kcontrol, int event)
964 {
965 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
966 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
967 
968 	switch (event) {
969 	case SND_SOC_DAPM_PRE_PMU:
970 		/* Disables the TESTDAC to let DAC signal pass through. */
971 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
972 			NAU8825_BIAS_TESTDAC_EN, 0);
973 		break;
974 	case SND_SOC_DAPM_POST_PMD:
975 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
976 			NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
977 		break;
978 	default:
979 		return -EINVAL;
980 	}
981 
982 	return 0;
983 }
984 
985 static int system_clock_control(struct snd_soc_dapm_widget *w,
986 				struct snd_kcontrol *k, int  event)
987 {
988 	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
989 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
990 	struct regmap *regmap = nau8825->regmap;
991 
992 	if (SND_SOC_DAPM_EVENT_OFF(event)) {
993 		dev_dbg(nau8825->dev, "system clock control : POWER OFF\n");
994 		/* Set clock source to disable or internal clock before the
995 		 * playback or capture end. Codec needs clock for Jack
996 		 * detection and button press if jack inserted; otherwise,
997 		 * the clock should be closed.
998 		 */
999 		if (nau8825_is_jack_inserted(regmap)) {
1000 			nau8825_configure_sysclk(nau8825,
1001 						 NAU8825_CLK_INTERNAL, 0);
1002 		} else {
1003 			nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1004 		}
1005 	}
1006 
1007 	return 0;
1008 }
1009 
1010 static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol,
1011 				     struct snd_ctl_elem_value *ucontrol)
1012 {
1013 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1014 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
1015 
1016 	if (!component->regmap)
1017 		return -EINVAL;
1018 
1019 	regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1,
1020 		ucontrol->value.bytes.data, params->max);
1021 	return 0;
1022 }
1023 
1024 static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol,
1025 				     struct snd_ctl_elem_value *ucontrol)
1026 {
1027 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1028 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
1029 	void *data;
1030 
1031 	if (!component->regmap)
1032 		return -EINVAL;
1033 
1034 	data = kmemdup(ucontrol->value.bytes.data,
1035 		params->max, GFP_KERNEL | GFP_DMA);
1036 	if (!data)
1037 		return -ENOMEM;
1038 
1039 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1040 		NAU8825_BIQ_WRT_EN, 0);
1041 	regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1,
1042 		data, params->max);
1043 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1044 		NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN);
1045 
1046 	kfree(data);
1047 	return 0;
1048 }
1049 
1050 static const char * const nau8825_biq_path[] = {
1051 	"ADC", "DAC"
1052 };
1053 
1054 static const struct soc_enum nau8825_biq_path_enum =
1055 	SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT,
1056 		ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path);
1057 
1058 static const char * const nau8825_adc_decimation[] = {
1059 	"32", "64", "128", "256"
1060 };
1061 
1062 static const struct soc_enum nau8825_adc_decimation_enum =
1063 	SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT,
1064 		ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation);
1065 
1066 static const char * const nau8825_dac_oversampl[] = {
1067 	"64", "256", "128", "", "32"
1068 };
1069 
1070 static const struct soc_enum nau8825_dac_oversampl_enum =
1071 	SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT,
1072 		ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl);
1073 
1074 static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400);
1075 static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0);
1076 static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0);
1077 static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
1078 static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400);
1079 
1080 static const struct snd_kcontrol_new nau8825_controls[] = {
1081 	SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1082 		0, 0xff, 0, adc_vol_tlv),
1083 	SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1084 		12, 8, 0x0f, 0, sidetone_vol_tlv),
1085 	SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL,
1086 		6, 0, 0x3f, 1, dac_vol_tlv),
1087 	SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL,
1088 		8, 37, 0, fepga_gain_tlv),
1089 	SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL,
1090 		0, 8, 0xff, 0, crosstalk_vol_tlv),
1091 
1092 	SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum),
1093 	SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum),
1094 	/* programmable biquad filter */
1095 	SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum),
1096 	SND_SOC_BYTES_EXT("BIQ Coefficients", 20,
1097 		  nau8825_biq_coeff_get, nau8825_biq_coeff_put),
1098 };
1099 
1100 /* DAC Mux 0x33[9] and 0x34[9] */
1101 static const char * const nau8825_dac_src[] = {
1102 	"DACL", "DACR",
1103 };
1104 
1105 static SOC_ENUM_SINGLE_DECL(
1106 	nau8825_dacl_enum, NAU8825_REG_DACL_CTRL,
1107 	NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src);
1108 
1109 static SOC_ENUM_SINGLE_DECL(
1110 	nau8825_dacr_enum, NAU8825_REG_DACR_CTRL,
1111 	NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src);
1112 
1113 static const struct snd_kcontrol_new nau8825_dacl_mux =
1114 	SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum);
1115 
1116 static const struct snd_kcontrol_new nau8825_dacr_mux =
1117 	SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum);
1118 
1119 
1120 static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = {
1121 	SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2,
1122 		15, 1),
1123 	SND_SOC_DAPM_AIF_IN("AIFRX", "Playback", 0, SND_SOC_NOPM, 0, 0),
1124 	SND_SOC_DAPM_SUPPLY("System Clock", SND_SOC_NOPM, 0, 0,
1125 			    system_clock_control, SND_SOC_DAPM_POST_PMD),
1126 
1127 	SND_SOC_DAPM_INPUT("MIC"),
1128 	SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0),
1129 
1130 	SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0,
1131 		NULL, 0),
1132 
1133 	SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0,
1134 		nau8825_adc_event, SND_SOC_DAPM_POST_PMU |
1135 		SND_SOC_DAPM_POST_PMD),
1136 	SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0),
1137 	SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL,
1138 		0),
1139 
1140 	/* ADC for button press detection. A dapm supply widget is used to
1141 	 * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON
1142 	 * during suspend.
1143 	 */
1144 	SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL,
1145 		NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0),
1146 
1147 	SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0),
1148 	SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0),
1149 	SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0),
1150 	SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0),
1151 
1152 	SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL,
1153 		NAU8825_ENABLE_DACR_SFT, 0),
1154 	SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL,
1155 		NAU8825_ENABLE_DACL_SFT, 0),
1156 	SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0),
1157 
1158 	SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux),
1159 	SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux),
1160 
1161 	SND_SOC_DAPM_PGA_S("HP amp L", 0,
1162 		NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0),
1163 	SND_SOC_DAPM_PGA_S("HP amp R", 0,
1164 		NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0),
1165 
1166 	SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0,
1167 		nau8825_pump_event, SND_SOC_DAPM_POST_PMU |
1168 		SND_SOC_DAPM_PRE_PMD),
1169 
1170 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4,
1171 		NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0),
1172 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4,
1173 		NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0),
1174 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5,
1175 		NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0),
1176 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5,
1177 		NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0),
1178 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6,
1179 		NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0),
1180 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6,
1181 		NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0),
1182 
1183 	SND_SOC_DAPM_PGA_S("Output DACL", 7,
1184 		NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event,
1185 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1186 	SND_SOC_DAPM_PGA_S("Output DACR", 7,
1187 		NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event,
1188 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1189 
1190 	/* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */
1191 	SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8,
1192 		NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0),
1193 	SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8,
1194 		NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0),
1195 
1196 	/* High current HPOL/R boost driver */
1197 	SND_SOC_DAPM_PGA_S("HP Boost Driver", 9,
1198 		NAU8825_REG_BOOST, 9, 1, NULL, 0),
1199 
1200 	/* Class G operation control*/
1201 	SND_SOC_DAPM_PGA_S("Class G", 10,
1202 		NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0),
1203 
1204 	SND_SOC_DAPM_OUTPUT("HPOL"),
1205 	SND_SOC_DAPM_OUTPUT("HPOR"),
1206 };
1207 
1208 static const struct snd_soc_dapm_route nau8825_dapm_routes[] = {
1209 	{"Frontend PGA", NULL, "MIC"},
1210 	{"ADC", NULL, "Frontend PGA"},
1211 	{"ADC", NULL, "ADC Clock"},
1212 	{"ADC", NULL, "ADC Power"},
1213 	{"AIFTX", NULL, "ADC"},
1214 	{"AIFTX", NULL, "System Clock"},
1215 
1216 	{"AIFRX", NULL, "System Clock"},
1217 	{"DDACL", NULL, "AIFRX"},
1218 	{"DDACR", NULL, "AIFRX"},
1219 	{"DDACL", NULL, "DDAC Clock"},
1220 	{"DDACR", NULL, "DDAC Clock"},
1221 	{"DACL Mux", "DACL", "DDACL"},
1222 	{"DACL Mux", "DACR", "DDACR"},
1223 	{"DACR Mux", "DACL", "DDACL"},
1224 	{"DACR Mux", "DACR", "DDACR"},
1225 	{"HP amp L", NULL, "DACL Mux"},
1226 	{"HP amp R", NULL, "DACR Mux"},
1227 	{"Charge Pump", NULL, "HP amp L"},
1228 	{"Charge Pump", NULL, "HP amp R"},
1229 	{"ADACL", NULL, "Charge Pump"},
1230 	{"ADACR", NULL, "Charge Pump"},
1231 	{"ADACL Clock", NULL, "ADACL"},
1232 	{"ADACR Clock", NULL, "ADACR"},
1233 	{"Output Driver L Stage 1", NULL, "ADACL Clock"},
1234 	{"Output Driver R Stage 1", NULL, "ADACR Clock"},
1235 	{"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"},
1236 	{"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"},
1237 	{"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"},
1238 	{"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"},
1239 	{"Output DACL", NULL, "Output Driver L Stage 3"},
1240 	{"Output DACR", NULL, "Output Driver R Stage 3"},
1241 	{"HPOL Pulldown", NULL, "Output DACL"},
1242 	{"HPOR Pulldown", NULL, "Output DACR"},
1243 	{"HP Boost Driver", NULL, "HPOL Pulldown"},
1244 	{"HP Boost Driver", NULL, "HPOR Pulldown"},
1245 	{"Class G", NULL, "HP Boost Driver"},
1246 	{"HPOL", NULL, "Class G"},
1247 	{"HPOR", NULL, "Class G"},
1248 };
1249 
1250 static const struct nau8825_osr_attr *
1251 nau8825_get_osr(struct nau8825 *nau8825, int stream)
1252 {
1253 	unsigned int osr;
1254 
1255 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
1256 		regmap_read(nau8825->regmap,
1257 			    NAU8825_REG_DAC_CTRL1, &osr);
1258 		osr &= NAU8825_DAC_OVERSAMPLE_MASK;
1259 		if (osr >= ARRAY_SIZE(osr_dac_sel))
1260 			return NULL;
1261 		return &osr_dac_sel[osr];
1262 	} else {
1263 		regmap_read(nau8825->regmap,
1264 			    NAU8825_REG_ADC_RATE, &osr);
1265 		osr &= NAU8825_ADC_SYNC_DOWN_MASK;
1266 		if (osr >= ARRAY_SIZE(osr_adc_sel))
1267 			return NULL;
1268 		return &osr_adc_sel[osr];
1269 	}
1270 }
1271 
1272 static int nau8825_dai_startup(struct snd_pcm_substream *substream,
1273 			       struct snd_soc_dai *dai)
1274 {
1275 	struct snd_soc_component *component = dai->component;
1276 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1277 	const struct nau8825_osr_attr *osr;
1278 
1279 	osr = nau8825_get_osr(nau8825, substream->stream);
1280 	if (!osr || !osr->osr)
1281 		return -EINVAL;
1282 
1283 	return snd_pcm_hw_constraint_minmax(substream->runtime,
1284 					    SNDRV_PCM_HW_PARAM_RATE,
1285 					    0, CLK_DA_AD_MAX / osr->osr);
1286 }
1287 
1288 static int nau8825_hw_params(struct snd_pcm_substream *substream,
1289 				struct snd_pcm_hw_params *params,
1290 				struct snd_soc_dai *dai)
1291 {
1292 	struct snd_soc_component *component = dai->component;
1293 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1294 	unsigned int val_len = 0, ctrl_val, bclk_fs, bclk_div;
1295 	const struct nau8825_osr_attr *osr;
1296 	int err = -EINVAL;
1297 
1298 	nau8825_sema_acquire(nau8825, 3 * HZ);
1299 
1300 	/* CLK_DAC or CLK_ADC = OSR * FS
1301 	 * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR)
1302 	 * multiplied by the audio sample rate (Fs). Note that the OSR and Fs
1303 	 * values must be selected such that the maximum frequency is less
1304 	 * than 6.144 MHz.
