1 /* 2 * Nuvoton NAU8825 audio codec driver 3 * 4 * Copyright 2015 Google Chromium project. 5 * Author: Anatol Pomozov <anatol@chromium.org> 6 * Copyright 2015 Nuvoton Technology Corp. 7 * Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com> 8 * 9 * Licensed under the GPL-2. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/delay.h> 14 #include <linux/init.h> 15 #include <linux/i2c.h> 16 #include <linux/regmap.h> 17 #include <linux/slab.h> 18 #include <linux/clk.h> 19 #include <linux/acpi.h> 20 #include <linux/math64.h> 21 #include <linux/semaphore.h> 22 23 #include <sound/initval.h> 24 #include <sound/tlv.h> 25 #include <sound/core.h> 26 #include <sound/pcm.h> 27 #include <sound/pcm_params.h> 28 #include <sound/soc.h> 29 #include <sound/jack.h> 30 31 32 #include "nau8825.h" 33 34 35 #define NUVOTON_CODEC_DAI "nau8825-hifi" 36 37 #define NAU_FREF_MAX 13500000 38 #define NAU_FVCO_MAX 124000000 39 #define NAU_FVCO_MIN 90000000 40 41 /* cross talk suppression detection */ 42 #define LOG10_MAGIC 646456993 43 #define GAIN_AUGMENT 22500 44 #define SIDETONE_BASE 207000 45 46 /* the maximum frequency of CLK_ADC and CLK_DAC */ 47 #define CLK_DA_AD_MAX 6144000 48 49 static int nau8825_configure_sysclk(struct nau8825 *nau8825, 50 int clk_id, unsigned int freq); 51 52 struct nau8825_fll { 53 int mclk_src; 54 int ratio; 55 int fll_frac; 56 int fll_int; 57 int clk_ref_div; 58 }; 59 60 struct nau8825_fll_attr { 61 unsigned int param; 62 unsigned int val; 63 }; 64 65 /* scaling for mclk from sysclk_src output */ 66 static const struct nau8825_fll_attr mclk_src_scaling[] = { 67 { 1, 0x0 }, 68 { 2, 0x2 }, 69 { 4, 0x3 }, 70 { 8, 0x4 }, 71 { 16, 0x5 }, 72 { 32, 0x6 }, 73 { 3, 0x7 }, 74 { 6, 0xa }, 75 { 12, 0xb }, 76 { 24, 0xc }, 77 { 48, 0xd }, 78 { 96, 0xe }, 79 { 5, 0xf }, 80 }; 81 82 /* ratio for input clk freq */ 83 static const struct nau8825_fll_attr fll_ratio[] = { 84 { 512000, 0x01 }, 85 { 256000, 0x02 }, 86 { 128000, 0x04 }, 87 { 64000, 0x08 }, 88 { 32000, 0x10 }, 89 { 8000, 0x20 }, 90 { 4000, 0x40 }, 91 }; 92 93 static const struct nau8825_fll_attr fll_pre_scalar[] = { 94 { 1, 0x0 }, 95 { 2, 0x1 }, 96 { 4, 0x2 }, 97 { 8, 0x3 }, 98 }; 99 100 /* over sampling rate */ 101 struct nau8825_osr_attr { 102 unsigned int osr; 103 unsigned int clk_src; 104 }; 105 106 static const struct nau8825_osr_attr osr_dac_sel[] = { 107 { 64, 2 }, /* OSR 64, SRC 1/4 */ 108 { 256, 0 }, /* OSR 256, SRC 1 */ 109 { 128, 1 }, /* OSR 128, SRC 1/2 */ 110 { 0, 0 }, 111 { 32, 3 }, /* OSR 32, SRC 1/8 */ 112 }; 113 114 static const struct nau8825_osr_attr osr_adc_sel[] = { 115 { 32, 3 }, /* OSR 32, SRC 1/8 */ 116 { 64, 2 }, /* OSR 64, SRC 1/4 */ 117 { 128, 1 }, /* OSR 128, SRC 1/2 */ 118 { 256, 0 }, /* OSR 256, SRC 1 */ 119 }; 120 121 static const struct reg_default nau8825_reg_defaults[] = { 122 { NAU8825_REG_ENA_CTRL, 0x00ff }, 123 { NAU8825_REG_IIC_ADDR_SET, 0x0 }, 124 { NAU8825_REG_CLK_DIVIDER, 0x0050 }, 125 { NAU8825_REG_FLL1, 0x0 }, 126 { NAU8825_REG_FLL2, 0x3126 }, 127 { NAU8825_REG_FLL3, 0x0008 }, 128 { NAU8825_REG_FLL4, 0x0010 }, 129 { NAU8825_REG_FLL5, 0x0 }, 130 { NAU8825_REG_FLL6, 0x6000 }, 131 { NAU8825_REG_FLL_VCO_RSV, 0xf13c }, 132 { NAU8825_REG_HSD_CTRL, 0x000c }, 133 { NAU8825_REG_JACK_DET_CTRL, 0x0 }, 134 { NAU8825_REG_INTERRUPT_MASK, 0x0 }, 135 { NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff }, 136 { NAU8825_REG_SAR_CTRL, 0x0015 }, 137 { NAU8825_REG_KEYDET_CTRL, 0x0110 }, 138 { NAU8825_REG_VDET_THRESHOLD_1, 0x0 }, 139 { NAU8825_REG_VDET_THRESHOLD_2, 0x0 }, 140 { NAU8825_REG_VDET_THRESHOLD_3, 0x0 }, 141 { NAU8825_REG_VDET_THRESHOLD_4, 0x0 }, 142 { NAU8825_REG_GPIO34_CTRL, 0x0 }, 143 { NAU8825_REG_GPIO12_CTRL, 0x0 }, 144 { NAU8825_REG_TDM_CTRL, 0x0 }, 145 { NAU8825_REG_I2S_PCM_CTRL1, 0x000b }, 146 { NAU8825_REG_I2S_PCM_CTRL2, 0x8010 }, 147 { NAU8825_REG_LEFT_TIME_SLOT, 0x0 }, 148 { NAU8825_REG_RIGHT_TIME_SLOT, 0x0 }, 149 { NAU8825_REG_BIQ_CTRL, 0x0 }, 150 { NAU8825_REG_BIQ_COF1, 0x0 }, 151 { NAU8825_REG_BIQ_COF2, 0x0 }, 152 { NAU8825_REG_BIQ_COF3, 0x0 }, 153 { NAU8825_REG_BIQ_COF4, 0x0 }, 154 { NAU8825_REG_BIQ_COF5, 0x0 }, 155 { NAU8825_REG_BIQ_COF6, 0x0 }, 156 { NAU8825_REG_BIQ_COF7, 0x0 }, 157 { NAU8825_REG_BIQ_COF8, 0x0 }, 158 { NAU8825_REG_BIQ_COF9, 0x0 }, 159 { NAU8825_REG_BIQ_COF10, 0x0 }, 160 { NAU8825_REG_ADC_RATE, 0x0010 }, 161 { NAU8825_REG_DAC_CTRL1, 0x0001 }, 162 { NAU8825_REG_DAC_CTRL2, 0x0 }, 163 { NAU8825_REG_DAC_DGAIN_CTRL, 0x0 }, 164 { NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf }, 165 { NAU8825_REG_MUTE_CTRL, 0x0 }, 166 { NAU8825_REG_HSVOL_CTRL, 0x0 }, 167 { NAU8825_REG_DACL_CTRL, 0x02cf }, 168 { NAU8825_REG_DACR_CTRL, 0x00cf }, 169 { NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 }, 170 { NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 }, 171 { NAU8825_REG_ADC_DRC_SLOPES, 0x25ff }, 172 { NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 }, 173 { NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 }, 174 { NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 }, 175 { NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 }, 176 { NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 }, 177 { NAU8825_REG_IMM_MODE_CTRL, 0x0 }, 178 { NAU8825_REG_CLASSG_CTRL, 0x0 }, 179 { NAU8825_REG_OPT_EFUSE_CTRL, 0x0 }, 180 { NAU8825_REG_MISC_CTRL, 0x0 }, 181 { NAU8825_REG_BIAS_ADJ, 0x0 }, 182 { NAU8825_REG_TRIM_SETTINGS, 0x0 }, 183 { NAU8825_REG_ANALOG_CONTROL_1, 0x0 }, 184 { NAU8825_REG_ANALOG_CONTROL_2, 0x0 }, 185 { NAU8825_REG_ANALOG_ADC_1, 0x0011 }, 186 { NAU8825_REG_ANALOG_ADC_2, 0x0020 }, 187 { NAU8825_REG_RDAC, 0x0008 }, 188 { NAU8825_REG_MIC_BIAS, 0x0006 }, 189 { NAU8825_REG_BOOST, 0x0 }, 190 { NAU8825_REG_FEPGA, 0x0 }, 191 { NAU8825_REG_POWER_UP_CONTROL, 0x0 }, 192 { NAU8825_REG_CHARGE_PUMP, 0x0 }, 193 }; 194 195 /* register backup table when cross talk detection */ 196 static struct reg_default nau8825_xtalk_baktab[] = { 197 { NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf }, 198 { NAU8825_REG_HSVOL_CTRL, 0 }, 199 { NAU8825_REG_DACL_CTRL, 0x00cf }, 200 { NAU8825_REG_DACR_CTRL, 0x02cf }, 201 }; 202 203 static const unsigned short logtable[256] = { 204 0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7, 205 0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508, 206 0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6, 207 0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37, 208 0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f, 209 0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41, 210 0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1, 211 0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142, 212 0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68, 213 0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355, 214 0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c, 215 0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490, 216 0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3, 217 0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507, 218 0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe, 219 0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca, 220 0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c, 221 0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7, 222 0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c, 223 0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c, 224 0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a, 225 0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065, 226 0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730, 227 0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc, 228 0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469, 229 0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9, 230 0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c, 231 0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765, 232 0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83, 233 0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387, 234 0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973, 235 0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47 236 }; 237 238 /** 239 * nau8825_sema_acquire - acquire the semaphore of nau88l25 240 * @nau8825: component to register the codec private data with 241 * @timeout: how long in jiffies to wait before failure or zero to wait 242 * until release 243 * 244 * Attempts to acquire the semaphore with number of jiffies. If no more 245 * tasks are allowed to acquire the semaphore, calling this function will 246 * put the task to sleep. If the semaphore is not released within the 247 * specified number of jiffies, this function returns. 248 * If the semaphore is not released within the specified number of jiffies, 249 * this function returns -ETIME. If the sleep is interrupted by a signal, 250 * this function will return -EINTR. It returns 0 if the semaphore was 251 * acquired successfully. 252 * 253 * Acquires the semaphore without jiffies. Try to acquire the semaphore 254 * atomically. Returns 0 if the semaphore has been acquired successfully 255 * or 1 if it it cannot be acquired. 256 */ 257 static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout) 258 { 259 int ret; 260 261 if (timeout) { 262 ret = down_timeout(&nau8825->xtalk_sem, timeout); 263 if (ret < 0) 264 dev_warn(nau8825->dev, "Acquire semaphore timeout\n"); 265 } else { 266 ret = down_trylock(&nau8825->xtalk_sem); 267 if (ret) 268 dev_warn(nau8825->dev, "Acquire semaphore fail\n"); 269 } 270 271 return ret; 272 } 273 274 /** 275 * nau8825_sema_release - release the semaphore of nau88l25 276 * @nau8825: component to register the codec private data with 277 * 278 * Release the semaphore which may be called from any context and 279 * even by tasks which have never called down(). 280 */ 281 static inline void nau8825_sema_release(struct nau8825 *nau8825) 282 { 283 up(&nau8825->xtalk_sem); 284 } 285 286 /** 287 * nau8825_sema_reset - reset the semaphore for nau88l25 288 * @nau8825: component to register the codec private data with 289 * 290 * Reset the counter of the semaphore. Call this function to restart 291 * a new round task management. 292 */ 293 static inline void nau8825_sema_reset(struct nau8825 *nau8825) 294 { 295 nau8825->xtalk_sem.count = 1; 296 } 297 298 /** 299 * Ramp up the headphone volume change gradually to target level. 300 * 301 * @nau8825: component to register the codec private data with 302 * @vol_from: the volume to start up 303 * @vol_to: the target volume 304 * @step: the volume span to move on 305 * 306 * The headphone volume is from 0dB to minimum -54dB and -1dB per step. 307 * If the volume changes sharp, there is a pop noise heard in headphone. We 308 * provide the function to ramp up the volume up or down by delaying 10ms 309 * per step. 310 */ 311 static void nau8825_hpvol_ramp(struct nau8825 *nau8825, 312 unsigned int vol_from, unsigned int vol_to, unsigned int step) 313 { 314 unsigned int value, volume, ramp_up, from, to; 315 316 if (vol_from == vol_to || step == 0) { 317 return; 318 } else if (vol_from < vol_to) { 319 ramp_up = true; 320 from = vol_from; 321 to = vol_to; 322 } else { 323 ramp_up = false; 324 from = vol_to; 325 to = vol_from; 326 } 327 /* only handle volume from 0dB to minimum -54dB */ 328 if (to > NAU8825_HP_VOL_MIN) 329 to = NAU8825_HP_VOL_MIN; 330 331 for (volume = from; volume < to; volume += step) { 332 if (ramp_up) 333 value = volume; 334 else 335 value = to - volume + from; 336 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL, 337 NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK, 338 (value << NAU8825_HPL_VOL_SFT) | value); 339 usleep_range(10000, 10500); 340 } 341 if (ramp_up) 342 value = to; 343 else 344 value = from; 345 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL, 346 NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK, 347 (value << NAU8825_HPL_VOL_SFT) | value); 348 } 349 350 /** 351 * Computes log10 of a value; the result is round off to 3 decimal. This func- 352 * tion takes reference to dvb-math. The source code locates as the following. 