1 /* 2 * Nuvoton NAU8825 audio codec driver 3 * 4 * Copyright 2015 Google Chromium project. 5 * Author: Anatol Pomozov <anatol@chromium.org> 6 * Copyright 2015 Nuvoton Technology Corp. 7 * Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com> 8 * 9 * Licensed under the GPL-2. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/delay.h> 14 #include <linux/init.h> 15 #include <linux/i2c.h> 16 #include <linux/regmap.h> 17 #include <linux/slab.h> 18 #include <linux/clk.h> 19 #include <linux/acpi.h> 20 #include <linux/math64.h> 21 #include <linux/semaphore.h> 22 23 #include <sound/initval.h> 24 #include <sound/tlv.h> 25 #include <sound/core.h> 26 #include <sound/pcm.h> 27 #include <sound/pcm_params.h> 28 #include <sound/soc.h> 29 #include <sound/jack.h> 30 31 32 #include "nau8825.h" 33 34 35 #define NUVOTON_CODEC_DAI "nau8825-hifi" 36 37 #define NAU_FREF_MAX 13500000 38 #define NAU_FVCO_MAX 124000000 39 #define NAU_FVCO_MIN 90000000 40 41 /* cross talk suppression detection */ 42 #define LOG10_MAGIC 646456993 43 #define GAIN_AUGMENT 22500 44 #define SIDETONE_BASE 207000 45 46 /* the maximum frequency of CLK_ADC and CLK_DAC */ 47 #define CLK_DA_AD_MAX 6144000 48 49 static int nau8825_configure_sysclk(struct nau8825 *nau8825, 50 int clk_id, unsigned int freq); 51 52 struct nau8825_fll { 53 int mclk_src; 54 int ratio; 55 int fll_frac; 56 int fll_int; 57 int clk_ref_div; 58 }; 59 60 struct nau8825_fll_attr { 61 unsigned int param; 62 unsigned int val; 63 }; 64 65 /* scaling for mclk from sysclk_src output */ 66 static const struct nau8825_fll_attr mclk_src_scaling[] = { 67 { 1, 0x0 }, 68 { 2, 0x2 }, 69 { 4, 0x3 }, 70 { 8, 0x4 }, 71 { 16, 0x5 }, 72 { 32, 0x6 }, 73 { 3, 0x7 }, 74 { 6, 0xa }, 75 { 12, 0xb }, 76 { 24, 0xc }, 77 { 48, 0xd }, 78 { 96, 0xe }, 79 { 5, 0xf }, 80 }; 81 82 /* ratio for input clk freq */ 83 static const struct nau8825_fll_attr fll_ratio[] = { 84 { 512000, 0x01 }, 85 { 256000, 0x02 }, 86 { 128000, 0x04 }, 87 { 64000, 0x08 }, 88 { 32000, 0x10 }, 89 { 8000, 0x20 }, 90 { 4000, 0x40 }, 91 }; 92 93 static const struct nau8825_fll_attr fll_pre_scalar[] = { 94 { 1, 0x0 }, 95 { 2, 0x1 }, 96 { 4, 0x2 }, 97 { 8, 0x3 }, 98 }; 99 100 /* over sampling rate */ 101 struct nau8825_osr_attr { 102 unsigned int osr; 103 unsigned int clk_src; 104 }; 105 106 static const struct nau8825_osr_attr osr_dac_sel[] = { 107 { 64, 2 }, /* OSR 64, SRC 1/4 */ 108 { 256, 0 }, /* OSR 256, SRC 1 */ 109 { 128, 1 }, /* OSR 128, SRC 1/2 */ 110 { 0, 0 }, 111 { 32, 3 }, /* OSR 32, SRC 1/8 */ 112 }; 113 114 static const struct nau8825_osr_attr osr_adc_sel[] = { 115 { 32, 3 }, /* OSR 32, SRC 1/8 */ 116 { 64, 2 }, /* OSR 64, SRC 1/4 */ 117 { 128, 1 }, /* OSR 128, SRC 1/2 */ 118 { 256, 0 }, /* OSR 256, SRC 1 */ 119 }; 120 121 static const struct reg_default nau8825_reg_defaults[] = { 122 { NAU8825_REG_ENA_CTRL, 0x00ff }, 123 { NAU8825_REG_IIC_ADDR_SET, 0x0 }, 124 { NAU8825_REG_CLK_DIVIDER, 0x0050 }, 125 { NAU8825_REG_FLL1, 0x0 }, 126 { NAU8825_REG_FLL2, 0x3126 }, 127 { NAU8825_REG_FLL3, 0x0008 }, 128 { NAU8825_REG_FLL4, 0x0010 }, 129 { NAU8825_REG_FLL5, 0x0 }, 130 { NAU8825_REG_FLL6, 0x6000 }, 131 { NAU8825_REG_FLL_VCO_RSV, 0xf13c }, 132 { NAU8825_REG_HSD_CTRL, 0x000c }, 133 { NAU8825_REG_JACK_DET_CTRL, 0x0 }, 134 { NAU8825_REG_INTERRUPT_MASK, 0x0 }, 135 { NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff }, 136 { NAU8825_REG_SAR_CTRL, 0x0015 }, 137 { NAU8825_REG_KEYDET_CTRL, 0x0110 }, 138 { NAU8825_REG_VDET_THRESHOLD_1, 0x0 }, 139 { NAU8825_REG_VDET_THRESHOLD_2, 0x0 }, 140 { NAU8825_REG_VDET_THRESHOLD_3, 0x0 }, 141 { NAU8825_REG_VDET_THRESHOLD_4, 0x0 }, 142 { NAU8825_REG_GPIO34_CTRL, 0x0 }, 143 { NAU8825_REG_GPIO12_CTRL, 0x0 }, 144 { NAU8825_REG_TDM_CTRL, 0x0 }, 145 { NAU8825_REG_I2S_PCM_CTRL1, 0x000b }, 146 { NAU8825_REG_I2S_PCM_CTRL2, 0x8010 }, 147 { NAU8825_REG_LEFT_TIME_SLOT, 0x0 }, 148 { NAU8825_REG_RIGHT_TIME_SLOT, 0x0 }, 149 { NAU8825_REG_BIQ_CTRL, 0x0 }, 150 { NAU8825_REG_BIQ_COF1, 0x0 }, 151 { NAU8825_REG_BIQ_COF2, 0x0 }, 152 { NAU8825_REG_BIQ_COF3, 0x0 }, 153 { NAU8825_REG_BIQ_COF4, 0x0 }, 154 { NAU8825_REG_BIQ_COF5, 0x0 }, 155 { NAU8825_REG_BIQ_COF6, 0x0 }, 156 { NAU8825_REG_BIQ_COF7, 0x0 }, 157 { NAU8825_REG_BIQ_COF8, 0x0 }, 158 { NAU8825_REG_BIQ_COF9, 0x0 }, 159 { NAU8825_REG_BIQ_COF10, 0x0 }, 160 { NAU8825_REG_ADC_RATE, 0x0010 }, 161 { NAU8825_REG_DAC_CTRL1, 0x0001 }, 162 { NAU8825_REG_DAC_CTRL2, 0x0 }, 163 { NAU8825_REG_DAC_DGAIN_CTRL, 0x0 }, 164 { NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf }, 165 { NAU8825_REG_MUTE_CTRL, 0x0 }, 166 { NAU8825_REG_HSVOL_CTRL, 0x0 }, 167 { NAU8825_REG_DACL_CTRL, 0x02cf }, 168 { NAU8825_REG_DACR_CTRL, 0x00cf }, 169 { NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 }, 170 { NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 }, 171 { NAU8825_REG_ADC_DRC_SLOPES, 0x25ff }, 172 { NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 }, 173 { NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 }, 174 { NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 }, 175 { NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 }, 176 { NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 }, 177 { NAU8825_REG_IMM_MODE_CTRL, 0x0 }, 178 { NAU8825_REG_CLASSG_CTRL, 0x0 }, 179 { NAU8825_REG_OPT_EFUSE_CTRL, 0x0 }, 180 { NAU8825_REG_MISC_CTRL, 0x0 }, 181 { NAU8825_REG_BIAS_ADJ, 0x0 }, 182 { NAU8825_REG_TRIM_SETTINGS, 0x0 }, 183 { NAU8825_REG_ANALOG_CONTROL_1, 0x0 }, 184 { NAU8825_REG_ANALOG_CONTROL_2, 0x0 }, 185 { NAU8825_REG_ANALOG_ADC_1, 0x0011 }, 186 { NAU8825_REG_ANALOG_ADC_2, 0x0020 }, 187 { NAU8825_REG_RDAC, 0x0008 }, 188 { NAU8825_REG_MIC_BIAS, 0x0006 }, 189 { NAU8825_REG_BOOST, 0x0 }, 190 { NAU8825_REG_FEPGA, 0x0 }, 191 { NAU8825_REG_POWER_UP_CONTROL, 0x0 }, 192 { NAU8825_REG_CHARGE_PUMP, 0x0 }, 193 }; 194 195 /* register backup table when cross talk detection */ 196 static struct reg_default nau8825_xtalk_baktab[] = { 197 { NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf }, 198 { NAU8825_REG_HSVOL_CTRL, 0 }, 199 { NAU8825_REG_DACL_CTRL, 0x00cf }, 200 { NAU8825_REG_DACR_CTRL, 0x02cf }, 201 }; 202 203 static const unsigned short logtable[256] = { 204 0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7, 205 0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508, 206 0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6, 207 0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37, 208 0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f, 209 0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41, 210 0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1, 211 0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142, 212 0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68, 213 0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355, 214 0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c, 215 0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490, 216 0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3, 217 0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507, 218 0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe, 219 0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca, 220 0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c, 221 0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7, 222 0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c, 223 0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c, 224 0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a, 225 0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065, 226 0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730, 227 0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc, 228 0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469, 229 0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9, 230 0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c, 231 0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765, 232 0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83, 233 0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387, 234 0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973, 235 0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47 236 }; 237 238 /** 239 * nau8825_sema_acquire - acquire the semaphore of nau88l25 240 * @nau8825: component to register the codec private data with 241 * @timeout: how long in jiffies to wait before failure or zero to wait 242 * until release 243 * 244 * Attempts to acquire the semaphore with number of jiffies. If no more 245 * tasks are allowed to acquire the semaphore, calling this function will 246 * put the task to sleep. If the semaphore is not released within the 247 * specified number of jiffies, this function returns. 248 * If the semaphore is not released within the specified number of jiffies, 249 * this function returns -ETIME. If the sleep is interrupted by a signal, 250 * this function will return -EINTR. It returns 0 if the semaphore was 251 * acquired successfully. 252 * 253 * Acquires the semaphore without jiffies. Try to acquire the semaphore 254 * atomically. Returns 0 if the semaphore has been acquired successfully 255 * or 1 if it it cannot be acquired. 256 */ 257 static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout) 258 { 259 int ret; 260 261 if (timeout) { 262 ret = down_timeout(&nau8825->xtalk_sem, timeout); 263 if (ret < 0) 264 dev_warn(nau8825->dev, "Acquire semaphore timeout\n"); 265 } else { 266 ret = down_trylock(&nau8825->xtalk_sem); 267 if (ret) 268 dev_warn(nau8825->dev, "Acquire semaphore fail\n"); 269 } 270 271 return ret; 272 } 273 274 /** 275 * nau8825_sema_release - release the semaphore of nau88l25 276 * @nau8825: component to register the codec private data with 277 * 278 * Release the semaphore which may be called from any context and 279 * even by tasks which have never called down(). 280 */ 281 static inline void nau8825_sema_release(struct nau8825 *nau8825) 282 { 283 up(&nau8825->xtalk_sem); 284 } 285 286 /** 287 * nau8825_sema_reset - reset the semaphore for nau88l25 288 * @nau8825: component to register the codec private data with 289 * 290 * Reset the counter of the semaphore. Call this function to restart 291 * a new round task management. 292 */ 293 static inline void nau8825_sema_reset(struct nau8825 *nau8825) 294 { 295 nau8825->xtalk_sem.count = 1; 296 } 297 298 /** 299 * Ramp up the headphone volume change gradually to target level. 300 * 301 * @nau8825: component to register the codec private data with 302 * @vol_from: the volume to start up 303 * @vol_to: the target volume 304 * @step: the volume span to move on 305 * 306 * The headphone volume is from 0dB to minimum -54dB and -1dB per step. 307 * If the volume changes sharp, there is a pop noise heard in headphone. We 308 * provide the function to ramp up the volume up or down by delaying 10ms 309 * per step. 310 */ 311 static void nau8825_hpvol_ramp(struct nau8825 *nau8825, 312 unsigned int vol_from, unsigned int vol_to, unsigned int step) 313 { 314 unsigned int value, volume, ramp_up, from, to; 315 316 if (vol_from == vol_to || step == 0) { 317 return; 318 } else if (vol_from < vol_to) { 319 ramp_up = true; 320 from = vol_from; 321 to = vol_to; 322 } else { 323 ramp_up = false; 324 from = vol_to; 325 to = vol_from; 326 } 327 /* only handle volume from 0dB to minimum -54dB */ 328 if (to > NAU8825_HP_VOL_MIN) 329 to = NAU8825_HP_VOL_MIN; 330 331 for (volume = from; volume < to; volume += step) { 332 if (ramp_up) 333 value = volume; 334 else 335 value = to - volume + from; 336 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL, 337 NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK, 338 (value << NAU8825_HPL_VOL_SFT) | value); 339 usleep_range(10000, 10500); 340 } 341 if (ramp_up) 342 value = to; 343 else 344 value = from; 345 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL, 346 NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK, 347 (value << NAU8825_HPL_VOL_SFT) | value); 348 } 349 350 /** 351 * Computes log10 of a value; the result is round off to 3 decimal. This func- 352 * tion takes reference to dvb-math. The source code locates as the following. 