xref: /openbmc/linux/sound/soc/codecs/nau8825.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * Nuvoton NAU8825 audio codec driver
3  *
4  * Copyright 2015 Google Chromium project.
5  *  Author: Anatol Pomozov <anatol@chromium.org>
6  * Copyright 2015 Nuvoton Technology Corp.
7  *  Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com>
8  *
9  * Licensed under the GPL-2.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/delay.h>
14 #include <linux/init.h>
15 #include <linux/i2c.h>
16 #include <linux/regmap.h>
17 #include <linux/slab.h>
18 #include <linux/clk.h>
19 #include <linux/acpi.h>
20 #include <linux/math64.h>
21 #include <linux/semaphore.h>
22 
23 #include <sound/initval.h>
24 #include <sound/tlv.h>
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 #include <sound/soc.h>
29 #include <sound/jack.h>
30 
31 
32 #include "nau8825.h"
33 
34 
35 #define NUVOTON_CODEC_DAI "nau8825-hifi"
36 
37 #define NAU_FREF_MAX 13500000
38 #define NAU_FVCO_MAX 124000000
39 #define NAU_FVCO_MIN 90000000
40 
41 /* cross talk suppression detection */
42 #define LOG10_MAGIC 646456993
43 #define GAIN_AUGMENT 22500
44 #define SIDETONE_BASE 207000
45 
46 /* the maximum frequency of CLK_ADC and CLK_DAC */
47 #define CLK_DA_AD_MAX 6144000
48 
49 static int nau8825_configure_sysclk(struct nau8825 *nau8825,
50 		int clk_id, unsigned int freq);
51 
52 struct nau8825_fll {
53 	int mclk_src;
54 	int ratio;
55 	int fll_frac;
56 	int fll_int;
57 	int clk_ref_div;
58 };
59 
60 struct nau8825_fll_attr {
61 	unsigned int param;
62 	unsigned int val;
63 };
64 
65 /* scaling for mclk from sysclk_src output */
66 static const struct nau8825_fll_attr mclk_src_scaling[] = {
67 	{ 1, 0x0 },
68 	{ 2, 0x2 },
69 	{ 4, 0x3 },
70 	{ 8, 0x4 },
71 	{ 16, 0x5 },
72 	{ 32, 0x6 },
73 	{ 3, 0x7 },
74 	{ 6, 0xa },
75 	{ 12, 0xb },
76 	{ 24, 0xc },
77 	{ 48, 0xd },
78 	{ 96, 0xe },
79 	{ 5, 0xf },
80 };
81 
82 /* ratio for input clk freq */
83 static const struct nau8825_fll_attr fll_ratio[] = {
84 	{ 512000, 0x01 },
85 	{ 256000, 0x02 },
86 	{ 128000, 0x04 },
87 	{ 64000, 0x08 },
88 	{ 32000, 0x10 },
89 	{ 8000, 0x20 },
90 	{ 4000, 0x40 },
91 };
92 
93 static const struct nau8825_fll_attr fll_pre_scalar[] = {
94 	{ 1, 0x0 },
95 	{ 2, 0x1 },
96 	{ 4, 0x2 },
97 	{ 8, 0x3 },
98 };
99 
100 /* over sampling rate */
101 struct nau8825_osr_attr {
102 	unsigned int osr;
103 	unsigned int clk_src;
104 };
105 
106 static const struct nau8825_osr_attr osr_dac_sel[] = {
107 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
108 	{ 256, 0 },	/* OSR 256, SRC 1 */
109 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
110 	{ 0, 0 },
111 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
112 };
113 
114 static const struct nau8825_osr_attr osr_adc_sel[] = {
115 	{ 32, 3 },	/* OSR 32, SRC 1/8 */
116 	{ 64, 2 },	/* OSR 64, SRC 1/4 */
117 	{ 128, 1 },	/* OSR 128, SRC 1/2 */
118 	{ 256, 0 },	/* OSR 256, SRC 1 */
119 };
120 
121 static const struct reg_default nau8825_reg_defaults[] = {
122 	{ NAU8825_REG_ENA_CTRL, 0x00ff },
123 	{ NAU8825_REG_IIC_ADDR_SET, 0x0 },
124 	{ NAU8825_REG_CLK_DIVIDER, 0x0050 },
125 	{ NAU8825_REG_FLL1, 0x0 },
126 	{ NAU8825_REG_FLL2, 0x3126 },
127 	{ NAU8825_REG_FLL3, 0x0008 },
128 	{ NAU8825_REG_FLL4, 0x0010 },
129 	{ NAU8825_REG_FLL5, 0x0 },
130 	{ NAU8825_REG_FLL6, 0x6000 },
131 	{ NAU8825_REG_FLL_VCO_RSV, 0xf13c },
132 	{ NAU8825_REG_HSD_CTRL, 0x000c },
133 	{ NAU8825_REG_JACK_DET_CTRL, 0x0 },
134 	{ NAU8825_REG_INTERRUPT_MASK, 0x0 },
135 	{ NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff },
136 	{ NAU8825_REG_SAR_CTRL, 0x0015 },
137 	{ NAU8825_REG_KEYDET_CTRL, 0x0110 },
138 	{ NAU8825_REG_VDET_THRESHOLD_1, 0x0 },
139 	{ NAU8825_REG_VDET_THRESHOLD_2, 0x0 },
140 	{ NAU8825_REG_VDET_THRESHOLD_3, 0x0 },
141 	{ NAU8825_REG_VDET_THRESHOLD_4, 0x0 },
142 	{ NAU8825_REG_GPIO34_CTRL, 0x0 },
143 	{ NAU8825_REG_GPIO12_CTRL, 0x0 },
144 	{ NAU8825_REG_TDM_CTRL, 0x0 },
145 	{ NAU8825_REG_I2S_PCM_CTRL1, 0x000b },
146 	{ NAU8825_REG_I2S_PCM_CTRL2, 0x8010 },
147 	{ NAU8825_REG_LEFT_TIME_SLOT, 0x0 },
148 	{ NAU8825_REG_RIGHT_TIME_SLOT, 0x0 },
149 	{ NAU8825_REG_BIQ_CTRL, 0x0 },
150 	{ NAU8825_REG_BIQ_COF1, 0x0 },
151 	{ NAU8825_REG_BIQ_COF2, 0x0 },
152 	{ NAU8825_REG_BIQ_COF3, 0x0 },
153 	{ NAU8825_REG_BIQ_COF4, 0x0 },
154 	{ NAU8825_REG_BIQ_COF5, 0x0 },
155 	{ NAU8825_REG_BIQ_COF6, 0x0 },
156 	{ NAU8825_REG_BIQ_COF7, 0x0 },
157 	{ NAU8825_REG_BIQ_COF8, 0x0 },
158 	{ NAU8825_REG_BIQ_COF9, 0x0 },
159 	{ NAU8825_REG_BIQ_COF10, 0x0 },
160 	{ NAU8825_REG_ADC_RATE, 0x0010 },
161 	{ NAU8825_REG_DAC_CTRL1, 0x0001 },
162 	{ NAU8825_REG_DAC_CTRL2, 0x0 },
163 	{ NAU8825_REG_DAC_DGAIN_CTRL, 0x0 },
164 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
