xref: /openbmc/linux/sound/soc/codecs/nau8825.c (revision 6724ed7f)
1 /*
2  * Nuvoton NAU8825 audio codec driver
3  *
4  * Copyright 2015 Google Chromium project.
5  *  Author: Anatol Pomozov <anatol@chromium.org>
6  * Copyright 2015 Nuvoton Technology Corp.
7  *  Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com>
8  *
9  * Licensed under the GPL-2.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/delay.h>
14 #include <linux/init.h>
15 #include <linux/i2c.h>
16 #include <linux/regmap.h>
17 #include <linux/slab.h>
18 #include <linux/clk.h>
19 #include <linux/acpi.h>
20 #include <linux/math64.h>
21 #include <linux/semaphore.h>
22 
23 #include <sound/initval.h>
24 #include <sound/tlv.h>
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 #include <sound/soc.h>
29 #include <sound/jack.h>
30 
31 
32 #include "nau8825.h"
33 
34 
35 #define NUVOTON_CODEC_DAI "nau8825-hifi"
36 
37 #define NAU_FREF_MAX 13500000
38 #define NAU_FVCO_MAX 124000000
39 #define NAU_FVCO_MIN 90000000
40 
41 /* cross talk suppression detection */
42 #define LOG10_MAGIC 646456993
43 #define GAIN_AUGMENT 22500
44 #define SIDETONE_BASE 207000
45 
46 /* the maximum frequency of CLK_ADC and CLK_DAC */
47 #define CLK_DA_AD_MAX 6144000
48 
49 static int nau8825_configure_sysclk(struct nau8825 *nau8825,
50 		int clk_id, unsigned int freq);
51 
52 struct nau8825_fll {
53 	int mclk_src;
54 	int ratio;
55 	int fll_frac;
56 	int fll_int;
57 	int clk_ref_div;
58 };
59 
60 struct nau8825_fll_attr {
61 	unsigned int param;
62 	unsigned int val;
63 };
64 
65 /* scaling for mclk from sysclk_src output */
66 static const struct nau8825_fll_attr mclk_src_scaling[] = {
67 	{ 1, 0x0 },
68 	{ 2, 0x2 },
69 	{ 4, 0x3 },
70 	{ 8, 0x4 },
71 	{ 16, 0x5 },
72 	{ 32, 0x6 },
73 	{ 3, 0x7 },
74 	{ 6, 0xa },
75 	{ 12, 0xb },
76 	{ 24, 0xc },
77 	{ 48, 0xd },
78 	{ 96, 0xe },
79 	{ 5, 0xf },
80 };
81 
82 /* ratio for input clk freq */
83 static const struct nau8825_fll_attr fll_ratio[] = {
84 	{ 512000, 0x01 },
85 	{ 256000, 0x02 },
86 	{ 128000, 0x04 },
87 	{ 64000, 0x08 },
88 	{ 32000, 0x10 },
89 	{ 8000, 0x20 },
90 	{ 4000, 0x40 },
91 };
92 
93 static const struct nau8825_fll_attr fll_pre_scalar[] = {
94 	{ 1, 0x0 },
95 	{ 2, 0x1 },
96 	{ 4, 0x2 },
97 	{ 8, 0x3 },
98 };
99 
100 /* over sampling rate */
101 struct nau8825_osr_attr {
102 	unsigned int osr;
103 	unsigned int clk_src;
104 };
105 
106 static const struct nau8825_osr_attr osr_dac_sel[] = {
107 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
108 	{ 256, 0 },	/* OSR 256, SRC 1 */
109 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
110 	{ 0, 0 },
111 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
112 };
113 
114 static const struct nau8825_osr_attr osr_adc_sel[] = {
115 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
116 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
117 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
118 	{ 256, 0 },	/* OSR 256, SRC 1 */
119 };
120 
121 static const struct reg_default nau8825_reg_defaults[] = {
122 	{ NAU8825_REG_ENA_CTRL, 0x00ff },
123 	{ NAU8825_REG_IIC_ADDR_SET, 0x0 },
124 	{ NAU8825_REG_CLK_DIVIDER, 0x0050 },
125 	{ NAU8825_REG_FLL1, 0x0 },
126 	{ NAU8825_REG_FLL2, 0x3126 },
127 	{ NAU8825_REG_FLL3, 0x0008 },
128 	{ NAU8825_REG_FLL4, 0x0010 },
129 	{ NAU8825_REG_FLL5, 0x0 },
130 	{ NAU8825_REG_FLL6, 0x6000 },
131 	{ NAU8825_REG_FLL_VCO_RSV, 0xf13c },
132 	{ NAU8825_REG_HSD_CTRL, 0x000c },
133 	{ NAU8825_REG_JACK_DET_CTRL, 0x0 },
134 	{ NAU8825_REG_INTERRUPT_MASK, 0x0 },
135 	{ NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff },
136 	{ NAU8825_REG_SAR_CTRL, 0x0015 },
137 	{ NAU8825_REG_KEYDET_CTRL, 0x0110 },
138 	{ NAU8825_REG_VDET_THRESHOLD_1, 0x0 },
139 	{ NAU8825_REG_VDET_THRESHOLD_2, 0x0 },
140 	{ NAU8825_REG_VDET_THRESHOLD_3, 0x0 },
141 	{ NAU8825_REG_VDET_THRESHOLD_4, 0x0 },
142 	{ NAU8825_REG_GPIO34_CTRL, 0x0 },
143 	{ NAU8825_REG_GPIO12_CTRL, 0x0 },
144 	{ NAU8825_REG_TDM_CTRL, 0x0 },
145 	{ NAU8825_REG_I2S_PCM_CTRL1, 0x000b },
146 	{ NAU8825_REG_I2S_PCM_CTRL2, 0x8010 },
147 	{ NAU8825_REG_LEFT_TIME_SLOT, 0x0 },
148 	{ NAU8825_REG_RIGHT_TIME_SLOT, 0x0 },
149 	{ NAU8825_REG_BIQ_CTRL, 0x0 },
150 	{ NAU8825_REG_BIQ_COF1, 0x0 },
151 	{ NAU8825_REG_BIQ_COF2, 0x0 },
152 	{ NAU8825_REG_BIQ_COF3, 0x0 },
153 	{ NAU8825_REG_BIQ_COF4, 0x0 },
154 	{ NAU8825_REG_BIQ_COF5, 0x0 },
155 	{ NAU8825_REG_BIQ_COF6, 0x0 },
156 	{ NAU8825_REG_BIQ_COF7, 0x0 },
157 	{ NAU8825_REG_BIQ_COF8, 0x0 },
158 	{ NAU8825_REG_BIQ_COF9, 0x0 },
159 	{ NAU8825_REG_BIQ_COF10, 0x0 },
160 	{ NAU8825_REG_ADC_RATE, 0x0010 },
161 	{ NAU8825_REG_DAC_CTRL1, 0x0001 },
162 	{ NAU8825_REG_DAC_CTRL2, 0x0 },
163 	{ NAU8825_REG_DAC_DGAIN_CTRL, 0x0 },
164 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
165 	{ NAU8825_REG_MUTE_CTRL, 0x0 },
166 	{ NAU8825_REG_HSVOL_CTRL, 0x0 },
167 	{ NAU8825_REG_DACL_CTRL, 0x02cf },
168 	{ NAU8825_REG_DACR_CTRL, 0x00cf },
169 	{ NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 },
170 	{ NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 },
171 	{ NAU8825_REG_ADC_DRC_SLOPES, 0x25ff },
172 	{ NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 },
173 	{ NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 },
174 	{ NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 },
175 	{ NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 },
176 	{ NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 },
177 	{ NAU8825_REG_IMM_MODE_CTRL, 0x0 },
178 	{ NAU8825_REG_CLASSG_CTRL, 0x0 },
179 	{ NAU8825_REG_OPT_EFUSE_CTRL, 0x0 },
180 	{ NAU8825_REG_MISC_CTRL, 0x0 },
181 	{ NAU8825_REG_BIAS_ADJ, 0x0 },
182 	{ NAU8825_REG_TRIM_SETTINGS, 0x0 },
183 	{ NAU8825_REG_ANALOG_CONTROL_1, 0x0 },
184 	{ NAU8825_REG_ANALOG_CONTROL_2, 0x0 },
185 	{ NAU8825_REG_ANALOG_ADC_1, 0x0011 },
186 	{ NAU8825_REG_ANALOG_ADC_2, 0x0020 },
187 	{ NAU8825_REG_RDAC, 0x0008 },
188 	{ NAU8825_REG_MIC_BIAS, 0x0006 },
189 	{ NAU8825_REG_BOOST, 0x0 },
190 	{ NAU8825_REG_FEPGA, 0x0 },
191 	{ NAU8825_REG_POWER_UP_CONTROL, 0x0 },
192 	{ NAU8825_REG_CHARGE_PUMP, 0x0 },
193 };
194 
195 /* register backup table when cross talk detection */
196 static struct reg_default nau8825_xtalk_baktab[] = {
197 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0 },
198 	{ NAU8825_REG_HSVOL_CTRL, 0 },
199 	{ NAU8825_REG_DACL_CTRL, 0 },
200 	{ NAU8825_REG_DACR_CTRL, 0 },
201 };
202 
203 static const unsigned short logtable[256] = {
204 	0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7,
205 	0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508,
206 	0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6,
207 	0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37,
208 	0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f,
209 	0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41,
210 	0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1,
211 	0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142,
212 	0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68,
213 	0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355,
214 	0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c,
215 	0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490,
216 	0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3,
217 	0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507,
218 	0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe,
219 	0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca,
220 	0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c,
221 	0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7,
222 	0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c,
223 	0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c,
224 	0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a,
225 	0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065,
226 	0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730,
227 	0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc,
228 	0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469,
229 	0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9,
230 	0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c,
231 	0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765,
232 	0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83,
233 	0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387,
234 	0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973,
235 	0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47
236 };
237 
238 /**
239  * nau8825_sema_acquire - acquire the semaphore of nau88l25
240  * @nau8825:  component to register the codec private data with
241  * @timeout: how long in jiffies to wait before failure or zero to wait
242  * until release
243  *
244  * Attempts to acquire the semaphore with number of jiffies. If no more
245  * tasks are allowed to acquire the semaphore, calling this function will
246  * put the task to sleep. If the semaphore is not released within the
247  * specified number of jiffies, this function returns.
248  * Acquires the semaphore without jiffies. If no more tasks are allowed
249  * to acquire the semaphore, calling this function will put the task to
250  * sleep until the semaphore is released.
251  * If the semaphore is not released within the specified number of jiffies,
252  * this function returns -ETIME.
253  * If the sleep is interrupted by a signal, this function will return -EINTR.
254  * It returns 0 if the semaphore was acquired successfully.
255  */
256 static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout)
257 {
258 	int ret;
259 
260 	if (timeout) {
261 		ret = down_timeout(&nau8825->xtalk_sem, timeout);
262 		if (ret < 0)
263 			dev_warn(nau8825->dev, "Acquire semaphore timeout\n");
264 	} else {
265 		ret = down_interruptible(&nau8825->xtalk_sem);
266 		if (ret < 0)
267 			dev_warn(nau8825->dev, "Acquire semaphore fail\n");
268 	}
269 
270 	return ret;
271 }
272 
273 /**
274  * nau8825_sema_release - release the semaphore of nau88l25
275  * @nau8825:  component to register the codec private data with
276  *
277  * Release the semaphore which may be called from any context and
278  * even by tasks which have never called down().
279  */
280 static inline void nau8825_sema_release(struct nau8825 *nau8825)
281 {
282 	up(&nau8825->xtalk_sem);
283 }
284 
285 /**
286  * nau8825_sema_reset - reset the semaphore for nau88l25
287  * @nau8825:  component to register the codec private data with
288  *
289  * Reset the counter of the semaphore. Call this function to restart
290  * a new round task management.
291  */
292 static inline void nau8825_sema_reset(struct nau8825 *nau8825)
293 {
294 	nau8825->xtalk_sem.count = 1;
295 }
296 
297 /**
298  * Ramp up the headphone volume change gradually to target level.