1305 	 */
1306 	osr = nau8825_get_osr(nau8825, substream->stream);
1307 	if (!osr || !osr->osr)
1308 		goto error;
1309 	if (params_rate(params) * osr->osr > CLK_DA_AD_MAX)
1310 		goto error;
1311 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1312 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1313 			NAU8825_CLK_DAC_SRC_MASK,
1314 			osr->clk_src << NAU8825_CLK_DAC_SRC_SFT);
1315 	else
1316 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1317 			NAU8825_CLK_ADC_SRC_MASK,
1318 			osr->clk_src << NAU8825_CLK_ADC_SRC_SFT);
1319 
1320 	/* make BCLK and LRC divde configuration if the codec as master. */
1321 	regmap_read(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, &ctrl_val);
1322 	if (ctrl_val & NAU8825_I2S_MS_MASTER) {
1323 		/* get the bclk and fs ratio */
1324 		bclk_fs = snd_soc_params_to_bclk(params) / params_rate(params);
1325 		if (bclk_fs <= 32)
1326 			bclk_div = 2;
1327 		else if (bclk_fs <= 64)
1328 			bclk_div = 1;
1329 		else if (bclk_fs <= 128)
1330 			bclk_div = 0;
1331 		else
1332 			goto error;
1333 		regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1334 			NAU8825_I2S_LRC_DIV_MASK | NAU8825_I2S_BLK_DIV_MASK,
1335 			((bclk_div + 1) << NAU8825_I2S_LRC_DIV_SFT) | bclk_div);
1336 	}
1337 
1338 	switch (params_width(params)) {
1339 	case 16:
1340 		val_len |= NAU8825_I2S_DL_16;
1341 		break;
1342 	case 20:
1343 		val_len |= NAU8825_I2S_DL_20;
1344 		break;
1345 	case 24:
1346 		val_len |= NAU8825_I2S_DL_24;
1347 		break;
1348 	case 32:
1349 		val_len |= NAU8825_I2S_DL_32;
1350 		break;
1351 	default:
1352 		goto error;
1353 	}
1354 
1355 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1356 		NAU8825_I2S_DL_MASK, val_len);
1357 	err = 0;
1358 
1359  error:
1360 	/* Release the semaphore. */
1361 	nau8825_sema_release(nau8825);
1362 
1363 	return err;
1364 }
1365 
1366 static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
1367 {
1368 	struct snd_soc_component *component = codec_dai->component;
1369 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1370 	unsigned int ctrl1_val = 0, ctrl2_val = 0;
1371 
1372 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1373 	case SND_SOC_DAIFMT_CBM_CFM:
1374 		ctrl2_val |= NAU8825_I2S_MS_MASTER;
1375 		break;
1376 	case SND_SOC_DAIFMT_CBS_CFS:
1377 		break;
1378 	default:
1379 		return -EINVAL;
1380 	}
1381 
1382 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1383 	case SND_SOC_DAIFMT_NB_NF:
1384 		break;
1385 	case SND_SOC_DAIFMT_IB_NF:
1386 		ctrl1_val |= NAU8825_I2S_BP_INV;
1387 		break;
1388 	default:
1389 		return -EINVAL;
1390 	}
1391 
1392 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1393 	case SND_SOC_DAIFMT_I2S:
1394 		ctrl1_val |= NAU8825_I2S_DF_I2S;
1395 		break;
1396 	case SND_SOC_DAIFMT_LEFT_J:
1397 		ctrl1_val |= NAU8825_I2S_DF_LEFT;
1398 		break;
1399 	case SND_SOC_DAIFMT_RIGHT_J:
1400 		ctrl1_val |= NAU8825_I2S_DF_RIGTH;
1401 		break;
1402 	case SND_SOC_DAIFMT_DSP_A:
1403 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1404 		break;
1405 	case SND_SOC_DAIFMT_DSP_B:
1406 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1407 		ctrl1_val |= NAU8825_I2S_PCMB_EN;
1408 		break;
1409 	default:
1410 		return -EINVAL;
1411 	}
1412 
1413 	nau8825_sema_acquire(nau8825, 3 * HZ);
1414 
1415 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1416 		NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK |
1417 		NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK,
1418 		ctrl1_val);
1419 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1420 		NAU8825_I2S_MS_MASK, ctrl2_val);
1421 
1422 	/* Release the semaphore. */
1423 	nau8825_sema_release(nau8825);
1424 
1425 	return 0;
1426 }
1427 
1428 /**
1429  * nau8825_set_tdm_slot - configure DAI TDM.
1430  * @dai: DAI
1431  * @tx_mask: bitmask representing active TX slots.
1432  * @rx_mask: bitmask representing active RX slots.
1433  * @slots: Number of slots in use.
1434  * @slot_width: Width in bits for each slot.
1435  *
1436  * Configures a DAI for TDM operation. Support TDM 4/8 slots.
1437  * The limitation is DAC and ADC need shift 4 slots at 8 slots mode.