165 	{ NAU8825_REG_MUTE_CTRL, 0x0 },
166 	{ NAU8825_REG_HSVOL_CTRL, 0x0 },
167 	{ NAU8825_REG_DACL_CTRL, 0x02cf },
168 	{ NAU8825_REG_DACR_CTRL, 0x00cf },
169 	{ NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 },
170 	{ NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 },
171 	{ NAU8825_REG_ADC_DRC_SLOPES, 0x25ff },
172 	{ NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 },
173 	{ NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 },
174 	{ NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 },
175 	{ NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 },
176 	{ NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 },
177 	{ NAU8825_REG_IMM_MODE_CTRL, 0x0 },
178 	{ NAU8825_REG_CLASSG_CTRL, 0x0 },
179 	{ NAU8825_REG_OPT_EFUSE_CTRL, 0x0 },
180 	{ NAU8825_REG_MISC_CTRL, 0x0 },
181 	{ NAU8825_REG_BIAS_ADJ, 0x0 },
182 	{ NAU8825_REG_TRIM_SETTINGS, 0x0 },
183 	{ NAU8825_REG_ANALOG_CONTROL_1, 0x0 },
184 	{ NAU8825_REG_ANALOG_CONTROL_2, 0x0 },
185 	{ NAU8825_REG_ANALOG_ADC_1, 0x0011 },
186 	{ NAU8825_REG_ANALOG_ADC_2, 0x0020 },
187 	{ NAU8825_REG_RDAC, 0x0008 },
188 	{ NAU8825_REG_MIC_BIAS, 0x0006 },
189 	{ NAU8825_REG_BOOST, 0x0 },
190 	{ NAU8825_REG_FEPGA, 0x0 },
191 	{ NAU8825_REG_POWER_UP_CONTROL, 0x0 },
192 	{ NAU8825_REG_CHARGE_PUMP, 0x0 },
193 };
194 
195 /* register backup table when cross talk detection */
196 static struct reg_default nau8825_xtalk_baktab[] = {
197 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0 },
198 	{ NAU8825_REG_HSVOL_CTRL, 0 },
199 	{ NAU8825_REG_DACL_CTRL, 0 },
200 	{ NAU8825_REG_DACR_CTRL, 0 },
201 };
202 
203 static const unsigned short logtable[256] = {
204 	0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7,
205 	0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508,
206 	0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6,
207 	0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37,
208 	0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f,
209 	0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41,
210 	0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1,
211 	0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142,
212 	0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68,
213 	0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355,
214 	0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c,
215 	0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490,
216 	0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3,
217 	0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507,
218 	0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe,
219 	0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca,
220 	0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c,
221 	0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7,
222 	0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c,
223 	0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c,
224 	0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a,
225 	0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065,
226 	0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730,
227 	0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc,
228 	0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469,
229 	0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9,
230 	0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c,
231 	0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765,
232 	0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83,
233 	0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387,
234 	0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973,
235 	0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47
236 };
237 
238 /**
239  * nau8825_sema_acquire - acquire the semaphore of nau88l25
240  * @nau8825:  component to register the codec private data with
241  * @timeout: how long in jiffies to wait before failure or zero to wait
242  * until release
243  *
244  * Attempts to acquire the semaphore with number of jiffies. If no more
245  * tasks are allowed to acquire the semaphore, calling this function will
246  * put the task to sleep. If the semaphore is not released within the
247  * specified number of jiffies, this function returns.
248  * Acquires the semaphore without jiffies. If no more tasks are allowed
249  * to acquire the semaphore, calling this function will put the task to
250  * sleep until the semaphore is released.
251  * If the semaphore is not released within the specified number of jiffies,
252  * this function returns -ETIME.
253  * If the sleep is interrupted by a signal, this function will return -EINTR.
254  * It returns 0 if the semaphore was acquired successfully.