299  *
300  * @nau8825:  component to register the codec private data with
301  * @vol_from: the volume to start up
302  * @vol_to: the target volume
303  * @step: the volume span to move on
304  *
305  * The headphone volume is from 0dB to minimum -54dB and -1dB per step.
306  * If the volume changes sharp, there is a pop noise heard in headphone. We
307  * provide the function to ramp up the volume up or down by delaying 10ms
308  * per step.
309  */
310 static void nau8825_hpvol_ramp(struct nau8825 *nau8825,
311 	unsigned int vol_from, unsigned int vol_to, unsigned int step)
312 {
313 	unsigned int value, volume, ramp_up, from, to;
314 
315 	if (vol_from == vol_to || step == 0) {
316 		return;
317 	} else if (vol_from < vol_to) {
318 		ramp_up = true;
319 		from = vol_from;
320 		to = vol_to;
321 	} else {
322 		ramp_up = false;
323 		from = vol_to;
324 		to = vol_from;
325 	}
326 	/* only handle volume from 0dB to minimum -54dB */
327 	if (to > NAU8825_HP_VOL_MIN)
328 		to = NAU8825_HP_VOL_MIN;
329 
330 	for (volume = from; volume < to; volume += step) {
331 		if (ramp_up)
332 			value = volume;
333 		else
334 			value = to - volume + from;
335 		regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
336 			NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
337 			(value << NAU8825_HPL_VOL_SFT) | value);
338 		usleep_range(10000, 10500);
339 	}
340 	if (ramp_up)
341 		value = to;
342 	else
343 		value = from;
344 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
345 		NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
346 		(value << NAU8825_HPL_VOL_SFT) | value);
347 }
348 
349 /**
350  * Computes log10 of a value; the result is round off to 3 decimal. This func-
351  * tion takes reference to dvb-math. The source code locates as the following.
352  * Linux/drivers/media/dvb-core/dvb_math.c
353  *
354  * return log10(value) * 1000
355  */
356 static u32 nau8825_intlog10_dec3(u32 value)
357 {
358 	u32 msb, logentry, significand, interpolation, log10val;
359 	u64 log2val;
360 
361 	/* first detect the msb (count begins at 0) */
362 	msb = fls(value) - 1;
363 	/**
364 	 *      now we use a logtable after the following method:
365 	 *
366 	 *      log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24
367 	 *      where x = msb and therefore 1 <= y < 2
368 	 *      first y is determined by shifting the value left
369 	 *      so that msb is bit 31
370 	 *              0x00231f56 -> 0x8C7D5800
371 	 *      the result is y * 2^31 -> "significand"
372 	 *      then the highest 9 bits are used for a table lookup
373 	 *      the highest bit is discarded because it's always set
374 	 *      the highest nine bits in our example are 100011000
375 	 *      so we would use the entry 0x18
376 	 */
377 	significand = value << (31 - msb);
378 	logentry = (significand >> 23) & 0xff;
379 	/**
380 	 *      last step we do is interpolation because of the
381 	 *      limitations of the log table the error is that part of
382 	 *      the significand which isn't used for lookup then we
383 	 *      compute the ratio between the error and the next table entry
384 	 *      and interpolate it between the log table entry used and the
385 	 *      next one the biggest error possible is 0x7fffff
386 	 *      (in our example it's 0x7D5800)
387 	 *      needed value for next table entry is 0x800000
388 	 *      so the interpolation is
389 	 *      (error / 0x800000) * (logtable_next - logtable_current)
390 	 *      in the implementation the division is moved to the end for
391 	 *      better accuracy there is also an overflow correction if
392 	 *      logtable_next is 256
393 	 */
394 	interpolation = ((significand & 0x7fffff) *
395 		((logtable[(logentry + 1) & 0xff] -
396 		logtable[logentry]) & 0xffff)) >> 15;
397 
398 	log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation);
399 	/**
400 	 *      log10(x) = log2(x) * log10(2)
401 	 */
402 	log10val = (log2val * LOG10_MAGIC) >> 31;
403 	/**
404 	 *      the result is round off to 3 decimal
405 	 */
406 	return log10val / ((1 << 24) / 1000);
407 }
408 
409 /**
410  * computes cross talk suppression sidetone gain.
411  *
412  * @sig_org: orignal signal level
413  * @sig_cros: cross talk signal level
414  *
415  * The orignal and cross talk signal vlues need to be characterized.
416  * Once these values have been characterized, this sidetone value
417  * can be converted to decibel with the equation below.
418  * sidetone = 20 * log (original signal level / crosstalk signal level)
419  *
420  * return cross talk sidetone gain
421  */
422 static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros)
423 {
424 	u32 gain, sidetone;
425 
426 	if (unlikely(sig_org == 0) || unlikely(sig_cros == 0)) {
427 		WARN_ON(1);
428 		return 0;
429 	}
430 
431 	sig_org = nau8825_intlog10_dec3(sig_org);
432 	sig_cros = nau8825_intlog10_dec3(sig_cros);
433 	if (sig_org >= sig_cros)
434 		gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT;
435 	else
436 		gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT;
437 	sidetone = SIDETONE_BASE - gain * 2;
438 	sidetone /= 1000;
439 
440 	return sidetone;
441 }
442 
443 static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg)
444 {
445 	int index;
446 
447 	for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++)
448 		if (nau8825_xtalk_baktab[index].reg == reg)
449 			return index;
450 	return -EINVAL;
451 }
452 
453 static void nau8825_xtalk_backup(struct nau8825 *nau8825)
454 {
455 	int i;
456 
457 	/* Backup some register values to backup table */
458 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++)
459 		regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
460 				&nau8825_xtalk_baktab[i].def);
461 }
462 
463 static void nau8825_xtalk_restore(struct nau8825 *nau8825)
464 {
465 	int i, volume;
466 
467 	/* Restore register values from backup table; When the driver restores
468 	 * the headphone volumem, it needs recover to original level gradually
469 	 * with 3dB per step for less pop noise.
470 	 */
471 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) {
472 		if (nau8825_xtalk_baktab[i].reg == NAU8825_REG_HSVOL_CTRL) {
473 			/* Ramping up the volume change to reduce pop noise */
474 			volume = nau8825_xtalk_baktab[i].def &
475 				NAU8825_HPR_VOL_MASK;
476 			nau8825_hpvol_ramp(nau8825, 0, volume, 3);
477 			continue;
478 		}
479 		regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
480 				nau8825_xtalk_baktab[i].def);
481 	}
482 }
483 
484 static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825)
485 {
486 	/* Enable power of DAC path */
487 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
488 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
489 		NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK |
490 		NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR |
491 		NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC |
492 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK);
493 	/* Prevent startup click by letting charge pump to ramp up and
494 	 * change bump enable
495 	 */
496 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
497 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN,
498 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN);
499 	/* Enable clock sync of DAC and DAC clock */
500 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
501 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN |
502 		NAU8825_RDAC_FS_BCLK_ENB,
503 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN);
504 	/* Power up output driver with 2 stage */
505 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
506 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
507 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L,
508 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
509 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L);
510 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
511 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L,
512 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L);
513 	/* HP outputs not shouted to ground  */
514 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
515 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0);
516 	/* Enable HP boost driver */
517 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
518 		NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS);
519 	/* Enable class G compare path to supply 1.8V or 0.9V. */
520 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL,
521 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN,
522 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN);
523 }
524 
525 static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825)
526 {
527 	/* Power up left ADC and raise 5dB than Vmid for Vref  */
528 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
529 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK,
530 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB);
531 }
532 
533 static void nau8825_xtalk_clock(struct nau8825 *nau8825)
534 {
535 	/* Recover FLL default value */
536 	regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0);
537 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126);
538 	regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008);
539 	regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010);
540 	regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0);
541 	regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000);
542 	/* Enable internal VCO clock for detection signal generated */
543 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
544 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
545 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN,
546 		NAU8825_DCO_EN);
547 	/* Given specific clock frequency of internal clock to
548 	 * generate signal.
549 	 */
550 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
551 		NAU8825_CLK_MCLK_SRC_MASK, 0xf);
552 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
553 		NAU8825_FLL_RATIO_MASK, 0x10);
554 }
555 
556 static void nau8825_xtalk_prepare(struct nau8825 *nau8825)
557 {
558 	int volume, index;
559 
560 	/* Backup those registers changed by cross talk detection */
561 	nau8825_xtalk_backup(nau8825);
562 	/* Config IIS as master to output signal by codec */
563 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
564 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
565 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER |
566 		(0x2 << NAU8825_I2S_LRC_DIV_SFT) | 0x1);
567 	/* Ramp up headphone volume to 0dB to get better performance and
568 	 * avoid pop noise in headphone.
569 	 */
570 	index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL);
571 	if (index != -EINVAL) {
572 		volume = nau8825_xtalk_baktab[index].def &
573 				NAU8825_HPR_VOL_MASK;
574 		nau8825_hpvol_ramp(nau8825, volume, 0, 3);
575 	}
576 	nau8825_xtalk_clock(nau8825);
577 	nau8825_xtalk_prepare_dac(nau8825);
578 	nau8825_xtalk_prepare_adc(nau8825);
579 	/* Config channel path and digital gain */
580 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
581 		NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK,
582 		NAU8825_DACL_CH_SEL_L | 0xab);
583 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
584 		NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK,
585 		NAU8825_DACR_CH_SEL_R | 0xab);
586 	/* Config cross talk parameters and generate the 23Hz sine wave with
587 	 * 1/16 full scale of signal level for impedance measurement.
588 	 */
589 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
590 		NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK |
591 		NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK,
592 		(0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th |
593 		NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN);
594 	/* RMS intrruption enable */
595 	regmap_update_bits(nau8825->regmap,
596 		NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0);
597 	/* Power up left and right DAC */
598 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
599 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0);
600 }
601 
602 static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825)
603 {
604 	/* Disable HP boost driver */
605 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
606 		NAU8825_HP_BOOST_DIS, 0);
607 	/* HP outputs shouted to ground  */
608 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
609 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
610 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
611 	/* Power down left and right DAC */
612 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
613 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
614 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
615 	/* Enable the TESTDAC and  disable L/R HP impedance */
616 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
617 		NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP |
618 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
619 	/* Power down output driver with 2 stage */
620 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
621 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0);
622 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
623 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
624 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0);
625 	/* Disable clock sync of DAC and DAC clock */
626 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
627 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0);
628 	/* Disable charge pump ramp up function and change bump */
629 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
630 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0);
631 	/* Disable power of DAC path */
632 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
633 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
634 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0);
635 	if (!nau8825->irq)
636 		regmap_update_bits(nau8825->regmap,
637 			NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
638 }
639 
640 static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825)
641 {
642 	/* Power down left ADC and restore voltage to Vmid */
643 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
644 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0);
645 }
646 
647 static void nau8825_xtalk_clean(struct nau8825 *nau8825)
648 {
649 	/* Enable internal VCO needed for interruptions */
650 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
651 	nau8825_xtalk_clean_dac(nau8825);
652 	nau8825_xtalk_clean_adc(nau8825);
653 	/* Clear cross talk parameters and disable */
654 	regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0);
655 	/* RMS intrruption disable */
656 	regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK,
657 		NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN);
658 	/* Recover default value for IIS */
659 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
660 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
661 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE);
662 	/* Restore value of specific register for cross talk */
663 	nau8825_xtalk_restore(nau8825);
664 }
665 
666 static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol)
667 {
668 	/* Apply ADC volume for better cross talk performance */
669 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL,
670 				NAU8825_ADC_DIG_VOL_MASK, vol);
671 	/* Disables JKTIP(HPL) DAC channel for right to left measurement.
672 	 * Do it before sending signal in order to erase pop noise.