1438  */
1439 static int nau8825_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
1440 				unsigned int rx_mask, int slots, int slot_width)
1441 {
1442 	struct snd_soc_component *component = dai->component;
1443 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1444 	unsigned int ctrl_val = 0, ctrl_offset = 0, value = 0, dac_s, adc_s;
1445 
1446 	if (slots != 4 && slots != 8) {
1447 		dev_err(nau8825->dev, "Only support 4 or 8 slots!\n");
1448 		return -EINVAL;
1449 	}
1450 
1451 	/* The driver is limited to 1-channel for ADC, and 2-channel for DAC on TDM mode */
1452 	if (hweight_long((unsigned long) tx_mask) != 1 ||
1453 	    hweight_long((unsigned long) rx_mask) != 2) {
1454 		dev_err(nau8825->dev,
1455 			"The limitation is 1-channel for ADC, and 2-channel for DAC on TDM mode.\n");
1456 		return -EINVAL;
1457 	}
1458 
1459 	if (((tx_mask & 0xf) && (tx_mask & 0xf0)) ||
1460 	    ((rx_mask & 0xf) && (rx_mask & 0xf0)) ||
1461 	    ((tx_mask & 0xf) && (rx_mask & 0xf0)) ||
1462 	    ((rx_mask & 0xf) && (tx_mask & 0xf0))) {
1463 		dev_err(nau8825->dev,
1464 			"Slot assignment of DAC and ADC need to set same interval.\n");
1465 		return -EINVAL;
1466 	}
1467 
1468 	/* The offset of fixed 4 slots for 8 slots support */
1469 	if (rx_mask & 0xf0) {
1470 		regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1471 				   NAU8825_I2S_PCM_TS_EN_MASK, NAU8825_I2S_PCM_TS_EN);
1472 		regmap_read(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1, &value);
1473 		ctrl_val |= NAU8825_TDM_OFFSET_EN;
1474 		ctrl_offset = 4 * slot_width;
1475 		if (!(value & NAU8825_I2S_PCMB_MASK))
1476 			ctrl_offset += 1;
1477 		dac_s = (rx_mask & 0xf0) >> 4;
1478 		adc_s = fls((tx_mask & 0xf0) >> 4);
1479 	} else {
1480 		dac_s = rx_mask & 0xf;
1481 		adc_s = fls(tx_mask & 0xf);
1482 	}
1483 
1484 	ctrl_val |= NAU8825_TDM_MODE;
1485 
1486 	switch (dac_s) {
1487 	case 0x3:
1488 		ctrl_val |= 1 << NAU8825_TDM_DACR_RX_SFT;
1489 		break;
1490 	case 0x5:
1491 		ctrl_val |= 2 << NAU8825_TDM_DACR_RX_SFT;
1492 		break;
1493 	case 0x6:
1494 		ctrl_val |= 1 << NAU8825_TDM_DACL_RX_SFT;
1495 		ctrl_val |= 2 << NAU8825_TDM_DACR_RX_SFT;
1496 		break;
1497 	case 0x9:
1498 		ctrl_val |= 3 << NAU8825_TDM_DACR_RX_SFT;
1499 		break;
1500 	case 0xa:
1501 		ctrl_val |= 1 << NAU8825_TDM_DACL_RX_SFT;
1502 		ctrl_val |= 3 << NAU8825_TDM_DACR_RX_SFT;
1503 		break;
1504 	case 0xc:
1505 		ctrl_val |= 2 << NAU8825_TDM_DACL_RX_SFT;
1506 		ctrl_val |= 3 << NAU8825_TDM_DACR_RX_SFT;
1507 		break;
1508 	default:
1509 		return -EINVAL;
1510 	}
1511 
1512 	ctrl_val |= adc_s - 1;
1513 
1514 	regmap_update_bits(nau8825->regmap, NAU8825_REG_TDM_CTRL,
1515 			   NAU8825_TDM_MODE | NAU8825_TDM_OFFSET_EN |
1516 			   NAU8825_TDM_DACL_RX_MASK | NAU8825_TDM_DACR_RX_MASK |
1517 			   NAU8825_TDM_TX_MASK, ctrl_val);
1518 	regmap_update_bits(nau8825->regmap, NAU8825_REG_LEFT_TIME_SLOT,
1519 			   NAU8825_TSLOT_L0_MASK, ctrl_offset);
1520 
1521 	return 0;
1522 }
1523 
1524 static const struct snd_soc_dai_ops nau8825_dai_ops = {
1525 	.startup	= nau8825_dai_startup,
1526 	.hw_params	= nau8825_hw_params,
1527 	.set_fmt	= nau8825_set_dai_fmt,
1528 	.set_tdm_slot	= nau8825_set_tdm_slot,
1529 };
1530 
1531 #define NAU8825_RATES	SNDRV_PCM_RATE_8000_192000
1532 #define NAU8825_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
1533 			 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1534 
1535 static struct snd_soc_dai_driver nau8825_dai = {
1536 	.name = "nau8825-hifi",
1537 	.playback = {
1538 		.stream_name	 = "Playback",
1539 		.channels_min	 = 1,
1540 		.channels_max	 = 2,
1541 		.rates		 = NAU8825_RATES,
1542 		.formats	 = NAU8825_FORMATS,
1543 	},
1544 	.capture = {
1545 		.stream_name	 = "Capture",
1546 		.channels_min	 = 1,
1547 		.channels_max	 = 2,   /* Only 1 channel of data */
1548 		.rates		 = NAU8825_RATES,
1549 		.formats	 = NAU8825_FORMATS,
1550 	},
1551 	.ops = &nau8825_dai_ops,
1552 };
1553 
1554 /**
1555  * nau8825_enable_jack_detect - Specify a jack for event reporting
1556  *
1557  * @component:  component to register the jack with
1558  * @jack: jack to use to report headset and button events on
1559  *
1560  * After this function has been called the headset insert/remove and button
1561  * events will be routed to the given jack.  Jack can be null to stop
1562  * reporting.
1563  */
1564 int nau8825_enable_jack_detect(struct snd_soc_component *component,
1565 				struct snd_soc_jack *jack)
1566 {
1567 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
1568 	struct regmap *regmap = nau8825->regmap;
1569 
1570 	nau8825->jack = jack;
1571 
1572 	if (!nau8825->jack) {
1573 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1574 				   NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R |
1575 				   NAU8825_SPKR_DWN1L, 0);
1576 		return 0;
1577 	}
1578 	/* Ground HP Outputs[1:0], needed for headset auto detection
1579 	 * Enable Automatic Mic/Gnd switching reading on insert interrupt[6]
1580 	 */
1581 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1582 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
1583 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
1584 
1585 	return 0;
1586 }
1587 EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect);
1588 
1589 
1590 static bool nau8825_is_jack_inserted(struct regmap *regmap)
1591 {
1592 	bool active_high, is_high;
1593 	int status, jkdet;
1594 
1595 	regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet);
1596 	active_high = jkdet & NAU8825_JACK_POLARITY;
1597 	regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status);
1598 	is_high = status & NAU8825_GPIO2JD1;
1599 	/* return jack connection status according to jack insertion logic
1600 	 * active high or active low.
1601 	 */
1602 	return active_high == is_high;
1603 }
1604 
1605 static void nau8825_restart_jack_detection(struct regmap *regmap)
1606 {
1607 	/* this will restart the entire jack detection process including MIC/GND
1608 	 * switching and create interrupts. We have to go from 0 to 1 and back
1609 	 * to 0 to restart.
1610 	 */
1611 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1612 		NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART);
1613 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1614 		NAU8825_JACK_DET_RESTART, 0);
1615 }
1616 
1617 static void nau8825_int_status_clear_all(struct regmap *regmap)
1618 {
1619 	int active_irq, clear_irq, i;
1620 
1621 	/* Reset the intrruption status from rightmost bit if the corres-
1622 	 * ponding irq event occurs.
1623 	 */
1624 	regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq);
1625 	for (i = 0; i < NAU8825_REG_DATA_LEN; i++) {
1626 		clear_irq = (0x1 << i);
1627 		if (active_irq & clear_irq)
1628 			regmap_write(regmap,
1629 				NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1630 	}
1631 }
1632 
1633 static void nau8825_eject_jack(struct nau8825 *nau8825)
1634 {
1635 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1636 	struct regmap *regmap = nau8825->regmap;
1637 
1638 	/* Force to cancel the cross talk detection process */
1639 	nau8825_xtalk_cancel(nau8825);
1640 
1641 	snd_soc_dapm_disable_pin(dapm, "SAR");
1642 	snd_soc_dapm_disable_pin(dapm, "MICBIAS");
1643 	/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
1644 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1645 		NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
1646 	/* ground HPL/HPR, MICGRND1/2 */
1647 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf);
1648 
1649 	snd_soc_dapm_sync(dapm);
1650 
1651 	/* Clear all interruption status */
1652 	nau8825_int_status_clear_all(regmap);
1653 
1654 	/* Enable the insertion interruption, disable the ejection inter-
1655 	 * ruption, and then bypass de-bounce circuit.
1656 	 */
1657 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
1658 		NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS,
1659 		NAU8825_IRQ_EJECT_DIS);
1660 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1661 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1662 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN,
1663 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1664 		NAU8825_IRQ_HEADSET_COMPLETE_EN);
1665 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1666 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
1667 
1668 	/* Disable ADC needed for interruptions at audo mode */
1669 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1670 		NAU8825_ENABLE_ADC, 0);
1671 
1672 	/* Close clock for jack type detection at manual mode */
1673 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1674 }
1675 
1676 /* Enable audo mode interruptions with internal clock. */
1677 static void nau8825_setup_auto_irq(struct nau8825 *nau8825)
1678 {
1679 	struct regmap *regmap = nau8825->regmap;
1680 
1681 	/* Enable headset jack type detection complete interruption and
1682 	 * jack ejection interruption.
1683 	 */
1684 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1685 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0);
1686 
1687 	/* Enable internal VCO needed for interruptions */
1688 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
1689 	/* Raise up the internal clock for jack detection */
1690 	regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
1691 			   NAU8825_CLK_MCLK_SRC_MASK, 0);
1692 
1693 	/* Enable ADC needed for interruptions */
1694 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1695 		NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
1696 
1697 	/* Chip needs one FSCLK cycle in order to generate interruptions,
1698 	 * as we cannot guarantee one will be provided by the system. Turning
1699 	 * master mode on then off enables us to generate that FSCLK cycle
1700 	 * with a minimum of contention on the clock bus.