353 * Linux/drivers/media/dvb-core/dvb_math.c 354 * 355 * return log10(value) * 1000 356 */ 357 static u32 nau8825_intlog10_dec3(u32 value) 358 { 359 u32 msb, logentry, significand, interpolation, log10val; 360 u64 log2val; 361 362 /* first detect the msb (count begins at 0) */ 363 msb = fls(value) - 1; 364 /** 365 * now we use a logtable after the following method: 366 * 367 * log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24 368 * where x = msb and therefore 1 <= y < 2 369 * first y is determined by shifting the value left 370 * so that msb is bit 31 371 * 0x00231f56 -> 0x8C7D5800 372 * the result is y * 2^31 -> "significand" 373 * then the highest 9 bits are used for a table lookup 374 * the highest bit is discarded because it's always set 375 * the highest nine bits in our example are 100011000 376 * so we would use the entry 0x18 377 */ 378 significand = value << (31 - msb); 379 logentry = (significand >> 23) & 0xff; 380 /** 381 * last step we do is interpolation because of the 382 * limitations of the log table the error is that part of 383 * the significand which isn't used for lookup then we 384 * compute the ratio between the error and the next table entry 385 * and interpolate it between the log table entry used and the 386 * next one the biggest error possible is 0x7fffff 387 * (in our example it's 0x7D5800) 388 * needed value for next table entry is 0x800000 389 * so the interpolation is 390 * (error / 0x800000) * (logtable_next - logtable_current) 391 * in the implementation the division is moved to the end for 392 * better accuracy there is also an overflow correction if 393 * logtable_next is 256 394 */ 395 interpolation = ((significand & 0x7fffff) * 396 ((logtable[(logentry + 1) & 0xff] - 397 logtable[logentry]) & 0xffff)) >> 15; 398 399 log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation); 400 /** 401 * log10(x) = log2(x) * log10(2) 402 */ 403 log10val = (log2val * LOG10_MAGIC) >> 31; 404 /** 405 * the result is round off to 3 decimal 406 */ 407 return log10val / ((1 << 24) / 1000); 408 } 409 410 /** 411 * computes cross talk suppression sidetone gain. 412 * 413 * @sig_org: orignal signal level 414 * @sig_cros: cross talk signal level 415 * 416 * The orignal and cross talk signal vlues need to be characterized. 417 * Once these values have been characterized, this sidetone value 418 * can be converted to decibel with the equation below. 419 * sidetone = 20 * log (original signal level / crosstalk signal level) 420 * 421 * return cross talk sidetone gain 422 */ 423 static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros) 424 { 425 u32 gain, sidetone; 426 427 if (unlikely(sig_org == 0) || unlikely(sig_cros == 0)) { 428 WARN_ON(1); 429 return 0; 430 } 431 432 sig_org = nau8825_intlog10_dec3(sig_org); 433 sig_cros = nau8825_intlog10_dec3(sig_cros); 434 if (sig_org >= sig_cros) 435 gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT; 436 else 437 gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT; 438 sidetone = SIDETONE_BASE - gain * 2; 439 sidetone /= 1000; 440 441 return sidetone; 442 } 443 444 static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg) 445 { 446 int index; 447 448 for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++) 449 if (nau8825_xtalk_baktab[index].reg == reg) 450 return index; 451 return -EINVAL; 452 } 453 454 static void nau8825_xtalk_backup(struct nau8825 *nau8825) 455 { 456 int i; 457 458 if (nau8825->xtalk_baktab_initialized) 459 return; 460 461 /* Backup some register values to backup table */ 462 for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) 463 regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg, 464 &nau8825_xtalk_baktab[i].def); 465 466 nau8825->xtalk_baktab_initialized = true; 467 } 468 469 static void nau8825_xtalk_restore(struct nau8825 *nau8825, bool cause_cancel) 470 { 471 int i, volume; 472 473 if (!nau8825->xtalk_baktab_initialized) 474 return; 475 476 /* Restore register values from backup table; When the driver restores 477 * the headphone volume in XTALK_DONE state, it needs recover to 478 * original level gradually with 3dB per step for less pop noise. 479 * Otherwise, the restore should do ASAP. 480 */ 481 for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) { 482 if (!cause_cancel && nau8825_xtalk_baktab[i].reg == 483 NAU8825_REG_HSVOL_CTRL) { 484 /* Ramping up the volume change to reduce pop noise */ 485 volume = nau8825_xtalk_baktab[i].def & 486 NAU8825_HPR_VOL_MASK; 487 nau8825_hpvol_ramp(nau8825, 0, volume, 3); 488 continue; 489 } 490 regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg, 491 nau8825_xtalk_baktab[i].def); 492 } 493 494 nau8825->xtalk_baktab_initialized = false; 495 } 496 497 static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825) 498 { 499 /* Enable power of DAC path */ 500 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, 501 NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL | 502 NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK | 503 NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR | 504 NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC | 505 NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK); 506 /* Prevent startup click by letting charge pump to ramp up and 507 * change bump enable 508 */ 509 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 510 NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 511 NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN); 512 /* Enable clock sync of DAC and DAC clock */ 513 regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC, 514 NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN | 515 NAU8825_RDAC_FS_BCLK_ENB, 516 NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN); 517 /* Power up output driver with 2 stage */ 518 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, 519 NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L | 520 NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 521 NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L | 522 NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L); 523 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, 524 NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 525 NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L); 526 /* HP outputs not shouted to ground */ 527 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL, 528 NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0); 529 /* Enable HP boost driver */ 530 regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST, 531 NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS); 532 /* Enable class G compare path to supply 1.8V or 0.9V. */ 533 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL, 534 NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN, 535 NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN); 536 } 537 538 static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825) 539 { 540 /* Power up left ADC and raise 5dB than Vmid for Vref */ 541 regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2, 542 NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 543 NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB); 544 } 545 546 static void nau8825_xtalk_clock(struct nau8825 *nau8825) 547 { 548 /* Recover FLL default value */ 549 regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0); 550 regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126); 551 regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008); 552 regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010); 553 regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0); 554 regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000); 555 /* Enable internal VCO clock for detection signal generated */ 556 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 557 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO); 558 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN, 559 NAU8825_DCO_EN); 560 /* Given specific clock frequency of internal clock to 561 * generate signal. 562 */ 563 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 564 NAU8825_CLK_MCLK_SRC_MASK, 0xf); 565 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1, 566 NAU8825_FLL_RATIO_MASK, 0x10); 567 } 568 569 static void nau8825_xtalk_prepare(struct nau8825 *nau8825) 570 { 571 int volume, index; 572 573 /* Backup those registers changed by cross talk detection */ 574 nau8825_xtalk_backup(nau8825); 575 /* Config IIS as master to output signal by codec */ 576 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, 577 NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK | 578 NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER | 579 (0x2 << NAU8825_I2S_LRC_DIV_SFT) | 0x1); 580 /* Ramp up headphone volume to 0dB to get better performance and 581 * avoid pop noise in headphone. 582 */ 583 index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL); 584 if (index != -EINVAL) { 585 volume = nau8825_xtalk_baktab[index].def & 586 NAU8825_HPR_VOL_MASK; 587 nau8825_hpvol_ramp(nau8825, volume, 0, 3); 588 } 589 nau8825_xtalk_clock(nau8825); 590 nau8825_xtalk_prepare_dac(nau8825); 591 nau8825_xtalk_prepare_adc(nau8825); 592 /* Config channel path and digital gain */ 593 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL, 594 NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK, 595 NAU8825_DACL_CH_SEL_L | 0xab); 596 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL, 597 NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK, 598 NAU8825_DACR_CH_SEL_R | 0xab); 599 /* Config cross talk parameters and generate the 23Hz sine wave with 600 * 1/16 full scale of signal level for impedance measurement. 601 */ 602 regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 603 NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK | 604 NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK, 605 (0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th | 606 NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN); 607 /* RMS intrruption enable */ 608 regmap_update_bits(nau8825->regmap, 609 NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0); 610 /* Power up left and right DAC */ 611 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 612 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0); 613 } 614 615 static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825) 616 { 617 /* Disable HP boost driver */ 618 regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST, 619 NAU8825_HP_BOOST_DIS, 0); 620 /* HP outputs shouted to ground */ 621 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL, 622 NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 623 NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L); 624 /* Power down left and right DAC */ 625 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 626 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 627 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL); 628 /* Enable the TESTDAC and disable L/R HP impedance */ 629 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 630 NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP | 631 NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN); 632 /* Power down output driver with 2 stage */ 633 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, 634 NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0); 635 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, 636 NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L | 637 NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0); 638 /* Disable clock sync of DAC and DAC clock */ 639 regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC, 640 NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0); 641 /* Disable charge pump ramp up function and change bump */ 642 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 643 NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0); 644 /* Disable power of DAC path */ 645 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, 646 NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL | 647 NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0); 648 if (!nau8825->irq) 649 regmap_update_bits(nau8825->regmap, 650 NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0); 651 } 652 653 static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825) 654 { 655 /* Power down left ADC and restore voltage to Vmid */ 656 regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2, 657 NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0); 658 } 659 660 static void nau8825_xtalk_clean(struct nau8825 *nau8825, bool cause_cancel) 661 { 662 /* Enable internal VCO needed for interruptions */ 663 nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0); 664 nau8825_xtalk_clean_dac(nau8825); 665 nau8825_xtalk_clean_adc(nau8825); 666 /* Clear cross talk parameters and disable */ 667 regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0); 668 /* RMS intrruption disable */ 669 regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK, 670 NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN); 671 /* Recover default value for IIS */ 672 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, 673 NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK | 674 NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE); 675 /* Restore value of specific register for cross talk */ 676 nau8825_xtalk_restore(nau8825, cause_cancel); 677 } 678 679 static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol) 680 { 681 /* Apply ADC volume for better cross talk performance */ 682 regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL, 683 NAU8825_ADC_DIG_VOL_MASK, vol); 684 /* Disables JKTIP(HPL) DAC channel for right to left measurement. 