255  */
256 static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout)
257 {
258 	int ret;
259 
260 	if (timeout) {
261 		ret = down_timeout(&nau8825->xtalk_sem, timeout);
262 		if (ret < 0)
263 			dev_warn(nau8825->dev, "Acquire semaphone timeout\n");
264 	} else {
265 		ret = down_interruptible(&nau8825->xtalk_sem);
266 		if (ret < 0)
267 			dev_warn(nau8825->dev, "Acquire semaphone fail\n");
268 	}
269 
270 	return ret;
271 }
272 
273 /**
274  * nau8825_sema_release - release the semaphore of nau88l25
275  * @nau8825:  component to register the codec private data with
276  *
277  * Release the semaphore which may be called from any context and
278  * even by tasks which have never called down().
279  */
280 static inline void nau8825_sema_release(struct nau8825 *nau8825)
281 {
282 	up(&nau8825->xtalk_sem);
283 }
284 
285 /**
286  * nau8825_sema_reset - reset the semaphore for nau88l25
287  * @nau8825:  component to register the codec private data with
288  *
289  * Reset the counter of the semaphore. Call this function to restart
290  * a new round task management.
291  */
292 static inline void nau8825_sema_reset(struct nau8825 *nau8825)
293 {
294 	nau8825->xtalk_sem.count = 1;
295 }
296 
297 /**
298  * Ramp up the headphone volume change gradually to target level.
299  *
300  * @nau8825:  component to register the codec private data with
301  * @vol_from: the volume to start up
302  * @vol_to: the target volume
303  * @step: the volume span to move on
304  *
305  * The headphone volume is from 0dB to minimum -54dB and -1dB per step.
306  * If the volume changes sharp, there is a pop noise heard in headphone. We
307  * provide the function to ramp up the volume up or down by delaying 10ms
308  * per step.
309  */
310 static void nau8825_hpvol_ramp(struct nau8825 *nau8825,
311 	unsigned int vol_from, unsigned int vol_to, unsigned int step)
312 {
313 	unsigned int value, volume, ramp_up, from, to;
314 
315 	if (vol_from == vol_to || step == 0) {
316 		return;
317 	} else if (vol_from < vol_to) {
318 		ramp_up = true;
319 		from = vol_from;
320 		to = vol_to;
321 	} else {
322 		ramp_up = false;
323 		from = vol_to;
324 		to = vol_from;
325 	}
326 	/* only handle volume from 0dB to minimum -54dB */
327 	if (to > NAU8825_HP_VOL_MIN)
328 		to = NAU8825_HP_VOL_MIN;
329 
330 	for (volume = from; volume < to; volume += step) {
331 		if (ramp_up)
332 			value = volume;
333 		else
334 			value = to - volume + from;
335 		regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
336 			NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
337 			(value << NAU8825_HPL_VOL_SFT) | value);
338 		usleep_range(10000, 10500);
339 	}
340 	if (ramp_up)
341 		value = to;
342 	else
343 		value = from;
344 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
345 		NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
346 		(value << NAU8825_HPL_VOL_SFT) | value);
347 }
348 
349 /**
350  * Computes log10 of a value; the result is round off to 3 decimal. This func-
351  * tion takes reference to dvb-math. The source code locates as the following.
352  * Linux/drivers/media/dvb-core/dvb_math.c
353  *
354  * return log10(value) * 1000
355  */
356 static u32 nau8825_intlog10_dec3(u32 value)
357 {
358 	u32 msb, logentry, significand, interpolation, log10val;
359 	u64 log2val;
360 
361 	/* first detect the msb (count begins at 0) */
362 	msb = fls(value) - 1;
363 	/**
364 	 *      now we use a logtable after the following method:
365 	 *
366 	 *      log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24
367 	 *      where x = msb and therefore 1 <= y < 2
368 	 *      first y is determined by shifting the value left
369 	 *      so that msb is bit 31
370 	 *              0x00231f56 -> 0x8C7D5800
371 	 *      the result is y * 2^31 -> "significand"
372 	 *      then the highest 9 bits are used for a table lookup
373 	 *      the highest bit is discarded because it's always set
374 	 *      the highest nine bits in our example are 100011000
375 	 *      so we would use the entry 0x18
376 	 */
377 	significand = value << (31 - msb);
378 	logentry = (significand >> 23) & 0xff;
379 	/**
380 	 *      last step we do is interpolation because of the
381 	 *      limitations of the log table the error is that part of
382 	 *      the significand which isn't used for lookup then we
383 	 *      compute the ratio between the error and the next table entry
384 	 *      and interpolate it between the log table entry used and the
385 	 *      next one the biggest error possible is 0x7fffff
386 	 *      (in our example it's 0x7D5800)
387 	 *      needed value for next table entry is 0x800000
388 	 *      so the interpolation is
389 	 *      (error / 0x800000) * (logtable_next - logtable_current)
390 	 *      in the implementation the division is moved to the end for
391 	 *      better accuracy there is also an overflow correction if
392 	 *      logtable_next is 256
393 	 */
394 	interpolation = ((significand & 0x7fffff) *
395 		((logtable[(logentry + 1) & 0xff] -
396 		logtable[logentry]) & 0xffff)) >> 15;
397 
398 	log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation);
399 	/**
400 	 *      log10(x) = log2(x) * log10(2)
401 	 */
402 	log10val = (log2val * LOG10_MAGIC) >> 31;
403 	/**
404 	 *      the result is round off to 3 decimal
405 	 */
406 	return log10val / ((1 << 24) / 1000);
407 }
408 
409 /**
410  * computes cross talk suppression sidetone gain.