673 	 */
674 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
675 		NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN,
676 		NAU8825_BIAS_TESTDACL_EN);
677 	switch (nau8825->xtalk_state) {
678 	case NAU8825_XTALK_HPR_R2L:
679 		/* Enable right headphone impedance */
680 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
681 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
682 			NAU8825_BIAS_HPR_IMP);
683 		break;
684 	case NAU8825_XTALK_HPL_R2L:
685 		/* Enable left headphone impedance */
686 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
687 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
688 			NAU8825_BIAS_HPL_IMP);
689 		break;
690 	default:
691 		break;
692 	}
693 	msleep(100);
694 	/* Impedance measurement mode enable */
695 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
696 				NAU8825_IMM_EN, NAU8825_IMM_EN);
697 }
698 
699 static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825)
700 {
701 	/* Impedance measurement mode disable */
702 	regmap_update_bits(nau8825->regmap,
703 		NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0);
704 }
705 
706 /* The cross talk measurement function can reduce cross talk across the
707  * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal
708  * level to determine what cross talk reduction gain is. This system works by
709  * sending a 23Hz -24dBV sine wave into the headset output DAC and through
710  * the PGA. The output of the PGA is then connected to an internal current
711  * sense which measures the attenuated 23Hz signal and passing the output to
712  * an ADC which converts the measurement to a binary code. With two separated
713  * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data
714  * can be separated read in IMM_RMS_L for HSR and HSL after each measurement.
715  * Thus, the measurement function has four states to complete whole sequence.
716  * 1. Prepare state : Prepare the resource for detection and transfer to HPR
717  *     IMM stat to make JKR1(HPR) impedance measure.
718  * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer
719  *     to HPL IMM state to make JKTIP(HPL) impedance measure.
720  * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and
721  *     transfer to IMM state to determine suppression sidetone gain.
722  * 4. IMM state : Computes cross talk suppression sidetone gain with orignal
723  *     and cross talk signal level. Apply this gain and then restore codec
724  *     configuration. Then transfer to Done state for ending.
725  */
726 static void nau8825_xtalk_measure(struct nau8825 *nau8825)
727 {
728 	u32 sidetone;
729 
730 	switch (nau8825->xtalk_state) {
731 	case NAU8825_XTALK_PREPARE:
732 		/* In prepare state, set up clock, intrruption, DAC path, ADC
733 		 * path and cross talk detection parameters for preparation.
734 		 */
735 		nau8825_xtalk_prepare(nau8825);
736 		msleep(280);
737 		/* Trigger right headphone impedance detection */
738 		nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L;
739 		nau8825_xtalk_imm_start(nau8825, 0x00d2);
740 		break;
741 	case NAU8825_XTALK_HPR_R2L:
742 		/* In right headphone IMM state, read out right headphone
743 		 * impedance measure result, and then start up left side.
744 		 */
745 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
746 			&nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
747 		dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n",
748 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
749 		/* Disable then re-enable IMM mode to update */
750 		nau8825_xtalk_imm_stop(nau8825);
751 		/* Trigger left headphone impedance detection */
752 		nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L;
753 		nau8825_xtalk_imm_start(nau8825, 0x00ff);
754 		break;
755 	case NAU8825_XTALK_HPL_R2L:
756 		/* In left headphone IMM state, read out left headphone
757 		 * impedance measure result, and delay some time to wait
758 		 * detection sine wave output finish. Then, we can calculate
759 		 * the cross talk suppresstion side tone according to the L/R
760 		 * headphone imedance.
761 		 */
762 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
763 			&nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
764 		dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n",
765 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
766 		nau8825_xtalk_imm_stop(nau8825);
767 		msleep(150);
768 		nau8825->xtalk_state = NAU8825_XTALK_IMM;
769 		break;
770 	case NAU8825_XTALK_IMM:
771 		/* In impedance measure state, the orignal and cross talk
772 		 * signal level vlues are ready. The side tone gain is deter-
773 		 * mined with these signal level. After all, restore codec
774 		 * configuration.
775 		 */
776 		sidetone = nau8825_xtalk_sidetone(
777 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L],
778 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
779 		dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone);
780 		regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL,
781 					(sidetone << 8) | sidetone);
782 		nau8825_xtalk_clean(nau8825);
783 		nau8825->xtalk_state = NAU8825_XTALK_DONE;
784 		break;
785 	default:
786 		break;
787 	}
788 }
789 
790 static void nau8825_xtalk_work(struct work_struct *work)
791 {
792 	struct nau8825 *nau8825 = container_of(
793 		work, struct nau8825, xtalk_work);
794 
795 	nau8825_xtalk_measure(nau8825);
796 	/* To determine the cross talk side tone gain when reach
797 	 * the impedance measure state.
798 	 */
799 	if (nau8825->xtalk_state == NAU8825_XTALK_IMM)
800 		nau8825_xtalk_measure(nau8825);
801 
802 	/* Delay jack report until cross talk detection process
803 	 * completed. It can avoid application to do playback
804 	 * preparation before cross talk detection is still working.
805 	 * Meanwhile, the protection of the cross talk detection
806 	 * is released.
807 	 */
808 	if (nau8825->xtalk_state == NAU8825_XTALK_DONE) {
809 		snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event,
810 				nau8825->xtalk_event_mask);
811 		nau8825_sema_release(nau8825);
812 		nau8825->xtalk_protect = false;
813 	}
814 }
815 
816 static void nau8825_xtalk_cancel(struct nau8825 *nau8825)
817 {
818 	/* If the xtalk_protect is true, that means the process is still
819 	 * on going. The driver forces to cancel the cross talk task and
820 	 * restores the configuration to original status.
821 	 */
822 	if (nau8825->xtalk_protect) {
823 		cancel_work_sync(&nau8825->xtalk_work);
824 		nau8825_xtalk_clean(nau8825);
825 	}
826 	/* Reset parameters for cross talk suppression function */
827 	nau8825_sema_reset(nau8825);
828 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
829 	nau8825->xtalk_protect = false;
830 }
831 
832 static bool nau8825_readable_reg(struct device *dev, unsigned int reg)
833 {
834 	switch (reg) {
835 	case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV:
836 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
837 	case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL:
838 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
839 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
840 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
841 	case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R:
842 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
843 	case NAU8825_REG_MISC_CTRL:
844 	case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS:
845 	case NAU8825_REG_BIAS_ADJ:
846 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
847 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
848 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
849 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS:
850 		return true;
851 	default:
852 		return false;
853 	}
854 
855 }
856 
857 static bool nau8825_writeable_reg(struct device *dev, unsigned int reg)
858 {
859 	switch (reg) {
860 	case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV:
861 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
862 	case NAU8825_REG_INTERRUPT_MASK:
863 	case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL:
864 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
865 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
866 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
867 	case NAU8825_REG_IMM_MODE_CTRL:
868 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
869 	case NAU8825_REG_MISC_CTRL:
870 	case NAU8825_REG_BIAS_ADJ:
871 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
872 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
873 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
874 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP:
875 		return true;
876 	default:
877 		return false;
878 	}
879 }
880 
881 static bool nau8825_volatile_reg(struct device *dev, unsigned int reg)
882 {
883 	switch (reg) {
884 	case NAU8825_REG_RESET:
885 	case NAU8825_REG_IRQ_STATUS:
886 	case NAU8825_REG_INT_CLR_KEY_STATUS:
887 	case NAU8825_REG_IMM_RMS_L:
888 	case NAU8825_REG_IMM_RMS_R:
889 	case NAU8825_REG_I2C_DEVICE_ID:
890 	case NAU8825_REG_SARDOUT_RAM_STATUS:
891 	case NAU8825_REG_CHARGE_PUMP_INPUT_READ:
892 	case NAU8825_REG_GENERAL_STATUS:
893 	case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10:
894 		return true;
895 	default:
896 		return false;
897 	}
898 }
899 
900 static int nau8825_adc_event(struct snd_soc_dapm_widget *w,
901 		struct snd_kcontrol *kcontrol, int event)
902 {
903 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
904 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
905 
906 	switch (event) {
907 	case SND_SOC_DAPM_POST_PMU:
908 		msleep(125);
909 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
910 			NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
911 		break;
912 	case SND_SOC_DAPM_POST_PMD:
913 		if (!nau8825->irq)
914 			regmap_update_bits(nau8825->regmap,
915 				NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
916 		break;
917 	default:
918 		return -EINVAL;
919 	}
920 
921 	return 0;
922 }
923 
924 static int nau8825_pump_event(struct snd_soc_dapm_widget *w,
925 	struct snd_kcontrol *kcontrol, int event)
926 {
927 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
928 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
929 
930 	switch (event) {
931 	case SND_SOC_DAPM_POST_PMU:
932 		/* Prevent startup click by letting charge pump to ramp up */
933 		msleep(10);
934 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
935 			NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW);
936 		break;
937 	case SND_SOC_DAPM_PRE_PMD:
938 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
939 			NAU8825_JAMNODCLOW, 0);
940 		break;
941 	default:
942 		return -EINVAL;
943 	}
944 
945 	return 0;
946 }
947 
948 static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w,
949 	struct snd_kcontrol *kcontrol, int event)
950 {
951 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
952 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
953 
954 	switch (event) {
955 	case SND_SOC_DAPM_PRE_PMU:
956 		/* Disables the TESTDAC to let DAC signal pass through. */
957 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
958 			NAU8825_BIAS_TESTDAC_EN, 0);
959 		break;
960 	case SND_SOC_DAPM_POST_PMD:
961 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
962 			NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
963 		break;
964 	default:
965 		return -EINVAL;
966 	}
967 
968 	return 0;
969 }
970 
971 static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol,
972 				     struct snd_ctl_elem_value *ucontrol)
973 {
974 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
975 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
976 
977 	if (!component->regmap)
978 		return -EINVAL;
979 
980 	regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1,
981 		ucontrol->value.bytes.data, params->max);
982 	return 0;
983 }
984 
985 static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol,
986 				     struct snd_ctl_elem_value *ucontrol)
987 {
988 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
989 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
990 	void *data;
991 
992 	if (!component->regmap)
993 		return -EINVAL;
994 
995 	data = kmemdup(ucontrol->value.bytes.data,
996 		params->max, GFP_KERNEL | GFP_DMA);
997 	if (!data)
998 		return -ENOMEM;
999 
1000 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1001 		NAU8825_BIQ_WRT_EN, 0);
1002 	regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1,
1003 		data, params->max);
1004 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1005 		NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN);
1006 
1007 	kfree(data);
1008 	return 0;
1009 }
1010 
1011 static const char * const nau8825_biq_path[] = {
1012 	"ADC", "DAC"
1013 };
1014 
1015 static const struct soc_enum nau8825_biq_path_enum =
1016 	SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT,
1017 		ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path);
1018 
1019 static const char * const nau8825_adc_decimation[] = {
1020 	"32", "64", "128", "256"
1021 };
1022 
1023 static const struct soc_enum nau8825_adc_decimation_enum =
1024 	SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT,
1025 		ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation);
1026 
1027 static const char * const nau8825_dac_oversampl[] = {
1028 	"64", "256", "128", "", "32"
1029 };
1030 
1031 static const struct soc_enum nau8825_dac_oversampl_enum =
1032 	SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT,
1033 		ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl);
1034 
1035 static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400);
1036 static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0);
1037 static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0);
1038 static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
1039 static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400);
1040 
1041 static const struct snd_kcontrol_new nau8825_controls[] = {
1042 	SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1043 		0, 0xff, 0, adc_vol_tlv),
1044 	SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1045 		12, 8, 0x0f, 0, sidetone_vol_tlv),
1046 	SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL,
1047 		6, 0, 0x3f, 1, dac_vol_tlv),
1048 	SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL,
1049 		8, 37, 0, fepga_gain_tlv),
1050 	SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL,
1051 		0, 8, 0xff, 0, crosstalk_vol_tlv),
1052 
1053 	SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum),
1054 	SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum),
1055 	/* programmable biquad filter */
1056 	SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum),
1057 	SND_SOC_BYTES_EXT("BIQ Coefficients", 20,
1058 		  nau8825_biq_coeff_get, nau8825_biq_coeff_put),
1059 };
1060 
1061 /* DAC Mux 0x33[9] and 0x34[9] */
1062 static const char * const nau8825_dac_src[] = {
1063 	"DACL", "DACR",
1064 };
1065 
1066 static SOC_ENUM_SINGLE_DECL(
1067 	nau8825_dacl_enum, NAU8825_REG_DACL_CTRL,
1068 	NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src);
1069 
1070 static SOC_ENUM_SINGLE_DECL(
1071 	nau8825_dacr_enum, NAU8825_REG_DACR_CTRL,
1072 	NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src);
1073 
1074 static const struct snd_kcontrol_new nau8825_dacl_mux =
1075 	SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum);
1076 
1077 static const struct snd_kcontrol_new nau8825_dacr_mux =
1078 	SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum);
1079 
1080 
1081 static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = {
1082 	SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2,
1083 		15, 1),
1084 
1085 	SND_SOC_DAPM_INPUT("MIC"),
1086 	SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0),
1087 
1088 	SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0,
1089 		NULL, 0),
1090 
1091 	SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0,
1092 		nau8825_adc_event, SND_SOC_DAPM_POST_PMU |
1093 		SND_SOC_DAPM_POST_PMD),
1094 	SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0),
1095 	SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL,
1096 		0),
1097 
1098 	/* ADC for button press detection. A dapm supply widget is used to
1099 	 * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON
1100 	 * during suspend.