685 * Do it before sending signal in order to erase pop noise. 686 */ 687 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 688 NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN, 689 NAU8825_BIAS_TESTDACL_EN); 690 switch (nau8825->xtalk_state) { 691 case NAU8825_XTALK_HPR_R2L: 692 /* Enable right headphone impedance */ 693 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 694 NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP, 695 NAU8825_BIAS_HPR_IMP); 696 break; 697 case NAU8825_XTALK_HPL_R2L: 698 /* Enable left headphone impedance */ 699 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 700 NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP, 701 NAU8825_BIAS_HPL_IMP); 702 break; 703 default: 704 break; 705 } 706 msleep(100); 707 /* Impedance measurement mode enable */ 708 regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 709 NAU8825_IMM_EN, NAU8825_IMM_EN); 710 } 711 712 static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825) 713 { 714 /* Impedance measurement mode disable */ 715 regmap_update_bits(nau8825->regmap, 716 NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0); 717 } 718 719 /* The cross talk measurement function can reduce cross talk across the 720 * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal 721 * level to determine what cross talk reduction gain is. This system works by 722 * sending a 23Hz -24dBV sine wave into the headset output DAC and through 723 * the PGA. The output of the PGA is then connected to an internal current 724 * sense which measures the attenuated 23Hz signal and passing the output to 725 * an ADC which converts the measurement to a binary code. With two separated 726 * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data 727 * can be separated read in IMM_RMS_L for HSR and HSL after each measurement. 728 * Thus, the measurement function has four states to complete whole sequence. 729 * 1. Prepare state : Prepare the resource for detection and transfer to HPR 730 * IMM stat to make JKR1(HPR) impedance measure. 731 * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer 732 * to HPL IMM state to make JKTIP(HPL) impedance measure. 733 * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and 734 * transfer to IMM state to determine suppression sidetone gain. 735 * 4. IMM state : Computes cross talk suppression sidetone gain with orignal 736 * and cross talk signal level. Apply this gain and then restore codec 737 * configuration. Then transfer to Done state for ending. 738 */ 739 static void nau8825_xtalk_measure(struct nau8825 *nau8825) 740 { 741 u32 sidetone; 742 743 switch (nau8825->xtalk_state) { 744 case NAU8825_XTALK_PREPARE: 745 /* In prepare state, set up clock, intrruption, DAC path, ADC 746 * path and cross talk detection parameters for preparation. 747 */ 748 nau8825_xtalk_prepare(nau8825); 749 msleep(280); 750 /* Trigger right headphone impedance detection */ 751 nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L; 752 nau8825_xtalk_imm_start(nau8825, 0x00d2); 753 break; 754 case NAU8825_XTALK_HPR_R2L: 755 /* In right headphone IMM state, read out right headphone 756 * impedance measure result, and then start up left side. 757 */ 758 regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L, 759 &nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]); 760 dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n", 761 nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]); 762 /* Disable then re-enable IMM mode to update */ 763 nau8825_xtalk_imm_stop(nau8825); 764 /* Trigger left headphone impedance detection */ 765 nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L; 766 nau8825_xtalk_imm_start(nau8825, 0x00ff); 767 break; 768 case NAU8825_XTALK_HPL_R2L: 769 /* In left headphone IMM state, read out left headphone 770 * impedance measure result, and delay some time to wait 771 * detection sine wave output finish. Then, we can calculate 772 * the cross talk suppresstion side tone according to the L/R 773 * headphone imedance. 774 */ 775 regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L, 776 &nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]); 777 dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n", 778 nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]); 779 nau8825_xtalk_imm_stop(nau8825); 780 msleep(150); 781 nau8825->xtalk_state = NAU8825_XTALK_IMM; 782 break; 783 case NAU8825_XTALK_IMM: 784 /* In impedance measure state, the orignal and cross talk 785 * signal level vlues are ready. The side tone gain is deter- 786 * mined with these signal level. After all, restore codec 787 * configuration. 788 */ 789 sidetone = nau8825_xtalk_sidetone( 790 nau8825->imp_rms[NAU8825_XTALK_HPR_R2L], 791 nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]); 792 dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone); 793 regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL, 794 (sidetone << 8) | sidetone); 795 nau8825_xtalk_clean(nau8825, false); 796 nau8825->xtalk_state = NAU8825_XTALK_DONE; 797 break; 798 default: 799 break; 800 } 801 } 802 803 static void nau8825_xtalk_work(struct work_struct *work) 804 { 805 struct nau8825 *nau8825 = container_of( 806 work, struct nau8825, xtalk_work); 807 808 nau8825_xtalk_measure(nau8825); 809 /* To determine the cross talk side tone gain when reach 810 * the impedance measure state. 811 */ 812 if (nau8825->xtalk_state == NAU8825_XTALK_IMM) 813 nau8825_xtalk_measure(nau8825); 814 815 /* Delay jack report until cross talk detection process 816 * completed. It can avoid application to do playback 817 * preparation before cross talk detection is still working. 818 * Meanwhile, the protection of the cross talk detection 819 * is released. 820 */ 821 if (nau8825->xtalk_state == NAU8825_XTALK_DONE) { 822 snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event, 823 nau8825->xtalk_event_mask); 824 nau8825_sema_release(nau8825); 825 nau8825->xtalk_protect = false; 826 } 827 } 828 829 static void nau8825_xtalk_cancel(struct nau8825 *nau8825) 830 { 831 /* If the crosstalk is eanbled and the process is on going, 832 * the driver forces to cancel the crosstalk task and 833 * restores the configuration to original status. 834 */ 835 if (nau8825->xtalk_enable && nau8825->xtalk_state != 836 NAU8825_XTALK_DONE) { 837 cancel_work_sync(&nau8825->xtalk_work); 838 nau8825_xtalk_clean(nau8825, true); 839 } 840 /* Reset parameters for cross talk suppression function */ 841 nau8825_sema_reset(nau8825); 842 nau8825->xtalk_state = NAU8825_XTALK_DONE; 843 nau8825->xtalk_protect = false; 844 } 845 846 static bool nau8825_readable_reg(struct device *dev, unsigned int reg) 847 { 848 switch (reg) { 849 case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV: 850 case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL: 851 case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL: 852 case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL: 853 case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY: 854 case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY: 855 case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R: 856 case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL: 857 case NAU8825_REG_MISC_CTRL: 858 case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS: 859 case NAU8825_REG_BIAS_ADJ: 860 case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2: 861 case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS: 862 case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA: 863 case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS: 864 return true; 865 default: 866 return false; 867 } 868 869 } 870 871 static bool nau8825_writeable_reg(struct device *dev, unsigned int reg) 872 { 873 switch (reg) { 874 case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV: 875 case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL: 876 case NAU8825_REG_INTERRUPT_MASK: 877 case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL: 878 case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL: 879 case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY: 880 case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY: 881 case NAU8825_REG_IMM_MODE_CTRL: 882 case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL: 883 case NAU8825_REG_MISC_CTRL: 884 case NAU8825_REG_BIAS_ADJ: 885 case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2: 886 case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS: 887 case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA: 888 case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP: 889 return true; 890 default: 891 return false; 892 } 893 } 894 895 static bool nau8825_volatile_reg(struct device *dev, unsigned int reg) 896 { 897 switch (reg) { 898 case NAU8825_REG_RESET: 899 case NAU8825_REG_IRQ_STATUS: 900 case NAU8825_REG_INT_CLR_KEY_STATUS: 901 case NAU8825_REG_IMM_RMS_L: 902 case NAU8825_REG_IMM_RMS_R: 903 case NAU8825_REG_I2C_DEVICE_ID: 904 case NAU8825_REG_SARDOUT_RAM_STATUS: 905 case NAU8825_REG_CHARGE_PUMP_INPUT_READ: 906 case NAU8825_REG_GENERAL_STATUS: 907 case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10: 908 return true; 909 default: 910 return false; 911 } 912 } 913 914 static int nau8825_adc_event(struct snd_soc_dapm_widget *w, 915 struct snd_kcontrol *kcontrol, int event) 916 { 917 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); 918 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 919 920 switch (event) { 921 case SND_SOC_DAPM_POST_PMU: 922 msleep(125); 923 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, 924 NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC); 925 break; 926 case SND_SOC_DAPM_POST_PMD: 927 if (!nau8825->irq) 928 regmap_update_bits(nau8825->regmap, 929 NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0); 930 break; 931 default: 932 return -EINVAL; 933 } 934 935 return 0; 936 } 937 938 static int nau8825_pump_event(struct snd_soc_dapm_widget *w, 939 struct snd_kcontrol *kcontrol, int event) 940 { 941 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); 942 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 943 944 switch (event) { 945 case SND_SOC_DAPM_POST_PMU: 946 /* Prevent startup click by letting charge pump to ramp up */ 947 msleep(10); 948 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 949 NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW); 950 break; 951 case SND_SOC_DAPM_PRE_PMD: 952 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 953 NAU8825_JAMNODCLOW, 0); 954 break; 955 default: 956 return -EINVAL; 957 } 958 959 return 0; 960 } 961 962 static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w, 963 struct snd_kcontrol *kcontrol, int event) 964 { 965 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); 966 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 967 968 switch (event) { 969 case SND_SOC_DAPM_PRE_PMU: 970 /* Disables the TESTDAC to let DAC signal pass through. */ 971 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 972 NAU8825_BIAS_TESTDAC_EN, 0); 973 break; 