1701 	 */
1702 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1703 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER);
1704 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1705 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE);
1706 
1707 	/* Not bypass de-bounce circuit */
1708 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1709 		NAU8825_JACK_DET_DB_BYPASS, 0);
1710 
1711 	/* Unmask all interruptions */
1712 	regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0);
1713 
1714 	/* Restart the jack detection process at auto mode */
1715 	nau8825_restart_jack_detection(regmap);
1716 }
1717 
1718 static int nau8825_button_decode(int value)
1719 {
1720 	int buttons = 0;
1721 
1722 	/* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */
1723 	if (value & BIT(0))
1724 		buttons |= SND_JACK_BTN_0;
1725 	if (value & BIT(1))
1726 		buttons |= SND_JACK_BTN_1;
1727 	if (value & BIT(2))
1728 		buttons |= SND_JACK_BTN_2;
1729 	if (value & BIT(3))
1730 		buttons |= SND_JACK_BTN_3;
1731 	if (value & BIT(4))
1732 		buttons |= SND_JACK_BTN_4;
1733 	if (value & BIT(5))
1734 		buttons |= SND_JACK_BTN_5;
1735 
1736 	return buttons;
1737 }
1738 
1739 static int nau8825_high_imped_detection(struct nau8825 *nau8825)
1740 {
1741 	struct regmap *regmap = nau8825->regmap;
1742 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1743 	unsigned int adc_mg1, adc_mg2;
1744 
1745 	/* Initial phase */
1746 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1747 			   NAU8825_SPKR_ENGND1 | NAU8825_SPKR_ENGND2 | NAU8825_SPKR_DWN1R |
1748 			   NAU8825_SPKR_DWN1L, NAU8825_SPKR_ENGND1 | NAU8825_SPKR_ENGND2);
1749 	regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_1,
1750 			   NAU8825_TESTDACIN_MASK, NAU8825_TESTDACIN_GND);
1751 	regmap_write(regmap, NAU8825_REG_TRIM_SETTINGS, 0x6);
1752 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1753 			   NAU8825_MICBIAS_LOWNOISE_MASK | NAU8825_MICBIAS_VOLTAGE_MASK,
1754 			   NAU8825_MICBIAS_LOWNOISE_EN);
1755 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1756 			   NAU8825_SAR_INPUT_MASK | NAU8825_SAR_TRACKING_GAIN_MASK |
1757 			   NAU8825_SAR_HV_SEL_MASK | NAU8825_SAR_RES_SEL_MASK |
1758 			   NAU8825_SAR_COMPARE_TIME_MASK | NAU8825_SAR_SAMPLING_TIME_MASK,
1759 			   NAU8825_SAR_HV_SEL_VDDMIC | NAU8825_SAR_RES_SEL_70K);
1760 
1761 	snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1762 	snd_soc_dapm_force_enable_pin(dapm, "SAR");
1763 	snd_soc_dapm_sync(dapm);
1764 
1765 	/* Configure settings for first reading of SARADC */
1766 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1767 			   NAU8825_SPKR_ENGND1 | NAU8825_SPKR_ENGND2 | NAU8825_SPKR_DWN1R |
1768 			   NAU8825_SPKR_DWN1L, NAU8825_SPKR_ENGND2);
1769 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1770 			   NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1771 			   NAU8825_MICBIAS_JKR2);
1772 	regmap_read(regmap, NAU8825_REG_SARDOUT_RAM_STATUS, &adc_mg1);
1773 
1774 	/* Configure settings for second reading of SARADC */
1775 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1776 			   NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
1777 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1778 			   NAU8825_SPKR_ENGND1 | NAU8825_SPKR_ENGND2 | NAU8825_SPKR_DWN1R |
1779 			   NAU8825_SPKR_DWN1L, NAU8825_SPKR_ENGND1 | NAU8825_SPKR_ENGND2 |
1780 			   NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
1781 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1782 			   NAU8825_SPKR_ENGND1 | NAU8825_SPKR_ENGND2 | NAU8825_SPKR_DWN1R |
1783 			   NAU8825_SPKR_DWN1L, NAU8825_SPKR_ENGND1);
1784 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1785 			   NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1786 			   NAU8825_MICBIAS_JKSLV);
1787 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1788 			   NAU8825_SAR_INPUT_MASK, NAU8825_SAR_INPUT_JKSLV);
1789 	regmap_read(regmap, NAU8825_REG_SARDOUT_RAM_STATUS, &adc_mg2);
1790 
1791 	/* Disable phase */
1792 	snd_soc_dapm_disable_pin(dapm, "SAR");
1793 	snd_soc_dapm_disable_pin(dapm, "MICBIAS");
1794 	snd_soc_dapm_sync(dapm);
1795 
1796 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1797 			   NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_LOWNOISE_MASK |
1798 			   NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage);
1799 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1800 			   NAU8825_SPKR_ENGND1 | NAU8825_SPKR_ENGND2 | NAU8825_SPKR_DWN1R |
1801 			   NAU8825_SPKR_DWN1L, NAU8825_SPKR_ENGND1 | NAU8825_SPKR_ENGND2 |
1802 			   NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
1803 	regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_1,
1804 			   NAU8825_TESTDACIN_MASK, NAU8825_TESTDACIN_GND);
1805 	regmap_write(regmap, NAU8825_REG_TRIM_SETTINGS, 0);
1806 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1807 			   NAU8825_SAR_TRACKING_GAIN_MASK | NAU8825_SAR_HV_SEL_MASK,
1808 			   nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT);
1809 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1810 			   NAU8825_SAR_COMPARE_TIME_MASK | NAU8825_SAR_SAMPLING_TIME_MASK,
1811 			   (nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT) |
1812 			   (nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT));
1813 	dev_dbg(nau8825->dev, "adc_mg1:%x, adc_mg2:%x\n", adc_mg1, adc_mg2);
1814 
1815 	/* Confirmation phase */
1816 	if (adc_mg1 > adc_mg2) {
1817 		dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n");
1818 
1819 		/* Unground MICGND1 */
1820 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1821 				   NAU8825_SPKR_ENGND1 | NAU8825_SPKR_ENGND2,
1822 				   NAU8825_SPKR_ENGND2);
1823 		/* Attach 2kOhm Resistor from MICBIAS to MICGND1 */
1824 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1825 				   NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1826 				   NAU8825_MICBIAS_JKR2);
1827 		/* Attach SARADC to MICGND1 */
1828 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1829 				   NAU8825_SAR_INPUT_MASK,
1830 				   NAU8825_SAR_INPUT_JKR2);
1831 	} else if (adc_mg1 < adc_mg2) {
1832 		dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n");
1833 
1834 		/* Unground MICGND2 */
1835 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1836 				   NAU8825_SPKR_ENGND1 | NAU8825_SPKR_ENGND2,
1837 				   NAU8825_SPKR_ENGND1);
1838 		/* Attach 2kOhm Resistor from MICBIAS to MICGND2 */
1839 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1840 				   NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1841 				   NAU8825_MICBIAS_JKSLV);
1842 		/* Attach SARADC to MICGND2 */
1843 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1844 				   NAU8825_SAR_INPUT_MASK,
1845 				   NAU8825_SAR_INPUT_JKSLV);
1846 	} else {
1847 		dev_err(nau8825->dev, "Jack broken.\n");
1848 		return -EINVAL;
1849 	}
1850 
1851 	return 0;
1852 }
1853 
1854 static int nau8825_jack_insert(struct nau8825 *nau8825)
1855 {
1856 	struct regmap *regmap = nau8825->regmap;
1857 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1858 	int jack_status_reg, mic_detected;
1859 	int type = 0;
1860 
1861 	regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg);
1862 	mic_detected = (jack_status_reg >> 10) & 3;
1863 	/* The JKSLV and JKR2 all detected in high impedance headset */
1864 	if (mic_detected == 0x3)
1865 		nau8825->high_imped = true;
1866 	else
1867 		nau8825->high_imped = false;
1868 
1869 	switch (mic_detected) {
1870 	case 0:
1871 		/* no mic */
1872 		type = SND_JACK_HEADPHONE;
1873 		break;
1874 	case 1:
1875 		dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n");
1876 		type = SND_JACK_HEADSET;
1877 
1878 		/* Unground MICGND1 */
1879 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1880 			1 << 2);
1881 		/* Attach 2kOhm Resistor from MICBIAS to MICGND1 */
1882 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1883 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1884 			NAU8825_MICBIAS_JKR2);
1885 		/* Attach SARADC to MICGND1 */
1886 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1887 			NAU8825_SAR_INPUT_MASK,
1888 			NAU8825_SAR_INPUT_JKR2);
1889 
1890 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1891 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1892 		snd_soc_dapm_sync(dapm);
1893 		break;
1894 	case 2:
1895 		dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n");
1896 		type = SND_JACK_HEADSET;
1897 
1898 		/* Unground MICGND2 */
1899 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1900 			2 << 2);
1901 		/* Attach 2kOhm Resistor from MICBIAS to MICGND2 */
1902 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1903 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1904 			NAU8825_MICBIAS_JKSLV);
1905 		/* Attach SARADC to MICGND2 */
1906 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1907 			NAU8825_SAR_INPUT_MASK,
1908 			NAU8825_SAR_INPUT_JKSLV);
1909 
1910 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1911 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1912 		snd_soc_dapm_sync(dapm);
1913 		break;
1914 	case 3:
1915 		/* Detection failure case */
1916 		dev_warn(nau8825->dev,
1917 			 "Detection failure. Try the manually mechanism for jack type checking.\n");
1918 		if (!nau8825_high_imped_detection(nau8825)) {
1919 			type = SND_JACK_HEADSET;
1920 			snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1921 			snd_soc_dapm_force_enable_pin(dapm, "SAR");
1922 			snd_soc_dapm_sync(dapm);
1923 		} else
1924 			type = SND_JACK_HEADPHONE;
1925 		break;
1926 	}
1927 
1928 	/* Update to the default divider of internal clock for power saving */
1929 	regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
1930 			   NAU8825_CLK_MCLK_SRC_MASK, 0xf);
1931 
1932 	/* Leaving HPOL/R grounded after jack insert by default. They will be
1933 	 * ungrounded as part of the widget power up sequence at the beginning
1934 	 * of playback to reduce pop.