411  *
412  * @sig_org: orignal signal level
413  * @sig_cros: cross talk signal level
414  *
415  * The orignal and cross talk signal vlues need to be characterized.
416  * Once these values have been characterized, this sidetone value
417  * can be converted to decibel with the equation below.
418  * sidetone = 20 * log (original signal level / crosstalk signal level)
419  *
420  * return cross talk sidetone gain
421  */
422 static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros)
423 {
424 	u32 gain, sidetone;
425 
426 	if (unlikely(sig_org == 0) || unlikely(sig_cros == 0)) {
427 		WARN_ON(1);
428 		return 0;
429 	}
430 
431 	sig_org = nau8825_intlog10_dec3(sig_org);
432 	sig_cros = nau8825_intlog10_dec3(sig_cros);
433 	if (sig_org >= sig_cros)
434 		gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT;
435 	else
436 		gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT;
437 	sidetone = SIDETONE_BASE - gain * 2;
438 	sidetone /= 1000;
439 
440 	return sidetone;
441 }
442 
443 static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg)
444 {
445 	int index;
446 
447 	for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++)
448 		if (nau8825_xtalk_baktab[index].reg == reg)
449 			return index;
450 	return -EINVAL;
451 }
452 
453 static void nau8825_xtalk_backup(struct nau8825 *nau8825)
454 {
455 	int i;
456 
457 	/* Backup some register values to backup table */
458 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++)
459 		regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
460 				&nau8825_xtalk_baktab[i].def);
461 }
462 
463 static void nau8825_xtalk_restore(struct nau8825 *nau8825)
464 {
465 	int i, volume;
466 
467 	/* Restore register values from backup table; When the driver restores
468 	 * the headphone volumem, it needs recover to original level gradually
469 	 * with 3dB per step for less pop noise.
470 	 */
471 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) {
472 		if (nau8825_xtalk_baktab[i].reg == NAU8825_REG_HSVOL_CTRL) {
473 			/* Ramping up the volume change to reduce pop noise */
474 			volume = nau8825_xtalk_baktab[i].def &
475 				NAU8825_HPR_VOL_MASK;
476 			nau8825_hpvol_ramp(nau8825, 0, volume, 3);
477 			continue;
478 		}
479 		regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
480 				nau8825_xtalk_baktab[i].def);
481 	}
482 }
483 
484 static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825)
485 {
486 	/* Enable power of DAC path */
487 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
488 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
489 		NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK |
490 		NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR |
491 		NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC |
492 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK);
493 	/* Prevent startup click by letting charge pump to ramp up and
494 	 * change bump enable
495 	 */
496 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
497 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN,
498 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN);
499 	/* Enable clock sync of DAC and DAC clock */
500 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
501 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN |
502 		NAU8825_RDAC_FS_BCLK_ENB,
503 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN);
504 	/* Power up output driver with 2 stage */
505 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
506 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
507 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L,
508 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
509 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L);
510 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
511 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L,
512 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L);
513 	/* HP outputs not shouted to ground  */
514 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
515 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0);
516 	/* Enable HP boost driver */
517 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
518 		NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS);
519 	/* Enable class G compare path to supply 1.8V or 0.9V. */
520 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL,
521 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN,
522 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN);
523 }
524 
525 static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825)
526 {
527 	/* Power up left ADC and raise 5dB than Vmid for Vref  */
528 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
529 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK,
530 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB);
531 }
532 
533 static void nau8825_xtalk_clock(struct nau8825 *nau8825)
534 {
535 	/* Recover FLL default value */
536 	regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0);
537 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126);
538 	regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008);
539 	regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010);
540 	regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0);
541 	regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000);
542 	/* Enable internal VCO clock for detection signal generated */
543 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
544 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
545 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN,
546 		NAU8825_DCO_EN);
547 	/* Given specific clock frequency of internal clock to
548 	 * generate signal.
549 	 */
550 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
551 		NAU8825_CLK_MCLK_SRC_MASK, 0xf);
552 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
553 		NAU8825_FLL_RATIO_MASK, 0x10);
554 }
555 
556 static void nau8825_xtalk_prepare(struct nau8825 *nau8825)
557 {
558 	int volume, index;
559 
560 	/* Backup those registers changed by cross talk detection */
561 	nau8825_xtalk_backup(nau8825);
562 	/* Config IIS as master to output signal by codec */
563 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
564 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
565 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER |
566 		(0x2 << NAU8825_I2S_LRC_DIV_SFT) | 0x1);
567 	/* Ramp up headphone volume to 0dB to get better performance and
568 	 * avoid pop noise in headphone.
569 	 */
570 	index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL);
571 	if (index != -EINVAL) {
572 		volume = nau8825_xtalk_baktab[index].def &
573 				NAU8825_HPR_VOL_MASK;
574 		nau8825_hpvol_ramp(nau8825, volume, 0, 3);
575 	}
576 	nau8825_xtalk_clock(nau8825);
577 	nau8825_xtalk_prepare_dac(nau8825);
578 	nau8825_xtalk_prepare_adc(nau8825);
579 	/* Config channel path and digital gain */
580 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
581 		NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK,
582 		NAU8825_DACL_CH_SEL_L | 0xab);
583 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
584 		NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK,
585 		NAU8825_DACR_CH_SEL_R | 0xab);
586 	/* Config cross talk parameters and generate the 23Hz sine wave with
587 	 * 1/16 full scale of signal level for impedance measurement.