974 case SND_SOC_DAPM_POST_PMD: 975 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 976 NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN); 977 break; 978 default: 979 return -EINVAL; 980 } 981 982 return 0; 983 } 984 985 static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol, 986 struct snd_ctl_elem_value *ucontrol) 987 { 988 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 989 struct soc_bytes_ext *params = (void *)kcontrol->private_value; 990 991 if (!component->regmap) 992 return -EINVAL; 993 994 regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1, 995 ucontrol->value.bytes.data, params->max); 996 return 0; 997 } 998 999 static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol, 1000 struct snd_ctl_elem_value *ucontrol) 1001 { 1002 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 1003 struct soc_bytes_ext *params = (void *)kcontrol->private_value; 1004 void *data; 1005 1006 if (!component->regmap) 1007 return -EINVAL; 1008 1009 data = kmemdup(ucontrol->value.bytes.data, 1010 params->max, GFP_KERNEL | GFP_DMA); 1011 if (!data) 1012 return -ENOMEM; 1013 1014 regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL, 1015 NAU8825_BIQ_WRT_EN, 0); 1016 regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1, 1017 data, params->max); 1018 regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL, 1019 NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN); 1020 1021 kfree(data); 1022 return 0; 1023 } 1024 1025 static const char * const nau8825_biq_path[] = { 1026 "ADC", "DAC" 1027 }; 1028 1029 static const struct soc_enum nau8825_biq_path_enum = 1030 SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT, 1031 ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path); 1032 1033 static const char * const nau8825_adc_decimation[] = { 1034 "32", "64", "128", "256" 1035 }; 1036 1037 static const struct soc_enum nau8825_adc_decimation_enum = 1038 SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT, 1039 ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation); 1040 1041 static const char * const nau8825_dac_oversampl[] = { 1042 "64", "256", "128", "", "32" 1043 }; 1044 1045 static const struct soc_enum nau8825_dac_oversampl_enum = 1046 SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT, 1047 ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl); 1048 1049 static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400); 1050 static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0); 1051 static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0); 1052 static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600); 1053 static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400); 1054 1055 static const struct snd_kcontrol_new nau8825_controls[] = { 1056 SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL, 1057 0, 0xff, 0, adc_vol_tlv), 1058 SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL, 1059 12, 8, 0x0f, 0, sidetone_vol_tlv), 1060 SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL, 1061 6, 0, 0x3f, 1, dac_vol_tlv), 1062 SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL, 1063 8, 37, 0, fepga_gain_tlv), 1064 SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL, 1065 0, 8, 0xff, 0, crosstalk_vol_tlv), 1066 1067 SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum), 1068 SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum), 1069 /* programmable biquad filter */ 1070 SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum), 1071 SND_SOC_BYTES_EXT("BIQ Coefficients", 20, 1072 nau8825_biq_coeff_get, nau8825_biq_coeff_put), 1073 }; 1074 1075 /* DAC Mux 0x33[9] and 0x34[9] */ 1076 static const char * const nau8825_dac_src[] = { 1077 "DACL", "DACR", 1078 }; 1079 1080 static SOC_ENUM_SINGLE_DECL( 1081 nau8825_dacl_enum, NAU8825_REG_DACL_CTRL, 1082 NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src); 1083 1084 static SOC_ENUM_SINGLE_DECL( 1085 nau8825_dacr_enum, NAU8825_REG_DACR_CTRL, 1086 NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src); 1087 1088 static const struct snd_kcontrol_new nau8825_dacl_mux = 1089 SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum); 1090 1091 static const struct snd_kcontrol_new nau8825_dacr_mux = 1092 SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum); 1093 1094 1095 static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = { 1096 SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2, 1097 15, 1), 1098 1099 SND_SOC_DAPM_INPUT("MIC"), 1100 SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0), 1101 1102 SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0, 1103 NULL, 0), 1104 1105 SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0, 1106 nau8825_adc_event, SND_SOC_DAPM_POST_PMU | 1107 SND_SOC_DAPM_POST_PMD), 1108 SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0), 1109 SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL, 1110 0), 1111 1112 /* ADC for button press detection. A dapm supply widget is used to 1113 * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON 1114 * during suspend. 1115 */ 1116 SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL, 1117 NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0), 1118 1119 SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0), 1120 SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0), 1121 SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0), 1122 SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0), 1123 1124 SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL, 1125 NAU8825_ENABLE_DACR_SFT, 0), 1126 SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL, 1127 NAU8825_ENABLE_DACL_SFT, 0), 1128 SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0), 1129 1130 SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux), 1131 SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux), 1132 1133 SND_SOC_DAPM_PGA_S("HP amp L", 0, 1134 NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0), 1135 SND_SOC_DAPM_PGA_S("HP amp R", 0, 1136 NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0), 1137 1138 SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0, 1139 nau8825_pump_event, SND_SOC_DAPM_POST_PMU | 1140 SND_SOC_DAPM_PRE_PMD), 1141 1142 SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4, 1143 NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0), 1144 SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4, 1145 NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0), 1146 SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5, 1147 NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0), 1148 SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5, 1149 NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0), 1150 SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6, 1151 NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0), 1152 SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6, 1153 NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0), 1154 1155 SND_SOC_DAPM_PGA_S("Output DACL", 7, 1156 NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event, 1157 SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), 1158 SND_SOC_DAPM_PGA_S("Output DACR", 7, 1159 NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event, 1160 SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), 1161 1162 /* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */ 1163 SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8, 1164 NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0), 1165 SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8, 1166 NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0), 1167 1168 /* High current HPOL/R boost driver */ 1169 SND_SOC_DAPM_PGA_S("HP Boost Driver", 9, 1170 NAU8825_REG_BOOST, 9, 1, NULL, 0), 1171 1172 /* Class G operation control*/ 1173 SND_SOC_DAPM_PGA_S("Class G", 10, 1174 NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0), 1175 1176 SND_SOC_DAPM_OUTPUT("HPOL"), 1177 SND_SOC_DAPM_OUTPUT("HPOR"), 1178 }; 1179 1180 static const struct snd_soc_dapm_route nau8825_dapm_routes[] = { 1181 {"Frontend PGA", NULL, "MIC"}, 1182 {"ADC", NULL, "Frontend PGA"}, 1183 {"ADC", NULL, "ADC Clock"}, 1184 {"ADC", NULL, "ADC Power"}, 1185 {"AIFTX", NULL, "ADC"}, 1186 1187 {"DDACL", NULL, "Playback"}, 1188 {"DDACR", NULL, "Playback"}, 1189 {"DDACL", NULL, "DDAC Clock"}, 1190 {"DDACR", NULL, "DDAC Clock"}, 1191 {"DACL Mux", "DACL", "DDACL"}, 1192 {"DACL Mux", "DACR", "DDACR"}, 1193 {"DACR Mux", "DACL", "DDACL"}, 1194 {"DACR Mux", "DACR", "DDACR"}, 1195 {"HP amp L", NULL, "DACL Mux"}, 1196 {"HP amp R", NULL, "DACR Mux"}, 1197 {"Charge Pump", NULL, "HP amp L"}, 1198 {"Charge Pump", NULL, "HP amp R"}, 1199 {"ADACL", NULL, "Charge Pump"}, 1200 {"ADACR", NULL, "Charge Pump"}, 1201 {"ADACL Clock", NULL, "ADACL"}, 1202 {"ADACR Clock", NULL, "ADACR"}, 1203 {"Output Driver L Stage 1", NULL, "ADACL Clock"}, 1204 {"Output Driver R Stage 1", NULL, "ADACR Clock"}, 1205 {"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"}, 1206 {"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"}, 1207 {"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"}, 1208 {"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"}, 1209 {"Output DACL", NULL, "Output Driver L Stage 3"}, 1210 {"Output DACR", NULL, "Output Driver R Stage 3"}, 1211 {"HPOL Pulldown", NULL, "Output DACL"}, 1212 {"HPOR Pulldown", NULL, "Output DACR"}, 1213 {"HP Boost Driver", NULL, "HPOL Pulldown"}, 1214 {"HP Boost Driver", NULL, "HPOR Pulldown"}, 1215 {"Class G", NULL, "HP Boost Driver"}, 1216 {"HPOL", NULL, "Class G"}, 1217 {"HPOR", NULL, "Class G"}, 1218 }; 1219 1220 static int nau8825_clock_check(struct nau8825 *nau8825, 1221 int stream, int rate, int osr) 1222 { 1223 int osrate; 1224 1225 if (stream == SNDRV_PCM_STREAM_PLAYBACK) { 1226 if (osr >= ARRAY_SIZE(osr_dac_sel)) 1227 return -EINVAL; 1228 osrate = osr_dac_sel[osr].osr; 1229 } else { 1230 if (osr >= ARRAY_SIZE(osr_adc_sel)) 1231 return -EINVAL; 1232 osrate = osr_adc_sel[osr].osr; 1233 } 1234 1235 if (!osrate || rate * osr > CLK_DA_AD_MAX) { 1236 dev_err(nau8825->dev, "exceed the maximum frequency of CLK_ADC or CLK_DAC\n"); 1237 return -EINVAL; 1238 } 1239 1240 return 0; 1241 } 1242 1243 static int nau8825_hw_params(struct snd_pcm_substream *substream, 1244 struct snd_pcm_hw_params *params, 1245 struct snd_soc_dai *dai) 1246 { 1247 struct snd_soc_component *component = dai->component; 1248 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 1249 unsigned int val_len = 0, osr, ctrl_val, bclk_fs, bclk_div; 1250 1251 nau8825_sema_acquire(nau8825, 3 * HZ); 1252 1253 /* CLK_DAC or CLK_ADC = OSR * FS 1254 * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR) 1255 * multiplied by the audio sample rate (Fs). Note that the OSR and Fs 1256 * values must be selected such that the maximum frequency is less 1257 * than 6.144 MHz. 1258 */ 1259 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 1260 regmap_read(nau8825->regmap, NAU8825_REG_DAC_CTRL1, &osr); 1261 osr &= NAU8825_DAC_OVERSAMPLE_MASK; 1262 if (nau8825_clock_check(nau8825, substream->stream, 1263 params_rate(params), osr)) { 1264 nau8825_sema_release(nau8825); 1265 return -EINVAL; 1266 } 1267 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 1268 NAU8825_CLK_DAC_SRC_MASK, 1269 osr_dac_sel[osr].clk_src << NAU8825_CLK_DAC_SRC_SFT); 1270 } else { 1271 regmap_read(nau8825->regmap, NAU8825_REG_ADC_RATE, &osr); 1272 osr &= NAU8825_ADC_SYNC_DOWN_MASK; 1273 if (nau8825_clock_check(nau8825, substream->stream, 1274 params_rate(params), osr)) { 1275 nau8825_sema_release(nau8825); 1276 return -EINVAL; 1277 } 1278 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 1279 NAU8825_CLK_ADC_SRC_MASK, 1280 osr_adc_sel[osr].clk_src << NAU8825_CLK_ADC_SRC_SFT); 1281 } 1282 1283 /* make BCLK and LRC divde configuration if the codec as master. */ 1284 regmap_read(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, &ctrl_val); 1285 if (ctrl_val & NAU8825_I2S_MS_MASTER) { 1286 /* get the bclk and fs ratio */ 1287 bclk_fs = snd_soc_params_to_bclk(params) / params_rate(params); 1288 if (bclk_fs <= 32) 1289 bclk_div = 2; 1290 else if (bclk_fs <= 64) 1291 bclk_div = 1; 1292 else if (bclk_fs <= 128) 1293 bclk_div = 0; 1294 else { 1295 nau8825_sema_release(nau8825); 1296 return -EINVAL; 