1935 	 */
1936 	return type;
1937 }
1938 
1939 #define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \
1940 		SND_JACK_BTN_2 | SND_JACK_BTN_3)
1941 
1942 static irqreturn_t nau8825_interrupt(int irq, void *data)
1943 {
1944 	struct nau8825 *nau8825 = (struct nau8825 *)data;
1945 	struct regmap *regmap = nau8825->regmap;
1946 	int active_irq, clear_irq = 0, event = 0, event_mask = 0;
1947 
1948 	if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) {
1949 		dev_err(nau8825->dev, "failed to read irq status\n");
1950 		return IRQ_NONE;
1951 	}
1952 
1953 	if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) ==
1954 		NAU8825_JACK_EJECTION_DETECTED) {
1955 
1956 		nau8825_eject_jack(nau8825);
1957 		event_mask |= SND_JACK_HEADSET;
1958 		clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK;
1959 	} else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) {
1960 		int key_status;
1961 
1962 		regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS,
1963 			&key_status);
1964 
1965 		/* upper 8 bits of the register are for short pressed keys,
1966 		 * lower 8 bits - for long pressed buttons
1967 		 */
1968 		nau8825->button_pressed = nau8825_button_decode(
1969 			key_status >> 8);
1970 
1971 		event |= nau8825->button_pressed;
1972 		event_mask |= NAU8825_BUTTONS;
1973 		clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ;
1974 	} else if (active_irq & NAU8825_KEY_RELEASE_IRQ) {
1975 		event_mask = NAU8825_BUTTONS;
1976 		clear_irq = NAU8825_KEY_RELEASE_IRQ;
1977 	} else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) {
1978 		if (nau8825_is_jack_inserted(regmap)) {
1979 			event |= nau8825_jack_insert(nau8825);
1980 			if (nau8825->xtalk_enable && !nau8825->high_imped) {
1981 				/* Apply the cross talk suppression in the
1982 				 * headset without high impedance.
1983 				 */
1984 				if (!nau8825->xtalk_protect) {
1985 					/* Raise protection for cross talk de-
1986 					 * tection if no protection before.
1987 					 * The driver has to cancel the pro-
1988 					 * cess and restore changes if process
1989 					 * is ongoing when ejection.
1990 					 */
1991 					int ret;
1992 					nau8825->xtalk_protect = true;
1993 					ret = nau8825_sema_acquire(nau8825, 0);
1994 					if (ret)
1995 						nau8825->xtalk_protect = false;
1996 				}
1997 				/* Startup cross talk detection process */
1998 				if (nau8825->xtalk_protect) {
1999 					nau8825->xtalk_state =
2000 						NAU8825_XTALK_PREPARE;
2001 					schedule_work(&nau8825->xtalk_work);
2002 				}
2003 			} else {
2004 				/* The cross talk suppression shouldn't apply
2005 				 * in the headset with high impedance. Thus,
2006 				 * relieve the protection raised before.
2007 				 */
2008 				if (nau8825->xtalk_protect) {
2009 					nau8825_sema_release(nau8825);
2010 					nau8825->xtalk_protect = false;
2011 				}
2012 			}
2013 		} else {
2014 			dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n");
2015 			nau8825_eject_jack(nau8825);
2016 		}
2017 
2018 		event_mask |= SND_JACK_HEADSET;
2019 		clear_irq = NAU8825_HEADSET_COMPLETION_IRQ;
2020 		/* Record the interruption report event for driver to report
2021 		 * the event later. The jack report will delay until cross
2022 		 * talk detection process is done.
2023 		 */
2024 		if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) {
2025 			nau8825->xtalk_event = event;
2026 			nau8825->xtalk_event_mask = event_mask;
2027 		}
2028 	} else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) {
2029 		/* crosstalk detection enable and process on going */
2030 		if (nau8825->xtalk_enable && nau8825->xtalk_protect)
2031 			schedule_work(&nau8825->xtalk_work);
2032 		clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ;
2033 	} else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) ==
2034 		NAU8825_JACK_INSERTION_DETECTED) {
2035 		/* One more step to check GPIO status directly. Thus, the
2036 		 * driver can confirm the real insertion interruption because
2037 		 * the intrruption at manual mode has bypassed debounce
2038 		 * circuit which can get rid of unstable status.
2039 		 */
2040 		if (nau8825_is_jack_inserted(regmap)) {
2041 			/* Turn off insertion interruption at manual mode */
2042 			regmap_update_bits(regmap,
2043 				NAU8825_REG_INTERRUPT_DIS_CTRL,
2044 				NAU8825_IRQ_INSERT_DIS,
2045 				NAU8825_IRQ_INSERT_DIS);
2046 			regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2047 				NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN);
2048 			/* Enable interruption for jack type detection at audo
2049 			 * mode which can detect microphone and jack type.
2050 			 */
2051 			nau8825_setup_auto_irq(nau8825);
2052 		}
2053 	}
2054 
2055 	if (!clear_irq)
2056 		clear_irq = active_irq;
2057 	/* clears the rightmost interruption */
2058 	regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
2059 
2060 	/* Delay jack report until cross talk detection is done. It can avoid
2061 	 * application to do playback preparation when cross talk detection
2062 	 * process is still working. Otherwise, the resource like clock and
2063 	 * power will be issued by them at the same time and conflict happens.
2064 	 */
2065 	if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE)
2066 		snd_soc_jack_report(nau8825->jack, event, event_mask);
2067 
2068 	return IRQ_HANDLED;
2069 }
2070 
2071 static void nau8825_setup_buttons(struct nau8825 *nau8825)
2072 {
2073 	struct regmap *regmap = nau8825->regmap;
2074 
2075 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
2076 		NAU8825_SAR_TRACKING_GAIN_MASK,
2077 		nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT);
2078 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
2079 		NAU8825_SAR_COMPARE_TIME_MASK,
2080 		nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT);
2081 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
2082 		NAU8825_SAR_SAMPLING_TIME_MASK,
2083 		nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT);
2084 
2085 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
2086 		NAU8825_KEYDET_LEVELS_NR_MASK,
2087 		(nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT);
2088 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
2089 		NAU8825_KEYDET_HYSTERESIS_MASK,
2090 		nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT);
2091 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
2092 		NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK,
2093 		nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT);
2094 
2095 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1,
2096 		(nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]);
2097 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2,
2098 		(nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]);
2099 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3,
2100 		(nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]);
2101 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4,
2102 		(nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]);
2103 
2104 	/* Enable short press and release interruptions */
2105 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2106 		NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN,
2107 		0);
2108 }
2109 
2110 static void nau8825_init_regs(struct nau8825 *nau8825)
2111 {
2112 	struct regmap *regmap = nau8825->regmap;
2113 
2114 	/* Latch IIC LSB value */
2115 	regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001);
2116 	/* Enable Bias/Vmid */
2117 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
2118 		NAU8825_BIAS_VMID, NAU8825_BIAS_VMID);
2119 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
2120 		NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN);
2121 
2122 	/* VMID Tieoff */
2123 	regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ,
2124 		NAU8825_BIAS_VMID_SEL_MASK,
2125 		nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT);
2126 	/* Disable Boost Driver, Automatic Short circuit protection enable */
2127 	regmap_update_bits(regmap, NAU8825_REG_BOOST,
2128 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
2129 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN,
2130 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
2131 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN);
2132 
2133 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
2134 		NAU8825_JKDET_OUTPUT_EN,
2135 		nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN);
2136 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
2137 		NAU8825_JKDET_PULL_EN,
2138 		nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN);
2139 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
2140 		NAU8825_JKDET_PULL_UP,
2141 		nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0);
2142 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2143 		NAU8825_JACK_POLARITY,
2144 		/* jkdet_polarity - 1  is for active-low */
2145 		nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY);
2146 
2147 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2148 		NAU8825_JACK_INSERT_DEBOUNCE_MASK,
2149 		nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT);
2150 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2151 		NAU8825_JACK_EJECT_DEBOUNCE_MASK,
2152 		nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT);
2153 
2154 	/* Pull up IRQ pin */
2155 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2156 		NAU8825_IRQ_PIN_PULLUP | NAU8825_IRQ_PIN_PULL_EN,
2157 		NAU8825_IRQ_PIN_PULLUP | NAU8825_IRQ_PIN_PULL_EN);
2158 	/* Mask unneeded IRQs: 1 - disable, 0 - enable */
2159 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff);
2160 
2161 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
2162 		NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage);
2163 
2164 	if (nau8825->sar_threshold_num)
2165 		nau8825_setup_buttons(nau8825);
2166 
2167 	/* Default oversampling/decimations settings are unusable
2168 	 * (audible hiss). Set it to something better.
2169 	 */
2170 	regmap_update_bits(regmap, NAU8825_REG_ADC_RATE,
2171 		NAU8825_ADC_SYNC_DOWN_MASK | NAU8825_ADC_SINC4_EN,
2172 		NAU8825_ADC_SYNC_DOWN_64);
2173 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
2174 		NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_64);
2175 	/* Disable DACR/L power */
2176 	regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP,
2177 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
2178 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
2179 	/* Enable TESTDAC. This sets the analog DAC inputs to a '0' input
2180 	 * signal to avoid any glitches due to power up transients in both
2181 	 * the analog and digital DAC circuit.
2182 	 */
2183 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
2184 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
2185 	/* CICCLP off */
2186 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
2187 		NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF);
2188 
2189 	/* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */
2190 	regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2,
2191 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
2192 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB,
2193 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
2194 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB);
2195 	/* Class G timer 64ms */
2196 	regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL,
2197 		NAU8825_CLASSG_TIMER_MASK,
2198 		0x20 << NAU8825_CLASSG_TIMER_SFT);
2199 	/* DAC clock delay 2ns, VREF */
2200 	regmap_update_bits(regmap, NAU8825_REG_RDAC,
2201 		NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK,
2202 		(0x2 << NAU8825_RDAC_CLK_DELAY_SFT) |
2203 		(0x3 << NAU8825_RDAC_VREF_SFT));
2204 	/* Config L/R channel */
2205 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
2206 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L);
2207 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
2208 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R);
2209 	/* Disable short Frame Sync detection logic */
2210 	regmap_update_bits(regmap, NAU8825_REG_LEFT_TIME_SLOT,
2211 		NAU8825_DIS_FS_SHORT_DET, NAU8825_DIS_FS_SHORT_DET);
2212 	/* ADCDAT IO drive strength control */
2213 	regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP,
2214 			   NAU8825_ADCOUT_DS_MASK,
2215 			   nau8825->adcout_ds << NAU8825_ADCOUT_DS_SFT);
2216 }
2217 
2218 static const struct regmap_config nau8825_regmap_config = {
2219 	.val_bits = NAU8825_REG_DATA_LEN,
2220 	.reg_bits = NAU8825_REG_ADDR_LEN,
2221 
2222 	.max_register = NAU8825_REG_MAX,
2223 	.readable_reg = nau8825_readable_reg,
2224 	.writeable_reg = nau8825_writeable_reg,
2225 	.volatile_reg = nau8825_volatile_reg,
2226 
2227 	.cache_type = REGCACHE_RBTREE,
2228 	.reg_defaults = nau8825_reg_defaults,
2229 	.num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults),
2230 };
2231 
2232 static int nau8825_component_probe(struct snd_soc_component *component)
2233 {
2234 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2235 	struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
2236 
2237 	nau8825->dapm = dapm;
2238 
2239 	return 0;
2240 }
2241 
2242 static void nau8825_component_remove(struct snd_soc_component *component)
2243 {
2244 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2245 
2246 	/* Cancel and reset cross tak suppresstion detection funciton */
2247 	nau8825_xtalk_cancel(nau8825);
2248 }
2249 
2250 /**
2251  * nau8825_calc_fll_param - Calculate FLL parameters.