1101 	 */
1102 	SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL,
1103 		NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0),
1104 
1105 	SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0),
1106 	SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0),
1107 	SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0),
1108 	SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0),
1109 
1110 	SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL,
1111 		NAU8825_ENABLE_DACR_SFT, 0),
1112 	SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL,
1113 		NAU8825_ENABLE_DACL_SFT, 0),
1114 	SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0),
1115 
1116 	SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux),
1117 	SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux),
1118 
1119 	SND_SOC_DAPM_PGA_S("HP amp L", 0,
1120 		NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0),
1121 	SND_SOC_DAPM_PGA_S("HP amp R", 0,
1122 		NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0),
1123 
1124 	SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0,
1125 		nau8825_pump_event, SND_SOC_DAPM_POST_PMU |
1126 		SND_SOC_DAPM_PRE_PMD),
1127 
1128 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4,
1129 		NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0),
1130 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4,
1131 		NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0),
1132 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5,
1133 		NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0),
1134 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5,
1135 		NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0),
1136 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6,
1137 		NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0),
1138 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6,
1139 		NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0),
1140 
1141 	SND_SOC_DAPM_PGA_S("Output DACL", 7,
1142 		NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event,
1143 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1144 	SND_SOC_DAPM_PGA_S("Output DACR", 7,
1145 		NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event,
1146 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1147 
1148 	/* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */
1149 	SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8,
1150 		NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0),
1151 	SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8,
1152 		NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0),
1153 
1154 	/* High current HPOL/R boost driver */
1155 	SND_SOC_DAPM_PGA_S("HP Boost Driver", 9,
1156 		NAU8825_REG_BOOST, 9, 1, NULL, 0),
1157 
1158 	/* Class G operation control*/
1159 	SND_SOC_DAPM_PGA_S("Class G", 10,
1160 		NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0),
1161 
1162 	SND_SOC_DAPM_OUTPUT("HPOL"),
1163 	SND_SOC_DAPM_OUTPUT("HPOR"),
1164 };
1165 
1166 static const struct snd_soc_dapm_route nau8825_dapm_routes[] = {
1167 	{"Frontend PGA", NULL, "MIC"},
1168 	{"ADC", NULL, "Frontend PGA"},
1169 	{"ADC", NULL, "ADC Clock"},
1170 	{"ADC", NULL, "ADC Power"},
1171 	{"AIFTX", NULL, "ADC"},
1172 
1173 	{"DDACL", NULL, "Playback"},
1174 	{"DDACR", NULL, "Playback"},
1175 	{"DDACL", NULL, "DDAC Clock"},
1176 	{"DDACR", NULL, "DDAC Clock"},
1177 	{"DACL Mux", "DACL", "DDACL"},
1178 	{"DACL Mux", "DACR", "DDACR"},
1179 	{"DACR Mux", "DACL", "DDACL"},
1180 	{"DACR Mux", "DACR", "DDACR"},
1181 	{"HP amp L", NULL, "DACL Mux"},
1182 	{"HP amp R", NULL, "DACR Mux"},
1183 	{"Charge Pump", NULL, "HP amp L"},
1184 	{"Charge Pump", NULL, "HP amp R"},
1185 	{"ADACL", NULL, "Charge Pump"},
1186 	{"ADACR", NULL, "Charge Pump"},
1187 	{"ADACL Clock", NULL, "ADACL"},
1188 	{"ADACR Clock", NULL, "ADACR"},
1189 	{"Output Driver L Stage 1", NULL, "ADACL Clock"},
1190 	{"Output Driver R Stage 1", NULL, "ADACR Clock"},
1191 	{"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"},
1192 	{"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"},
1193 	{"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"},
1194 	{"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"},
1195 	{"Output DACL", NULL, "Output Driver L Stage 3"},
1196 	{"Output DACR", NULL, "Output Driver R Stage 3"},
1197 	{"HPOL Pulldown", NULL, "Output DACL"},
1198 	{"HPOR Pulldown", NULL, "Output DACR"},
1199 	{"HP Boost Driver", NULL, "HPOL Pulldown"},
1200 	{"HP Boost Driver", NULL, "HPOR Pulldown"},
1201 	{"Class G", NULL, "HP Boost Driver"},
1202 	{"HPOL", NULL, "Class G"},
1203 	{"HPOR", NULL, "Class G"},
1204 };
1205 
1206 static int nau8825_clock_check(struct nau8825 *nau8825,
1207 	int stream, int rate, int osr)
1208 {
1209 	int osrate;
1210 
1211 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
1212 		if (osr >= ARRAY_SIZE(osr_dac_sel))
1213 			return -EINVAL;
1214 		osrate = osr_dac_sel[osr].osr;
1215 	} else {
1216 		if (osr >= ARRAY_SIZE(osr_adc_sel))
1217 			return -EINVAL;
1218 		osrate = osr_adc_sel[osr].osr;
1219 	}
1220 
1221 	if (!osrate || rate * osr > CLK_DA_AD_MAX) {
1222 		dev_err(nau8825->dev, "exceed the maximum frequency of CLK_ADC or CLK_DAC\n");
1223 		return -EINVAL;
1224 	}
1225 
1226 	return 0;
1227 }
1228 
1229 static int nau8825_hw_params(struct snd_pcm_substream *substream,
1230 				struct snd_pcm_hw_params *params,
1231 				struct snd_soc_dai *dai)
1232 {
1233 	struct snd_soc_codec *codec = dai->codec;
1234 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1235 	unsigned int val_len = 0, osr, ctrl_val, bclk_fs, bclk_div;
1236 
1237 	nau8825_sema_acquire(nau8825, 3 * HZ);
1238 
1239 	/* CLK_DAC or CLK_ADC = OSR * FS
1240 	 * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR)
1241 	 * multiplied by the audio sample rate (Fs). Note that the OSR and Fs
1242 	 * values must be selected such that the maximum frequency is less
1243 	 * than 6.144 MHz.
1244 	 */
1245 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1246 		regmap_read(nau8825->regmap, NAU8825_REG_DAC_CTRL1, &osr);
1247 		osr &= NAU8825_DAC_OVERSAMPLE_MASK;
1248 		if (nau8825_clock_check(nau8825, substream->stream,
1249 			params_rate(params), osr))
1250 			return -EINVAL;
1251 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1252 			NAU8825_CLK_DAC_SRC_MASK,
1253 			osr_dac_sel[osr].clk_src << NAU8825_CLK_DAC_SRC_SFT);
1254 	} else {
1255 		regmap_read(nau8825->regmap, NAU8825_REG_ADC_RATE, &osr);
1256 		osr &= NAU8825_ADC_SYNC_DOWN_MASK;
1257 		if (nau8825_clock_check(nau8825, substream->stream,
1258 			params_rate(params), osr))
1259 			return -EINVAL;
1260 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1261 			NAU8825_CLK_ADC_SRC_MASK,
1262 			osr_adc_sel[osr].clk_src << NAU8825_CLK_ADC_SRC_SFT);
1263 	}
1264 
1265 	/* make BCLK and LRC divde configuration if the codec as master. */
1266 	regmap_read(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, &ctrl_val);
1267 	if (ctrl_val & NAU8825_I2S_MS_MASTER) {
1268 		/* get the bclk and fs ratio */
1269 		bclk_fs = snd_soc_params_to_bclk(params) / params_rate(params);
1270 		if (bclk_fs <= 32)
1271 			bclk_div = 2;
1272 		else if (bclk_fs <= 64)
1273 			bclk_div = 1;
1274 		else if (bclk_fs <= 128)
1275 			bclk_div = 0;
1276 		else
1277 			return -EINVAL;
1278 		regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1279 			NAU8825_I2S_LRC_DIV_MASK | NAU8825_I2S_BLK_DIV_MASK,
1280 			((bclk_div + 1) << NAU8825_I2S_LRC_DIV_SFT) | bclk_div);
1281 	}
1282 
1283 	switch (params_width(params)) {
1284 	case 16:
1285 		val_len |= NAU8825_I2S_DL_16;
1286 		break;
1287 	case 20:
1288 		val_len |= NAU8825_I2S_DL_20;
1289 		break;
1290 	case 24:
1291 		val_len |= NAU8825_I2S_DL_24;
1292 		break;
1293 	case 32:
1294 		val_len |= NAU8825_I2S_DL_32;
1295 		break;
1296 	default:
1297 		return -EINVAL;
1298 	}
1299 
1300 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1301 		NAU8825_I2S_DL_MASK, val_len);
1302 
1303 	/* Release the semaphore. */
1304 	nau8825_sema_release(nau8825);
1305 
1306 	return 0;
1307 }
1308 
1309 static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
1310 {
1311 	struct snd_soc_codec *codec = codec_dai->codec;
1312 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1313 	unsigned int ctrl1_val = 0, ctrl2_val = 0;
1314 
1315 	nau8825_sema_acquire(nau8825, 3 * HZ);
1316 
1317 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1318 	case SND_SOC_DAIFMT_CBM_CFM:
1319 		ctrl2_val |= NAU8825_I2S_MS_MASTER;
1320 		break;
1321 	case SND_SOC_DAIFMT_CBS_CFS:
1322 		break;
1323 	default:
1324 		return -EINVAL;
1325 	}
1326 
1327 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1328 	case SND_SOC_DAIFMT_NB_NF:
1329 		break;
1330 	case SND_SOC_DAIFMT_IB_NF:
1331 		ctrl1_val |= NAU8825_I2S_BP_INV;
1332 		break;
1333 	default:
1334 		return -EINVAL;
1335 	}
1336 
1337 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1338 	case SND_SOC_DAIFMT_I2S:
1339 		ctrl1_val |= NAU8825_I2S_DF_I2S;
1340 		break;
1341 	case SND_SOC_DAIFMT_LEFT_J:
1342 		ctrl1_val |= NAU8825_I2S_DF_LEFT;
1343 		break;
1344 	case SND_SOC_DAIFMT_RIGHT_J:
1345 		ctrl1_val |= NAU8825_I2S_DF_RIGTH;
1346 		break;
1347 	case SND_SOC_DAIFMT_DSP_A:
1348 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1349 		break;
1350 	case SND_SOC_DAIFMT_DSP_B:
1351 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1352 		ctrl1_val |= NAU8825_I2S_PCMB_EN;
1353 		break;
1354 	default:
1355 		return -EINVAL;
1356 	}
1357 
1358 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1359 		NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK |
1360 		NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK,
1361 		ctrl1_val);
1362 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1363 		NAU8825_I2S_MS_MASK, ctrl2_val);
1364 
1365 	/* Release the semaphore. */
1366 	nau8825_sema_release(nau8825);
1367 
1368 	return 0;
1369 }
1370 
1371 static const struct snd_soc_dai_ops nau8825_dai_ops = {
1372 	.hw_params	= nau8825_hw_params,
1373 	.set_fmt	= nau8825_set_dai_fmt,
1374 };
1375 
1376 #define NAU8825_RATES	SNDRV_PCM_RATE_8000_192000
1377 #define NAU8825_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
1378 			 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1379 
1380 static struct snd_soc_dai_driver nau8825_dai = {
1381 	.name = "nau8825-hifi",
1382 	.playback = {
1383 		.stream_name	 = "Playback",
1384 		.channels_min	 = 1,
1385 		.channels_max	 = 2,
1386 		.rates		 = NAU8825_RATES,
1387 		.formats	 = NAU8825_FORMATS,
1388 	},
1389 	.capture = {
1390 		.stream_name	 = "Capture",
1391 		.channels_min	 = 1,
1392 		.channels_max	 = 1,
1393 		.rates		 = NAU8825_RATES,
1394 		.formats	 = NAU8825_FORMATS,
1395 	},
1396 	.ops = &nau8825_dai_ops,
1397 };
1398 
1399 /**
1400  * nau8825_enable_jack_detect - Specify a jack for event reporting
1401  *
1402  * @component:  component to register the jack with
1403  * @jack: jack to use to report headset and button events on
1404  *
1405  * After this function has been called the headset insert/remove and button
1406  * events will be routed to the given jack.  Jack can be null to stop
1407  * reporting.