588 	 */
589 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
590 		NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK |
591 		NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK,
592 		(0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th |
593 		NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN);
594 	/* RMS intrruption enable */
595 	regmap_update_bits(nau8825->regmap,
596 		NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0);
597 	/* Power up left and right DAC */
598 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
599 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0);
600 }
601 
602 static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825)
603 {
604 	/* Disable HP boost driver */
605 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
606 		NAU8825_HP_BOOST_DIS, 0);
607 	/* HP outputs shouted to ground  */
608 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
609 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
610 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
611 	/* Power down left and right DAC */
612 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
613 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
614 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
615 	/* Enable the TESTDAC and  disable L/R HP impedance */
616 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
617 		NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP |
618 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
619 	/* Power down output driver with 2 stage */
620 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
621 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0);
622 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
623 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
624 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0);
625 	/* Disable clock sync of DAC and DAC clock */
626 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
627 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0);
628 	/* Disable charge pump ramp up function and change bump */
629 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
630 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0);
631 	/* Disable power of DAC path */
632 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
633 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
634 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0);
635 	if (!nau8825->irq)
636 		regmap_update_bits(nau8825->regmap,
637 			NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
638 }
639 
640 static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825)
641 {
642 	/* Power down left ADC and restore voltage to Vmid */
643 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
644 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0);
645 }
646 
647 static void nau8825_xtalk_clean(struct nau8825 *nau8825)
648 {
649 	/* Enable internal VCO needed for interruptions */
650 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
651 	nau8825_xtalk_clean_dac(nau8825);
652 	nau8825_xtalk_clean_adc(nau8825);
653 	/* Clear cross talk parameters and disable */
654 	regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0);
655 	/* RMS intrruption disable */
656 	regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK,
657 		NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN);
658 	/* Recover default value for IIS */
659 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
660 		NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
661 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE);
662 	/* Restore value of specific register for cross talk */
663 	nau8825_xtalk_restore(nau8825);
664 }
665 
666 static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol)
667 {
668 	/* Apply ADC volume for better cross talk performance */
669 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL,
670 				NAU8825_ADC_DIG_VOL_MASK, vol);
671 	/* Disables JKTIP(HPL) DAC channel for right to left measurement.
672 	 * Do it before sending signal in order to erase pop noise.
673 	 */
674 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
675 		NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN,
676 		NAU8825_BIAS_TESTDACL_EN);
677 	switch (nau8825->xtalk_state) {
678 	case NAU8825_XTALK_HPR_R2L:
679 		/* Enable right headphone impedance */
680 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
681 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
682 			NAU8825_BIAS_HPR_IMP);
683 		break;
684 	case NAU8825_XTALK_HPL_R2L:
685 		/* Enable left headphone impedance */
686 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
687 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
688 			NAU8825_BIAS_HPL_IMP);
689 		break;
690 	default:
691 		break;
692 	}
693 	msleep(100);
694 	/* Impedance measurement mode enable */
695 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
696 				NAU8825_IMM_EN, NAU8825_IMM_EN);
697 }
698 
699 static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825)
700 {
701 	/* Impedance measurement mode disable */
702 	regmap_update_bits(nau8825->regmap,
703 		NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0);
704 }
705 
706 /* The cross talk measurement function can reduce cross talk across the
707  * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal
708  * level to determine what cross talk reduction gain is. This system works by
709  * sending a 23Hz -24dBV sine wave into the headset output DAC and through
710  * the PGA. The output of the PGA is then connected to an internal current
711  * sense which measures the attenuated 23Hz signal and passing the output to
712  * an ADC which converts the measurement to a binary code. With two separated
713  * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data
714  * can be separated read in IMM_RMS_L for HSR and HSL after each measurement.
715  * Thus, the measurement function has four states to complete whole sequence.
716  * 1. Prepare state : Prepare the resource for detection and transfer to HPR
717  *     IMM stat to make JKR1(HPR) impedance measure.
718  * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer
719  *     to HPL IMM state to make JKTIP(HPL) impedance measure.
720  * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and
721  *     transfer to IMM state to determine suppression sidetone gain.
722  * 4. IMM state : Computes cross talk suppression sidetone gain with orignal
723  *     and cross talk signal level. Apply this gain and then restore codec
724  *     configuration. Then transfer to Done state for ending.
725  */
726 static void nau8825_xtalk_measure(struct nau8825 *nau8825)
727 {
728 	u32 sidetone;
729 
730 	switch (nau8825->xtalk_state) {
731 	case NAU8825_XTALK_PREPARE:
732 		/* In prepare state, set up clock, intrruption, DAC path, ADC
733 		 * path and cross talk detection parameters for preparation.
734 		 */
735 		nau8825_xtalk_prepare(nau8825);
736 		msleep(280);
737 		/* Trigger right headphone impedance detection */
738 		nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L;
739 		nau8825_xtalk_imm_start(nau8825, 0x00d2);
740 		break;
741 	case NAU8825_XTALK_HPR_R2L:
742 		/* In right headphone IMM state, read out right headphone
743 		 * impedance measure result, and then start up left side.
744 		 */
745 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
746 			&nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
747 		dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n",
748 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
749 		/* Disable then re-enable IMM mode to update */
750 		nau8825_xtalk_imm_stop(nau8825);
751 		/* Trigger left headphone impedance detection */
752 		nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L;
753 		nau8825_xtalk_imm_start(nau8825, 0x00ff);
754 		break;
755 	case NAU8825_XTALK_HPL_R2L:
756 		/* In left headphone IMM state, read out left headphone
757 		 * impedance measure result, and delay some time to wait
758 		 * detection sine wave output finish. Then, we can calculate
759 		 * the cross talk suppresstion side tone according to the L/R
760 		 * headphone imedance.