353 * Linux/drivers/media/dvb-core/dvb_math.c 354 * 355 * return log10(value) * 1000 356 */ 357 static u32 nau8825_intlog10_dec3(u32 value) 358 { 359 u32 msb, logentry, significand, interpolation, log10val; 360 u64 log2val; 361 362 /* first detect the msb (count begins at 0) */ 363 msb = fls(value) - 1; 364 /** 365 * now we use a logtable after the following method: 366 * 367 * log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24 368 * where x = msb and therefore 1 <= y < 2 369 * first y is determined by shifting the value left 370 * so that msb is bit 31 371 * 0x00231f56 -> 0x8C7D5800 372 * the result is y * 2^31 -> "significand" 373 * then the highest 9 bits are used for a table lookup 374 * the highest bit is discarded because it's always set 375 * the highest nine bits in our example are 100011000 376 * so we would use the entry 0x18 377 */ 378 significand = value << (31 - msb); 379 logentry = (significand >> 23) & 0xff; 380 /** 381 * last step we do is interpolation because of the 382 * limitations of the log table the error is that part of 383 * the significand which isn't used for lookup then we 384 * compute the ratio between the error and the next table entry 385 * and interpolate it between the log table entry used and the 386 * next one the biggest error possible is 0x7fffff 387 * (in our example it's 0x7D5800) 388 * needed value for next table entry is 0x800000 389 * so the interpolation is 390 * (error / 0x800000) * (logtable_next - logtable_current) 391 * in the implementation the division is moved to the end for 392 * better accuracy there is also an overflow correction if 393 * logtable_next is 256 394 */ 395 interpolation = ((significand & 0x7fffff) * 396 ((logtable[(logentry + 1) & 0xff] - 397 logtable[logentry]) & 0xffff)) >> 15; 398 399 log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation); 400 /** 401 * log10(x) = log2(x) * log10(2) 402 */ 403 log10val = (log2val * LOG10_MAGIC) >> 31; 404 /** 405 * the result is round off to 3 decimal 406 */ 407 return log10val / ((1 << 24) / 1000); 408 } 409 410 /** 411 * computes cross talk suppression sidetone gain. 412 * 413 * @sig_org: orignal signal level 414 * @sig_cros: cross talk signal level 415 * 416 * The orignal and cross talk signal vlues need to be characterized. 417 * Once these values have been characterized, this sidetone value 418 * can be converted to decibel with the equation below. 419 * sidetone = 20 * log (original signal level / crosstalk signal level) 420 * 421 * return cross talk sidetone gain 422 */ 423 static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros) 424 { 425 u32 gain, sidetone; 426 427 if (WARN_ON(sig_org == 0 || sig_cros == 0)) 428 return 0; 429 430 sig_org = nau8825_intlog10_dec3(sig_org); 431 sig_cros = nau8825_intlog10_dec3(sig_cros); 432 if (sig_org >= sig_cros) 433 gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT; 434 else 435 gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT; 436 sidetone = SIDETONE_BASE - gain * 2; 437 sidetone /= 1000; 438 439 return sidetone; 440 } 441 442 static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg) 443 { 444 int index; 445 446 for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++) 447 if (nau8825_xtalk_baktab[index].reg == reg) 448 return index; 449 return -EINVAL; 450 } 451 452 static void nau8825_xtalk_backup(struct nau8825 *nau8825) 453 { 454 int i; 455 456 if (nau8825->xtalk_baktab_initialized) 457 return; 458 459 /* Backup some register values to backup table */ 460 for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) 461 regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg, 462 &nau8825_xtalk_baktab[i].def); 463 464 nau8825->xtalk_baktab_initialized = true; 465 } 466 467 static void nau8825_xtalk_restore(struct nau8825 *nau8825, bool cause_cancel) 468 { 469 int i, volume; 470 471 if (!nau8825->xtalk_baktab_initialized) 472 return; 473 474 /* Restore register values from backup table; When the driver restores 475 * the headphone volume in XTALK_DONE state, it needs recover to 476 * original level gradually with 3dB per step for less pop noise. 477 * Otherwise, the restore should do ASAP. 478 */ 479 for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) { 480 if (!cause_cancel && nau8825_xtalk_baktab[i].reg == 481 NAU8825_REG_HSVOL_CTRL) { 482 /* Ramping up the volume change to reduce pop noise */ 483 volume = nau8825_xtalk_baktab[i].def & 484 NAU8825_HPR_VOL_MASK; 485 nau8825_hpvol_ramp(nau8825, 0, volume, 3); 486 continue; 487 } 488 regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg, 489 nau8825_xtalk_baktab[i].def); 490 } 491 492 nau8825->xtalk_baktab_initialized = false; 493 } 494 495 static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825) 496 { 497 /* Enable power of DAC path */ 498 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, 499 NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL | 500 NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK | 501 NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR | 502 NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC | 503 NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK); 504 /* Prevent startup click by letting charge pump to ramp up and 505 * change bump enable 506 */ 507 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 508 NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 509 NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN); 510 /* Enable clock sync of DAC and DAC clock */ 511 regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC, 512 NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN | 513 NAU8825_RDAC_FS_BCLK_ENB, 514 NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN); 515 /* Power up output driver with 2 stage */ 516 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, 517 NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L | 518 NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 519 NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L | 520 NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L); 521 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, 522 NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 523 NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L); 524 /* HP outputs not shouted to ground */ 525 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL, 526 NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0); 527 /* Enable HP boost driver */ 528 regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST, 529 NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS); 530 /* Enable class G compare path to supply 1.8V or 0.9V. */ 531 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL, 532 NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN, 533 NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN); 534 } 535 536 static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825) 537 { 538 /* Power up left ADC and raise 5dB than Vmid for Vref */ 539 regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2, 540 NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 541 NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB); 542 } 543 544 static void nau8825_xtalk_clock(struct nau8825 *nau8825) 545 { 546 /* Recover FLL default value */ 547 regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0); 548 regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126); 549 regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008); 550 regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010); 551 regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0); 552 regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000); 553 /* Enable internal VCO clock for detection signal generated */ 554 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 555 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO); 556 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN, 557 NAU8825_DCO_EN); 558 /* Given specific clock frequency of internal clock to 559 * generate signal. 560 */ 561 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 562 NAU8825_CLK_MCLK_SRC_MASK, 0xf); 563 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1, 564 NAU8825_FLL_RATIO_MASK, 0x10); 565 } 566 567 static void nau8825_xtalk_prepare(struct nau8825 *nau8825) 568 { 569 int volume, index; 570 571 /* Backup those registers changed by cross talk detection */ 572 nau8825_xtalk_backup(nau8825); 573 /* Config IIS as master to output signal by codec */ 574 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, 575 NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK | 576 NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER | 577 (0x2 << NAU8825_I2S_LRC_DIV_SFT) | 0x1); 578 /* Ramp up headphone volume to 0dB to get better performance and 579 * avoid pop noise in headphone. 580 */ 581 index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL); 582 if (index != -EINVAL) { 583 volume = nau8825_xtalk_baktab[index].def & 584 NAU8825_HPR_VOL_MASK; 585 nau8825_hpvol_ramp(nau8825, volume, 0, 3); 586 } 587 nau8825_xtalk_clock(nau8825); 588 nau8825_xtalk_prepare_dac(nau8825); 589 nau8825_xtalk_prepare_adc(nau8825); 590 /* Config channel path and digital gain */ 591 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL, 592 NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK, 593 NAU8825_DACL_CH_SEL_L | 0xab); 594 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL, 595 NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK, 596 NAU8825_DACR_CH_SEL_R | 0xab); 597 /* Config cross talk parameters and generate the 23Hz sine wave with 598 * 1/16 full scale of signal level for impedance measurement. 599 */ 600 regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 601 NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK | 602 NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK, 603 (0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th | 604 NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN); 605 /* RMS intrruption enable */ 606 regmap_update_bits(nau8825->regmap, 607 NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0); 608 /* Power up left and right DAC */ 609 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 610 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0); 611 } 612 613 static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825) 614 { 615 /* Disable HP boost driver */ 616 regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST, 617 NAU8825_HP_BOOST_DIS, 0); 618 /* HP outputs shouted to ground */ 619 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL, 620 NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 621 NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L); 622 /* Power down left and right DAC */ 623 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 624 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 625 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL); 626 /* Enable the TESTDAC and disable L/R HP impedance */ 627 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 628 NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP | 629 NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN); 630 /* Power down output driver with 2 stage */ 631 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, 632 NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0); 633 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, 634 NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L | 635 NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0); 636 /* Disable clock sync of DAC and DAC clock */ 637 regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC, 638 NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0); 639 /* Disable charge pump ramp up function and change bump */ 640 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 641 NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0); 642 /* Disable power of DAC path */ 643 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, 644 NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL | 645 NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0); 646 if (!nau8825->irq) 647 regmap_update_bits(nau8825->regmap, 648 NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0); 649 } 650 651 static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825) 652 { 653 /* Power down left ADC and restore voltage to Vmid */ 654 regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2, 655 NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0); 656 } 657 658 static void nau8825_xtalk_clean(struct nau8825 *nau8825, bool cause_cancel) 659 { 660 /* Enable internal VCO needed for interruptions */ 661 nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0); 662 nau8825_xtalk_clean_dac(nau8825); 663 nau8825_xtalk_clean_adc(nau8825); 664 /* Clear cross talk parameters and disable */ 665 regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0); 666 /* RMS intrruption disable */ 667 regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK, 668 NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN); 669 /* Recover default value for IIS */ 670 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, 671 NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK | 672 NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE); 673 /* Restore value of specific register for cross talk */ 674 nau8825_xtalk_restore(nau8825, cause_cancel); 675 } 676 677 static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol) 678 { 679 /* Apply ADC volume for better cross talk performance */ 680 regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL, 681 NAU8825_ADC_DIG_VOL_MASK, vol); 682 /* Disables JKTIP(HPL) DAC channel for right to left measurement. 