1408  */
1409 int nau8825_enable_jack_detect(struct snd_soc_codec *codec,
1410 				struct snd_soc_jack *jack)
1411 {
1412 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1413 	struct regmap *regmap = nau8825->regmap;
1414 
1415 	nau8825->jack = jack;
1416 
1417 	/* Ground HP Outputs[1:0], needed for headset auto detection
1418 	 * Enable Automatic Mic/Gnd switching reading on insert interrupt[6]
1419 	 */
1420 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1421 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
1422 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
1423 
1424 	return 0;
1425 }
1426 EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect);
1427 
1428 
1429 static bool nau8825_is_jack_inserted(struct regmap *regmap)
1430 {
1431 	bool active_high, is_high;
1432 	int status, jkdet;
1433 
1434 	regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet);
1435 	active_high = jkdet & NAU8825_JACK_POLARITY;
1436 	regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status);
1437 	is_high = status & NAU8825_GPIO2JD1;
1438 	/* return jack connection status according to jack insertion logic
1439 	 * active high or active low.
1440 	 */
1441 	return active_high == is_high;
1442 }
1443 
1444 static void nau8825_restart_jack_detection(struct regmap *regmap)
1445 {
1446 	/* this will restart the entire jack detection process including MIC/GND
1447 	 * switching and create interrupts. We have to go from 0 to 1 and back
1448 	 * to 0 to restart.
1449 	 */
1450 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1451 		NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART);
1452 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1453 		NAU8825_JACK_DET_RESTART, 0);
1454 }
1455 
1456 static void nau8825_int_status_clear_all(struct regmap *regmap)
1457 {
1458 	int active_irq, clear_irq, i;
1459 
1460 	/* Reset the intrruption status from rightmost bit if the corres-
1461 	 * ponding irq event occurs.
1462 	 */
1463 	regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq);
1464 	for (i = 0; i < NAU8825_REG_DATA_LEN; i++) {
1465 		clear_irq = (0x1 << i);
1466 		if (active_irq & clear_irq)
1467 			regmap_write(regmap,
1468 				NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1469 	}
1470 }
1471 
1472 static void nau8825_eject_jack(struct nau8825 *nau8825)
1473 {
1474 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1475 	struct regmap *regmap = nau8825->regmap;
1476 
1477 	/* Force to cancel the cross talk detection process */
1478 	nau8825_xtalk_cancel(nau8825);
1479 
1480 	snd_soc_dapm_disable_pin(dapm, "SAR");
1481 	snd_soc_dapm_disable_pin(dapm, "MICBIAS");
1482 	/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
1483 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1484 		NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
1485 	/* ground HPL/HPR, MICGRND1/2 */
1486 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf);
1487 
1488 	snd_soc_dapm_sync(dapm);
1489 
1490 	/* Clear all interruption status */
1491 	nau8825_int_status_clear_all(regmap);
1492 
1493 	/* Enable the insertion interruption, disable the ejection inter-
1494 	 * ruption, and then bypass de-bounce circuit.
1495 	 */
1496 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
1497 		NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS,
1498 		NAU8825_IRQ_EJECT_DIS);
1499 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1500 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1501 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN,
1502 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1503 		NAU8825_IRQ_HEADSET_COMPLETE_EN);
1504 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1505 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
1506 
1507 	/* Disable ADC needed for interruptions at audo mode */
1508 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1509 		NAU8825_ENABLE_ADC, 0);
1510 
1511 	/* Close clock for jack type detection at manual mode */
1512 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1513 }
1514 
1515 /* Enable audo mode interruptions with internal clock. */
1516 static void nau8825_setup_auto_irq(struct nau8825 *nau8825)
1517 {
1518 	struct regmap *regmap = nau8825->regmap;
1519 
1520 	/* Enable headset jack type detection complete interruption and
1521 	 * jack ejection interruption.
1522 	 */
1523 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1524 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0);
1525 
1526 	/* Enable internal VCO needed for interruptions */
1527 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
1528 
1529 	/* Enable ADC needed for interruptions */
1530 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1531 		NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
1532 
1533 	/* Chip needs one FSCLK cycle in order to generate interruptions,
1534 	 * as we cannot guarantee one will be provided by the system. Turning
1535 	 * master mode on then off enables us to generate that FSCLK cycle
1536 	 * with a minimum of contention on the clock bus.
1537 	 */
1538 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1539 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER);
1540 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1541 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE);
1542 
1543 	/* Not bypass de-bounce circuit */
1544 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1545 		NAU8825_JACK_DET_DB_BYPASS, 0);
1546 
1547 	/* Unmask all interruptions */
1548 	regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0);
1549 
1550 	/* Restart the jack detection process at auto mode */
1551 	nau8825_restart_jack_detection(regmap);
1552 }
1553 
1554 static int nau8825_button_decode(int value)
1555 {
1556 	int buttons = 0;
1557 
1558 	/* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */
1559 	if (value & BIT(0))
1560 		buttons |= SND_JACK_BTN_0;
1561 	if (value & BIT(1))
1562 		buttons |= SND_JACK_BTN_1;
1563 	if (value & BIT(2))
1564 		buttons |= SND_JACK_BTN_2;
1565 	if (value & BIT(3))
1566 		buttons |= SND_JACK_BTN_3;
1567 	if (value & BIT(4))
1568 		buttons |= SND_JACK_BTN_4;
1569 	if (value & BIT(5))
1570 		buttons |= SND_JACK_BTN_5;
1571 
1572 	return buttons;
1573 }
1574 
1575 static int nau8825_jack_insert(struct nau8825 *nau8825)
1576 {
1577 	struct regmap *regmap = nau8825->regmap;
1578 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1579 	int jack_status_reg, mic_detected;
1580 	int type = 0;
1581 
1582 	regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg);
1583 	mic_detected = (jack_status_reg >> 10) & 3;
1584 	/* The JKSLV and JKR2 all detected in high impedance headset */
1585 	if (mic_detected == 0x3)
1586 		nau8825->high_imped = true;
1587 	else
1588 		nau8825->high_imped = false;
1589 
1590 	switch (mic_detected) {
1591 	case 0:
1592 		/* no mic */
1593 		type = SND_JACK_HEADPHONE;
1594 		break;
1595 	case 1:
1596 		dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n");
1597 		type = SND_JACK_HEADSET;
1598 
1599 		/* Unground MICGND1 */
1600 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1601 			1 << 2);
1602 		/* Attach 2kOhm Resistor from MICBIAS to MICGND1 */
1603 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1604 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1605 			NAU8825_MICBIAS_JKR2);
1606 		/* Attach SARADC to MICGND1 */
1607 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1608 			NAU8825_SAR_INPUT_MASK,
1609 			NAU8825_SAR_INPUT_JKR2);
1610 
1611 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1612 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1613 		snd_soc_dapm_sync(dapm);
1614 		break;
1615 	case 2:
1616 		dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n");
1617 		type = SND_JACK_HEADSET;
1618 
1619 		/* Unground MICGND2 */
1620 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1621 			2 << 2);
1622 		/* Attach 2kOhm Resistor from MICBIAS to MICGND2 */
1623 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1624 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1625 			NAU8825_MICBIAS_JKSLV);
1626 		/* Attach SARADC to MICGND2 */
1627 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1628 			NAU8825_SAR_INPUT_MASK,
1629 			NAU8825_SAR_INPUT_JKSLV);
1630 
1631 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1632 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1633 		snd_soc_dapm_sync(dapm);
1634 		break;
1635 	case 3:
1636 		/* detect error case */
1637 		dev_err(nau8825->dev, "detection error; disable mic function\n");
1638 		type = SND_JACK_HEADPHONE;
1639 		break;
1640 	}
1641 
1642 	/* Leaving HPOL/R grounded after jack insert by default. They will be
1643 	 * ungrounded as part of the widget power up sequence at the beginning
1644 	 * of playback to reduce pop.
1645 	 */
1646 	return type;
1647 }
1648 
1649 #define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \
1650 		SND_JACK_BTN_2 | SND_JACK_BTN_3)
1651 
1652 static irqreturn_t nau8825_interrupt(int irq, void *data)
1653 {
1654 	struct nau8825 *nau8825 = (struct nau8825 *)data;
1655 	struct regmap *regmap = nau8825->regmap;
1656 	int active_irq, clear_irq = 0, event = 0, event_mask = 0;
1657 
1658 	if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) {
1659 		dev_err(nau8825->dev, "failed to read irq status\n");
1660 		return IRQ_NONE;
1661 	}
1662 
1663 	if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) ==
1664 		NAU8825_JACK_EJECTION_DETECTED) {
1665 
1666 		nau8825_eject_jack(nau8825);
1667 		event_mask |= SND_JACK_HEADSET;
1668 		clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK;
1669 	} else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) {
1670 		int key_status;
1671 
1672 		regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS,
1673 			&key_status);
1674 
1675 		/* upper 8 bits of the register are for short pressed keys,
1676 		 * lower 8 bits - for long pressed buttons
1677 		 */
1678 		nau8825->button_pressed = nau8825_button_decode(
1679 			key_status >> 8);
1680 
1681 		event |= nau8825->button_pressed;
1682 		event_mask |= NAU8825_BUTTONS;
1683 		clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ;
1684 	} else if (active_irq & NAU8825_KEY_RELEASE_IRQ) {
1685 		event_mask = NAU8825_BUTTONS;
1686 		clear_irq = NAU8825_KEY_RELEASE_IRQ;
1687 	} else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) {
1688 		if (nau8825_is_jack_inserted(regmap)) {
1689 			event |= nau8825_jack_insert(nau8825);
1690 			if (!nau8825->xtalk_bypass && !nau8825->high_imped) {
1691 				/* Apply the cross talk suppression in the
1692 				 * headset without high impedance.
1693 				 */
1694 				if (!nau8825->xtalk_protect) {
1695 					/* Raise protection for cross talk de-
1696 					 * tection if no protection before.
1697 					 * The driver has to cancel the pro-
1698 					 * cess and restore changes if process
1699 					 * is ongoing when ejection.
1700 					 */
1701 					int ret;
1702 					nau8825->xtalk_protect = true;
1703 					ret = nau8825_sema_acquire(nau8825, 0);
1704 					if (ret < 0)
1705 						nau8825->xtalk_protect = false;
1706 				}
1707 				/* Startup cross talk detection process */
1708 				nau8825->xtalk_state = NAU8825_XTALK_PREPARE;
1709 				schedule_work(&nau8825->xtalk_work);
1710 			} else {
1711 				/* The cross talk suppression shouldn't apply
1712 				 * in the headset with high impedance. Thus,
1713 				 * relieve the protection raised before.