1297 } 1298 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, 1299 NAU8825_I2S_LRC_DIV_MASK | NAU8825_I2S_BLK_DIV_MASK, 1300 ((bclk_div + 1) << NAU8825_I2S_LRC_DIV_SFT) | bclk_div); 1301 } 1302 1303 switch (params_width(params)) { 1304 case 16: 1305 val_len |= NAU8825_I2S_DL_16; 1306 break; 1307 case 20: 1308 val_len |= NAU8825_I2S_DL_20; 1309 break; 1310 case 24: 1311 val_len |= NAU8825_I2S_DL_24; 1312 break; 1313 case 32: 1314 val_len |= NAU8825_I2S_DL_32; 1315 break; 1316 default: 1317 nau8825_sema_release(nau8825); 1318 return -EINVAL; 1319 } 1320 1321 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1, 1322 NAU8825_I2S_DL_MASK, val_len); 1323 1324 /* Release the semaphore. */ 1325 nau8825_sema_release(nau8825); 1326 1327 return 0; 1328 } 1329 1330 static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) 1331 { 1332 struct snd_soc_component *component = codec_dai->component; 1333 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 1334 unsigned int ctrl1_val = 0, ctrl2_val = 0; 1335 1336 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { 1337 case SND_SOC_DAIFMT_CBM_CFM: 1338 ctrl2_val |= NAU8825_I2S_MS_MASTER; 1339 break; 1340 case SND_SOC_DAIFMT_CBS_CFS: 1341 break; 1342 default: 1343 return -EINVAL; 1344 } 1345 1346 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 1347 case SND_SOC_DAIFMT_NB_NF: 1348 break; 1349 case SND_SOC_DAIFMT_IB_NF: 1350 ctrl1_val |= NAU8825_I2S_BP_INV; 1351 break; 1352 default: 1353 return -EINVAL; 1354 } 1355 1356 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 1357 case SND_SOC_DAIFMT_I2S: 1358 ctrl1_val |= NAU8825_I2S_DF_I2S; 1359 break; 1360 case SND_SOC_DAIFMT_LEFT_J: 1361 ctrl1_val |= NAU8825_I2S_DF_LEFT; 1362 break; 1363 case SND_SOC_DAIFMT_RIGHT_J: 1364 ctrl1_val |= NAU8825_I2S_DF_RIGTH; 1365 break; 1366 case SND_SOC_DAIFMT_DSP_A: 1367 ctrl1_val |= NAU8825_I2S_DF_PCM_AB; 1368 break; 1369 case SND_SOC_DAIFMT_DSP_B: 1370 ctrl1_val |= NAU8825_I2S_DF_PCM_AB; 1371 ctrl1_val |= NAU8825_I2S_PCMB_EN; 1372 break; 1373 default: 1374 return -EINVAL; 1375 } 1376 1377 nau8825_sema_acquire(nau8825, 3 * HZ); 1378 1379 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1, 1380 NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK | 1381 NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK, 1382 ctrl1_val); 1383 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, 1384 NAU8825_I2S_MS_MASK, ctrl2_val); 1385 1386 /* Release the semaphore. */ 1387 nau8825_sema_release(nau8825); 1388 1389 return 0; 1390 } 1391 1392 static const struct snd_soc_dai_ops nau8825_dai_ops = { 1393 .hw_params = nau8825_hw_params, 1394 .set_fmt = nau8825_set_dai_fmt, 1395 }; 1396 1397 #define NAU8825_RATES SNDRV_PCM_RATE_8000_192000 1398 #define NAU8825_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \ 1399 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE) 1400 1401 static struct snd_soc_dai_driver nau8825_dai = { 1402 .name = "nau8825-hifi", 1403 .playback = { 1404 .stream_name = "Playback", 1405 .channels_min = 1, 1406 .channels_max = 2, 1407 .rates = NAU8825_RATES, 1408 .formats = NAU8825_FORMATS, 1409 }, 1410 .capture = { 1411 .stream_name = "Capture", 1412 .channels_min = 1, 1413 .channels_max = 1, 1414 .rates = NAU8825_RATES, 1415 .formats = NAU8825_FORMATS, 1416 }, 1417 .ops = &nau8825_dai_ops, 1418 }; 1419 1420 /** 1421 * nau8825_enable_jack_detect - Specify a jack for event reporting 1422 * 1423 * @component: component to register the jack with 1424 * @jack: jack to use to report headset and button events on 1425 * 1426 * After this function has been called the headset insert/remove and button 1427 * events will be routed to the given jack. Jack can be null to stop 1428 * reporting. 1429 */ 1430 int nau8825_enable_jack_detect(struct snd_soc_component *component, 1431 struct snd_soc_jack *jack) 1432 { 1433 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 1434 struct regmap *regmap = nau8825->regmap; 1435 1436 nau8825->jack = jack; 1437 1438 /* Ground HP Outputs[1:0], needed for headset auto detection 1439 * Enable Automatic Mic/Gnd switching reading on insert interrupt[6] 1440 */ 1441 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 1442 NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 1443 NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L); 1444 1445 return 0; 1446 } 1447 EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect); 1448 1449 1450 static bool nau8825_is_jack_inserted(struct regmap *regmap) 1451 { 1452 bool active_high, is_high; 1453 int status, jkdet; 1454 1455 regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet); 1456 active_high = jkdet & NAU8825_JACK_POLARITY; 1457 regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status); 1458 is_high = status & NAU8825_GPIO2JD1; 1459 /* return jack connection status according to jack insertion logic 1460 * active high or active low. 1461 */ 1462 return active_high == is_high; 1463 } 1464 1465 static void nau8825_restart_jack_detection(struct regmap *regmap) 1466 { 1467 /* this will restart the entire jack detection process including MIC/GND 1468 * switching and create interrupts. We have to go from 0 to 1 and back 1469 * to 0 to restart. 1470 */ 1471 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1472 NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART); 1473 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1474 NAU8825_JACK_DET_RESTART, 0); 1475 } 1476 1477 static void nau8825_int_status_clear_all(struct regmap *regmap) 1478 { 1479 int active_irq, clear_irq, i; 1480 1481 /* Reset the intrruption status from rightmost bit if the corres- 1482 * ponding irq event occurs. 1483 */ 1484 regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq); 1485 for (i = 0; i < NAU8825_REG_DATA_LEN; i++) { 1486 clear_irq = (0x1 << i); 1487 if (active_irq & clear_irq) 1488 regmap_write(regmap, 1489 NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq); 1490 } 1491 } 1492 1493 static void nau8825_eject_jack(struct nau8825 *nau8825) 1494 { 1495 struct snd_soc_dapm_context *dapm = nau8825->dapm; 1496 struct regmap *regmap = nau8825->regmap; 1497 1498 /* Force to cancel the cross talk detection process */ 1499 nau8825_xtalk_cancel(nau8825); 1500 1501 snd_soc_dapm_disable_pin(dapm, "SAR"); 1502 snd_soc_dapm_disable_pin(dapm, "MICBIAS"); 1503 /* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */ 1504 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, 1505 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0); 1506 /* ground HPL/HPR, MICGRND1/2 */ 1507 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf); 1508 1509 snd_soc_dapm_sync(dapm); 1510 1511 /* Clear all interruption status */ 1512 nau8825_int_status_clear_all(regmap); 1513 1514 /* Enable the insertion interruption, disable the ejection inter- 1515 * ruption, and then bypass de-bounce circuit. 1516 */ 1517 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 1518 NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS, 1519 NAU8825_IRQ_EJECT_DIS); 1520 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 1521 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN | 1522 NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN, 1523 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN | 1524 NAU8825_IRQ_HEADSET_COMPLETE_EN); 1525 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1526 NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS); 1527 1528 /* Disable ADC needed for interruptions at audo mode */ 1529 regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL, 1530 NAU8825_ENABLE_ADC, 0); 1531 1532 /* Close clock for jack type detection at manual mode */ 1533 nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0); 1534 } 1535 1536 /* Enable audo mode interruptions with internal clock. */ 1537 static void nau8825_setup_auto_irq(struct nau8825 *nau8825) 1538 { 1539 struct regmap *regmap = nau8825->regmap; 1540 1541 /* Enable headset jack type detection complete interruption and 1542 * jack ejection interruption. 1543 */ 1544 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 1545 NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0); 1546 1547 /* Enable internal VCO needed for interruptions */ 1548 nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0); 1549 1550 /* Enable ADC needed for interruptions */ 1551 regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL, 1552 NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC); 1553 1554 /* Chip needs one FSCLK cycle in order to generate interruptions, 1555 * as we cannot guarantee one will be provided by the system. Turning 1556 * master mode on then off enables us to generate that FSCLK cycle 1557 * with a minimum of contention on the clock bus. 1558 */ 1559 regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2, 1560 NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER); 1561 regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2, 1562 NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE); 1563 1564 /* Not bypass de-bounce circuit */ 1565 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1566 NAU8825_JACK_DET_DB_BYPASS, 0); 1567 1568 /* Unmask all interruptions */ 1569 regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0); 1570 1571 /* Restart the jack detection process at auto mode */ 1572 nau8825_restart_jack_detection(regmap); 1573 } 1574 1575 static int nau8825_button_decode(int value) 1576 { 1577 int buttons = 0; 1578 1579 /* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */ 1580 if (value & BIT(0)) 1581 buttons |= SND_JACK_BTN_0; 1582 if (value & BIT(1)) 1583 buttons |= SND_JACK_BTN_1; 1584 if (value & BIT(2)) 1585 buttons |= SND_JACK_BTN_2; 1586 if (value & BIT(3)) 1587 buttons |= SND_JACK_BTN_3; 1588 if (value & BIT(4)) 1589 buttons |= SND_JACK_BTN_4; 1590 if (value & BIT(5)) 1591 buttons |= SND_JACK_BTN_5; 1592 1593 return buttons; 1594 } 1595 1596 static int nau8825_jack_insert(struct nau8825 *nau8825) 1597 { 1598 struct regmap *regmap = nau8825->regmap; 1599 struct snd_soc_dapm_context *dapm = nau8825->dapm; 1600 int jack_status_reg, mic_detected; 1601 int type = 0; 1602 1603 regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg); 1604 mic_detected = (jack_status_reg >> 10) & 3; 1605 /* The JKSLV and JKR2 all detected in high impedance headset */ 1606 if (mic_detected == 0x3) 1607 nau8825->high_imped = true; 1608 else 1609 nau8825->high_imped = false; 1610 1611 switch (mic_detected) { 1612 case 0: 1613 /* no mic */ 1614 type = SND_JACK_HEADPHONE; 1615 break; 1616 case 1: 1617 dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n"); 1618 type = SND_JACK_HEADSET; 1619 1620 /* Unground MICGND1 */ 1621 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2, 1622 1 << 2); 1623 /* Attach 2kOhm Resistor from MICBIAS to MICGND1 */ 1624 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, 1625 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 1626 NAU8825_MICBIAS_JKR2); 1627 /* Attach SARADC to MICGND1 */ 1628 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1629 NAU8825_SAR_INPUT_MASK, 1630 NAU8825_SAR_INPUT_JKR2); 1631 1632 snd_soc_dapm_force_enable_pin(dapm, "MICBIAS"); 1633 snd_soc_dapm_force_enable_pin(dapm, "SAR"); 1634 snd_soc_dapm_sync(dapm); 1635 break; 1636 case 2: 1637 dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n"); 1638 type = SND_JACK_HEADSET; 1639 1640 /* Unground MICGND2 */ 1641 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2, 1642 2 << 2); 1643 /* Attach 2kOhm Resistor from MICBIAS to MICGND2 */ 1644 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, 1645 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 1646 NAU8825_MICBIAS_JKSLV); 1647 /* Attach SARADC to MICGND2 */ 1648 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1649 NAU8825_SAR_INPUT_MASK, 1650 NAU8825_SAR_INPUT_JKSLV); 1651 1652 snd_soc_dapm_force_enable_pin(dapm, "MICBIAS"); 1653 snd_soc_dapm_force_enable_pin(dapm, "SAR"); 1654 snd_soc_dapm_sync(dapm); 1655 break; 1656 case 3: 1657 /* detect error case */ 1658 dev_err(nau8825->dev, "detection error; disable mic function\n"); 1659 type = SND_JACK_HEADPHONE; 1660 break; 1661 } 1662 1663 /* Leaving HPOL/R grounded after jack insert by default. They will be 1664 * ungrounded as part of the widget power up sequence at the beginning 1665 * of playback to reduce pop. 1666 */ 1667 return type; 1668 } 1669 1670 #define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \ 1671 SND_JACK_BTN_2 | SND_JACK_BTN_3) 1672 1673 static irqreturn_t nau8825_interrupt(int irq, void *data) 1674 { 1675 struct nau8825 *nau8825 = (struct nau8825 *)data; 1676 struct regmap *regmap = nau8825->regmap; 1677 int active_irq, clear_irq = 0, event = 0, event_mask = 0; 1678 1679 if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) { 1680 dev_err(nau8825->dev, "failed to read irq status\n"); 1681 return IRQ_NONE; 1682 } 1683 1684 if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) == 1685 NAU8825_JACK_EJECTION_DETECTED) { 1686 1687 nau8825_eject_jack(nau8825); 1688 event_mask |= SND_JACK_HEADSET; 1689 clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK; 1690 } else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) { 1691 int key_status; 1692 1693 regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, 1694 &key_status); 1695 1696 /* upper 8 bits of the register are for short pressed keys, 1697 * lower 8 bits - for long pressed buttons 1698 */ 1699 nau8825->button_pressed = nau8825_button_decode( 1700 key_status >> 8); 1701 1702 event |= nau8825->button_pressed; 1703 event_mask |= NAU8825_BUTTONS; 1704 clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ; 1705 } else if (active_irq & NAU8825_KEY_RELEASE_IRQ) { 1706 event_mask = NAU8825_BUTTONS; 1707 clear_irq = NAU8825_KEY_RELEASE_IRQ; 1708 } else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) { 1709 if (nau8825_is_jack_inserted(regmap)) { 1710 event |= nau8825_jack_insert(nau8825); 1711 if (nau8825->xtalk_enable && !nau8825->high_imped) { 1712 /* Apply the cross talk suppression in the 1713 * headset without high impedance. 