683 * Do it before sending signal in order to erase pop noise. 684 */ 685 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 686 NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN, 687 NAU8825_BIAS_TESTDACL_EN); 688 switch (nau8825->xtalk_state) { 689 case NAU8825_XTALK_HPR_R2L: 690 /* Enable right headphone impedance */ 691 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 692 NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP, 693 NAU8825_BIAS_HPR_IMP); 694 break; 695 case NAU8825_XTALK_HPL_R2L: 696 /* Enable left headphone impedance */ 697 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 698 NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP, 699 NAU8825_BIAS_HPL_IMP); 700 break; 701 default: 702 break; 703 } 704 msleep(100); 705 /* Impedance measurement mode enable */ 706 regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 707 NAU8825_IMM_EN, NAU8825_IMM_EN); 708 } 709 710 static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825) 711 { 712 /* Impedance measurement mode disable */ 713 regmap_update_bits(nau8825->regmap, 714 NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0); 715 } 716 717 /* The cross talk measurement function can reduce cross talk across the 718 * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal 719 * level to determine what cross talk reduction gain is. This system works by 720 * sending a 23Hz -24dBV sine wave into the headset output DAC and through 721 * the PGA. The output of the PGA is then connected to an internal current 722 * sense which measures the attenuated 23Hz signal and passing the output to 723 * an ADC which converts the measurement to a binary code. With two separated 724 * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data 725 * can be separated read in IMM_RMS_L for HSR and HSL after each measurement. 726 * Thus, the measurement function has four states to complete whole sequence. 727 * 1. Prepare state : Prepare the resource for detection and transfer to HPR 728 * IMM stat to make JKR1(HPR) impedance measure. 729 * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer 730 * to HPL IMM state to make JKTIP(HPL) impedance measure. 731 * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and 732 * transfer to IMM state to determine suppression sidetone gain. 733 * 4. IMM state : Computes cross talk suppression sidetone gain with orignal 734 * and cross talk signal level. Apply this gain and then restore codec 735 * configuration. Then transfer to Done state for ending. 736 */ 737 static void nau8825_xtalk_measure(struct nau8825 *nau8825) 738 { 739 u32 sidetone; 740 741 switch (nau8825->xtalk_state) { 742 case NAU8825_XTALK_PREPARE: 743 /* In prepare state, set up clock, intrruption, DAC path, ADC 744 * path and cross talk detection parameters for preparation. 745 */ 746 nau8825_xtalk_prepare(nau8825); 747 msleep(280); 748 /* Trigger right headphone impedance detection */ 749 nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L; 750 nau8825_xtalk_imm_start(nau8825, 0x00d2); 751 break; 752 case NAU8825_XTALK_HPR_R2L: 753 /* In right headphone IMM state, read out right headphone 754 * impedance measure result, and then start up left side. 755 */ 756 regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L, 757 &nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]); 758 dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n", 759 nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]); 760 /* Disable then re-enable IMM mode to update */ 761 nau8825_xtalk_imm_stop(nau8825); 762 /* Trigger left headphone impedance detection */ 763 nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L; 764 nau8825_xtalk_imm_start(nau8825, 0x00ff); 765 break; 766 case NAU8825_XTALK_HPL_R2L: 767 /* In left headphone IMM state, read out left headphone 768 * impedance measure result, and delay some time to wait 769 * detection sine wave output finish. Then, we can calculate 770 * the cross talk suppresstion side tone according to the L/R 771 * headphone imedance. 772 */ 773 regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L, 774 &nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]); 775 dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n", 776 nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]); 777 nau8825_xtalk_imm_stop(nau8825); 778 msleep(150); 779 nau8825->xtalk_state = NAU8825_XTALK_IMM; 780 break; 781 case NAU8825_XTALK_IMM: 782 /* In impedance measure state, the orignal and cross talk 783 * signal level vlues are ready. The side tone gain is deter- 784 * mined with these signal level. After all, restore codec 785 * configuration. 786 */ 787 sidetone = nau8825_xtalk_sidetone( 788 nau8825->imp_rms[NAU8825_XTALK_HPR_R2L], 789 nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]); 790 dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone); 791 regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL, 792 (sidetone << 8) | sidetone); 793 nau8825_xtalk_clean(nau8825, false); 794 nau8825->xtalk_state = NAU8825_XTALK_DONE; 795 break; 796 default: 797 break; 798 } 799 } 800 801 static void nau8825_xtalk_work(struct work_struct *work) 802 { 803 struct nau8825 *nau8825 = container_of( 804 work, struct nau8825, xtalk_work); 805 806 nau8825_xtalk_measure(nau8825); 807 /* To determine the cross talk side tone gain when reach 808 * the impedance measure state. 809 */ 810 if (nau8825->xtalk_state == NAU8825_XTALK_IMM) 811 nau8825_xtalk_measure(nau8825); 812 813 /* Delay jack report until cross talk detection process 814 * completed. It can avoid application to do playback 815 * preparation before cross talk detection is still working. 816 * Meanwhile, the protection of the cross talk detection 817 * is released. 818 */ 819 if (nau8825->xtalk_state == NAU8825_XTALK_DONE) { 820 snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event, 821 nau8825->xtalk_event_mask); 822 nau8825_sema_release(nau8825); 823 nau8825->xtalk_protect = false; 824 } 825 } 826 827 static void nau8825_xtalk_cancel(struct nau8825 *nau8825) 828 { 829 /* If the crosstalk is eanbled and the process is on going, 830 * the driver forces to cancel the crosstalk task and 831 * restores the configuration to original status. 832 */ 833 if (nau8825->xtalk_enable && nau8825->xtalk_state != 834 NAU8825_XTALK_DONE) { 835 cancel_work_sync(&nau8825->xtalk_work); 836 nau8825_xtalk_clean(nau8825, true); 837 } 838 /* Reset parameters for cross talk suppression function */ 839 nau8825_sema_reset(nau8825); 840 nau8825->xtalk_state = NAU8825_XTALK_DONE; 841 nau8825->xtalk_protect = false; 842 } 843 844 static bool nau8825_readable_reg(struct device *dev, unsigned int reg) 845 { 846 switch (reg) { 847 case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV: 848 case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL: 849 case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL: 850 case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL: 851 case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY: 852 case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY: 853 case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R: 854 case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL: 855 case NAU8825_REG_MISC_CTRL: 856 case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS: 857 case NAU8825_REG_BIAS_ADJ: 858 case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2: 859 case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS: 860 case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA: 861 case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS: 862 return true; 863 default: 864 return false; 865 } 866 867 } 868 869 static bool nau8825_writeable_reg(struct device *dev, unsigned int reg) 870 { 871 switch (reg) { 872 case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV: 873 case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL: 874 case NAU8825_REG_INTERRUPT_MASK: 875 case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL: 876 case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL: 877 case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY: 878 case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY: 879 case NAU8825_REG_IMM_MODE_CTRL: 880 case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL: 881 case NAU8825_REG_MISC_CTRL: 882 case NAU8825_REG_BIAS_ADJ: 883 case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2: 884 case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS: 885 case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA: 886 case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP: 887 return true; 888 default: 889 return false; 890 } 891 } 892 893 static bool nau8825_volatile_reg(struct device *dev, unsigned int reg) 894 { 895 switch (reg) { 896 case NAU8825_REG_RESET: 897 case NAU8825_REG_IRQ_STATUS: 898 case NAU8825_REG_INT_CLR_KEY_STATUS: 899 case NAU8825_REG_IMM_RMS_L: 900 case NAU8825_REG_IMM_RMS_R: 901 case NAU8825_REG_I2C_DEVICE_ID: 902 case NAU8825_REG_SARDOUT_RAM_STATUS: 903 case NAU8825_REG_CHARGE_PUMP_INPUT_READ: 904 case NAU8825_REG_GENERAL_STATUS: 905 case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10: 906 return true; 907 default: 908 return false; 909 } 910 } 911 912 static int nau8825_adc_event(struct snd_soc_dapm_widget *w, 913 struct snd_kcontrol *kcontrol, int event) 914 { 915 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); 916 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 917 918 switch (event) { 919 case SND_SOC_DAPM_POST_PMU: 920 msleep(125); 921 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, 922 NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC); 923 break; 924 case SND_SOC_DAPM_POST_PMD: 925 if (!nau8825->irq) 926 regmap_update_bits(nau8825->regmap, 927 NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0); 928 break; 929 default: 930 return -EINVAL; 931 } 932 933 return 0; 934 } 935 936 static int nau8825_pump_event(struct snd_soc_dapm_widget *w, 937 struct snd_kcontrol *kcontrol, int event) 938 { 939 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); 940 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 941 942 switch (event) { 943 case SND_SOC_DAPM_POST_PMU: 944 /* Prevent startup click by letting charge pump to ramp up */ 945 msleep(10); 946 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 947 NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW); 948 break; 949 case SND_SOC_DAPM_PRE_PMD: 950 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, 951 NAU8825_JAMNODCLOW, 0); 952 break; 953 default: 954 return -EINVAL; 955 } 956 957 return 0; 958 } 959 960 static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w, 961 struct snd_kcontrol *kcontrol, int event) 962 { 963 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); 964 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 965 966 switch (event) { 967 case SND_SOC_DAPM_PRE_PMU: 968 /* Disables the TESTDAC to let DAC signal pass through. */ 969 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 970 NAU8825_BIAS_TESTDAC_EN, 0); 971 break; 972 case SND_SOC_DAPM_POST_PMD: 