1714 				 */
1715 				if (nau8825->xtalk_protect) {
1716 					nau8825_sema_release(nau8825);
1717 					nau8825->xtalk_protect = false;
1718 				}
1719 			}
1720 		} else {
1721 			dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n");
1722 			nau8825_eject_jack(nau8825);
1723 		}
1724 
1725 		event_mask |= SND_JACK_HEADSET;
1726 		clear_irq = NAU8825_HEADSET_COMPLETION_IRQ;
1727 		/* Record the interruption report event for driver to report
1728 		 * the event later. The jack report will delay until cross
1729 		 * talk detection process is done.
1730 		 */
1731 		if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) {
1732 			nau8825->xtalk_event = event;
1733 			nau8825->xtalk_event_mask = event_mask;
1734 		}
1735 	} else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) {
1736 		schedule_work(&nau8825->xtalk_work);
1737 		clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ;
1738 	} else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) ==
1739 		NAU8825_JACK_INSERTION_DETECTED) {
1740 		/* One more step to check GPIO status directly. Thus, the
1741 		 * driver can confirm the real insertion interruption because
1742 		 * the intrruption at manual mode has bypassed debounce
1743 		 * circuit which can get rid of unstable status.
1744 		 */
1745 		if (nau8825_is_jack_inserted(regmap)) {
1746 			/* Turn off insertion interruption at manual mode */
1747 			regmap_update_bits(regmap,
1748 				NAU8825_REG_INTERRUPT_DIS_CTRL,
1749 				NAU8825_IRQ_INSERT_DIS,
1750 				NAU8825_IRQ_INSERT_DIS);
1751 			regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1752 				NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN);
1753 			/* Enable interruption for jack type detection at audo
1754 			 * mode which can detect microphone and jack type.
1755 			 */
1756 			nau8825_setup_auto_irq(nau8825);
1757 		}
1758 	}
1759 
1760 	if (!clear_irq)
1761 		clear_irq = active_irq;
1762 	/* clears the rightmost interruption */
1763 	regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1764 
1765 	/* Delay jack report until cross talk detection is done. It can avoid
1766 	 * application to do playback preparation when cross talk detection
1767 	 * process is still working. Otherwise, the resource like clock and
1768 	 * power will be issued by them at the same time and conflict happens.
1769 	 */
1770 	if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE)
1771 		snd_soc_jack_report(nau8825->jack, event, event_mask);
1772 
1773 	return IRQ_HANDLED;
1774 }
1775 
1776 static void nau8825_setup_buttons(struct nau8825 *nau8825)
1777 {
1778 	struct regmap *regmap = nau8825->regmap;
1779 
1780 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1781 		NAU8825_SAR_TRACKING_GAIN_MASK,
1782 		nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT);
1783 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1784 		NAU8825_SAR_COMPARE_TIME_MASK,
1785 		nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT);
1786 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1787 		NAU8825_SAR_SAMPLING_TIME_MASK,
1788 		nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT);
1789 
1790 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1791 		NAU8825_KEYDET_LEVELS_NR_MASK,
1792 		(nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT);
1793 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1794 		NAU8825_KEYDET_HYSTERESIS_MASK,
1795 		nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT);
1796 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1797 		NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK,
1798 		nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT);
1799 
1800 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1,
1801 		(nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]);
1802 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2,
1803 		(nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]);
1804 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3,
1805 		(nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]);
1806 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4,
1807 		(nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]);
1808 
1809 	/* Enable short press and release interruptions */
1810 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1811 		NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN,
1812 		0);
1813 }
1814 
1815 static void nau8825_init_regs(struct nau8825 *nau8825)
1816 {
1817 	struct regmap *regmap = nau8825->regmap;
1818 
1819 	/* Latch IIC LSB value */
1820 	regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001);
1821 	/* Enable Bias/Vmid */
1822 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1823 		NAU8825_BIAS_VMID, NAU8825_BIAS_VMID);
1824 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
1825 		NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN);
1826 
1827 	/* VMID Tieoff */
1828 	regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ,
1829 		NAU8825_BIAS_VMID_SEL_MASK,
1830 		nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT);
1831 	/* Disable Boost Driver, Automatic Short circuit protection enable */
1832 	regmap_update_bits(regmap, NAU8825_REG_BOOST,
1833 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1834 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN,
1835 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1836 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN);
1837 
1838 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1839 		NAU8825_JKDET_OUTPUT_EN,
1840 		nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN);
1841 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1842 		NAU8825_JKDET_PULL_EN,
1843 		nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN);
1844 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1845 		NAU8825_JKDET_PULL_UP,
1846 		nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0);
1847 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1848 		NAU8825_JACK_POLARITY,
1849 		/* jkdet_polarity - 1  is for active-low */
1850 		nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY);
1851 
1852 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1853 		NAU8825_JACK_INSERT_DEBOUNCE_MASK,
1854 		nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT);
1855 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1856 		NAU8825_JACK_EJECT_DEBOUNCE_MASK,
1857 		nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT);
1858 
1859 	/* Mask unneeded IRQs: 1 - disable, 0 - enable */
1860 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff);
1861 
1862 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1863 		NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage);
1864 
1865 	if (nau8825->sar_threshold_num)
1866 		nau8825_setup_buttons(nau8825);
1867 
1868 	/* Default oversampling/decimations settings are unusable
1869 	 * (audible hiss). Set it to something better.
1870 	 */
1871 	regmap_update_bits(regmap, NAU8825_REG_ADC_RATE,
1872 		NAU8825_ADC_SYNC_DOWN_MASK | NAU8825_ADC_SINC4_EN,
1873 		NAU8825_ADC_SYNC_DOWN_64);
1874 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1875 		NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_64);
1876 	/* Disable DACR/L power */
1877 	regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP,
1878 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
1879 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
1880 	/* Enable TESTDAC. This sets the analog DAC inputs to a '0' input
1881 	 * signal to avoid any glitches due to power up transients in both
1882 	 * the analog and digital DAC circuit.
1883 	 */
1884 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1885 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
1886 	/* CICCLP off */
1887 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1888 		NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF);
1889 
1890 	/* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */
1891 	regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2,
1892 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1893 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB,
1894 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1895 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB);
1896 	/* Class G timer 64ms */
1897 	regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL,
1898 		NAU8825_CLASSG_TIMER_MASK,
1899 		0x20 << NAU8825_CLASSG_TIMER_SFT);
1900 	/* DAC clock delay 2ns, VREF */
1901 	regmap_update_bits(regmap, NAU8825_REG_RDAC,
1902 		NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK,
1903 		(0x2 << NAU8825_RDAC_CLK_DELAY_SFT) |
1904 		(0x3 << NAU8825_RDAC_VREF_SFT));
1905 	/* Config L/R channel */
1906 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
1907 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L);
1908 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
1909 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R);
1910 	/* Disable short Frame Sync detection logic */
1911 	regmap_update_bits(regmap, NAU8825_REG_LEFT_TIME_SLOT,
1912 		NAU8825_DIS_FS_SHORT_DET, NAU8825_DIS_FS_SHORT_DET);
1913 }
1914 
1915 static const struct regmap_config nau8825_regmap_config = {
1916 	.val_bits = NAU8825_REG_DATA_LEN,
1917 	.reg_bits = NAU8825_REG_ADDR_LEN,
1918 
1919 	.max_register = NAU8825_REG_MAX,
1920 	.readable_reg = nau8825_readable_reg,
1921 	.writeable_reg = nau8825_writeable_reg,
1922 	.volatile_reg = nau8825_volatile_reg,
1923 
1924 	.cache_type = REGCACHE_RBTREE,
1925 	.reg_defaults = nau8825_reg_defaults,
1926 	.num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults),
1927 };
1928 
1929 static int nau8825_codec_probe(struct snd_soc_codec *codec)
1930 {
1931 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1932 	struct snd_soc_dapm_context *dapm = snd_soc_codec_get_dapm(codec);
1933 
1934 	nau8825->dapm = dapm;
1935 
1936 	return 0;
1937 }
1938 
1939 static int nau8825_codec_remove(struct snd_soc_codec *codec)
1940 {
1941 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1942 
1943 	/* Cancel and reset cross tak suppresstion detection funciton */
1944 	nau8825_xtalk_cancel(nau8825);
1945 
1946 	return 0;
1947 }
1948 
1949 /**
1950  * nau8825_calc_fll_param - Calculate FLL parameters.
1951  * @fll_in: external clock provided to codec.
1952  * @fs: sampling rate.
1953  * @fll_param: Pointer to structure of FLL parameters.
1954  *
1955  * Calculate FLL parameters to configure codec.
1956  *
1957  * Returns 0 for success or negative error code.
1958  */
1959 static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs,
1960 		struct nau8825_fll *fll_param)
1961 {
1962 	u64 fvco, fvco_max;
1963 	unsigned int fref, i, fvco_sel;
1964 
1965 	/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
1966 	 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
1967 	 * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK
1968 	 */
1969 	for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
1970 		fref = fll_in / fll_pre_scalar[i].param;
1971 		if (fref <= NAU_FREF_MAX)
1972 			break;
1973 	}
1974 	if (i == ARRAY_SIZE(fll_pre_scalar))
1975 		return -EINVAL;
1976 	fll_param->clk_ref_div = fll_pre_scalar[i].val;
1977 
1978 	/* Choose the FLL ratio based on FREF */
1979 	for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
1980 		if (fref >= fll_ratio[i].param)
1981 			break;
1982 	}
1983 	if (i == ARRAY_SIZE(fll_ratio))
1984 		return -EINVAL;
1985 	fll_param->ratio = fll_ratio[i].val;
1986 
1987 	/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
1988 	 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be
1989 	 * guaranteed across the full range of operation.
1990 	 * FDCO = freq_out * 2 * mclk_src_scaling
1991 	 */
1992 	fvco_max = 0;
1993 	fvco_sel = ARRAY_SIZE(mclk_src_scaling);
1994 	for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
1995 		fvco = 256 * fs * 2 * mclk_src_scaling[i].param;
1996 		if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
1997 			fvco_max < fvco) {
1998 			fvco_max = fvco;
1999 			fvco_sel = i;
2000 		}
2001 	}
2002 	if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
2003 		return -EINVAL;
2004 	fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
2005 
2006 	/* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
2007 	 * input based on FDCO, FREF and FLL ratio.