761 		 */
762 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
763 			&nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
764 		dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n",
765 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
766 		nau8825_xtalk_imm_stop(nau8825);
767 		msleep(150);
768 		nau8825->xtalk_state = NAU8825_XTALK_IMM;
769 		break;
770 	case NAU8825_XTALK_IMM:
771 		/* In impedance measure state, the orignal and cross talk
772 		 * signal level vlues are ready. The side tone gain is deter-
773 		 * mined with these signal level. After all, restore codec
774 		 * configuration.
775 		 */
776 		sidetone = nau8825_xtalk_sidetone(
777 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L],
778 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
779 		dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone);
780 		regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL,
781 					(sidetone << 8) | sidetone);
782 		nau8825_xtalk_clean(nau8825);
783 		nau8825->xtalk_state = NAU8825_XTALK_DONE;
784 		break;
785 	default:
786 		break;
787 	}
788 }
789 
790 static void nau8825_xtalk_work(struct work_struct *work)
791 {
792 	struct nau8825 *nau8825 = container_of(
793 		work, struct nau8825, xtalk_work);
794 
795 	nau8825_xtalk_measure(nau8825);
796 	/* To determine the cross talk side tone gain when reach
797 	 * the impedance measure state.
798 	 */
799 	if (nau8825->xtalk_state == NAU8825_XTALK_IMM)
800 		nau8825_xtalk_measure(nau8825);
801 
802 	/* Delay jack report until cross talk detection process
803 	 * completed. It can avoid application to do playback
804 	 * preparation before cross talk detection is still working.
805 	 * Meanwhile, the protection of the cross talk detection
806 	 * is released.
807 	 */
808 	if (nau8825->xtalk_state == NAU8825_XTALK_DONE) {
809 		snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event,
810 				nau8825->xtalk_event_mask);
811 		nau8825_sema_release(nau8825);
812 		nau8825->xtalk_protect = false;
813 	}
814 }
815 
816 static void nau8825_xtalk_cancel(struct nau8825 *nau8825)
817 {
818 	/* If the xtalk_protect is true, that means the process is still
819 	 * on going. The driver forces to cancel the cross talk task and
820 	 * restores the configuration to original status.
821 	 */
822 	if (nau8825->xtalk_protect) {
823 		cancel_work_sync(&nau8825->xtalk_work);
824 		nau8825_xtalk_clean(nau8825);
825 	}
826 	/* Reset parameters for cross talk suppression function */
827 	nau8825_sema_reset(nau8825);
828 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
829 	nau8825->xtalk_protect = false;
830 }
831 
832 static bool nau8825_readable_reg(struct device *dev, unsigned int reg)
833 {
834 	switch (reg) {
835 	case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV:
836 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
837 	case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL:
838 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
839 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
840 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
841 	case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R:
842 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
843 	case NAU8825_REG_MISC_CTRL:
844 	case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS:
845 	case NAU8825_REG_BIAS_ADJ:
846 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
847 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
848 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
849 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS:
850 		return true;
851 	default:
852 		return false;
853 	}
854 
855 }
856 
857 static bool nau8825_writeable_reg(struct device *dev, unsigned int reg)
858 {
859 	switch (reg) {
860 	case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV:
861 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
862 	case NAU8825_REG_INTERRUPT_MASK:
863 	case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL:
864 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
865 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
866 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
867 	case NAU8825_REG_IMM_MODE_CTRL:
868 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
869 	case NAU8825_REG_MISC_CTRL:
870 	case NAU8825_REG_BIAS_ADJ:
871 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
872 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
873 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
874 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP:
875 		return true;
876 	default:
877 		return false;
878 	}
879 }
880 
881 static bool nau8825_volatile_reg(struct device *dev, unsigned int reg)
882 {
883 	switch (reg) {
884 	case NAU8825_REG_RESET:
885 	case NAU8825_REG_IRQ_STATUS:
886 	case NAU8825_REG_INT_CLR_KEY_STATUS:
887 	case NAU8825_REG_IMM_RMS_L:
888 	case NAU8825_REG_IMM_RMS_R:
889 	case NAU8825_REG_I2C_DEVICE_ID:
890 	case NAU8825_REG_SARDOUT_RAM_STATUS:
891 	case NAU8825_REG_CHARGE_PUMP_INPUT_READ:
892 	case NAU8825_REG_GENERAL_STATUS:
893 	case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10:
894 		return true;
895 	default:
896 		return false;
897 	}
898 }
899 
900 static int nau8825_adc_event(struct snd_soc_dapm_widget *w,
901 		struct snd_kcontrol *kcontrol, int event)
902 {
903 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
904 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
905 
906 	switch (event) {
907 	case SND_SOC_DAPM_POST_PMU:
908 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
909 			NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
910 		break;
911 	case SND_SOC_DAPM_POST_PMD:
912 		if (!nau8825->irq)
913 			regmap_update_bits(nau8825->regmap,
914 				NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
915 		break;
916 	default:
917 		return -EINVAL;
918 	}
919 
920 	return 0;
921 }
922 
923 static int nau8825_pump_event(struct snd_soc_dapm_widget *w,
924 	struct snd_kcontrol *kcontrol, int event)
925 {
926 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
927 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