973 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 974 NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN); 975 break; 976 default: 977 return -EINVAL; 978 } 979 980 return 0; 981 } 982 983 static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol, 984 struct snd_ctl_elem_value *ucontrol) 985 { 986 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 987 struct soc_bytes_ext *params = (void *)kcontrol->private_value; 988 989 if (!component->regmap) 990 return -EINVAL; 991 992 regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1, 993 ucontrol->value.bytes.data, params->max); 994 return 0; 995 } 996 997 static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol, 998 struct snd_ctl_elem_value *ucontrol) 999 { 1000 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 1001 struct soc_bytes_ext *params = (void *)kcontrol->private_value; 1002 void *data; 1003 1004 if (!component->regmap) 1005 return -EINVAL; 1006 1007 data = kmemdup(ucontrol->value.bytes.data, 1008 params->max, GFP_KERNEL | GFP_DMA); 1009 if (!data) 1010 return -ENOMEM; 1011 1012 regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL, 1013 NAU8825_BIQ_WRT_EN, 0); 1014 regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1, 1015 data, params->max); 1016 regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL, 1017 NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN); 1018 1019 kfree(data); 1020 return 0; 1021 } 1022 1023 static const char * const nau8825_biq_path[] = { 1024 "ADC", "DAC" 1025 }; 1026 1027 static const struct soc_enum nau8825_biq_path_enum = 1028 SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT, 1029 ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path); 1030 1031 static const char * const nau8825_adc_decimation[] = { 1032 "32", "64", "128", "256" 1033 }; 1034 1035 static const struct soc_enum nau8825_adc_decimation_enum = 1036 SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT, 1037 ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation); 1038 1039 static const char * const nau8825_dac_oversampl[] = { 1040 "64", "256", "128", "", "32" 1041 }; 1042 1043 static const struct soc_enum nau8825_dac_oversampl_enum = 1044 SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT, 1045 ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl); 1046 1047 static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400); 1048 static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0); 1049 static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0); 1050 static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600); 1051 static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400); 1052 1053 static const struct snd_kcontrol_new nau8825_controls[] = { 1054 SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL, 1055 0, 0xff, 0, adc_vol_tlv), 1056 SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL, 1057 12, 8, 0x0f, 0, sidetone_vol_tlv), 1058 SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL, 1059 6, 0, 0x3f, 1, dac_vol_tlv), 1060 SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL, 1061 8, 37, 0, fepga_gain_tlv), 1062 SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL, 1063 0, 8, 0xff, 0, crosstalk_vol_tlv), 1064 1065 SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum), 1066 SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum), 1067 /* programmable biquad filter */ 1068 SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum), 1069 SND_SOC_BYTES_EXT("BIQ Coefficients", 20, 1070 nau8825_biq_coeff_get, nau8825_biq_coeff_put), 1071 }; 1072 1073 /* DAC Mux 0x33[9] and 0x34[9] */ 1074 static const char * const nau8825_dac_src[] = { 1075 "DACL", "DACR", 1076 }; 1077 1078 static SOC_ENUM_SINGLE_DECL( 1079 nau8825_dacl_enum, NAU8825_REG_DACL_CTRL, 1080 NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src); 1081 1082 static SOC_ENUM_SINGLE_DECL( 1083 nau8825_dacr_enum, NAU8825_REG_DACR_CTRL, 1084 NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src); 1085 1086 static const struct snd_kcontrol_new nau8825_dacl_mux = 1087 SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum); 1088 1089 static const struct snd_kcontrol_new nau8825_dacr_mux = 1090 SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum); 1091 1092 1093 static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = { 1094 SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2, 1095 15, 1), 1096 1097 SND_SOC_DAPM_INPUT("MIC"), 1098 SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0), 1099 1100 SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0, 1101 NULL, 0), 1102 1103 SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0, 1104 nau8825_adc_event, SND_SOC_DAPM_POST_PMU | 1105 SND_SOC_DAPM_POST_PMD), 1106 SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0), 1107 SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL, 1108 0), 1109 1110 /* ADC for button press detection. A dapm supply widget is used to 1111 * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON 1112 * during suspend. 1113 */ 1114 SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL, 1115 NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0), 1116 1117 SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0), 1118 SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0), 1119 SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0), 1120 SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0), 1121 1122 SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL, 1123 NAU8825_ENABLE_DACR_SFT, 0), 1124 SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL, 1125 NAU8825_ENABLE_DACL_SFT, 0), 1126 SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0), 1127 1128 SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux), 1129 SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux), 1130 1131 SND_SOC_DAPM_PGA_S("HP amp L", 0, 1132 NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0), 1133 SND_SOC_DAPM_PGA_S("HP amp R", 0, 1134 NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0), 1135 1136 SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0, 1137 nau8825_pump_event, SND_SOC_DAPM_POST_PMU | 1138 SND_SOC_DAPM_PRE_PMD), 1139 1140 SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4, 1141 NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0), 1142 SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4, 1143 NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0), 1144 SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5, 1145 NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0), 1146 SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5, 1147 NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0), 1148 SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6, 1149 NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0), 1150 SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6, 1151 NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0), 1152 1153 SND_SOC_DAPM_PGA_S("Output DACL", 7, 1154 NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event, 1155 SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), 1156 SND_SOC_DAPM_PGA_S("Output DACR", 7, 1157 NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event, 1158 SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), 1159 1160 /* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */ 1161 SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8, 1162 NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0), 1163 SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8, 1164 NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0), 1165 1166 /* High current HPOL/R boost driver */ 1167 SND_SOC_DAPM_PGA_S("HP Boost Driver", 9, 1168 NAU8825_REG_BOOST, 9, 1, NULL, 0), 1169 1170 /* Class G operation control*/ 1171 SND_SOC_DAPM_PGA_S("Class G", 10, 1172 NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0), 1173 1174 SND_SOC_DAPM_OUTPUT("HPOL"), 1175 SND_SOC_DAPM_OUTPUT("HPOR"), 1176 }; 1177 1178 static const struct snd_soc_dapm_route nau8825_dapm_routes[] = { 1179 {"Frontend PGA", NULL, "MIC"}, 1180 {"ADC", NULL, "Frontend PGA"}, 1181 {"ADC", NULL, "ADC Clock"}, 1182 {"ADC", NULL, "ADC Power"}, 1183 {"AIFTX", NULL, "ADC"}, 1184 1185 {"DDACL", NULL, "Playback"}, 1186 {"DDACR", NULL, "Playback"}, 1187 {"DDACL", NULL, "DDAC Clock"}, 1188 {"DDACR", NULL, "DDAC Clock"}, 1189 {"DACL Mux", "DACL", "DDACL"}, 1190 {"DACL Mux", "DACR", "DDACR"}, 1191 {"DACR Mux", "DACL", "DDACL"}, 1192 {"DACR Mux", "DACR", "DDACR"}, 1193 {"HP amp L", NULL, "DACL Mux"}, 1194 {"HP amp R", NULL, "DACR Mux"}, 1195 {"Charge Pump", NULL, "HP amp L"}, 1196 {"Charge Pump", NULL, "HP amp R"}, 1197 {"ADACL", NULL, "Charge Pump"}, 1198 {"ADACR", NULL, "Charge Pump"}, 1199 {"ADACL Clock", NULL, "ADACL"}, 1200 {"ADACR Clock", NULL, "ADACR"}, 1201 {"Output Driver L Stage 1", NULL, "ADACL Clock"}, 1202 {"Output Driver R Stage 1", NULL, "ADACR Clock"}, 1203 {"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"}, 1204 {"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"}, 1205 {"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"}, 1206 {"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"}, 1207 {"Output DACL", NULL, "Output Driver L Stage 3"}, 1208 {"Output DACR", NULL, "Output Driver R Stage 3"}, 1209 {"HPOL Pulldown", NULL, "Output DACL"}, 1210 {"HPOR Pulldown", NULL, "Output DACR"}, 1211 {"HP Boost Driver", NULL, "HPOL Pulldown"}, 1212 {"HP Boost Driver", NULL, "HPOR Pulldown"}, 1213 {"Class G", NULL, "HP Boost Driver"}, 1214 {"HPOL", NULL, "Class G"}, 1215 {"HPOR", NULL, "Class G"}, 1216 }; 1217 1218 static int nau8825_clock_check(struct nau8825 *nau8825, 1219 int stream, int rate, int osr) 1220 { 1221 int osrate; 1222 1223 if (stream == SNDRV_PCM_STREAM_PLAYBACK) { 1224 if (osr >= ARRAY_SIZE(osr_dac_sel)) 1225 return -EINVAL; 1226 osrate = osr_dac_sel[osr].osr; 1227 } else { 1228 if (osr >= ARRAY_SIZE(osr_adc_sel)) 1229 return -EINVAL; 1230 osrate = osr_adc_sel[osr].osr; 1231 } 1232 1233 if (!osrate || rate * osr > CLK_DA_AD_MAX) { 1234 dev_err(nau8825->dev, "exceed the maximum frequency of CLK_ADC or CLK_DAC\n"); 1235 return -EINVAL; 1236 } 1237 1238 return 0; 1239 } 1240 1241 static int nau8825_hw_params(struct snd_pcm_substream *substream, 1242 struct snd_pcm_hw_params *params, 1243 struct snd_soc_dai *dai) 1244 { 1245 struct snd_soc_component *component = dai->component; 1246 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 1247 unsigned int val_len = 0, osr, ctrl_val, bclk_fs, bclk_div; 1248 1249 nau8825_sema_acquire(nau8825, 3 * HZ); 1250 1251 /* CLK_DAC or CLK_ADC = OSR * FS 1252 * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR) 1253 * multiplied by the audio sample rate (Fs). Note that the OSR and Fs 1254 * values must be selected such that the maximum frequency is less 1255 * than 6.144 MHz. 1256 */ 1257 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 1258 regmap_read(nau8825->regmap, NAU8825_REG_DAC_CTRL1, &osr); 1259 osr &= NAU8825_DAC_OVERSAMPLE_MASK; 1260 if (nau8825_clock_check(nau8825, substream->stream, 1261 params_rate(params), osr)) { 1262 nau8825_sema_release(nau8825); 1263 return -EINVAL; 1264 } 1265 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 1266 NAU8825_CLK_DAC_SRC_MASK, 1267 osr_dac_sel[osr].clk_src << NAU8825_CLK_DAC_SRC_SFT); 1268 } else { 1269 regmap_read(nau8825->regmap, NAU8825_REG_ADC_RATE, &osr); 1270 osr &= NAU8825_ADC_SYNC_DOWN_MASK; 1271 if (nau8825_clock_check(nau8825, substream->stream, 1272 params_rate(params), osr)) { 1273 nau8825_sema_release(nau8825); 1274 return -EINVAL; 1275 } 1276 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 1277 NAU8825_CLK_ADC_SRC_MASK, 1278 osr_adc_sel[osr].clk_src << NAU8825_CLK_ADC_SRC_SFT); 1279 } 1280 1281 /* make BCLK and LRC divde configuration if the codec as master. */ 1282 regmap_read(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, &ctrl_val); 1283 if (ctrl_val & NAU8825_I2S_MS_MASTER) { 1284 /* get the bclk and fs ratio */ 1285 bclk_fs = snd_soc_params_to_bclk(params) / params_rate(params); 1286 if (bclk_fs <= 32) 1287 bclk_div = 2; 1288 else if (bclk_fs <= 64) 1289 bclk_div = 1; 1290 else if (bclk_fs <= 128) 1291 bclk_div = 0; 1292 else { 1293 nau8825_sema_release(nau8825); 1294 return -EINVAL; 1295 } 1296 