2008 	 */
2009 	fvco = div_u64(fvco_max << 16, fref * fll_param->ratio);
2010 	fll_param->fll_int = (fvco >> 16) & 0x3FF;
2011 	fll_param->fll_frac = fvco & 0xFFFF;
2012 	return 0;
2013 }
2014 
2015 static void nau8825_fll_apply(struct nau8825 *nau8825,
2016 		struct nau8825_fll *fll_param)
2017 {
2018 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2019 		NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK,
2020 		NAU8825_CLK_SRC_MCLK | fll_param->mclk_src);
2021 	/* Make DSP operate at high speed for better performance. */
2022 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
2023 		NAU8825_FLL_RATIO_MASK | NAU8825_ICTRL_LATCH_MASK,
2024 		fll_param->ratio | (0x6 << NAU8825_ICTRL_LATCH_SFT));
2025 	/* FLL 16-bit fractional input */
2026 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac);
2027 	/* FLL 10-bit integer input */
2028 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3,
2029 			NAU8825_FLL_INTEGER_MASK, fll_param->fll_int);
2030 	/* FLL pre-scaler */
2031 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4,
2032 			NAU8825_FLL_REF_DIV_MASK,
2033 			fll_param->clk_ref_div << NAU8825_FLL_REF_DIV_SFT);
2034 	/* select divided VCO input */
2035 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2036 		NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF);
2037 	/* Disable free-running mode */
2038 	regmap_update_bits(nau8825->regmap,
2039 		NAU8825_REG_FLL6, NAU8825_DCO_EN, 0);
2040 	if (fll_param->fll_frac) {
2041 		/* set FLL loop filter enable and cutoff frequency at 500Khz */
2042 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2043 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2044 			NAU8825_FLL_FTR_SW_MASK,
2045 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2046 			NAU8825_FLL_FTR_SW_FILTER);
2047 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2048 			NAU8825_SDM_EN | NAU8825_CUTOFF500,
2049 			NAU8825_SDM_EN | NAU8825_CUTOFF500);
2050 	} else {
2051 		/* disable FLL loop filter and cutoff frequency */
2052 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2053 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2054 			NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU);
2055 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2056 			NAU8825_SDM_EN | NAU8825_CUTOFF500, 0);
2057 	}
2058 }
2059 
2060 /* freq_out must be 256*Fs in order to achieve the best performance */
2061 static int nau8825_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
2062 		unsigned int freq_in, unsigned int freq_out)
2063 {
2064 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2065 	struct nau8825_fll fll_param;
2066 	int ret, fs;
2067 
2068 	fs = freq_out / 256;
2069 	ret = nau8825_calc_fll_param(freq_in, fs, &fll_param);
2070 	if (ret < 0) {
2071 		dev_err(codec->dev, "Unsupported input clock %d\n", freq_in);
2072 		return ret;
2073 	}
2074 	dev_dbg(codec->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
2075 		fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
2076 		fll_param.fll_int, fll_param.clk_ref_div);
2077 
2078 	nau8825_fll_apply(nau8825, &fll_param);
2079 	mdelay(2);
2080 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2081 			NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2082 	return 0;
2083 }
2084 
2085 static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq)
2086 {
2087 	int ret = 0;
2088 
2089 	nau8825->mclk = devm_clk_get(nau8825->dev, "mclk");
2090 	if (IS_ERR(nau8825->mclk)) {
2091 		dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally");
2092 		return 0;
2093 	}
2094 
2095 	if (!nau8825->mclk_freq) {
2096 		ret = clk_prepare_enable(nau8825->mclk);
2097 		if (ret) {
2098 			dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2099 			return ret;
2100 		}
2101 	}
2102 
2103 	if (nau8825->mclk_freq != freq) {
2104 		freq = clk_round_rate(nau8825->mclk, freq);
2105 		ret = clk_set_rate(nau8825->mclk, freq);
2106 		if (ret) {
2107 			dev_err(nau8825->dev, "Unable to set mclk rate\n");
2108 			return ret;
2109 		}
2110 		nau8825->mclk_freq = freq;
2111 	}
2112 
2113 	return 0;
2114 }
2115 
2116 static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap)
2117 {
2118 	regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2119 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK);
2120 	regmap_update_bits(regmap, NAU8825_REG_FLL6,
2121 		NAU8825_DCO_EN, 0);
2122 	/* Make DSP operate as default setting for power saving. */
2123 	regmap_update_bits(regmap, NAU8825_REG_FLL1,
2124 		NAU8825_ICTRL_LATCH_MASK, 0);
2125 }
2126 
2127 static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id,
2128 	unsigned int freq)
2129 {
2130 	struct regmap *regmap = nau8825->regmap;
2131 	int ret;
2132 
2133 	switch (clk_id) {
2134 	case NAU8825_CLK_DIS:
2135 		/* Clock provided externally and disable internal VCO clock */
2136 		nau8825_configure_mclk_as_sysclk(regmap);
2137 		if (nau8825->mclk_freq) {
2138 			clk_disable_unprepare(nau8825->mclk);
2139 			nau8825->mclk_freq = 0;
2140 		}
2141 
2142 		break;
2143 	case NAU8825_CLK_MCLK:
2144 		/* Acquire the semaphore to synchronize the playback and
2145 		 * interrupt handler. In order to avoid the playback inter-
2146 		 * fered by cross talk process, the driver make the playback
2147 		 * preparation halted until cross talk process finish.
2148 		 */
2149 		nau8825_sema_acquire(nau8825, 3 * HZ);
2150 		nau8825_configure_mclk_as_sysclk(regmap);
2151 		/* MCLK not changed by clock tree */
2152 		regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2153 			NAU8825_CLK_MCLK_SRC_MASK, 0);
2154 		/* Release the semaphore. */
2155 		nau8825_sema_release(nau8825);
2156 
2157 		ret = nau8825_mclk_prepare(nau8825, freq);
2158 		if (ret)
2159 			return ret;
2160 
2161 		break;
2162 	case NAU8825_CLK_INTERNAL:
2163 		if (nau8825_is_jack_inserted(nau8825->regmap)) {
2164 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2165 				NAU8825_DCO_EN, NAU8825_DCO_EN);
2166 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2167 				NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2168 			/* Decrease the VCO frequency and make DSP operate
2169 			 * as default setting for power saving.
2170 			 */
2171 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2172 				NAU8825_CLK_MCLK_SRC_MASK, 0xf);
2173 			regmap_update_bits(regmap, NAU8825_REG_FLL1,
2174 				NAU8825_ICTRL_LATCH_MASK |
2175 				NAU8825_FLL_RATIO_MASK, 0x10);
2176 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2177 				NAU8825_SDM_EN, NAU8825_SDM_EN);
2178 		} else {
2179 			/* The clock turns off intentionally for power saving
2180 			 * when no headset connected.
2181 			 */
2182 			nau8825_configure_mclk_as_sysclk(regmap);
2183 			dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n");
2184 		}
2185 		if (nau8825->mclk_freq) {
2186 			clk_disable_unprepare(nau8825->mclk);
2187 			nau8825->mclk_freq = 0;
2188 		}
2189 
2190 		break;
2191 	case NAU8825_CLK_FLL_MCLK:
2192 		/* Acquire the semaphore to synchronize the playback and
2193 		 * interrupt handler. In order to avoid the playback inter-
2194 		 * fered by cross talk process, the driver make the playback
2195 		 * preparation halted until cross talk process finish.
2196 		 */
2197 		nau8825_sema_acquire(nau8825, 3 * HZ);
2198 		/* Higher FLL reference input frequency can only set lower
2199 		 * gain error, such as 0000 for input reference from MCLK
2200 		 * 12.288Mhz.
2201 		 */
2202 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2203 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2204 			NAU8825_FLL_CLK_SRC_MCLK | 0);
2205 		/* Release the semaphore. */
2206 		nau8825_sema_release(nau8825);
2207 
2208 		ret = nau8825_mclk_prepare(nau8825, freq);
2209 		if (ret)
2210 			return ret;
2211 
2212 		break;
2213 	case NAU8825_CLK_FLL_BLK:
2214 		/* Acquire the semaphore to synchronize the playback and
2215 		 * interrupt handler. In order to avoid the playback inter-
2216 		 * fered by cross talk process, the driver make the playback
2217 		 * preparation halted until cross talk process finish.
2218 		 */
2219 		nau8825_sema_acquire(nau8825, 3 * HZ);
2220 		/* If FLL reference input is from low frequency source,
2221 		 * higher error gain can apply such as 0xf which has
2222 		 * the most sensitive gain error correction threshold,
2223 		 * Therefore, FLL has the most accurate DCO to
2224 		 * target frequency.
2225 		 */
2226 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2227 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2228 			NAU8825_FLL_CLK_SRC_BLK |
2229 			(0xf << NAU8825_GAIN_ERR_SFT));
2230 		/* Release the semaphore. */
2231 		nau8825_sema_release(nau8825);
2232 
2233 		if (nau8825->mclk_freq) {
2234 			clk_disable_unprepare(nau8825->mclk);
2235 			nau8825->mclk_freq = 0;
2236 		}
2237 
2238 		break;
2239 	case NAU8825_CLK_FLL_FS:
2240 		/* Acquire the semaphore to synchronize the playback and
2241 		 * interrupt handler. In order to avoid the playback inter-
2242 		 * fered by cross talk process, the driver make the playback
2243 		 * preparation halted until cross talk process finish.
2244 		 */
2245 		nau8825_sema_acquire(nau8825, 3 * HZ);
2246 		/* If FLL reference input is from low frequency source,
2247 		 * higher error gain can apply such as 0xf which has
2248 		 * the most sensitive gain error correction threshold,
2249 		 * Therefore, FLL has the most accurate DCO to
2250 		 * target frequency.
2251 		 */
2252 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2253 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2254 			NAU8825_FLL_CLK_SRC_FS |
2255 			(0xf << NAU8825_GAIN_ERR_SFT));
2256 		/* Release the semaphore. */
2257 		nau8825_sema_release(nau8825);
2258 
2259 		if (nau8825->mclk_freq) {
2260 			clk_disable_unprepare(nau8825->mclk);
2261 			nau8825->mclk_freq = 0;
2262 		}
2263 
2264 		break;
2265 	default:
2266 		dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id);
2267 		return -EINVAL;
2268 	}
2269 
2270 	dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq,
2271 		clk_id);
2272 	return 0;
2273 }
2274 
2275 static int nau8825_set_sysclk(struct snd_soc_codec *codec, int clk_id,
2276 	int source, unsigned int freq, int dir)
2277 {
2278 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2279 
2280 	return nau8825_configure_sysclk(nau8825, clk_id, freq);
2281 }
2282 
2283 static int nau8825_resume_setup(struct nau8825 *nau8825)
2284 {
2285 	struct regmap *regmap = nau8825->regmap;
2286 
2287 	/* Close clock when jack type detection at manual mode */
2288 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
2289 
2290 	/* Clear all interruption status */
2291 	nau8825_int_status_clear_all(regmap);
2292 
2293 	/* Enable both insertion and ejection interruptions, and then
2294 	 * bypass de-bounce circuit.
2295 	 */
2296 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2297 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN |
2298 		NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN,
2299 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN);
2300 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2301 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
2302 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
2303 		NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0);
2304 
2305 	return 0;
2306 }
2307 
2308 static int nau8825_set_bias_level(struct snd_soc_codec *codec,
2309 				   enum snd_soc_bias_level level)
2310 {
2311 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2312 	int ret;
2313 
2314 	switch (level) {
2315 	case SND_SOC_BIAS_ON:
2316 		break;
2317 
2318 	case SND_SOC_BIAS_PREPARE:
2319 		break;
2320 
2321 	case SND_SOC_BIAS_STANDBY:
2322 		if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) {
2323 			if (nau8825->mclk_freq) {
2324 				ret = clk_prepare_enable(nau8825->mclk);
2325 				if (ret) {
2326 					dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2327 					return ret;
2328 				}
2329 			}
2330 			/* Setup codec configuration after resume */
2331 			nau8825_resume_setup(nau8825);
2332 		}
2333 		break;
2334 
2335 	case SND_SOC_BIAS_OFF:
2336 		/* Reset the configuration of jack type for detection */
2337 		/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
2338 		regmap_update_bits(nau8825->regmap, NAU8825_REG_MIC_BIAS,
2339 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
2340 		/* ground HPL/HPR, MICGRND1/2 */
2341 		regmap_update_bits(nau8825->regmap,
2342 			NAU8825_REG_HSD_CTRL, 0xf, 0xf);
2343 		/* Cancel and reset cross talk detection funciton */
2344 		nau8825_xtalk_cancel(nau8825);
2345 		/* Turn off all interruptions before system shutdown. Keep the
2346 		 * interruption quiet before resume setup completes.