1714 */ 1715 if (!nau8825->xtalk_protect) { 1716 /* Raise protection for cross talk de- 1717 * tection if no protection before. 1718 * The driver has to cancel the pro- 1719 * cess and restore changes if process 1720 * is ongoing when ejection. 1721 */ 1722 int ret; 1723 nau8825->xtalk_protect = true; 1724 ret = nau8825_sema_acquire(nau8825, 0); 1725 if (ret) 1726 nau8825->xtalk_protect = false; 1727 } 1728 /* Startup cross talk detection process */ 1729 if (nau8825->xtalk_protect) { 1730 nau8825->xtalk_state = 1731 NAU8825_XTALK_PREPARE; 1732 schedule_work(&nau8825->xtalk_work); 1733 } 1734 } else { 1735 /* The cross talk suppression shouldn't apply 1736 * in the headset with high impedance. Thus, 1737 * relieve the protection raised before. 1738 */ 1739 if (nau8825->xtalk_protect) { 1740 nau8825_sema_release(nau8825); 1741 nau8825->xtalk_protect = false; 1742 } 1743 } 1744 } else { 1745 dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n"); 1746 nau8825_eject_jack(nau8825); 1747 } 1748 1749 event_mask |= SND_JACK_HEADSET; 1750 clear_irq = NAU8825_HEADSET_COMPLETION_IRQ; 1751 /* Record the interruption report event for driver to report 1752 * the event later. The jack report will delay until cross 1753 * talk detection process is done. 1754 */ 1755 if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) { 1756 nau8825->xtalk_event = event; 1757 nau8825->xtalk_event_mask = event_mask; 1758 } 1759 } else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) { 1760 /* crosstalk detection enable and process on going */ 1761 if (nau8825->xtalk_enable && nau8825->xtalk_protect) 1762 schedule_work(&nau8825->xtalk_work); 1763 clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ; 1764 } else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) == 1765 NAU8825_JACK_INSERTION_DETECTED) { 1766 /* One more step to check GPIO status directly. Thus, the 1767 * driver can confirm the real insertion interruption because 1768 * the intrruption at manual mode has bypassed debounce 1769 * circuit which can get rid of unstable status. 1770 */ 1771 if (nau8825_is_jack_inserted(regmap)) { 1772 /* Turn off insertion interruption at manual mode */ 1773 regmap_update_bits(regmap, 1774 NAU8825_REG_INTERRUPT_DIS_CTRL, 1775 NAU8825_IRQ_INSERT_DIS, 1776 NAU8825_IRQ_INSERT_DIS); 1777 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 1778 NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN); 1779 /* Enable interruption for jack type detection at audo 1780 * mode which can detect microphone and jack type. 1781 */ 1782 nau8825_setup_auto_irq(nau8825); 1783 } 1784 } 1785 1786 if (!clear_irq) 1787 clear_irq = active_irq; 1788 /* clears the rightmost interruption */ 1789 regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq); 1790 1791 /* Delay jack report until cross talk detection is done. It can avoid 1792 * application to do playback preparation when cross talk detection 1793 * process is still working. Otherwise, the resource like clock and 1794 * power will be issued by them at the same time and conflict happens. 1795 */ 1796 if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE) 1797 snd_soc_jack_report(nau8825->jack, event, event_mask); 1798 1799 return IRQ_HANDLED; 1800 } 1801 1802 static void nau8825_setup_buttons(struct nau8825 *nau8825) 1803 { 1804 struct regmap *regmap = nau8825->regmap; 1805 1806 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1807 NAU8825_SAR_TRACKING_GAIN_MASK, 1808 nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT); 1809 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1810 NAU8825_SAR_COMPARE_TIME_MASK, 1811 nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT); 1812 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1813 NAU8825_SAR_SAMPLING_TIME_MASK, 1814 nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT); 1815 1816 regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL, 1817 NAU8825_KEYDET_LEVELS_NR_MASK, 1818 (nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT); 1819 regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL, 1820 NAU8825_KEYDET_HYSTERESIS_MASK, 1821 nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT); 1822 regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL, 1823 NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK, 1824 nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT); 1825 1826 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1, 1827 (nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]); 1828 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2, 1829 (nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]); 1830 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3, 1831 (nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]); 1832 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4, 1833 (nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]); 1834 1835 /* Enable short press and release interruptions */ 1836 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 1837 NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN, 1838 0); 1839 } 1840 1841 static void nau8825_init_regs(struct nau8825 *nau8825) 1842 { 1843 struct regmap *regmap = nau8825->regmap; 1844 1845 /* Latch IIC LSB value */ 1846 regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001); 1847 /* Enable Bias/Vmid */ 1848 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 1849 NAU8825_BIAS_VMID, NAU8825_BIAS_VMID); 1850 regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST, 1851 NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN); 1852 1853 /* VMID Tieoff */ 1854 regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ, 1855 NAU8825_BIAS_VMID_SEL_MASK, 1856 nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT); 1857 /* Disable Boost Driver, Automatic Short circuit protection enable */ 1858 regmap_update_bits(regmap, NAU8825_REG_BOOST, 1859 NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS | 1860 NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN, 1861 NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS | 1862 NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN); 1863 1864 regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL, 1865 NAU8825_JKDET_OUTPUT_EN, 1866 nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN); 1867 regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL, 1868 NAU8825_JKDET_PULL_EN, 1869 nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN); 1870 regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL, 1871 NAU8825_JKDET_PULL_UP, 1872 nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0); 1873 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1874 NAU8825_JACK_POLARITY, 1875 /* jkdet_polarity - 1 is for active-low */ 1876 nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY); 1877 1878 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1879 NAU8825_JACK_INSERT_DEBOUNCE_MASK, 1880 nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT); 1881 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1882 NAU8825_JACK_EJECT_DEBOUNCE_MASK, 1883 nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT); 1884 1885 /* Mask unneeded IRQs: 1 - disable, 0 - enable */ 1886 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff); 1887 1888 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, 1889 NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage); 1890 1891 if (nau8825->sar_threshold_num) 1892 nau8825_setup_buttons(nau8825); 1893 1894 /* Default oversampling/decimations settings are unusable 1895 * (audible hiss). Set it to something better. 1896 */ 1897 regmap_update_bits(regmap, NAU8825_REG_ADC_RATE, 1898 NAU8825_ADC_SYNC_DOWN_MASK | NAU8825_ADC_SINC4_EN, 1899 NAU8825_ADC_SYNC_DOWN_64); 1900 regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1, 1901 NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_64); 1902 /* Disable DACR/L power */ 1903 regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP, 1904 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 1905 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL); 1906 /* Enable TESTDAC. This sets the analog DAC inputs to a '0' input 1907 * signal to avoid any glitches due to power up transients in both 1908 * the analog and digital DAC circuit. 1909 */ 1910 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 1911 NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN); 1912 /* CICCLP off */ 1913 regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1, 1914 NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF); 1915 1916 /* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */ 1917 regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2, 1918 NAU8825_HP_NON_CLASSG_CURRENT_2xADJ | 1919 NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB, 1920 NAU8825_HP_NON_CLASSG_CURRENT_2xADJ | 1921 NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB); 1922 /* Class G timer 64ms */ 1923 regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL, 1924 NAU8825_CLASSG_TIMER_MASK, 1925 0x20 << NAU8825_CLASSG_TIMER_SFT); 1926 /* DAC clock delay 2ns, VREF */ 1927 regmap_update_bits(regmap, NAU8825_REG_RDAC, 1928 NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK, 1929 (0x2 << NAU8825_RDAC_CLK_DELAY_SFT) | 1930 (0x3 << NAU8825_RDAC_VREF_SFT)); 1931 /* Config L/R channel */ 1932 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL, 1933 NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L); 1934 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL, 1935 NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R); 1936 /* Disable short Frame Sync detection logic */ 1937 regmap_update_bits(regmap, NAU8825_REG_LEFT_TIME_SLOT, 1938 NAU8825_DIS_FS_SHORT_DET, NAU8825_DIS_FS_SHORT_DET); 1939 } 1940 1941 static const struct regmap_config nau8825_regmap_config = { 1942 .val_bits = NAU8825_REG_DATA_LEN, 1943 .reg_bits = NAU8825_REG_ADDR_LEN, 1944 1945 .max_register = NAU8825_REG_MAX, 1946 .readable_reg = nau8825_readable_reg, 1947 .writeable_reg = nau8825_writeable_reg, 1948 .volatile_reg = nau8825_volatile_reg, 1949 1950 .cache_type = REGCACHE_RBTREE, 1951 .reg_defaults = nau8825_reg_defaults, 1952 .num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults), 1953 }; 1954 1955 static int nau8825_component_probe(struct snd_soc_component *component) 1956 { 1957 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 1958 struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); 1959 1960 nau8825->dapm = dapm; 1961 1962 return 0; 1963 } 1964 1965 static void nau8825_component_remove(struct snd_soc_component *component) 1966 { 1967 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 1968 1969 /* Cancel and reset cross tak suppresstion detection funciton */ 1970 nau8825_xtalk_cancel(nau8825); 1971 } 1972 1973 /** 1974 * nau8825_calc_fll_param - Calculate FLL parameters. 