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, 1297 NAU8825_I2S_LRC_DIV_MASK | NAU8825_I2S_BLK_DIV_MASK, 1298 ((bclk_div + 1) << NAU8825_I2S_LRC_DIV_SFT) | bclk_div); 1299 } 1300 1301 switch (params_width(params)) { 1302 case 16: 1303 val_len |= NAU8825_I2S_DL_16; 1304 break; 1305 case 20: 1306 val_len |= NAU8825_I2S_DL_20; 1307 break; 1308 case 24: 1309 val_len |= NAU8825_I2S_DL_24; 1310 break; 1311 case 32: 1312 val_len |= NAU8825_I2S_DL_32; 1313 break; 1314 default: 1315 nau8825_sema_release(nau8825); 1316 return -EINVAL; 1317 } 1318 1319 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1, 1320 NAU8825_I2S_DL_MASK, val_len); 1321 1322 /* Release the semaphore. */ 1323 nau8825_sema_release(nau8825); 1324 1325 return 0; 1326 } 1327 1328 static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) 1329 { 1330 struct snd_soc_component *component = codec_dai->component; 1331 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 1332 unsigned int ctrl1_val = 0, ctrl2_val = 0; 1333 1334 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { 1335 case SND_SOC_DAIFMT_CBM_CFM: 1336 ctrl2_val |= NAU8825_I2S_MS_MASTER; 1337 break; 1338 case SND_SOC_DAIFMT_CBS_CFS: 1339 break; 1340 default: 1341 return -EINVAL; 1342 } 1343 1344 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 1345 case SND_SOC_DAIFMT_NB_NF: 1346 break; 1347 case SND_SOC_DAIFMT_IB_NF: 1348 ctrl1_val |= NAU8825_I2S_BP_INV; 1349 break; 1350 default: 1351 return -EINVAL; 1352 } 1353 1354 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 1355 case SND_SOC_DAIFMT_I2S: 1356 ctrl1_val |= NAU8825_I2S_DF_I2S; 1357 break; 1358 case SND_SOC_DAIFMT_LEFT_J: 1359 ctrl1_val |= NAU8825_I2S_DF_LEFT; 1360 break; 1361 case SND_SOC_DAIFMT_RIGHT_J: 1362 ctrl1_val |= NAU8825_I2S_DF_RIGTH; 1363 break; 1364 case SND_SOC_DAIFMT_DSP_A: 1365 ctrl1_val |= NAU8825_I2S_DF_PCM_AB; 1366 break; 1367 case SND_SOC_DAIFMT_DSP_B: 1368 ctrl1_val |= NAU8825_I2S_DF_PCM_AB; 1369 ctrl1_val |= NAU8825_I2S_PCMB_EN; 1370 break; 1371 default: 1372 return -EINVAL; 1373 } 1374 1375 nau8825_sema_acquire(nau8825, 3 * HZ); 1376 1377 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1, 1378 NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK | 1379 NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK, 1380 ctrl1_val); 1381 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, 1382 NAU8825_I2S_MS_MASK, ctrl2_val); 1383 1384 /* Release the semaphore. */ 1385 nau8825_sema_release(nau8825); 1386 1387 return 0; 1388 } 1389 1390 static const struct snd_soc_dai_ops nau8825_dai_ops = { 1391 .hw_params = nau8825_hw_params, 1392 .set_fmt = nau8825_set_dai_fmt, 1393 }; 1394 1395 #define NAU8825_RATES SNDRV_PCM_RATE_8000_192000 1396 #define NAU8825_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \ 1397 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE) 1398 1399 static struct snd_soc_dai_driver nau8825_dai = { 1400 .name = "nau8825-hifi", 1401 .playback = { 1402 .stream_name = "Playback", 1403 .channels_min = 1, 1404 .channels_max = 2, 1405 .rates = NAU8825_RATES, 1406 .formats = NAU8825_FORMATS, 1407 }, 1408 .capture = { 1409 .stream_name = "Capture", 1410 .channels_min = 1, 1411 .channels_max = 1, 1412 .rates = NAU8825_RATES, 1413 .formats = NAU8825_FORMATS, 1414 }, 1415 .ops = &nau8825_dai_ops, 1416 }; 1417 1418 /** 1419 * nau8825_enable_jack_detect - Specify a jack for event reporting 1420 * 1421 * @component: component to register the jack with 1422 * @jack: jack to use to report headset and button events on 1423 * 1424 * After this function has been called the headset insert/remove and button 1425 * events will be routed to the given jack. Jack can be null to stop 1426 * reporting. 1427 */ 1428 int nau8825_enable_jack_detect(struct snd_soc_component *component, 1429 struct snd_soc_jack *jack) 1430 { 1431 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 1432 struct regmap *regmap = nau8825->regmap; 1433 1434 nau8825->jack = jack; 1435 1436 /* Ground HP Outputs[1:0], needed for headset auto detection 1437 * Enable Automatic Mic/Gnd switching reading on insert interrupt[6] 1438 */ 1439 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 1440 NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 1441 NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L); 1442 1443 return 0; 1444 } 1445 EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect); 1446 1447 1448 static bool nau8825_is_jack_inserted(struct regmap *regmap) 1449 { 1450 bool active_high, is_high; 1451 int status, jkdet; 1452 1453 regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet); 1454 active_high = jkdet & NAU8825_JACK_POLARITY; 1455 regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status); 1456 is_high = status & NAU8825_GPIO2JD1; 1457 /* return jack connection status according to jack insertion logic 1458 * active high or active low. 1459 */ 1460 return active_high == is_high; 1461 } 1462 1463 static void nau8825_restart_jack_detection(struct regmap *regmap) 1464 { 1465 /* this will restart the entire jack detection process including MIC/GND 1466 * switching and create interrupts. We have to go from 0 to 1 and back 1467 * to 0 to restart. 1468 */ 1469 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1470 NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART); 1471 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1472 NAU8825_JACK_DET_RESTART, 0); 1473 } 1474 1475 static void nau8825_int_status_clear_all(struct regmap *regmap) 1476 { 1477 int active_irq, clear_irq, i; 1478 1479 /* Reset the intrruption status from rightmost bit if the corres- 1480 * ponding irq event occurs. 1481 */ 1482 regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq); 1483 for (i = 0; i < NAU8825_REG_DATA_LEN; i++) { 1484 clear_irq = (0x1 << i); 1485 if (active_irq & clear_irq) 1486 regmap_write(regmap, 1487 NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq); 1488 } 1489 } 1490 1491 static void nau8825_eject_jack(struct nau8825 *nau8825) 1492 { 1493 struct snd_soc_dapm_context *dapm = nau8825->dapm; 1494 struct regmap *regmap = nau8825->regmap; 1495 1496 /* Force to cancel the cross talk detection process */ 1497 nau8825_xtalk_cancel(nau8825); 1498 1499 snd_soc_dapm_disable_pin(dapm, "SAR"); 1500 snd_soc_dapm_disable_pin(dapm, "MICBIAS"); 1501 /* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */ 1502 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, 1503 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0); 1504 /* ground HPL/HPR, MICGRND1/2 */ 1505 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf); 1506 1507 snd_soc_dapm_sync(dapm); 1508 1509 /* Clear all interruption status */ 1510 nau8825_int_status_clear_all(regmap); 1511 1512 /* Enable the insertion interruption, disable the ejection inter- 1513 * ruption, and then bypass de-bounce circuit. 1514 */ 1515 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 1516 NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS, 1517 NAU8825_IRQ_EJECT_DIS); 1518 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 1519 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN | 1520 NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN, 1521 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN | 1522 NAU8825_IRQ_HEADSET_COMPLETE_EN); 1523 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1524 NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS); 1525 1526 /* Disable ADC needed for interruptions at audo mode */ 1527 regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL, 1528 NAU8825_ENABLE_ADC, 0); 1529 1530 /* Close clock for jack type detection at manual mode */ 1531 nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0); 1532 } 1533 1534 /* Enable audo mode interruptions with internal clock. */ 1535 static void nau8825_setup_auto_irq(struct nau8825 *nau8825) 1536 { 1537 struct regmap *regmap = nau8825->regmap; 1538 1539 /* Enable headset jack type detection complete interruption and 1540 * jack ejection interruption. 1541 */ 1542 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 1543 NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0); 1544 1545 /* Enable internal VCO needed for interruptions */ 1546 nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0); 1547 1548 /* Enable ADC needed for interruptions */ 1549 regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL, 1550 NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC); 1551 1552 /* Chip needs one FSCLK cycle in order to generate interruptions, 1553 * as we cannot guarantee one will be provided by the system. Turning 1554 * master mode on then off enables us to generate that FSCLK cycle 1555 * with a minimum of contention on the clock bus. 1556 */ 1557 regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2, 1558 NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER); 1559 regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2, 1560 NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE); 1561 1562 /* Not bypass de-bounce circuit */ 1563 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1564 NAU8825_JACK_DET_DB_BYPASS, 0); 1565 1566 /* Unmask all interruptions */ 1567 regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0); 1568 1569 /* Restart the jack detection process at auto mode */ 1570 nau8825_restart_jack_detection(regmap); 1571 } 1572 1573 static int nau8825_button_decode(int value) 1574 { 1575 int buttons = 0; 1576 1577 /* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */ 1578 if (value & BIT(0)) 1579 buttons |= SND_JACK_BTN_0; 1580 if (value & BIT(1)) 1581 buttons |= SND_JACK_BTN_1; 1582 if (value & BIT(2)) 1583 buttons |= SND_JACK_BTN_2; 1584 if (value & BIT(3)) 1585 buttons |= SND_JACK_BTN_3; 1586 if (value & BIT(4)) 1587 buttons |= SND_JACK_BTN_4; 1588 if (value & BIT(5)) 1589 buttons |= SND_JACK_BTN_5; 1590 1591 return buttons; 1592 } 1593 1594 static int nau8825_jack_insert(struct nau8825 *nau8825) 1595 { 1596 struct regmap *regmap = nau8825->regmap; 1597 struct snd_soc_dapm_context *dapm = nau8825->dapm; 1598 int jack_status_reg, mic_detected; 1599 int type = 0; 1600 1601 regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg); 1602 mic_detected = (jack_status_reg >> 10) & 3; 1603 /* The JKSLV and JKR2 all detected in high impedance headset */ 1604 if (mic_detected == 0x3) 1605 nau8825->high_imped = true; 1606 else 1607 nau8825->high_imped = false; 1608 1609 switch (mic_detected) { 1610 case 0: 1611 /* no mic */ 1612 type = SND_JACK_HEADPHONE; 1613 break; 1614 case 1: 1615 dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n"); 1616 type = SND_JACK_HEADSET; 1617 1618 /* Unground MICGND1 */ 1619 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2, 1620 1 << 2); 1621 /* Attach 2kOhm Resistor from MICBIAS to MICGND1 */ 1622 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, 1623 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 1624 NAU8825_MICBIAS_JKR2); 1625 /* Attach SARADC to MICGND1 */ 1626 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1627 NAU8825_SAR_INPUT_MASK, 1628 NAU8825_SAR_INPUT_JKR2); 1629 1630 snd_soc_dapm_force_enable_pin(dapm, "MICBIAS"); 1631 snd_soc_dapm_force_enable_pin(dapm, "SAR"); 1632 snd_soc_dapm_sync(dapm); 1633 break; 1634 case 2: 1635 dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n"); 1636 type = SND_JACK_HEADSET; 1637 1638 /* Unground MICGND2 */ 1639 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2, 1640 2 << 2); 1641 /* Attach 2kOhm Resistor from MICBIAS to MICGND2 */ 1642 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, 1643 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 1644 NAU8825_MICBIAS_JKSLV); 1645 /* Attach SARADC to MICGND2 */ 1646 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1647 NAU8825_SAR_INPUT_MASK, 1648 NAU8825_SAR_INPUT_JKSLV); 1649 1650 snd_soc_dapm_force_enable_pin(dapm, "MICBIAS"); 1651 snd_soc_dapm_force_enable_pin(dapm, "SAR"); 1652 snd_soc_dapm_sync(dapm); 1653 break; 1654 case 3: 1655 /* detect error case */ 1656 dev_err(nau8825->dev, "detection error; disable mic function\n"); 1657 type = SND_JACK_HEADPHONE; 1658 break; 1659 } 1660 1661 /* Leaving HPOL/R grounded after jack insert by default. They will be 1662 * ungrounded as part of the widget power up sequence at the beginning 1663 * of playback to reduce pop. 1664 */ 1665 return type; 1666 } 1667 1668 #define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \ 1669 SND_JACK_BTN_2 | SND_JACK_BTN_3) 1670 1671 static irqreturn_t nau8825_interrupt(int irq, void *data) 1672 { 1673 struct nau8825 *nau8825 = (struct nau8825 *)data; 1674 struct regmap *regmap = nau8825->regmap; 1675 int active_irq, clear_irq = 0, event = 0, event_mask = 0; 1676 1677 if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) { 1678 dev_err(nau8825->dev, "failed to read irq status\n"); 1679 return IRQ_NONE; 1680 } 1681 1682 if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) == 1683 NAU8825_JACK_EJECTION_DETECTED) { 1684 1685 nau8825_eject_jack(nau8825); 1686 event_mask |= SND_JACK_HEADSET; 1687 clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK; 1688 } else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) { 1689 int key_status; 1690 1691 regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, 1692 &key_status); 1693 1694 /* upper 8 bits of the register are for short pressed keys, 1695 * lower 8 bits - for long pressed buttons 1696 */ 1697 nau8825->button_pressed = nau8825_button_decode( 1698 key_status >> 8); 1699 1700 event |= nau8825->button_pressed; 1701 event_mask |= NAU8825_BUTTONS; 1702 clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ; 1703 } else if (active_irq & NAU8825_KEY_RELEASE_IRQ) { 1704 event_mask = NAU8825_BUTTONS; 1705 clear_irq = NAU8825_KEY_RELEASE_IRQ; 1706 } else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) { 1707 if (nau8825_is_jack_inserted(regmap)) { 1708 event |= nau8825_jack_insert(nau8825); 1709 if (nau8825->xtalk_enable && !nau8825->high_imped) { 1710 /* Apply the cross talk suppression in the 1711 * headset without high impedance. 