2347 		 */
2348 		regmap_write(nau8825->regmap,
2349 			NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff);
2350 		/* Disable ADC needed for interruptions at audo mode */
2351 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
2352 			NAU8825_ENABLE_ADC, 0);
2353 		if (nau8825->mclk_freq)
2354 			clk_disable_unprepare(nau8825->mclk);
2355 		break;
2356 	}
2357 	return 0;
2358 }
2359 
2360 static int __maybe_unused nau8825_suspend(struct snd_soc_codec *codec)
2361 {
2362 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2363 
2364 	disable_irq(nau8825->irq);
2365 	snd_soc_codec_force_bias_level(codec, SND_SOC_BIAS_OFF);
2366 	/* Power down codec power; don't suppoet button wakeup */
2367 	snd_soc_dapm_disable_pin(nau8825->dapm, "SAR");
2368 	snd_soc_dapm_disable_pin(nau8825->dapm, "MICBIAS");
2369 	snd_soc_dapm_sync(nau8825->dapm);
2370 	regcache_cache_only(nau8825->regmap, true);
2371 	regcache_mark_dirty(nau8825->regmap);
2372 
2373 	return 0;
2374 }
2375 
2376 static int __maybe_unused nau8825_resume(struct snd_soc_codec *codec)
2377 {
2378 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2379 	int ret;
2380 
2381 	regcache_cache_only(nau8825->regmap, false);
2382 	regcache_sync(nau8825->regmap);
2383 	nau8825->xtalk_protect = true;
2384 	ret = nau8825_sema_acquire(nau8825, 0);
2385 	if (ret < 0)
2386 		nau8825->xtalk_protect = false;
2387 	enable_irq(nau8825->irq);
2388 
2389 	return 0;
2390 }
2391 
2392 static const struct snd_soc_codec_driver nau8825_codec_driver = {
2393 	.probe = nau8825_codec_probe,
2394 	.remove = nau8825_codec_remove,
2395 	.set_sysclk = nau8825_set_sysclk,
2396 	.set_pll = nau8825_set_pll,
2397 	.set_bias_level = nau8825_set_bias_level,
2398 	.suspend_bias_off = true,
2399 	.suspend = nau8825_suspend,
2400 	.resume = nau8825_resume,
2401 
2402 	.component_driver = {
2403 		.controls		= nau8825_controls,
2404 		.num_controls		= ARRAY_SIZE(nau8825_controls),
2405 		.dapm_widgets		= nau8825_dapm_widgets,
2406 		.num_dapm_widgets	= ARRAY_SIZE(nau8825_dapm_widgets),
2407 		.dapm_routes		= nau8825_dapm_routes,
2408 		.num_dapm_routes	= ARRAY_SIZE(nau8825_dapm_routes),
2409 	},
2410 };
2411 
2412 static void nau8825_reset_chip(struct regmap *regmap)
2413 {
2414 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2415 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2416 }
2417 
2418 static void nau8825_print_device_properties(struct nau8825 *nau8825)
2419 {
2420 	int i;
2421 	struct device *dev = nau8825->dev;
2422 
2423 	dev_dbg(dev, "jkdet-enable:         %d\n", nau8825->jkdet_enable);
2424 	dev_dbg(dev, "jkdet-pull-enable:    %d\n", nau8825->jkdet_pull_enable);
2425 	dev_dbg(dev, "jkdet-pull-up:        %d\n", nau8825->jkdet_pull_up);
2426 	dev_dbg(dev, "jkdet-polarity:       %d\n", nau8825->jkdet_polarity);
2427 	dev_dbg(dev, "micbias-voltage:      %d\n", nau8825->micbias_voltage);
2428 	dev_dbg(dev, "vref-impedance:       %d\n", nau8825->vref_impedance);
2429 
2430 	dev_dbg(dev, "sar-threshold-num:    %d\n", nau8825->sar_threshold_num);
2431 	for (i = 0; i < nau8825->sar_threshold_num; i++)
2432 		dev_dbg(dev, "sar-threshold[%d]=%d\n", i,
2433 				nau8825->sar_threshold[i]);
2434 
2435 	dev_dbg(dev, "sar-hysteresis:       %d\n", nau8825->sar_hysteresis);
2436 	dev_dbg(dev, "sar-voltage:          %d\n", nau8825->sar_voltage);
2437 	dev_dbg(dev, "sar-compare-time:     %d\n", nau8825->sar_compare_time);
2438 	dev_dbg(dev, "sar-sampling-time:    %d\n", nau8825->sar_sampling_time);
2439 	dev_dbg(dev, "short-key-debounce:   %d\n", nau8825->key_debounce);
2440 	dev_dbg(dev, "jack-insert-debounce: %d\n",
2441 			nau8825->jack_insert_debounce);
2442 	dev_dbg(dev, "jack-eject-debounce:  %d\n",
2443 			nau8825->jack_eject_debounce);
2444 	dev_dbg(dev, "crosstalk-bypass:     %d\n",
2445 			nau8825->xtalk_bypass);
2446 }
2447 
2448 static int nau8825_read_device_properties(struct device *dev,
2449 	struct nau8825 *nau8825) {
2450 	int ret;
2451 
2452 	nau8825->jkdet_enable = device_property_read_bool(dev,
2453 		"nuvoton,jkdet-enable");
2454 	nau8825->jkdet_pull_enable = device_property_read_bool(dev,
2455 		"nuvoton,jkdet-pull-enable");
2456 	nau8825->jkdet_pull_up = device_property_read_bool(dev,
2457 		"nuvoton,jkdet-pull-up");
2458 	ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity",
2459 		&nau8825->jkdet_polarity);
2460 	if (ret)
2461 		nau8825->jkdet_polarity = 1;
2462 	ret = device_property_read_u32(dev, "nuvoton,micbias-voltage",
2463 		&nau8825->micbias_voltage);
2464 	if (ret)
2465 		nau8825->micbias_voltage = 6;
2466 	ret = device_property_read_u32(dev, "nuvoton,vref-impedance",
2467 		&nau8825->vref_impedance);
2468 	if (ret)
2469 		nau8825->vref_impedance = 2;
2470 	ret = device_property_read_u32(dev, "nuvoton,sar-threshold-num",
2471 		&nau8825->sar_threshold_num);
2472 	if (ret)
2473 		nau8825->sar_threshold_num = 4;
2474 	ret = device_property_read_u32_array(dev, "nuvoton,sar-threshold",
2475 		nau8825->sar_threshold, nau8825->sar_threshold_num);
2476 	if (ret) {
2477 		nau8825->sar_threshold[0] = 0x08;
2478 		nau8825->sar_threshold[1] = 0x12;
2479 		nau8825->sar_threshold[2] = 0x26;
2480 		nau8825->sar_threshold[3] = 0x73;
2481 	}
2482 	ret = device_property_read_u32(dev, "nuvoton,sar-hysteresis",
2483 		&nau8825->sar_hysteresis);
2484 	if (ret)
2485 		nau8825->sar_hysteresis = 0;
2486 	ret = device_property_read_u32(dev, "nuvoton,sar-voltage",
2487 		&nau8825->sar_voltage);
2488 	if (ret)
2489 		nau8825->sar_voltage = 6;
2490 	ret = device_property_read_u32(dev, "nuvoton,sar-compare-time",
2491 		&nau8825->sar_compare_time);
2492 	if (ret)
2493 		nau8825->sar_compare_time = 1;
2494 	ret = device_property_read_u32(dev, "nuvoton,sar-sampling-time",
2495 		&nau8825->sar_sampling_time);
2496 	if (ret)
2497 		nau8825->sar_sampling_time = 1;
2498 	ret = device_property_read_u32(dev, "nuvoton,short-key-debounce",
2499 		&nau8825->key_debounce);
2500 	if (ret)
2501 		nau8825->key_debounce = 3;
2502 	ret = device_property_read_u32(dev, "nuvoton,jack-insert-debounce",
2503 		&nau8825->jack_insert_debounce);
2504 	if (ret)
2505 		nau8825->jack_insert_debounce = 7;
2506 	ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
2507 		&nau8825->jack_eject_debounce);
2508 	if (ret)
2509 		nau8825->jack_eject_debounce = 0;
2510 	nau8825->xtalk_bypass = device_property_read_bool(dev,
2511 		"nuvoton,crosstalk-bypass");
2512 
2513 	nau8825->mclk = devm_clk_get(dev, "mclk");
2514 	if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) {
2515 		return -EPROBE_DEFER;
2516 	} else if (PTR_ERR(nau8825->mclk) == -ENOENT) {
2517 		/* The MCLK is managed externally or not used at all */
2518 		nau8825->mclk = NULL;
2519 		dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally");
2520 	} else if (IS_ERR(nau8825->mclk)) {
2521 		return -EINVAL;
2522 	}
2523 
2524 	return 0;
2525 }
2526 
2527 static int nau8825_setup_irq(struct nau8825 *nau8825)
2528 {
2529 	int ret;
2530 
2531 	ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL,
2532 		nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2533 		"nau8825", nau8825);
2534 
2535 	if (ret) {
2536 		dev_err(nau8825->dev, "Cannot request irq %d (%d)\n",
2537 			nau8825->irq, ret);
2538 		return ret;
2539 	}
2540 
2541 	return 0;
2542 }
2543 
2544 static int nau8825_i2c_probe(struct i2c_client *i2c,
2545 	const struct i2c_device_id *id)
2546 {
2547 	struct device *dev = &i2c->dev;
2548 	struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev);
2549 	int ret, value;
2550 
2551 	if (!nau8825) {
2552 		nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL);
2553 		if (!nau8825)
2554 			return -ENOMEM;
2555 		ret = nau8825_read_device_properties(dev, nau8825);
2556 		if (ret)
2557 			return ret;
2558 	}
2559 
2560 	i2c_set_clientdata(i2c, nau8825);
2561 
2562 	nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config);
2563 	if (IS_ERR(nau8825->regmap))
2564 		return PTR_ERR(nau8825->regmap);
2565 	nau8825->dev = dev;
2566 	nau8825->irq = i2c->irq;
2567 	/* Initiate parameters, semaphore and work queue which are needed in
2568 	 * cross talk suppression measurment function.
2569 	 */
2570 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
2571 	nau8825->xtalk_protect = false;
2572 	sema_init(&nau8825->xtalk_sem, 1);
2573 	INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work);
2574 
2575 	nau8825_print_device_properties(nau8825);
2576 
2577 	nau8825_reset_chip(nau8825->regmap);
2578 	ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value);
2579 	if (ret < 0) {
2580 		dev_err(dev, "Failed to read device id from the NAU8825: %d\n",
2581 			ret);
2582 		return ret;
2583 	}
2584 	if ((value & NAU8825_SOFTWARE_ID_MASK) !=
2585 			NAU8825_SOFTWARE_ID_NAU8825) {
2586 		dev_err(dev, "Not a NAU8825 chip\n");
2587 		return -ENODEV;
2588 	}
2589 
2590 	nau8825_init_regs(nau8825);
2591 
2592 	if (i2c->irq)
2593 		nau8825_setup_irq(nau8825);
2594 
2595 	return snd_soc_register_codec(&i2c->dev, &nau8825_codec_driver,
2596 		&nau8825_dai, 1);
2597 }
2598 
2599 static int nau8825_i2c_remove(struct i2c_client *client)
2600 {
2601 	snd_soc_unregister_codec(&client->dev);
2602 	return 0;
2603 }
2604 
2605 static const struct i2c_device_id nau8825_i2c_ids[] = {
2606 	{ "nau8825", 0 },
2607 	{ }
2608 };
2609 MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids);
2610 
2611 #ifdef CONFIG_OF
2612 static const struct of_device_id nau8825_of_ids[] = {
2613 	{ .compatible = "nuvoton,nau8825", },
2614 	{}
2615 };
2616 MODULE_DEVICE_TABLE(of, nau8825_of_ids);
2617 #endif
2618 
2619 #ifdef CONFIG_ACPI
2620 static const struct acpi_device_id nau8825_acpi_match[] = {
2621 	{ "10508825", 0 },
2622 	{},
2623 };
2624 MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match);
2625 #endif
2626 
2627 static struct i2c_driver nau8825_driver = {
2628 	.driver = {
2629 		.name = "nau8825",
2630 		.of_match_table = of_match_ptr(nau8825_of_ids),
2631 		.acpi_match_table = ACPI_PTR(nau8825_acpi_match),
2632 	},
2633 	.probe = nau8825_i2c_probe,
2634 	.remove = nau8825_i2c_remove,
2635 	.id_table = nau8825_i2c_ids,
2636 };
2637 module_i2c_driver(nau8825_driver);
2638 
2639 MODULE_DESCRIPTION("ASoC nau8825 driver");
2640 MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>");
2641 MODULE_LICENSE("GPL");
2642