2252  * @fll_in: external clock provided to codec.
2253  * @fs: sampling rate.
2254  * @fll_param: Pointer to structure of FLL parameters.
2255  *
2256  * Calculate FLL parameters to configure codec.
2257  *
2258  * Returns 0 for success or negative error code.
2259  */
2260 static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs,
2261 		struct nau8825_fll *fll_param)
2262 {
2263 	u64 fvco, fvco_max;
2264 	unsigned int fref, i, fvco_sel;
2265 
2266 	/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
2267 	 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
2268 	 * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK
2269 	 */
2270 	for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
2271 		fref = fll_in / fll_pre_scalar[i].param;
2272 		if (fref <= NAU_FREF_MAX)
2273 			break;
2274 	}
2275 	if (i == ARRAY_SIZE(fll_pre_scalar))
2276 		return -EINVAL;
2277 	fll_param->clk_ref_div = fll_pre_scalar[i].val;
2278 
2279 	/* Choose the FLL ratio based on FREF */
2280 	for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
2281 		if (fref >= fll_ratio[i].param)
2282 			break;
2283 	}
2284 	if (i == ARRAY_SIZE(fll_ratio))
2285 		return -EINVAL;
2286 	fll_param->ratio = fll_ratio[i].val;
2287 
2288 	/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
2289 	 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be
2290 	 * guaranteed across the full range of operation.
2291 	 * FDCO = freq_out * 2 * mclk_src_scaling
2292 	 */
2293 	fvco_max = 0;
2294 	fvco_sel = ARRAY_SIZE(mclk_src_scaling);
2295 	for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
2296 		fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param;
2297 		if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
2298 			fvco_max < fvco) {
2299 			fvco_max = fvco;
2300 			fvco_sel = i;
2301 		}
2302 	}
2303 	if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
2304 		return -EINVAL;
2305 	fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
2306 
2307 	/* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
2308 	 * input based on FDCO, FREF and FLL ratio.
2309 	 */
2310 	fvco = div_u64(fvco_max << 16, fref * fll_param->ratio);
2311 	fll_param->fll_int = (fvco >> 16) & 0x3FF;
2312 	fll_param->fll_frac = fvco & 0xFFFF;
2313 	return 0;
2314 }
2315 
2316 static void nau8825_fll_apply(struct nau8825 *nau8825,
2317 		struct nau8825_fll *fll_param)
2318 {
2319 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2320 		NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK,
2321 		NAU8825_CLK_SRC_MCLK | fll_param->mclk_src);
2322 	/* Make DSP operate at high speed for better performance. */
2323 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
2324 		NAU8825_FLL_RATIO_MASK | NAU8825_ICTRL_LATCH_MASK,
2325 		fll_param->ratio | (0x6 << NAU8825_ICTRL_LATCH_SFT));
2326 	/* FLL 16-bit fractional input */
2327 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac);
2328 	/* FLL 10-bit integer input */
2329 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3,
2330 			NAU8825_FLL_INTEGER_MASK, fll_param->fll_int);
2331 	/* FLL pre-scaler */
2332 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4,
2333 			NAU8825_FLL_REF_DIV_MASK,
2334 			fll_param->clk_ref_div << NAU8825_FLL_REF_DIV_SFT);
2335 	/* select divided VCO input */
2336 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2337 		NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF);
2338 	/* Disable free-running mode */
2339 	regmap_update_bits(nau8825->regmap,
2340 		NAU8825_REG_FLL6, NAU8825_DCO_EN, 0);
2341 	if (fll_param->fll_frac) {
2342 		/* set FLL loop filter enable and cutoff frequency at 500Khz */
2343 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2344 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2345 			NAU8825_FLL_FTR_SW_MASK,
2346 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2347 			NAU8825_FLL_FTR_SW_FILTER);
2348 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2349 			NAU8825_SDM_EN | NAU8825_CUTOFF500,
2350 			NAU8825_SDM_EN | NAU8825_CUTOFF500);
2351 	} else {
2352 		/* disable FLL loop filter and cutoff frequency */
2353 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2354 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2355 			NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU);
2356 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2357 			NAU8825_SDM_EN | NAU8825_CUTOFF500, 0);
2358 	}
2359 }
2360 
2361 /* freq_out must be 256*Fs in order to achieve the best performance */
2362 static int nau8825_set_pll(struct snd_soc_component *component, int pll_id, int source,
2363 		unsigned int freq_in, unsigned int freq_out)
2364 {
2365 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2366 	struct nau8825_fll fll_param;
2367 	int ret, fs;
2368 
2369 	fs = freq_out / 256;
2370 	ret = nau8825_calc_fll_param(freq_in, fs, &fll_param);
2371 	if (ret < 0) {
2372 		dev_err(component->dev, "Unsupported input clock %d\n", freq_in);
2373 		return ret;
2374 	}
2375 	dev_dbg(component->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
2376 		fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
2377 		fll_param.fll_int, fll_param.clk_ref_div);
2378 
2379 	nau8825_fll_apply(nau8825, &fll_param);
2380 	mdelay(2);
2381 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2382 			NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2383 	return 0;
2384 }
2385 
2386 static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq)
2387 {
2388 	int ret;
2389 
2390 	nau8825->mclk = devm_clk_get(nau8825->dev, "mclk");
2391 	if (IS_ERR(nau8825->mclk)) {
2392 		dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally");
2393 		return 0;
2394 	}
2395 
2396 	if (!nau8825->mclk_freq) {
2397 		ret = clk_prepare_enable(nau8825->mclk);
2398 		if (ret) {
2399 			dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2400 			return ret;
2401 		}
2402 	}
2403 
2404 	if (nau8825->mclk_freq != freq) {
2405 		freq = clk_round_rate(nau8825->mclk, freq);
2406 		ret = clk_set_rate(nau8825->mclk, freq);
2407 		if (ret) {
2408 			dev_err(nau8825->dev, "Unable to set mclk rate\n");
2409 			return ret;
2410 		}
2411 		nau8825->mclk_freq = freq;
2412 	}
2413 
2414 	return 0;
2415 }
2416 
2417 static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap)
2418 {
2419 	regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2420 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK);
2421 	regmap_update_bits(regmap, NAU8825_REG_FLL6,
2422 		NAU8825_DCO_EN, 0);
2423 	/* Make DSP operate as default setting for power saving. */
2424 	regmap_update_bits(regmap, NAU8825_REG_FLL1,
2425 		NAU8825_ICTRL_LATCH_MASK, 0);
2426 }
2427 
2428 static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id,
2429 	unsigned int freq)
2430 {
2431 	struct regmap *regmap = nau8825->regmap;
2432 	int ret;
2433 
2434 	switch (clk_id) {
2435 	case NAU8825_CLK_DIS:
2436 		/* Clock provided externally and disable internal VCO clock */
2437 		nau8825_configure_mclk_as_sysclk(regmap);
2438 		if (nau8825->mclk_freq) {
2439 			clk_disable_unprepare(nau8825->mclk);
2440 			nau8825->mclk_freq = 0;
2441 		}
2442 
2443 		break;
2444 	case NAU8825_CLK_MCLK:
2445 		/* Acquire the semaphore to synchronize the playback and
2446 		 * interrupt handler. In order to avoid the playback inter-
2447 		 * fered by cross talk process, the driver make the playback
2448 		 * preparation halted until cross talk process finish.
2449 		 */
2450 		nau8825_sema_acquire(nau8825, 3 * HZ);
2451 		nau8825_configure_mclk_as_sysclk(regmap);
2452 		/* MCLK not changed by clock tree */
2453 		regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2454 			NAU8825_CLK_MCLK_SRC_MASK, 0);
2455 		/* Release the semaphore. */
2456 		nau8825_sema_release(nau8825);
2457 
2458 		ret = nau8825_mclk_prepare(nau8825, freq);
2459 		if (ret)
2460 			return ret;
2461 
2462 		break;
2463 	case NAU8825_CLK_INTERNAL:
2464 		if (nau8825_is_jack_inserted(nau8825->regmap)) {
2465 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2466 				NAU8825_DCO_EN, NAU8825_DCO_EN);
2467 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2468 				NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2469 			/* Decrease the VCO frequency and make DSP operate
2470 			 * as default setting for power saving.
2471 			 */
2472 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2473 				NAU8825_CLK_MCLK_SRC_MASK, 0xf);
2474 			regmap_update_bits(regmap, NAU8825_REG_FLL1,
2475 				NAU8825_ICTRL_LATCH_MASK |
2476 				NAU8825_FLL_RATIO_MASK, 0x10);
2477 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2478 				NAU8825_SDM_EN, NAU8825_SDM_EN);
2479 		} else {
2480 			/* The clock turns off intentionally for power saving
2481 			 * when no headset connected.