1712 */ 1713 if (!nau8825->xtalk_protect) { 1714 /* Raise protection for cross talk de- 1715 * tection if no protection before. 1716 * The driver has to cancel the pro- 1717 * cess and restore changes if process 1718 * is ongoing when ejection. 1719 */ 1720 int ret; 1721 nau8825->xtalk_protect = true; 1722 ret = nau8825_sema_acquire(nau8825, 0); 1723 if (ret) 1724 nau8825->xtalk_protect = false; 1725 } 1726 /* Startup cross talk detection process */ 1727 if (nau8825->xtalk_protect) { 1728 nau8825->xtalk_state = 1729 NAU8825_XTALK_PREPARE; 1730 schedule_work(&nau8825->xtalk_work); 1731 } 1732 } else { 1733 /* The cross talk suppression shouldn't apply 1734 * in the headset with high impedance. Thus, 1735 * relieve the protection raised before. 1736 */ 1737 if (nau8825->xtalk_protect) { 1738 nau8825_sema_release(nau8825); 1739 nau8825->xtalk_protect = false; 1740 } 1741 } 1742 } else { 1743 dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n"); 1744 nau8825_eject_jack(nau8825); 1745 } 1746 1747 event_mask |= SND_JACK_HEADSET; 1748 clear_irq = NAU8825_HEADSET_COMPLETION_IRQ; 1749 /* Record the interruption report event for driver to report 1750 * the event later. The jack report will delay until cross 1751 * talk detection process is done. 1752 */ 1753 if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) { 1754 nau8825->xtalk_event = event; 1755 nau8825->xtalk_event_mask = event_mask; 1756 } 1757 } else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) { 1758 /* crosstalk detection enable and process on going */ 1759 if (nau8825->xtalk_enable && nau8825->xtalk_protect) 1760 schedule_work(&nau8825->xtalk_work); 1761 clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ; 1762 } else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) == 1763 NAU8825_JACK_INSERTION_DETECTED) { 1764 /* One more step to check GPIO status directly. Thus, the 1765 * driver can confirm the real insertion interruption because 1766 * the intrruption at manual mode has bypassed debounce 1767 * circuit which can get rid of unstable status. 1768 */ 1769 if (nau8825_is_jack_inserted(regmap)) { 1770 /* Turn off insertion interruption at manual mode */ 1771 regmap_update_bits(regmap, 1772 NAU8825_REG_INTERRUPT_DIS_CTRL, 1773 NAU8825_IRQ_INSERT_DIS, 1774 NAU8825_IRQ_INSERT_DIS); 1775 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 1776 NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN); 1777 /* Enable interruption for jack type detection at audo 1778 * mode which can detect microphone and jack type. 1779 */ 1780 nau8825_setup_auto_irq(nau8825); 1781 } 1782 } 1783 1784 if (!clear_irq) 1785 clear_irq = active_irq; 1786 /* clears the rightmost interruption */ 1787 regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq); 1788 1789 /* Delay jack report until cross talk detection is done. It can avoid 1790 * application to do playback preparation when cross talk detection 1791 * process is still working. Otherwise, the resource like clock and 1792 * power will be issued by them at the same time and conflict happens. 1793 */ 1794 if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE) 1795 snd_soc_jack_report(nau8825->jack, event, event_mask); 1796 1797 return IRQ_HANDLED; 1798 } 1799 1800 static void nau8825_setup_buttons(struct nau8825 *nau8825) 1801 { 1802 struct regmap *regmap = nau8825->regmap; 1803 1804 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1805 NAU8825_SAR_TRACKING_GAIN_MASK, 1806 nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT); 1807 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1808 NAU8825_SAR_COMPARE_TIME_MASK, 1809 nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT); 1810 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, 1811 NAU8825_SAR_SAMPLING_TIME_MASK, 1812 nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT); 1813 1814 regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL, 1815 NAU8825_KEYDET_LEVELS_NR_MASK, 1816 (nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT); 1817 regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL, 1818 NAU8825_KEYDET_HYSTERESIS_MASK, 1819 nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT); 1820 regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL, 1821 NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK, 1822 nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT); 1823 1824 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1, 1825 (nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]); 1826 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2, 1827 (nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]); 1828 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3, 1829 (nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]); 1830 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4, 1831 (nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]); 1832 1833 /* Enable short press and release interruptions */ 1834 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 1835 NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN, 1836 0); 1837 } 1838 1839 static void nau8825_init_regs(struct nau8825 *nau8825) 1840 { 1841 struct regmap *regmap = nau8825->regmap; 1842 1843 /* Latch IIC LSB value */ 1844 regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001); 1845 /* Enable Bias/Vmid */ 1846 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 1847 NAU8825_BIAS_VMID, NAU8825_BIAS_VMID); 1848 regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST, 1849 NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN); 1850 1851 /* VMID Tieoff */ 1852 regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ, 1853 NAU8825_BIAS_VMID_SEL_MASK, 1854 nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT); 1855 /* Disable Boost Driver, Automatic Short circuit protection enable */ 1856 regmap_update_bits(regmap, NAU8825_REG_BOOST, 1857 NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS | 1858 NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN, 1859 NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS | 1860 NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN); 1861 1862 regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL, 1863 NAU8825_JKDET_OUTPUT_EN, 1864 nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN); 1865 regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL, 1866 NAU8825_JKDET_PULL_EN, 1867 nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN); 1868 regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL, 1869 NAU8825_JKDET_PULL_UP, 1870 nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0); 1871 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1872 NAU8825_JACK_POLARITY, 1873 /* jkdet_polarity - 1 is for active-low */ 1874 nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY); 1875 1876 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1877 NAU8825_JACK_INSERT_DEBOUNCE_MASK, 1878 nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT); 1879 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 1880 NAU8825_JACK_EJECT_DEBOUNCE_MASK, 1881 nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT); 1882 1883 /* Mask unneeded IRQs: 1 - disable, 0 - enable */ 1884 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff); 1885 1886 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, 1887 NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage); 1888 1889 if (nau8825->sar_threshold_num) 1890 nau8825_setup_buttons(nau8825); 1891 1892 /* Default oversampling/decimations settings are unusable 1893 * (audible hiss). Set it to something better. 1894 */ 1895 regmap_update_bits(regmap, NAU8825_REG_ADC_RATE, 1896 NAU8825_ADC_SYNC_DOWN_MASK | NAU8825_ADC_SINC4_EN, 1897 NAU8825_ADC_SYNC_DOWN_64); 1898 regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1, 1899 NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_64); 1900 /* Disable DACR/L power */ 1901 regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP, 1902 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 1903 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL); 1904 /* Enable TESTDAC. This sets the analog DAC inputs to a '0' input 1905 * signal to avoid any glitches due to power up transients in both 1906 * the analog and digital DAC circuit. 1907 */ 1908 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, 1909 NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN); 1910 /* CICCLP off */ 1911 regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1, 1912 NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF); 1913 1914 /* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */ 1915 regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2, 1916 NAU8825_HP_NON_CLASSG_CURRENT_2xADJ | 1917 NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB, 1918 NAU8825_HP_NON_CLASSG_CURRENT_2xADJ | 1919 NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB); 1920 /* Class G timer 64ms */ 1921 regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL, 1922 NAU8825_CLASSG_TIMER_MASK, 1923 0x20 << NAU8825_CLASSG_TIMER_SFT); 1924 /* DAC clock delay 2ns, VREF */ 1925 regmap_update_bits(regmap, NAU8825_REG_RDAC, 1926 NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK, 1927 (0x2 << NAU8825_RDAC_CLK_DELAY_SFT) | 1928 (0x3 << NAU8825_RDAC_VREF_SFT)); 1929 /* Config L/R channel */ 1930 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL, 1931 NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L); 1932 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL, 1933 NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R); 1934 /* Disable short Frame Sync detection logic */ 1935 regmap_update_bits(regmap, NAU8825_REG_LEFT_TIME_SLOT, 1936 NAU8825_DIS_FS_SHORT_DET, NAU8825_DIS_FS_SHORT_DET); 1937 } 1938 1939 static const struct regmap_config nau8825_regmap_config = { 1940 .val_bits = NAU8825_REG_DATA_LEN, 1941 .reg_bits = NAU8825_REG_ADDR_LEN, 1942 1943 .max_register = NAU8825_REG_MAX, 1944 .readable_reg = nau8825_readable_reg, 1945 .writeable_reg = nau8825_writeable_reg, 1946 .volatile_reg = nau8825_volatile_reg, 1947 1948 .cache_type = REGCACHE_RBTREE, 1949 .reg_defaults = nau8825_reg_defaults, 1950 .num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults), 1951 }; 1952 1953 static int nau8825_component_probe(struct snd_soc_component *component) 1954 { 1955 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 1956 struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); 1957 1958 nau8825->dapm = dapm; 1959 1960 return 0; 1961 } 1962 1963 static void nau8825_component_remove(struct snd_soc_component *component) 1964 { 1965 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 1966 1967 /* Cancel and reset cross tak suppresstion detection funciton */ 1968 nau8825_xtalk_cancel(nau8825); 1969 } 1970 1971 /** 1972 * nau8825_calc_fll_param - Calculate FLL parameters. 