928 
929 	switch (event) {
930 	case SND_SOC_DAPM_POST_PMU:
931 		/* Prevent startup click by letting charge pump to ramp up */
932 		msleep(10);
933 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
934 			NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW);
935 		break;
936 	case SND_SOC_DAPM_PRE_PMD:
937 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
938 			NAU8825_JAMNODCLOW, 0);
939 		break;
940 	default:
941 		return -EINVAL;
942 	}
943 
944 	return 0;
945 }
946 
947 static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w,
948 	struct snd_kcontrol *kcontrol, int event)
949 {
950 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
951 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
952 
953 	switch (event) {
954 	case SND_SOC_DAPM_PRE_PMU:
955 		/* Disables the TESTDAC to let DAC signal pass through. */
956 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
957 			NAU8825_BIAS_TESTDAC_EN, 0);
958 		break;
959 	case SND_SOC_DAPM_POST_PMD:
960 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
961 			NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
962 		break;
963 	default:
964 		return -EINVAL;
965 	}
966 
967 	return 0;
968 }
969 
970 static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol,
971 				     struct snd_ctl_elem_value *ucontrol)
972 {
973 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
974 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
975 
976 	if (!component->regmap)
977 		return -EINVAL;
978 
979 	regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1,
980 		ucontrol->value.bytes.data, params->max);
981 	return 0;
982 }
983 
984 static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol,
985 				     struct snd_ctl_elem_value *ucontrol)
986 {
987 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
988 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
989 	void *data;
990 
991 	if (!component->regmap)
992 		return -EINVAL;
993 
994 	data = kmemdup(ucontrol->value.bytes.data,
995 		params->max, GFP_KERNEL | GFP_DMA);
996 	if (!data)
997 		return -ENOMEM;
998 
999 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1000 		NAU8825_BIQ_WRT_EN, 0);
1001 	regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1,
1002 		data, params->max);
1003 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1004 		NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN);
1005 
1006 	kfree(data);
1007 	return 0;
1008 }
1009 
1010 static const char * const nau8825_biq_path[] = {
1011 	"ADC", "DAC"
1012 };
1013 
1014 static const struct soc_enum nau8825_biq_path_enum =
1015 	SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT,
1016 		ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path);
1017 
1018 static const char * const nau8825_adc_decimation[] = {
1019 	"32", "64", "128", "256"
1020 };
1021 
1022 static const struct soc_enum nau8825_adc_decimation_enum =
1023 	SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT,
1024 		ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation);
1025 
1026 static const char * const nau8825_dac_oversampl[] = {
1027 	"64", "256", "128", "", "32"
1028 };
1029 
1030 static const struct soc_enum nau8825_dac_oversampl_enum =
1031 	SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT,
1032 		ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl);
1033 
1034 static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400);
1035 static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0);
1036 static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0);
1037 static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
1038 static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400);
1039 
1040 static const struct snd_kcontrol_new nau8825_controls[] = {
1041 	SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1042 		0, 0xff, 0, adc_vol_tlv),
1043 	SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1044 		12, 8, 0x0f, 0, sidetone_vol_tlv),
1045 	SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL,
1046 		6, 0, 0x3f, 1, dac_vol_tlv),
1047 	SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL,
1048 		8, 37, 0, fepga_gain_tlv),
1049 	SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL,
1050 		0, 8, 0xff, 0, crosstalk_vol_tlv),
1051 
1052 	SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum),
1053 	SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum),
1054 	/* programmable biquad filter */
1055 	SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum),
1056 	SND_SOC_BYTES_EXT("BIQ Coefficients", 20,
1057 		  nau8825_biq_coeff_get, nau8825_biq_coeff_put),
1058 };
1059 
1060 /* DAC Mux 0x33[9] and 0x34[9] */
1061 static const char * const nau8825_dac_src[] = {
1062 	"DACL", "DACR",
1063 };
1064 
1065 static SOC_ENUM_SINGLE_DECL(
1066 	nau8825_dacl_enum, NAU8825_REG_DACL_CTRL,
1067 	NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src);
1068 
1069 static SOC_ENUM_SINGLE_DECL(
1070 	nau8825_dacr_enum, NAU8825_REG_DACR_CTRL,
1071 	NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src);
1072 
1073 static const struct snd_kcontrol_new nau8825_dacl_mux =
1074 	SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum);
1075 
1076 static const struct snd_kcontrol_new nau8825_dacr_mux =
1077 	SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum);
1078 
1079 
1080 static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = {
1081 	SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2,
1082 		15, 1),
1083 
1084 	SND_SOC_DAPM_INPUT("MIC"),
1085 	SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0),
1086 
1087 	SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0,
1088 		NULL, 0),
1089 
1090 	SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0,
1091 		nau8825_adc_event, SND_SOC_DAPM_POST_PMU |
1092 		SND_SOC_DAPM_POST_PMD),
1093 	SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0),
1094 	SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL,
1095 		0),
1096 
1097 	/* ADC for button press detection. A dapm supply widget is used to
1098 	 * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON
1099 	 * during suspend.