1975 * @fll_in: external clock provided to codec. 1976 * @fs: sampling rate. 1977 * @fll_param: Pointer to structure of FLL parameters. 1978 * 1979 * Calculate FLL parameters to configure codec. 1980 * 1981 * Returns 0 for success or negative error code. 1982 */ 1983 static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs, 1984 struct nau8825_fll *fll_param) 1985 { 1986 u64 fvco, fvco_max; 1987 unsigned int fref, i, fvco_sel; 1988 1989 /* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing 1990 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar. 1991 * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK 1992 */ 1993 for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) { 1994 fref = fll_in / fll_pre_scalar[i].param; 1995 if (fref <= NAU_FREF_MAX) 1996 break; 1997 } 1998 if (i == ARRAY_SIZE(fll_pre_scalar)) 1999 return -EINVAL; 2000 fll_param->clk_ref_div = fll_pre_scalar[i].val; 2001 2002 /* Choose the FLL ratio based on FREF */ 2003 for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) { 2004 if (fref >= fll_ratio[i].param) 2005 break; 2006 } 2007 if (i == ARRAY_SIZE(fll_ratio)) 2008 return -EINVAL; 2009 fll_param->ratio = fll_ratio[i].val; 2010 2011 /* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs. 2012 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be 2013 * guaranteed across the full range of operation. 2014 * FDCO = freq_out * 2 * mclk_src_scaling 2015 */ 2016 fvco_max = 0; 2017 fvco_sel = ARRAY_SIZE(mclk_src_scaling); 2018 for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) { 2019 fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param; 2020 if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX && 2021 fvco_max < fvco) { 2022 fvco_max = fvco; 2023 fvco_sel = i; 2024 } 2025 } 2026 if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel) 2027 return -EINVAL; 2028 fll_param->mclk_src = mclk_src_scaling[fvco_sel].val; 2029 2030 /* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional 2031 * input based on FDCO, FREF and FLL ratio. 2032 */ 2033 fvco = div_u64(fvco_max << 16, fref * fll_param->ratio); 2034 fll_param->fll_int = (fvco >> 16) & 0x3FF; 2035 fll_param->fll_frac = fvco & 0xFFFF; 2036 return 0; 2037 } 2038 2039 static void nau8825_fll_apply(struct nau8825 *nau8825, 2040 struct nau8825_fll *fll_param) 2041 { 2042 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 2043 NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK, 2044 NAU8825_CLK_SRC_MCLK | fll_param->mclk_src); 2045 /* Make DSP operate at high speed for better performance. */ 2046 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1, 2047 NAU8825_FLL_RATIO_MASK | NAU8825_ICTRL_LATCH_MASK, 2048 fll_param->ratio | (0x6 << NAU8825_ICTRL_LATCH_SFT)); 2049 /* FLL 16-bit fractional input */ 2050 regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac); 2051 /* FLL 10-bit integer input */ 2052 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3, 2053 NAU8825_FLL_INTEGER_MASK, fll_param->fll_int); 2054 /* FLL pre-scaler */ 2055 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4, 2056 NAU8825_FLL_REF_DIV_MASK, 2057 fll_param->clk_ref_div << NAU8825_FLL_REF_DIV_SFT); 2058 /* select divided VCO input */ 2059 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5, 2060 NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF); 2061 /* Disable free-running mode */ 2062 regmap_update_bits(nau8825->regmap, 2063 NAU8825_REG_FLL6, NAU8825_DCO_EN, 0); 2064 if (fll_param->fll_frac) { 2065 /* set FLL loop filter enable and cutoff frequency at 500Khz */ 2066 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5, 2067 NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN | 2068 NAU8825_FLL_FTR_SW_MASK, 2069 NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN | 2070 NAU8825_FLL_FTR_SW_FILTER); 2071 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, 2072 NAU8825_SDM_EN | NAU8825_CUTOFF500, 2073 NAU8825_SDM_EN | NAU8825_CUTOFF500); 2074 } else { 2075 /* disable FLL loop filter and cutoff frequency */ 2076 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5, 2077 NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN | 2078 NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU); 2079 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, 2080 NAU8825_SDM_EN | NAU8825_CUTOFF500, 0); 2081 } 2082 } 2083 2084 /* freq_out must be 256*Fs in order to achieve the best performance */ 2085 static int nau8825_set_pll(struct snd_soc_component *component, int pll_id, int source, 2086 unsigned int freq_in, unsigned int freq_out) 2087 { 2088 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 2089 struct nau8825_fll fll_param; 2090 int ret, fs; 2091 2092 fs = freq_out / 256; 2093 ret = nau8825_calc_fll_param(freq_in, fs, &fll_param); 2094 if (ret < 0) { 2095 dev_err(component->dev, "Unsupported input clock %d\n", freq_in); 2096 return ret; 2097 } 2098 dev_dbg(component->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n", 2099 fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac, 2100 fll_param.fll_int, fll_param.clk_ref_div); 2101 2102 nau8825_fll_apply(nau8825, &fll_param); 2103 mdelay(2); 2104 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 2105 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO); 2106 return 0; 2107 } 2108 2109 static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq) 2110 { 2111 int ret = 0; 2112 2113 nau8825->mclk = devm_clk_get(nau8825->dev, "mclk"); 2114 if (IS_ERR(nau8825->mclk)) { 2115 dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally"); 2116 return 0; 2117 } 2118 2119 if (!nau8825->mclk_freq) { 2120 ret = clk_prepare_enable(nau8825->mclk); 2121 if (ret) { 2122 dev_err(nau8825->dev, "Unable to prepare codec mclk\n"); 2123 return ret; 2124 } 2125 } 2126 2127 if (nau8825->mclk_freq != freq) { 2128 freq = clk_round_rate(nau8825->mclk, freq); 2129 ret = clk_set_rate(nau8825->mclk, freq); 2130 if (ret) { 2131 dev_err(nau8825->dev, "Unable to set mclk rate\n"); 2132 return ret; 2133 } 2134 nau8825->mclk_freq = freq; 2135 } 2136 2137 return 0; 2138 } 2139 2140 static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap) 2141 { 2142 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, 2143 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK); 2144 regmap_update_bits(regmap, NAU8825_REG_FLL6, 2145 NAU8825_DCO_EN, 0); 2146 /* Make DSP operate as default setting for power saving. */ 2147 regmap_update_bits(regmap, NAU8825_REG_FLL1, 2148 NAU8825_ICTRL_LATCH_MASK, 0); 2149 } 2150 2151 static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id, 2152 unsigned int freq) 2153 { 2154 struct regmap *regmap = nau8825->regmap; 2155 int ret; 2156 2157 switch (clk_id) { 2158 case NAU8825_CLK_DIS: 2159 /* Clock provided externally and disable internal VCO clock */ 2160 nau8825_configure_mclk_as_sysclk(regmap); 2161 if (nau8825->mclk_freq) { 2162 clk_disable_unprepare(nau8825->mclk); 2163 nau8825->mclk_freq = 0; 2164 } 2165 2166 break; 2167 case NAU8825_CLK_MCLK: 2168 /* Acquire the semaphore to synchronize the playback and 2169 * interrupt handler. In order to avoid the playback inter- 2170 * fered by cross talk process, the driver make the playback 2171 * preparation halted until cross talk process finish. 2172 */ 2173 nau8825_sema_acquire(nau8825, 3 * HZ); 2174 nau8825_configure_mclk_as_sysclk(regmap); 2175 /* MCLK not changed by clock tree */ 2176 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, 2177 NAU8825_CLK_MCLK_SRC_MASK, 0); 2178 /* Release the semaphore. */ 2179 nau8825_sema_release(nau8825); 2180 2181 ret = nau8825_mclk_prepare(nau8825, freq); 2182 if (ret) 2183 return ret; 2184 2185 break; 2186 case NAU8825_CLK_INTERNAL: 2187 if (nau8825_is_jack_inserted(nau8825->regmap)) { 2188 regmap_update_bits(regmap, NAU8825_REG_FLL6, 2189 NAU8825_DCO_EN, NAU8825_DCO_EN); 2190 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, 2191 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO); 2192 /* Decrease the VCO frequency and make DSP operate 2193 * as default setting for power saving. 2194 */ 2195 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, 2196 NAU8825_CLK_MCLK_SRC_MASK, 0xf); 2197 regmap_update_bits(regmap, NAU8825_REG_FLL1, 2198 NAU8825_ICTRL_LATCH_MASK | 2199 NAU8825_FLL_RATIO_MASK, 0x10); 2200 regmap_update_bits(regmap, NAU8825_REG_FLL6, 2201 NAU8825_SDM_EN, NAU8825_SDM_EN); 2202 } else { 2203 /* The clock turns off intentionally for power saving 2204 * when no headset connected. 2205 */ 2206 nau8825_configure_mclk_as_sysclk(regmap); 2207 dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n"); 2208 } 2209 if (nau8825->mclk_freq) { 2210 clk_disable_unprepare(nau8825->mclk); 2211 nau8825->mclk_freq = 0; 2212 } 2213 2214 break; 2215 case NAU8825_CLK_FLL_MCLK: 2216 /* Acquire the semaphore to synchronize the playback and 2217 * interrupt handler. In order to avoid the playback inter- 2218 * fered by cross talk process, the driver make the playback 2219 * preparation halted until cross talk process finish. 2220 */ 2221 nau8825_sema_acquire(nau8825, 3 * HZ); 2222 /* Higher FLL reference input frequency can only set lower 2223 * gain error, such as 0000 for input reference from MCLK 2224 * 12.288Mhz. 2225 */ 2226 regmap_update_bits(regmap, NAU8825_REG_FLL3, 2227 NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK, 2228 NAU8825_FLL_CLK_SRC_MCLK | 0); 2229 /* Release the semaphore. */ 2230 nau8825_sema_release(nau8825); 2231 2232 ret = nau8825_mclk_prepare(nau8825, freq); 2233 if (ret) 2234 return ret; 2235 2236 break; 2237 case NAU8825_CLK_FLL_BLK: 2238 /* Acquire the semaphore to synchronize the playback and 2239 * interrupt handler. In order to avoid the playback inter- 2240 * fered by cross talk process, the driver make the playback 2241 * preparation halted until cross talk process finish. 2242 */ 2243 nau8825_sema_acquire(nau8825, 3 * HZ); 2244 /* If FLL reference input is from low frequency source, 2245 * higher error gain can apply such as 0xf which has 2246 * the most sensitive gain error correction threshold, 2247 * Therefore, FLL has the most accurate DCO to 2248 * target frequency. 2249 */ 2250 regmap_update_bits(regmap, NAU8825_REG_FLL3, 2251 NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK, 2252 NAU8825_FLL_CLK_SRC_BLK | 2253 (0xf << NAU8825_GAIN_ERR_SFT)); 2254 /* Release the semaphore. */ 2255 nau8825_sema_release(nau8825); 2256 2257 if (nau8825->mclk_freq) { 2258 clk_disable_unprepare(nau8825->mclk); 2259 nau8825->mclk_freq = 0; 2260 } 2261 2262 break; 2263 case NAU8825_CLK_FLL_FS: 2264 /* Acquire the semaphore to synchronize the playback and 2265 * interrupt handler. In order to avoid the playback inter- 2266 * fered by cross talk process, the driver make the playback 2267 * preparation halted until cross talk process finish. 2268 */ 2269 nau8825_sema_acquire(nau8825, 3 * HZ); 2270 /* If FLL reference input is from low frequency source, 2271 * higher error gain can apply such as 0xf which has 2272 * the most sensitive gain error correction threshold, 2273 * Therefore, FLL has the most accurate DCO to 2274 * target frequency. 2275 */ 2276 regmap_update_bits(regmap, NAU8825_REG_FLL3, 2277 NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK, 2278 NAU8825_FLL_CLK_SRC_FS | 2279 (0xf << NAU8825_GAIN_ERR_SFT)); 2280 /* Release the semaphore. */ 2281 nau8825_sema_release(nau8825); 2282 2283 if (nau8825->mclk_freq) { 2284 clk_disable_unprepare(nau8825->mclk); 2285 nau8825->mclk_freq = 0; 2286 } 2287 2288 break; 2289 default: 2290 dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id); 2291 return -EINVAL; 2292 } 2293 2294 dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq, 2295 clk_id); 2296 return 0; 2297 } 2298 2299 static int nau8825_set_sysclk(struct snd_soc_component *component, int clk_id, 2300 int source, unsigned int freq, int dir) 2301 { 2302 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 2303 2304 return nau8825_configure_sysclk(nau8825, clk_id, freq); 2305 } 2306 2307 static int nau8825_resume_setup(struct nau8825 *nau8825) 2308 { 2309 struct regmap *regmap = nau8825->regmap; 2310 2311 /* Close clock when jack type detection at manual mode */ 2312 nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0); 2313 2314 /* Clear all interruption status */ 2315 nau8825_int_status_clear_all(regmap); 2316 2317 /* Enable both insertion and ejection interruptions, and then 2318 * bypass de-bounce circuit. 