1973 * @fll_in: external clock provided to codec. 1974 * @fs: sampling rate. 1975 * @fll_param: Pointer to structure of FLL parameters. 1976 * 1977 * Calculate FLL parameters to configure codec. 1978 * 1979 * Returns 0 for success or negative error code. 1980 */ 1981 static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs, 1982 struct nau8825_fll *fll_param) 1983 { 1984 u64 fvco, fvco_max; 1985 unsigned int fref, i, fvco_sel; 1986 1987 /* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing 1988 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar. 1989 * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK 1990 */ 1991 for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) { 1992 fref = fll_in / fll_pre_scalar[i].param; 1993 if (fref <= NAU_FREF_MAX) 1994 break; 1995 } 1996 if (i == ARRAY_SIZE(fll_pre_scalar)) 1997 return -EINVAL; 1998 fll_param->clk_ref_div = fll_pre_scalar[i].val; 1999 2000 /* Choose the FLL ratio based on FREF */ 2001 for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) { 2002 if (fref >= fll_ratio[i].param) 2003 break; 2004 } 2005 if (i == ARRAY_SIZE(fll_ratio)) 2006 return -EINVAL; 2007 fll_param->ratio = fll_ratio[i].val; 2008 2009 /* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs. 2010 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be 2011 * guaranteed across the full range of operation. 2012 * FDCO = freq_out * 2 * mclk_src_scaling 2013 */ 2014 fvco_max = 0; 2015 fvco_sel = ARRAY_SIZE(mclk_src_scaling); 2016 for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) { 2017 fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param; 2018 if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX && 2019 fvco_max < fvco) { 2020 fvco_max = fvco; 2021 fvco_sel = i; 2022 } 2023 } 2024 if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel) 2025 return -EINVAL; 2026 fll_param->mclk_src = mclk_src_scaling[fvco_sel].val; 2027 2028 /* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional 2029 * input based on FDCO, FREF and FLL ratio. 2030 */ 2031 fvco = div_u64(fvco_max << 16, fref * fll_param->ratio); 2032 fll_param->fll_int = (fvco >> 16) & 0x3FF; 2033 fll_param->fll_frac = fvco & 0xFFFF; 2034 return 0; 2035 } 2036 2037 static void nau8825_fll_apply(struct nau8825 *nau8825, 2038 struct nau8825_fll *fll_param) 2039 { 2040 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 2041 NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK, 2042 NAU8825_CLK_SRC_MCLK | fll_param->mclk_src); 2043 /* Make DSP operate at high speed for better performance. */ 2044 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1, 2045 NAU8825_FLL_RATIO_MASK | NAU8825_ICTRL_LATCH_MASK, 2046 fll_param->ratio | (0x6 << NAU8825_ICTRL_LATCH_SFT)); 2047 /* FLL 16-bit fractional input */ 2048 regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac); 2049 /* FLL 10-bit integer input */ 2050 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3, 2051 NAU8825_FLL_INTEGER_MASK, fll_param->fll_int); 2052 /* FLL pre-scaler */ 2053 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4, 2054 NAU8825_FLL_REF_DIV_MASK, 2055 fll_param->clk_ref_div << NAU8825_FLL_REF_DIV_SFT); 2056 /* select divided VCO input */ 2057 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5, 2058 NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF); 2059 /* Disable free-running mode */ 2060 regmap_update_bits(nau8825->regmap, 2061 NAU8825_REG_FLL6, NAU8825_DCO_EN, 0); 2062 if (fll_param->fll_frac) { 2063 /* set FLL loop filter enable and cutoff frequency at 500Khz */ 2064 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5, 2065 NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN | 2066 NAU8825_FLL_FTR_SW_MASK, 2067 NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN | 2068 NAU8825_FLL_FTR_SW_FILTER); 2069 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, 2070 NAU8825_SDM_EN | NAU8825_CUTOFF500, 2071 NAU8825_SDM_EN | NAU8825_CUTOFF500); 2072 } else { 2073 /* disable FLL loop filter and cutoff frequency */ 2074 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5, 2075 NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN | 2076 NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU); 2077 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, 2078 NAU8825_SDM_EN | NAU8825_CUTOFF500, 0); 2079 } 2080 } 2081 2082 /* freq_out must be 256*Fs in order to achieve the best performance */ 2083 static int nau8825_set_pll(struct snd_soc_component *component, int pll_id, int source, 2084 unsigned int freq_in, unsigned int freq_out) 2085 { 2086 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 2087 struct nau8825_fll fll_param; 2088 int ret, fs; 2089 2090 fs = freq_out / 256; 2091 ret = nau8825_calc_fll_param(freq_in, fs, &fll_param); 2092 if (ret < 0) { 2093 dev_err(component->dev, "Unsupported input clock %d\n", freq_in); 2094 return ret; 2095 } 2096 dev_dbg(component->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n", 2097 fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac, 2098 fll_param.fll_int, fll_param.clk_ref_div); 2099 2100 nau8825_fll_apply(nau8825, &fll_param); 2101 mdelay(2); 2102 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, 2103 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO); 2104 return 0; 2105 } 2106 2107 static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq) 2108 { 2109 int ret = 0; 2110 2111 nau8825->mclk = devm_clk_get(nau8825->dev, "mclk"); 2112 if (IS_ERR(nau8825->mclk)) { 2113 dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally"); 2114 return 0; 2115 } 2116 2117 if (!nau8825->mclk_freq) { 2118 ret = clk_prepare_enable(nau8825->mclk); 2119 if (ret) { 2120 dev_err(nau8825->dev, "Unable to prepare codec mclk\n"); 2121 return ret; 2122 } 2123 } 2124 2125 if (nau8825->mclk_freq != freq) { 2126 freq = clk_round_rate(nau8825->mclk, freq); 2127 ret = clk_set_rate(nau8825->mclk, freq); 2128 if (ret) { 2129 dev_err(nau8825->dev, "Unable to set mclk rate\n"); 2130 return ret; 2131 } 2132 nau8825->mclk_freq = freq; 2133 } 2134 2135 return 0; 2136 } 2137 2138 static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap) 2139 { 2140 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, 2141 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK); 2142 regmap_update_bits(regmap, NAU8825_REG_FLL6, 2143 NAU8825_DCO_EN, 0); 2144 /* Make DSP operate as default setting for power saving. */ 2145 regmap_update_bits(regmap, NAU8825_REG_FLL1, 2146 NAU8825_ICTRL_LATCH_MASK, 0); 2147 } 2148 2149 static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id, 2150 unsigned int freq) 2151 { 2152 struct regmap *regmap = nau8825->regmap; 2153 int ret; 2154 2155 switch (clk_id) { 2156 case NAU8825_CLK_DIS: 2157 /* Clock provided externally and disable internal VCO clock */ 2158 nau8825_configure_mclk_as_sysclk(regmap); 2159 if (nau8825->mclk_freq) { 2160 clk_disable_unprepare(nau8825->mclk); 2161 nau8825->mclk_freq = 0; 2162 } 2163 2164 break; 2165 case NAU8825_CLK_MCLK: 2166 /* Acquire the semaphore to synchronize the playback and 2167 * interrupt handler. In order to avoid the playback inter- 2168 * fered by cross talk process, the driver make the playback 2169 * preparation halted until cross talk process finish. 2170 */ 2171 nau8825_sema_acquire(nau8825, 3 * HZ); 2172 nau8825_configure_mclk_as_sysclk(regmap); 2173 /* MCLK not changed by clock tree */ 2174 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, 2175 NAU8825_CLK_MCLK_SRC_MASK, 0); 2176 /* Release the semaphore. */ 2177 nau8825_sema_release(nau8825); 2178 2179 ret = nau8825_mclk_prepare(nau8825, freq); 2180 if (ret) 2181 return ret; 2182 2183 break; 2184 case NAU8825_CLK_INTERNAL: 2185 if (nau8825_is_jack_inserted(nau8825->regmap)) { 2186 regmap_update_bits(regmap, NAU8825_REG_FLL6, 2187 NAU8825_DCO_EN, NAU8825_DCO_EN); 2188 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, 2189 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO); 2190 /* Decrease the VCO frequency and make DSP operate 2191 * as default setting for power saving. 2192 */ 2193 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, 2194 NAU8825_CLK_MCLK_SRC_MASK, 0xf); 2195 regmap_update_bits(regmap, NAU8825_REG_FLL1, 2196 NAU8825_ICTRL_LATCH_MASK | 2197 NAU8825_FLL_RATIO_MASK, 0x10); 2198 regmap_update_bits(regmap, NAU8825_REG_FLL6, 2199 NAU8825_SDM_EN, NAU8825_SDM_EN); 2200 } else { 2201 /* The clock turns off intentionally for power saving 2202 * when no headset connected. 2203 */ 2204 nau8825_configure_mclk_as_sysclk(regmap); 2205 dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n"); 2206 } 2207 if (nau8825->mclk_freq) { 2208 clk_disable_unprepare(nau8825->mclk); 2209 nau8825->mclk_freq = 0; 2210 } 2211 2212 break; 2213 case NAU8825_CLK_FLL_MCLK: 2214 /* Acquire the semaphore to synchronize the playback and 2215 * interrupt handler. In order to avoid the playback inter- 2216 * fered by cross talk process, the driver make the playback 2217 * preparation halted until cross talk process finish. 2218 */ 2219 nau8825_sema_acquire(nau8825, 3 * HZ); 2220 /* Higher FLL reference input frequency can only set lower 2221 * gain error, such as 0000 for input reference from MCLK 2222 * 12.288Mhz. 2223 */ 2224 regmap_update_bits(regmap, NAU8825_REG_FLL3, 2225 NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK, 2226 NAU8825_FLL_CLK_SRC_MCLK | 0); 2227 /* Release the semaphore. */ 2228 nau8825_sema_release(nau8825); 2229 2230 ret = nau8825_mclk_prepare(nau8825, freq); 2231 if (ret) 2232 return ret; 2233 2234 break; 2235 case NAU8825_CLK_FLL_BLK: 2236 /* Acquire the semaphore to synchronize the playback and 2237 * interrupt handler. In order to avoid the playback inter- 2238 * fered by cross talk process, the driver make the playback 2239 * preparation halted until cross talk process finish. 2240 */ 2241 nau8825_sema_acquire(nau8825, 3 * HZ); 2242 /* If FLL reference input is from low frequency source, 2243 * higher error gain can apply such as 0xf which has 2244 * the most sensitive gain error correction threshold, 2245 * Therefore, FLL has the most accurate DCO to 2246 * target frequency. 2247 */ 2248 regmap_update_bits(regmap, NAU8825_REG_FLL3, 2249 NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK, 2250 NAU8825_FLL_CLK_SRC_BLK | 2251 (0xf << NAU8825_GAIN_ERR_SFT)); 2252 /* Release the semaphore. */ 2253 nau8825_sema_release(nau8825); 2254 2255 if (nau8825->mclk_freq) { 2256 clk_disable_unprepare(nau8825->mclk); 2257 nau8825->mclk_freq = 0; 2258 } 2259 2260 break; 2261 case NAU8825_CLK_FLL_FS: 2262 /* Acquire the semaphore to synchronize the playback and 2263 * interrupt handler. In order to avoid the playback inter- 2264 * fered by cross talk process, the driver make the playback 2265 * preparation halted until cross talk process finish. 2266 */ 2267 nau8825_sema_acquire(nau8825, 3 * HZ); 2268 /* If FLL reference input is from low frequency source, 2269 * higher error gain can apply such as 0xf which has 2270 * the most sensitive gain error correction threshold, 2271 * Therefore, FLL has the most accurate DCO to 2272 * target frequency. 2273 */ 2274 regmap_update_bits(regmap, NAU8825_REG_FLL3, 2275 NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK, 2276 NAU8825_FLL_CLK_SRC_FS | 2277 (0xf << NAU8825_GAIN_ERR_SFT)); 2278 /* Release the semaphore. */ 2279 nau8825_sema_release(nau8825); 2280 2281 if (nau8825->mclk_freq) { 2282 clk_disable_unprepare(nau8825->mclk); 2283 nau8825->mclk_freq = 0; 2284 } 2285 2286 break; 2287 default: 2288 dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id); 2289 return -EINVAL; 2290 } 2291 2292 dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq, 2293 clk_id); 2294 return 0; 2295 } 2296 2297 static int nau8825_set_sysclk(struct snd_soc_component *component, int clk_id, 2298 int source, unsigned int freq, int dir) 2299 { 2300 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 2301 2302 return nau8825_configure_sysclk(nau8825, clk_id, freq); 2303 } 2304 2305 static int nau8825_resume_setup(struct nau8825 *nau8825) 2306 { 2307 struct regmap *regmap = nau8825->regmap; 2308 2309 /* Close clock when jack type detection at manual mode */ 2310 nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0); 2311 2312 /* Clear all interruption status */ 2313 nau8825_int_status_clear_all(regmap); 2314 2315 /* Enable both insertion and ejection interruptions, and then 2316 * bypass de-bounce circuit. 