2482 			 */
2483 			nau8825_configure_mclk_as_sysclk(regmap);
2484 			dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n");
2485 		}
2486 		if (nau8825->mclk_freq) {
2487 			clk_disable_unprepare(nau8825->mclk);
2488 			nau8825->mclk_freq = 0;
2489 		}
2490 
2491 		break;
2492 	case NAU8825_CLK_FLL_MCLK:
2493 		/* Acquire the semaphore to synchronize the playback and
2494 		 * interrupt handler. In order to avoid the playback inter-
2495 		 * fered by cross talk process, the driver make the playback
2496 		 * preparation halted until cross talk process finish.
2497 		 */
2498 		nau8825_sema_acquire(nau8825, 3 * HZ);
2499 		/* Higher FLL reference input frequency can only set lower
2500 		 * gain error, such as 0000 for input reference from MCLK
2501 		 * 12.288Mhz.
2502 		 */
2503 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2504 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2505 			NAU8825_FLL_CLK_SRC_MCLK | 0);
2506 		/* Release the semaphore. */
2507 		nau8825_sema_release(nau8825);
2508 
2509 		ret = nau8825_mclk_prepare(nau8825, freq);
2510 		if (ret)
2511 			return ret;
2512 
2513 		break;
2514 	case NAU8825_CLK_FLL_BLK:
2515 		/* Acquire the semaphore to synchronize the playback and
2516 		 * interrupt handler. In order to avoid the playback inter-
2517 		 * fered by cross talk process, the driver make the playback
2518 		 * preparation halted until cross talk process finish.
2519 		 */
2520 		nau8825_sema_acquire(nau8825, 3 * HZ);
2521 		/* If FLL reference input is from low frequency source,
2522 		 * higher error gain can apply such as 0xf which has
2523 		 * the most sensitive gain error correction threshold,
2524 		 * Therefore, FLL has the most accurate DCO to
2525 		 * target frequency.
2526 		 */
2527 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2528 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2529 			NAU8825_FLL_CLK_SRC_BLK |
2530 			(0xf << NAU8825_GAIN_ERR_SFT));
2531 		/* Release the semaphore. */
2532 		nau8825_sema_release(nau8825);
2533 
2534 		if (nau8825->mclk_freq) {
2535 			clk_disable_unprepare(nau8825->mclk);
2536 			nau8825->mclk_freq = 0;
2537 		}
2538 
2539 		break;
2540 	case NAU8825_CLK_FLL_FS:
2541 		/* Acquire the semaphore to synchronize the playback and
2542 		 * interrupt handler. In order to avoid the playback inter-
2543 		 * fered by cross talk process, the driver make the playback
2544 		 * preparation halted until cross talk process finish.
2545 		 */
2546 		nau8825_sema_acquire(nau8825, 3 * HZ);
2547 		/* If FLL reference input is from low frequency source,
2548 		 * higher error gain can apply such as 0xf which has
2549 		 * the most sensitive gain error correction threshold,
2550 		 * Therefore, FLL has the most accurate DCO to
2551 		 * target frequency.
2552 		 */
2553 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2554 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2555 			NAU8825_FLL_CLK_SRC_FS |
2556 			(0xf << NAU8825_GAIN_ERR_SFT));
2557 		/* Release the semaphore. */
2558 		nau8825_sema_release(nau8825);
2559 
2560 		if (nau8825->mclk_freq) {
2561 			clk_disable_unprepare(nau8825->mclk);
2562 			nau8825->mclk_freq = 0;
2563 		}
2564 
2565 		break;
2566 	default:
2567 		dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id);
2568 		return -EINVAL;
2569 	}
2570 
2571 	dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq,
2572 		clk_id);
2573 	return 0;
2574 }
2575 
2576 static int nau8825_set_sysclk(struct snd_soc_component *component, int clk_id,
2577 	int source, unsigned int freq, int dir)
2578 {
2579 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2580 
2581 	return nau8825_configure_sysclk(nau8825, clk_id, freq);
2582 }
2583 
2584 static int nau8825_resume_setup(struct nau8825 *nau8825)
2585 {
2586 	struct regmap *regmap = nau8825->regmap;
2587 
2588 	/* Close clock when jack type detection at manual mode */
2589 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
2590 
2591 	/* Clear all interruption status */
2592 	nau8825_int_status_clear_all(regmap);
2593 
2594 	/* Enable both insertion and ejection interruptions, and then
2595 	 * bypass de-bounce circuit.
2596 	 */
2597 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2598 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN |
2599 		NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN,
2600 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN);
2601 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2602 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
2603 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
2604 		NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0);
2605 
2606 	return 0;
2607 }
2608 
2609 static int nau8825_set_bias_level(struct snd_soc_component *component,
2610 				   enum snd_soc_bias_level level)
2611 {
2612 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2613 	int ret;
2614 
2615 	switch (level) {
2616 	case SND_SOC_BIAS_ON:
2617 		break;
2618 
2619 	case SND_SOC_BIAS_PREPARE:
2620 		break;
2621 
2622 	case SND_SOC_BIAS_STANDBY:
2623 		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
2624 			if (nau8825->mclk_freq) {
2625 				ret = clk_prepare_enable(nau8825->mclk);
2626 				if (ret) {
2627 					dev_err(nau8825->dev, "Unable to prepare component mclk\n");
2628 					return ret;
2629 				}
2630 			}
2631 			/* Setup codec configuration after resume */
2632 			nau8825_resume_setup(nau8825);
2633 		}
2634 		break;
2635 
2636 	case SND_SOC_BIAS_OFF:
2637 		/* Reset the configuration of jack type for detection */
2638 		/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
2639 		regmap_update_bits(nau8825->regmap, NAU8825_REG_MIC_BIAS,
2640 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
2641 		/* ground HPL/HPR, MICGRND1/2 */
2642 		regmap_update_bits(nau8825->regmap,
2643 			NAU8825_REG_HSD_CTRL, 0xf, 0xf);
2644 		/* Cancel and reset cross talk detection funciton */
2645 		nau8825_xtalk_cancel(nau8825);
2646 		/* Turn off all interruptions before system shutdown. Keep the
2647 		 * interruption quiet before resume setup completes.
2648 		 */
2649 		regmap_write(nau8825->regmap,
2650 			NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff);
2651 		/* Disable ADC needed for interruptions at audo mode */
2652 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
2653 			NAU8825_ENABLE_ADC, 0);
2654 		if (nau8825->mclk_freq)
2655 			clk_disable_unprepare(nau8825->mclk);
2656 		break;
2657 	}
2658 	return 0;
2659 }
2660 
2661 static int __maybe_unused nau8825_suspend(struct snd_soc_component *component)
2662 {
2663 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2664 
2665 	disable_irq(nau8825->irq);
2666 	snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF);
2667 	/* Power down codec power; don't suppoet button wakeup */
2668 	snd_soc_dapm_disable_pin(nau8825->dapm, "SAR");
2669 	snd_soc_dapm_disable_pin(nau8825->dapm, "MICBIAS");
2670 	snd_soc_dapm_sync(nau8825->dapm);
2671 	regcache_cache_only(nau8825->regmap, true);
2672 	regcache_mark_dirty(nau8825->regmap);
2673 
2674 	return 0;
2675 }
2676 
2677 static int __maybe_unused nau8825_resume(struct snd_soc_component *component)
2678 {
2679 	struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component);
2680 	int ret;
2681 
2682 	regcache_cache_only(nau8825->regmap, false);
2683 	regcache_sync(nau8825->regmap);
2684 	nau8825->xtalk_protect = true;
2685 	ret = nau8825_sema_acquire(nau8825, 0);
2686 	if (ret)
2687 		nau8825->xtalk_protect = false;
2688 	enable_irq(nau8825->irq);
2689 
2690 	return 0;
2691 }
2692 
2693 static int nau8825_set_jack(struct snd_soc_component *component,
2694 			    struct snd_soc_jack *jack, void *data)
2695 {
2696 	return nau8825_enable_jack_detect(component, jack);
2697 }
2698 
2699 static const struct snd_soc_component_driver nau8825_component_driver = {
2700 	.probe			= nau8825_component_probe,
2701 	.remove			= nau8825_component_remove,
2702 	.set_sysclk		= nau8825_set_sysclk,
2703 	.set_pll		= nau8825_set_pll,
2704 	.set_bias_level		= nau8825_set_bias_level,
2705 	.suspend		= nau8825_suspend,
2706 	.resume			= nau8825_resume,
2707 	.controls		= nau8825_controls,
2708 	.num_controls		= ARRAY_SIZE(nau8825_controls),
2709 	.dapm_widgets		= nau8825_dapm_widgets,
2710 	.num_dapm_widgets	= ARRAY_SIZE(nau8825_dapm_widgets),
2711 	.dapm_routes		= nau8825_dapm_routes,
2712 	.num_dapm_routes	= ARRAY_SIZE(nau8825_dapm_routes),