2319 */ 2320 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 2321 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN | 2322 NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN, 2323 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN); 2324 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 2325 NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS); 2326 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 2327 NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0); 2328 2329 return 0; 2330 } 2331 2332 static int nau8825_set_bias_level(struct snd_soc_component *component, 2333 enum snd_soc_bias_level level) 2334 { 2335 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 2336 int ret; 2337 2338 switch (level) { 2339 case SND_SOC_BIAS_ON: 2340 break; 2341 2342 case SND_SOC_BIAS_PREPARE: 2343 break; 2344 2345 case SND_SOC_BIAS_STANDBY: 2346 if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) { 2347 if (nau8825->mclk_freq) { 2348 ret = clk_prepare_enable(nau8825->mclk); 2349 if (ret) { 2350 dev_err(nau8825->dev, "Unable to prepare component mclk\n"); 2351 return ret; 2352 } 2353 } 2354 /* Setup codec configuration after resume */ 2355 nau8825_resume_setup(nau8825); 2356 } 2357 break; 2358 2359 case SND_SOC_BIAS_OFF: 2360 /* Reset the configuration of jack type for detection */ 2361 /* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */ 2362 regmap_update_bits(nau8825->regmap, NAU8825_REG_MIC_BIAS, 2363 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0); 2364 /* ground HPL/HPR, MICGRND1/2 */ 2365 regmap_update_bits(nau8825->regmap, 2366 NAU8825_REG_HSD_CTRL, 0xf, 0xf); 2367 /* Cancel and reset cross talk detection funciton */ 2368 nau8825_xtalk_cancel(nau8825); 2369 /* Turn off all interruptions before system shutdown. Keep the 2370 * interruption quiet before resume setup completes. 2371 */ 2372 regmap_write(nau8825->regmap, 2373 NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff); 2374 /* Disable ADC needed for interruptions at audo mode */ 2375 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, 2376 NAU8825_ENABLE_ADC, 0); 2377 if (nau8825->mclk_freq) 2378 clk_disable_unprepare(nau8825->mclk); 2379 break; 2380 } 2381 return 0; 2382 } 2383 2384 static int __maybe_unused nau8825_suspend(struct snd_soc_component *component) 2385 { 2386 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 2387 2388 disable_irq(nau8825->irq); 2389 snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF); 2390 /* Power down codec power; don't suppoet button wakeup */ 2391 snd_soc_dapm_disable_pin(nau8825->dapm, "SAR"); 2392 snd_soc_dapm_disable_pin(nau8825->dapm, "MICBIAS"); 2393 snd_soc_dapm_sync(nau8825->dapm); 2394 regcache_cache_only(nau8825->regmap, true); 2395 regcache_mark_dirty(nau8825->regmap); 2396 2397 return 0; 2398 } 2399 2400 static int __maybe_unused nau8825_resume(struct snd_soc_component *component) 2401 { 2402 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 2403 int ret; 2404 2405 regcache_cache_only(nau8825->regmap, false); 2406 regcache_sync(nau8825->regmap); 2407 nau8825->xtalk_protect = true; 2408 ret = nau8825_sema_acquire(nau8825, 0); 2409 if (ret) 2410 nau8825->xtalk_protect = false; 2411 enable_irq(nau8825->irq); 2412 2413 return 0; 2414 } 2415 2416 static const struct snd_soc_component_driver nau8825_component_driver = { 2417 .probe = nau8825_component_probe, 2418 .remove = nau8825_component_remove, 2419 .set_sysclk = nau8825_set_sysclk, 2420 .set_pll = nau8825_set_pll, 2421 .set_bias_level = nau8825_set_bias_level, 2422 .suspend = nau8825_suspend, 2423 .resume = nau8825_resume, 2424 .controls = nau8825_controls, 2425 .num_controls = ARRAY_SIZE(nau8825_controls), 2426 .dapm_widgets = nau8825_dapm_widgets, 2427 .num_dapm_widgets = ARRAY_SIZE(nau8825_dapm_widgets), 2428 .dapm_routes = nau8825_dapm_routes, 2429 .num_dapm_routes = ARRAY_SIZE(nau8825_dapm_routes), 2430 .suspend_bias_off = 1, 2431 .idle_bias_on = 1, 2432 .use_pmdown_time = 1, 2433 .endianness = 1, 2434 .non_legacy_dai_naming = 1, 2435 }; 2436 2437 static void nau8825_reset_chip(struct regmap *regmap) 2438 { 2439 regmap_write(regmap, NAU8825_REG_RESET, 0x00); 2440 regmap_write(regmap, NAU8825_REG_RESET, 0x00); 2441 } 2442 2443 static void nau8825_print_device_properties(struct nau8825 *nau8825) 2444 { 2445 int i; 2446 struct device *dev = nau8825->dev; 2447 2448 dev_dbg(dev, "jkdet-enable: %d\n", nau8825->jkdet_enable); 2449 dev_dbg(dev, "jkdet-pull-enable: %d\n", nau8825->jkdet_pull_enable); 2450 dev_dbg(dev, "jkdet-pull-up: %d\n", nau8825->jkdet_pull_up); 2451 dev_dbg(dev, "jkdet-polarity: %d\n", nau8825->jkdet_polarity); 2452 dev_dbg(dev, "micbias-voltage: %d\n", nau8825->micbias_voltage); 2453 dev_dbg(dev, "vref-impedance: %d\n", nau8825->vref_impedance); 2454 2455 dev_dbg(dev, "sar-threshold-num: %d\n", nau8825->sar_threshold_num); 2456 for (i = 0; i < nau8825->sar_threshold_num; i++) 2457 dev_dbg(dev, "sar-threshold[%d]=%d\n", i, 2458 nau8825->sar_threshold[i]); 2459 2460 dev_dbg(dev, "sar-hysteresis: %d\n", nau8825->sar_hysteresis); 2461 dev_dbg(dev, "sar-voltage: %d\n", nau8825->sar_voltage); 2462 dev_dbg(dev, "sar-compare-time: %d\n", nau8825->sar_compare_time); 2463 dev_dbg(dev, "sar-sampling-time: %d\n", nau8825->sar_sampling_time); 2464 dev_dbg(dev, "short-key-debounce: %d\n", nau8825->key_debounce); 2465 dev_dbg(dev, "jack-insert-debounce: %d\n", 2466 nau8825->jack_insert_debounce); 2467 dev_dbg(dev, "jack-eject-debounce: %d\n", 2468 nau8825->jack_eject_debounce); 2469 dev_dbg(dev, "crosstalk-enable: %d\n", 2470 nau8825->xtalk_enable); 2471 } 2472 2473 static int nau8825_read_device_properties(struct device *dev, 2474 struct nau8825 *nau8825) { 2475 int ret; 2476 2477 nau8825->jkdet_enable = device_property_read_bool(dev, 2478 "nuvoton,jkdet-enable"); 2479 nau8825->jkdet_pull_enable = device_property_read_bool(dev, 2480 "nuvoton,jkdet-pull-enable"); 2481 nau8825->jkdet_pull_up = device_property_read_bool(dev, 2482 "nuvoton,jkdet-pull-up"); 2483 ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity", 2484 &nau8825->jkdet_polarity); 2485 if (ret) 2486 nau8825->jkdet_polarity = 1; 2487 ret = device_property_read_u32(dev, "nuvoton,micbias-voltage", 2488 &nau8825->micbias_voltage); 2489 if (ret) 2490 nau8825->micbias_voltage = 6; 2491 ret = device_property_read_u32(dev, "nuvoton,vref-impedance", 2492 &nau8825->vref_impedance); 2493 if (ret) 2494 nau8825->vref_impedance = 2; 2495 ret = device_property_read_u32(dev, "nuvoton,sar-threshold-num", 2496 &nau8825->sar_threshold_num); 2497 if (ret) 2498 nau8825->sar_threshold_num = 4; 2499 ret = device_property_read_u32_array(dev, "nuvoton,sar-threshold", 2500 nau8825->sar_threshold, nau8825->sar_threshold_num); 2501 if (ret) { 2502 nau8825->sar_threshold[0] = 0x08; 2503 nau8825->sar_threshold[1] = 0x12; 2504 nau8825->sar_threshold[2] = 0x26; 2505 nau8825->sar_threshold[3] = 0x73; 2506 } 2507 ret = device_property_read_u32(dev, "nuvoton,sar-hysteresis", 2508 &nau8825->sar_hysteresis); 2509 if (ret) 2510 nau8825->sar_hysteresis = 0; 2511 ret = device_property_read_u32(dev, "nuvoton,sar-voltage", 2512 &nau8825->sar_voltage); 2513 if (ret) 2514 nau8825->sar_voltage = 6; 2515 ret = device_property_read_u32(dev, "nuvoton,sar-compare-time", 2516 &nau8825->sar_compare_time); 2517 if (ret) 2518 nau8825->sar_compare_time = 1; 2519 ret = device_property_read_u32(dev, "nuvoton,sar-sampling-time", 2520 &nau8825->sar_sampling_time); 2521 if (ret) 2522 nau8825->sar_sampling_time = 1; 2523 ret = device_property_read_u32(dev, "nuvoton,short-key-debounce", 2524 &nau8825->key_debounce); 2525 if (ret) 2526 nau8825->key_debounce = 3; 2527 ret = device_property_read_u32(dev, "nuvoton,jack-insert-debounce", 2528 &nau8825->jack_insert_debounce); 2529 if (ret) 2530 nau8825->jack_insert_debounce = 7; 2531 ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce", 2532 &nau8825->jack_eject_debounce); 2533 if (ret) 2534 nau8825->jack_eject_debounce = 0; 2535 nau8825->xtalk_enable = device_property_read_bool(dev, 2536 "nuvoton,crosstalk-enable"); 2537 2538 nau8825->mclk = devm_clk_get(dev, "mclk"); 2539 if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) { 2540 return -EPROBE_DEFER; 2541 } else if (PTR_ERR(nau8825->mclk) == -ENOENT) { 2542 /* The MCLK is managed externally or not used at all */ 2543 nau8825->mclk = NULL; 2544 dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally"); 2545 } else if (IS_ERR(nau8825->mclk)) { 2546 return -EINVAL; 2547 } 2548 2549 return 0; 2550 } 2551 2552 static int nau8825_setup_irq(struct nau8825 *nau8825) 2553 { 2554 int ret; 2555 2556 ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL, 2557 nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT, 2558 "nau8825", nau8825); 2559 2560 if (ret) { 2561 dev_err(nau8825->dev, "Cannot request irq %d (%d)\n", 2562 nau8825->irq, ret); 2563 return ret; 2564 } 2565 2566 return 0; 2567 } 2568 2569 static int nau8825_i2c_probe(struct i2c_client *i2c, 2570 const struct i2c_device_id *id) 2571 { 2572 struct device *dev = &i2c->dev; 2573 struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev); 2574 int ret, value; 2575 2576 if (!nau8825) { 2577 nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL); 2578 if (!nau8825) 2579 return -ENOMEM; 2580 ret = nau8825_read_device_properties(dev, nau8825); 2581 if (ret) 2582 return ret; 2583 } 2584 2585 i2c_set_clientdata(i2c, nau8825); 2586 2587 nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config); 2588 if (IS_ERR(nau8825->regmap)) 2589 return PTR_ERR(nau8825->regmap); 2590 nau8825->dev = dev; 2591 nau8825->irq = i2c->irq; 2592 /* Initiate parameters, semaphore and work queue which are needed in 2593 * cross talk suppression measurment function. 2594 */ 2595 nau8825->xtalk_state = NAU8825_XTALK_DONE; 2596 nau8825->xtalk_protect = false; 2597 nau8825->xtalk_baktab_initialized = false; 2598 sema_init(&nau8825->xtalk_sem, 1); 2599 INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work); 2600 2601 nau8825_print_device_properties(nau8825); 2602 2603 nau8825_reset_chip(nau8825->regmap); 2604 ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value); 2605 if (ret < 0) { 2606 dev_err(dev, "Failed to read device id from the NAU8825: %d\n", 2607 ret); 2608 return ret; 2609 } 2610 if ((value & NAU8825_SOFTWARE_ID_MASK) != 2611 NAU8825_SOFTWARE_ID_NAU8825) { 2612 dev_err(dev, "Not a NAU8825 chip\n"); 2613 return -ENODEV; 2614 } 2615 2616 nau8825_init_regs(nau8825); 2617 2618 if (i2c->irq) 2619 nau8825_setup_irq(nau8825); 2620 2621 return devm_snd_soc_register_component(&i2c->dev, 2622 &nau8825_component_driver, 2623 &nau8825_dai, 1); 2624 } 2625 2626 static int nau8825_i2c_remove(struct i2c_client *client) 2627 { 2628 return 0; 2629 } 2630 2631 static const struct i2c_device_id nau8825_i2c_ids[] = { 2632 { "nau8825", 0 }, 2633 { } 2634 }; 2635 MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids); 2636 2637 #ifdef CONFIG_OF 2638 static const struct of_device_id nau8825_of_ids[] = { 2639 { .compatible = "nuvoton,nau8825", }, 2640 {} 2641 }; 2642 MODULE_DEVICE_TABLE(of, nau8825_of_ids); 2643 #endif 2644 2645 #ifdef CONFIG_ACPI 2646 static const struct acpi_device_id nau8825_acpi_match[] = { 2647 { "10508825", 0 }, 2648 {}, 2649 }; 2650 MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match); 2651 #endif 2652 2653 static struct i2c_driver nau8825_driver = { 2654 .driver = { 2655 .name = "nau8825", 2656 .of_match_table = of_match_ptr(nau8825_of_ids), 2657 .acpi_match_table = ACPI_PTR(nau8825_acpi_match), 2658 }, 2659 .probe = nau8825_i2c_probe, 2660 .remove = nau8825_i2c_remove, 2661 .id_table = nau8825_i2c_ids, 2662 }; 2663 module_i2c_driver(nau8825_driver); 2664 2665 MODULE_DESCRIPTION("ASoC nau8825 driver"); 2666 MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>"); 2667 MODULE_LICENSE("GPL"); 2668