2317 */ 2318 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 2319 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN | 2320 NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN, 2321 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN); 2322 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, 2323 NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS); 2324 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 2325 NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0); 2326 2327 return 0; 2328 } 2329 2330 static int nau8825_set_bias_level(struct snd_soc_component *component, 2331 enum snd_soc_bias_level level) 2332 { 2333 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 2334 int ret; 2335 2336 switch (level) { 2337 case SND_SOC_BIAS_ON: 2338 break; 2339 2340 case SND_SOC_BIAS_PREPARE: 2341 break; 2342 2343 case SND_SOC_BIAS_STANDBY: 2344 if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) { 2345 if (nau8825->mclk_freq) { 2346 ret = clk_prepare_enable(nau8825->mclk); 2347 if (ret) { 2348 dev_err(nau8825->dev, "Unable to prepare component mclk\n"); 2349 return ret; 2350 } 2351 } 2352 /* Setup codec configuration after resume */ 2353 nau8825_resume_setup(nau8825); 2354 } 2355 break; 2356 2357 case SND_SOC_BIAS_OFF: 2358 /* Reset the configuration of jack type for detection */ 2359 /* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */ 2360 regmap_update_bits(nau8825->regmap, NAU8825_REG_MIC_BIAS, 2361 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0); 2362 /* ground HPL/HPR, MICGRND1/2 */ 2363 regmap_update_bits(nau8825->regmap, 2364 NAU8825_REG_HSD_CTRL, 0xf, 0xf); 2365 /* Cancel and reset cross talk detection funciton */ 2366 nau8825_xtalk_cancel(nau8825); 2367 /* Turn off all interruptions before system shutdown. Keep the 2368 * interruption quiet before resume setup completes. 2369 */ 2370 regmap_write(nau8825->regmap, 2371 NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff); 2372 /* Disable ADC needed for interruptions at audo mode */ 2373 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, 2374 NAU8825_ENABLE_ADC, 0); 2375 if (nau8825->mclk_freq) 2376 clk_disable_unprepare(nau8825->mclk); 2377 break; 2378 } 2379 return 0; 2380 } 2381 2382 static int __maybe_unused nau8825_suspend(struct snd_soc_component *component) 2383 { 2384 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 2385 2386 disable_irq(nau8825->irq); 2387 snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF); 2388 /* Power down codec power; don't suppoet button wakeup */ 2389 snd_soc_dapm_disable_pin(nau8825->dapm, "SAR"); 2390 snd_soc_dapm_disable_pin(nau8825->dapm, "MICBIAS"); 2391 snd_soc_dapm_sync(nau8825->dapm); 2392 regcache_cache_only(nau8825->regmap, true); 2393 regcache_mark_dirty(nau8825->regmap); 2394 2395 return 0; 2396 } 2397 2398 static int __maybe_unused nau8825_resume(struct snd_soc_component *component) 2399 { 2400 struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); 2401 int ret; 2402 2403 regcache_cache_only(nau8825->regmap, false); 2404 regcache_sync(nau8825->regmap); 2405 nau8825->xtalk_protect = true; 2406 ret = nau8825_sema_acquire(nau8825, 0); 2407 if (ret) 2408 nau8825->xtalk_protect = false; 2409 enable_irq(nau8825->irq); 2410 2411 return 0; 2412 } 2413 2414 static const struct snd_soc_component_driver nau8825_component_driver = { 2415 .probe = nau8825_component_probe, 2416 .remove = nau8825_component_remove, 2417 .set_sysclk = nau8825_set_sysclk, 2418 .set_pll = nau8825_set_pll, 2419 .set_bias_level = nau8825_set_bias_level, 2420 .suspend = nau8825_suspend, 2421 .resume = nau8825_resume, 2422 .controls = nau8825_controls, 2423 .num_controls = ARRAY_SIZE(nau8825_controls), 2424 .dapm_widgets = nau8825_dapm_widgets, 2425 .num_dapm_widgets = ARRAY_SIZE(nau8825_dapm_widgets), 2426 .dapm_routes = nau8825_dapm_routes, 2427 .num_dapm_routes = ARRAY_SIZE(nau8825_dapm_routes), 2428 .suspend_bias_off = 1, 2429 .idle_bias_on = 1, 2430 .use_pmdown_time = 1, 2431 .endianness = 1, 2432 .non_legacy_dai_naming = 1, 2433 }; 2434 2435 static void nau8825_reset_chip(struct regmap *regmap) 2436 { 2437 regmap_write(regmap, NAU8825_REG_RESET, 0x00); 2438 regmap_write(regmap, NAU8825_REG_RESET, 0x00); 2439 } 2440 2441 static void nau8825_print_device_properties(struct nau8825 *nau8825) 2442 { 2443 int i; 2444 struct device *dev = nau8825->dev; 2445 2446 dev_dbg(dev, "jkdet-enable: %d\n", nau8825->jkdet_enable); 2447 dev_dbg(dev, "jkdet-pull-enable: %d\n", nau8825->jkdet_pull_enable); 2448 dev_dbg(dev, "jkdet-pull-up: %d\n", nau8825->jkdet_pull_up); 2449 dev_dbg(dev, "jkdet-polarity: %d\n", nau8825->jkdet_polarity); 2450 dev_dbg(dev, "micbias-voltage: %d\n", nau8825->micbias_voltage); 2451 dev_dbg(dev, "vref-impedance: %d\n", nau8825->vref_impedance); 2452 2453 dev_dbg(dev, "sar-threshold-num: %d\n", nau8825->sar_threshold_num); 2454 for (i = 0; i < nau8825->sar_threshold_num; i++) 2455 dev_dbg(dev, "sar-threshold[%d]=%d\n", i, 2456 nau8825->sar_threshold[i]); 2457 2458 dev_dbg(dev, "sar-hysteresis: %d\n", nau8825->sar_hysteresis); 2459 dev_dbg(dev, "sar-voltage: %d\n", nau8825->sar_voltage); 2460 dev_dbg(dev, "sar-compare-time: %d\n", nau8825->sar_compare_time); 2461 dev_dbg(dev, "sar-sampling-time: %d\n", nau8825->sar_sampling_time); 2462 dev_dbg(dev, "short-key-debounce: %d\n", nau8825->key_debounce); 2463 dev_dbg(dev, "jack-insert-debounce: %d\n", 2464 nau8825->jack_insert_debounce); 2465 dev_dbg(dev, "jack-eject-debounce: %d\n", 2466 nau8825->jack_eject_debounce); 2467 dev_dbg(dev, "crosstalk-enable: %d\n", 2468 nau8825->xtalk_enable); 2469 } 2470 2471 static int nau8825_read_device_properties(struct device *dev, 2472 struct nau8825 *nau8825) { 2473 int ret; 2474 2475 nau8825->jkdet_enable = device_property_read_bool(dev, 2476 "nuvoton,jkdet-enable"); 2477 nau8825->jkdet_pull_enable = device_property_read_bool(dev, 2478 "nuvoton,jkdet-pull-enable"); 2479 nau8825->jkdet_pull_up = device_property_read_bool(dev, 2480 "nuvoton,jkdet-pull-up"); 2481 ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity", 2482 &nau8825->jkdet_polarity); 2483 if (ret) 2484 nau8825->jkdet_polarity = 1; 2485 ret = device_property_read_u32(dev, "nuvoton,micbias-voltage", 2486 &nau8825->micbias_voltage); 2487 if (ret) 2488 nau8825->micbias_voltage = 6; 2489 ret = device_property_read_u32(dev, "nuvoton,vref-impedance", 2490 &nau8825->vref_impedance); 2491 if (ret) 2492 nau8825->vref_impedance = 2; 2493 ret = device_property_read_u32(dev, "nuvoton,sar-threshold-num", 2494 &nau8825->sar_threshold_num); 2495 if (ret) 2496 nau8825->sar_threshold_num = 4; 2497 ret = device_property_read_u32_array(dev, "nuvoton,sar-threshold", 2498 nau8825->sar_threshold, nau8825->sar_threshold_num); 2499 if (ret) { 2500 nau8825->sar_threshold[0] = 0x08; 2501 nau8825->sar_threshold[1] = 0x12; 2502 nau8825->sar_threshold[2] = 0x26; 2503 nau8825->sar_threshold[3] = 0x73; 2504 } 2505 ret = device_property_read_u32(dev, "nuvoton,sar-hysteresis", 2506 &nau8825->sar_hysteresis); 2507 if (ret) 2508 nau8825->sar_hysteresis = 0; 2509 ret = device_property_read_u32(dev, "nuvoton,sar-voltage", 2510 &nau8825->sar_voltage); 2511 if (ret) 2512 nau8825->sar_voltage = 6; 2513 ret = device_property_read_u32(dev, "nuvoton,sar-compare-time", 2514 &nau8825->sar_compare_time); 2515 if (ret) 2516 nau8825->sar_compare_time = 1; 2517 ret = device_property_read_u32(dev, "nuvoton,sar-sampling-time", 2518 &nau8825->sar_sampling_time); 2519 if (ret) 2520 nau8825->sar_sampling_time = 1; 2521 ret = device_property_read_u32(dev, "nuvoton,short-key-debounce", 2522 &nau8825->key_debounce); 2523 if (ret) 2524 nau8825->key_debounce = 3; 2525 ret = device_property_read_u32(dev, "nuvoton,jack-insert-debounce", 2526 &nau8825->jack_insert_debounce); 2527 if (ret) 2528 nau8825->jack_insert_debounce = 7; 2529 ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce", 2530 &nau8825->jack_eject_debounce); 2531 if (ret) 2532 nau8825->jack_eject_debounce = 0; 2533 nau8825->xtalk_enable = device_property_read_bool(dev, 2534 "nuvoton,crosstalk-enable"); 2535 2536 nau8825->mclk = devm_clk_get(dev, "mclk"); 2537 if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) { 2538 return -EPROBE_DEFER; 2539 } else if (PTR_ERR(nau8825->mclk) == -ENOENT) { 2540 /* The MCLK is managed externally or not used at all */ 2541 nau8825->mclk = NULL; 2542 dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally"); 2543 } else if (IS_ERR(nau8825->mclk)) { 2544 return -EINVAL; 2545 } 2546 2547 return 0; 2548 } 2549 2550 static int nau8825_setup_irq(struct nau8825 *nau8825) 2551 { 2552 int ret; 2553 2554 ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL, 2555 nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT, 2556 "nau8825", nau8825); 2557 2558 if (ret) { 2559 dev_err(nau8825->dev, "Cannot request irq %d (%d)\n", 2560 nau8825->irq, ret); 2561 return ret; 2562 } 2563 2564 return 0; 2565 } 2566 2567 static int nau8825_i2c_probe(struct i2c_client *i2c, 2568 const struct i2c_device_id *id) 2569 { 2570 struct device *dev = &i2c->dev; 2571 struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev); 2572 int ret, value; 2573 2574 if (!nau8825) { 2575 nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL); 2576 if (!nau8825) 2577 return -ENOMEM; 2578 ret = nau8825_read_device_properties(dev, nau8825); 2579 if (ret) 2580 return ret; 2581 } 2582 2583 i2c_set_clientdata(i2c, nau8825); 2584 2585 nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config); 2586 if (IS_ERR(nau8825->regmap)) 2587 return PTR_ERR(nau8825->regmap); 2588 nau8825->dev = dev; 2589 nau8825->irq = i2c->irq; 2590 /* Initiate parameters, semaphore and work queue which are needed in 2591 * cross talk suppression measurment function. 2592 */ 2593 nau8825->xtalk_state = NAU8825_XTALK_DONE; 2594 nau8825->xtalk_protect = false; 2595 nau8825->xtalk_baktab_initialized = false; 2596 sema_init(&nau8825->xtalk_sem, 1); 2597 INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work); 2598 2599 nau8825_print_device_properties(nau8825); 2600 2601 nau8825_reset_chip(nau8825->regmap); 2602 ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value); 2603 if (ret < 0) { 2604 dev_err(dev, "Failed to read device id from the NAU8825: %d\n", 2605 ret); 2606 return ret; 2607 } 2608 if ((value & NAU8825_SOFTWARE_ID_MASK) != 2609 NAU8825_SOFTWARE_ID_NAU8825) { 2610 dev_err(dev, "Not a NAU8825 chip\n"); 2611 return -ENODEV; 2612 } 2613 2614 nau8825_init_regs(nau8825); 2615 2616 if (i2c->irq) 2617 nau8825_setup_irq(nau8825); 2618 2619 return devm_snd_soc_register_component(&i2c->dev, 2620 &nau8825_component_driver, 2621 &nau8825_dai, 1); 2622 } 2623 2624 static int nau8825_i2c_remove(struct i2c_client *client) 2625 { 2626 return 0; 2627 } 2628 2629 static const struct i2c_device_id nau8825_i2c_ids[] = { 2630 { "nau8825", 0 }, 2631 { } 2632 }; 2633 MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids); 2634 2635 #ifdef CONFIG_OF 2636 static const struct of_device_id nau8825_of_ids[] = { 2637 { .compatible = "nuvoton,nau8825", }, 2638 {} 2639 }; 2640 MODULE_DEVICE_TABLE(of, nau8825_of_ids); 2641 #endif 2642 2643 #ifdef CONFIG_ACPI 2644 static const struct acpi_device_id nau8825_acpi_match[] = { 2645 { "10508825", 0 }, 2646 {}, 2647 }; 2648 MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match); 2649 #endif 2650 2651 static struct i2c_driver nau8825_driver = { 2652 .driver = { 2653 .name = "nau8825", 2654 .of_match_table = of_match_ptr(nau8825_of_ids), 2655 .acpi_match_table = ACPI_PTR(nau8825_acpi_match), 2656 }, 2657 .probe = nau8825_i2c_probe, 2658 .remove = nau8825_i2c_remove, 2659 .id_table = nau8825_i2c_ids, 2660 }; 2661 module_i2c_driver(nau8825_driver); 2662 2663 MODULE_DESCRIPTION("ASoC nau8825 driver"); 2664 MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>"); 2665 MODULE_LICENSE("GPL"); 2666