2713 	.set_jack		= nau8825_set_jack,
2714 	.suspend_bias_off	= 1,
2715 	.idle_bias_on		= 1,
2716 	.use_pmdown_time	= 1,
2717 	.endianness		= 1,
2718 };
2719 
2720 static void nau8825_reset_chip(struct regmap *regmap)
2721 {
2722 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2723 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2724 }
2725 
2726 static void nau8825_print_device_properties(struct nau8825 *nau8825)
2727 {
2728 	int i;
2729 	struct device *dev = nau8825->dev;
2730 
2731 	dev_dbg(dev, "jkdet-enable:         %d\n", nau8825->jkdet_enable);
2732 	dev_dbg(dev, "jkdet-pull-enable:    %d\n", nau8825->jkdet_pull_enable);
2733 	dev_dbg(dev, "jkdet-pull-up:        %d\n", nau8825->jkdet_pull_up);
2734 	dev_dbg(dev, "jkdet-polarity:       %d\n", nau8825->jkdet_polarity);
2735 	dev_dbg(dev, "micbias-voltage:      %d\n", nau8825->micbias_voltage);
2736 	dev_dbg(dev, "vref-impedance:       %d\n", nau8825->vref_impedance);
2737 
2738 	dev_dbg(dev, "sar-threshold-num:    %d\n", nau8825->sar_threshold_num);
2739 	for (i = 0; i < nau8825->sar_threshold_num; i++)
2740 		dev_dbg(dev, "sar-threshold[%d]=%d\n", i,
2741 				nau8825->sar_threshold[i]);
2742 
2743 	dev_dbg(dev, "sar-hysteresis:       %d\n", nau8825->sar_hysteresis);
2744 	dev_dbg(dev, "sar-voltage:          %d\n", nau8825->sar_voltage);
2745 	dev_dbg(dev, "sar-compare-time:     %d\n", nau8825->sar_compare_time);
2746 	dev_dbg(dev, "sar-sampling-time:    %d\n", nau8825->sar_sampling_time);
2747 	dev_dbg(dev, "short-key-debounce:   %d\n", nau8825->key_debounce);
2748 	dev_dbg(dev, "jack-insert-debounce: %d\n",
2749 			nau8825->jack_insert_debounce);
2750 	dev_dbg(dev, "jack-eject-debounce:  %d\n",
2751 			nau8825->jack_eject_debounce);
2752 	dev_dbg(dev, "crosstalk-enable:     %d\n",
2753 			nau8825->xtalk_enable);
2754 	dev_dbg(dev, "adcout-drive-strong:  %d\n", nau8825->adcout_ds);
2755 }
2756 
2757 static int nau8825_read_device_properties(struct device *dev,
2758 	struct nau8825 *nau8825) {
2759 	int ret;
2760 
2761 	nau8825->jkdet_enable = device_property_read_bool(dev,
2762 		"nuvoton,jkdet-enable");
2763 	nau8825->jkdet_pull_enable = device_property_read_bool(dev,
2764 		"nuvoton,jkdet-pull-enable");
2765 	nau8825->jkdet_pull_up = device_property_read_bool(dev,
2766 		"nuvoton,jkdet-pull-up");
2767 	ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity",
2768 		&nau8825->jkdet_polarity);
2769 	if (ret)
2770 		nau8825->jkdet_polarity = 1;
2771 	ret = device_property_read_u32(dev, "nuvoton,micbias-voltage",
2772 		&nau8825->micbias_voltage);
2773 	if (ret)
2774 		nau8825->micbias_voltage = 6;
2775 	ret = device_property_read_u32(dev, "nuvoton,vref-impedance",
2776 		&nau8825->vref_impedance);
2777 	if (ret)
2778 		nau8825->vref_impedance = 2;
2779 	ret = device_property_read_u32(dev, "nuvoton,sar-threshold-num",
2780 		&nau8825->sar_threshold_num);
2781 	if (ret)
2782 		nau8825->sar_threshold_num = 4;
2783 	ret = device_property_read_u32_array(dev, "nuvoton,sar-threshold",
2784 		nau8825->sar_threshold, nau8825->sar_threshold_num);
2785 	if (ret) {
2786 		nau8825->sar_threshold[0] = 0x08;
2787 		nau8825->sar_threshold[1] = 0x12;
2788 		nau8825->sar_threshold[2] = 0x26;
2789 		nau8825->sar_threshold[3] = 0x73;
2790 	}
2791 	ret = device_property_read_u32(dev, "nuvoton,sar-hysteresis",
2792 		&nau8825->sar_hysteresis);
2793 	if (ret)
2794 		nau8825->sar_hysteresis = 0;
2795 	ret = device_property_read_u32(dev, "nuvoton,sar-voltage",
2796 		&nau8825->sar_voltage);
2797 	if (ret)
2798 		nau8825->sar_voltage = 6;
2799 	ret = device_property_read_u32(dev, "nuvoton,sar-compare-time",
2800 		&nau8825->sar_compare_time);
2801 	if (ret)
2802 		nau8825->sar_compare_time = 1;
2803 	ret = device_property_read_u32(dev, "nuvoton,sar-sampling-time",
2804 		&nau8825->sar_sampling_time);
2805 	if (ret)
2806 		nau8825->sar_sampling_time = 1;
2807 	ret = device_property_read_u32(dev, "nuvoton,short-key-debounce",
2808 		&nau8825->key_debounce);
2809 	if (ret)
2810 		nau8825->key_debounce = 3;
2811 	ret = device_property_read_u32(dev, "nuvoton,jack-insert-debounce",
2812 		&nau8825->jack_insert_debounce);
2813 	if (ret)
2814 		nau8825->jack_insert_debounce = 7;
2815 	ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
2816 		&nau8825->jack_eject_debounce);
2817 	if (ret)
2818 		nau8825->jack_eject_debounce = 0;
2819 	nau8825->xtalk_enable = device_property_read_bool(dev,
2820 		"nuvoton,crosstalk-enable");
2821 	nau8825->adcout_ds = device_property_read_bool(dev, "nuvoton,adcout-drive-strong");
2822 
2823 	nau8825->mclk = devm_clk_get(dev, "mclk");
2824 	if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) {
2825 		return -EPROBE_DEFER;
2826 	} else if (PTR_ERR(nau8825->mclk) == -ENOENT) {
2827 		/* The MCLK is managed externally or not used at all */
2828 		nau8825->mclk = NULL;
2829 		dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally");
2830 	} else if (IS_ERR(nau8825->mclk)) {
2831 		return -EINVAL;
2832 	}
2833 
2834 	return 0;
2835 }
2836 
2837 static int nau8825_setup_irq(struct nau8825 *nau8825)
2838 {
2839 	int ret;
2840 
2841 	ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL,
2842 		nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2843 		"nau8825", nau8825);
2844 
2845 	if (ret) {
2846 		dev_err(nau8825->dev, "Cannot request irq %d (%d)\n",
2847 			nau8825->irq, ret);
2848 		return ret;
2849 	}
2850 
2851 	return 0;
2852 }
2853 
2854 static int nau8825_i2c_probe(struct i2c_client *i2c)
2855 {
2856 	struct device *dev = &i2c->dev;
2857 	struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev);
2858 	int ret, value;
2859 
2860 	if (!nau8825) {
2861 		nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL);
2862 		if (!nau8825)
2863 			return -ENOMEM;
2864 		ret = nau8825_read_device_properties(dev, nau8825);
2865 		if (ret)
2866 			return ret;
2867 	}
2868 
2869 	i2c_set_clientdata(i2c, nau8825);
2870 
2871 	nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config);
2872 	if (IS_ERR(nau8825->regmap))
2873 		return PTR_ERR(nau8825->regmap);
2874 	nau8825->dev = dev;
2875 	nau8825->irq = i2c->irq;
2876 	/* Initiate parameters, semaphore and work queue which are needed in
2877 	 * cross talk suppression measurment function.
2878 	 */
2879 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
2880 	nau8825->xtalk_protect = false;
2881 	nau8825->xtalk_baktab_initialized = false;
2882 	sema_init(&nau8825->xtalk_sem, 1);
2883 	INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work);
2884 
2885 	nau8825_print_device_properties(nau8825);
2886 
2887 	nau8825_reset_chip(nau8825->regmap);
2888 	ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value);
2889 	if (ret < 0) {
2890 		dev_err(dev, "Failed to read device id from the NAU8825: %d\n",
2891 			ret);
2892 		return ret;
2893 	}
2894 	if ((value & NAU8825_SOFTWARE_ID_MASK) !=
2895 			NAU8825_SOFTWARE_ID_NAU8825) {
2896 		dev_err(dev, "Not a NAU8825 chip\n");
2897 		return -ENODEV;
2898 	}
2899 
2900 	nau8825_init_regs(nau8825);
2901 
2902 	if (i2c->irq)
2903 		nau8825_setup_irq(nau8825);
2904 
2905 	return devm_snd_soc_register_component(&i2c->dev,
2906 		&nau8825_component_driver,
2907 		&nau8825_dai, 1);
2908 }
2909 
2910 static void nau8825_i2c_remove(struct i2c_client *client)
2911 {}
2912 
2913 static const struct i2c_device_id nau8825_i2c_ids[] = {
2914 	{ "nau8825", 0 },
2915 	{ }
2916 };
2917 MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids);
2918 
2919 #ifdef CONFIG_OF
2920 static const struct of_device_id nau8825_of_ids[] = {
2921 	{ .compatible = "nuvoton,nau8825", },
2922 	{}
2923 };
2924 MODULE_DEVICE_TABLE(of, nau8825_of_ids);
2925 #endif
2926 
2927 #ifdef CONFIG_ACPI
2928 static const struct acpi_device_id nau8825_acpi_match[] = {
2929 	{ "10508825", 0 },
2930 	{},
2931 };
2932 MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match);
2933 #endif
2934 
2935 static struct i2c_driver nau8825_driver = {
2936 	.driver = {
2937 		.name = "nau8825",
2938 		.of_match_table = of_match_ptr(nau8825_of_ids),
2939 		.acpi_match_table = ACPI_PTR(nau8825_acpi_match),
2940 	},
2941 	.probe_new = nau8825_i2c_probe,
2942 	.remove = nau8825_i2c_remove,
2943 	.id_table = nau8825_i2c_ids,
2944 };
2945 module_i2c_driver(nau8825_driver);
2946 
2947 MODULE_DESCRIPTION("ASoC nau8825 driver");
2948 MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>");
2949 MODULE_LICENSE("GPL");
2950