1100 	 */
1101 	SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL,
1102 		NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0),
1103 
1104 	SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0),
1105 	SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0),
1106 	SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0),
1107 	SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0),
1108 
1109 	SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL,
1110 		NAU8825_ENABLE_DACR_SFT, 0),
1111 	SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL,
1112 		NAU8825_ENABLE_DACL_SFT, 0),
1113 	SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0),
1114 
1115 	SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux),
1116 	SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux),
1117 
1118 	SND_SOC_DAPM_PGA_S("HP amp L", 0,
1119 		NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0),
1120 	SND_SOC_DAPM_PGA_S("HP amp R", 0,
1121 		NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0),
1122 
1123 	SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0,
1124 		nau8825_pump_event, SND_SOC_DAPM_POST_PMU |
1125 		SND_SOC_DAPM_PRE_PMD),
1126 
1127 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4,
1128 		NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0),
1129 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4,
1130 		NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0),
1131 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5,
1132 		NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0),
1133 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5,
1134 		NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0),
1135 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6,
1136 		NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0),
1137 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6,
1138 		NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0),
1139 
1140 	SND_SOC_DAPM_PGA_S("Output DACL", 7,
1141 		NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event,
1142 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1143 	SND_SOC_DAPM_PGA_S("Output DACR", 7,
1144 		NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event,
1145 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1146 
1147 	/* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */
1148 	SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8,
1149 		NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0),
1150 	SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8,
1151 		NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0),
1152 
1153 	/* High current HPOL/R boost driver */
1154 	SND_SOC_DAPM_PGA_S("HP Boost Driver", 9,
1155 		NAU8825_REG_BOOST, 9, 1, NULL, 0),
1156 
1157 	/* Class G operation control*/
1158 	SND_SOC_DAPM_PGA_S("Class G", 10,
1159 		NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0),
1160 
1161 	SND_SOC_DAPM_OUTPUT("HPOL"),
1162 	SND_SOC_DAPM_OUTPUT("HPOR"),
1163 };
1164 
1165 static const struct snd_soc_dapm_route nau8825_dapm_routes[] = {
1166 	{"Frontend PGA", NULL, "MIC"},
1167 	{"ADC", NULL, "Frontend PGA"},
1168 	{"ADC", NULL, "ADC Clock"},
1169 	{"ADC", NULL, "ADC Power"},
1170 	{"AIFTX", NULL, "ADC"},
1171 
1172 	{"DDACL", NULL, "Playback"},
1173 	{"DDACR", NULL, "Playback"},
1174 	{"DDACL", NULL, "DDAC Clock"},
1175 	{"DDACR", NULL, "DDAC Clock"},
1176 	{"DACL Mux", "DACL", "DDACL"},
1177 	{"DACL Mux", "DACR", "DDACR"},
1178 	{"DACR Mux", "DACL", "DDACL"},
1179 	{"DACR Mux", "DACR", "DDACR"},
1180 	{"HP amp L", NULL, "DACL Mux"},
1181 	{"HP amp R", NULL, "DACR Mux"},
1182 	{"Charge Pump", NULL, "HP amp L"},
1183 	{"Charge Pump", NULL, "HP amp R"},
1184 	{"ADACL", NULL, "Charge Pump"},
1185 	{"ADACR", NULL, "Charge Pump"},
1186 	{"ADACL Clock", NULL, "ADACL"},
1187 	{"ADACR Clock", NULL, "ADACR"},
1188 	{"Output Driver L Stage 1", NULL, "ADACL Clock"},
1189 	{"Output Driver R Stage 1", NULL, "ADACR Clock"},
1190 	{"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"},
1191 	{"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"},
1192 	{"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"},
1193 	{"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"},
1194 	{"Output DACL", NULL, "Output Driver L Stage 3"},
1195 	{"Output DACR", NULL, "Output Driver R Stage 3"},
1196 	{"HPOL Pulldown", NULL, "Output DACL"},
1197 	{"HPOR Pulldown", NULL, "Output DACR"},
1198 	{"HP Boost Driver", NULL, "HPOL Pulldown"},
1199 	{"HP Boost Driver", NULL, "HPOR Pulldown"},
1200 	{"Class G", NULL, "HP Boost Driver"},
1201 	{"HPOL", NULL, "Class G"},
1202 	{"HPOR", NULL, "Class G"},
1203 };
1204 
1205 static int nau8825_clock_check(struct nau8825 *nau8825,
1206 	int stream, int rate, int osr)
1207 {
1208 	int osrate;
1209 
1210 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
1211 		if (osr >= ARRAY_SIZE(osr_dac_sel))
1212 			return -EINVAL;
1213 		osrate = osr_dac_sel[osr].osr;
1214 	} else {
1215 		if (osr >= ARRAY_SIZE(osr_adc_sel))
1216 			return -EINVAL;
1217 		osrate = osr_adc_sel[osr].osr;
1218 	}
1219 
1220 	if (!osrate || rate * osr > CLK_DA_AD_MAX) {
1221 		dev_err(nau8825->dev, "exceed the maximum frequency of CLK_ADC or CLK_DAC\n");
1222 		return -EINVAL;
1223 	}
1224 
1225 	return 0;
1226 }
1227 
1228 static int nau8825_hw_params(struct snd_pcm_substream *substream,
1229 				struct snd_pcm_hw_params *params,
1230 				struct snd_soc_dai *dai)
1231 {
1232 	struct snd_soc_codec *codec = dai->codec;
1233 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1234 	unsigned int val_len = 0, osr, ctrl_val, bclk_fs, bclk_div;
1235 
1236 	nau8825_sema_acquire(nau8825, 3 * HZ);
1237 
1238 	/* CLK_DAC or CLK_ADC = OSR * FS
1239 	 * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR)
1240 	 * multiplied by the audio sample rate (Fs). Note that the OSR and Fs
1241 	 * values must be selected such that the maximum frequency is less
1242 	 * than 6.144 MHz.
1243 	 */
1244 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1245 		regmap_read(nau8825->regmap, NAU8825_REG_DAC_CTRL1, &osr);
1246 		osr &= NAU8825_DAC_OVERSAMPLE_MASK;
1247 		if (nau8825_clock_check(nau8825, substream->stream,
1248 			params_rate(params), osr))
1249 			return -EINVAL;
1250 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1251 			NAU8825_CLK_DAC_SRC_MASK,
1252 			osr_dac_sel[osr].clk_src << NAU8825_CLK_DAC_SRC_SFT);
1253 	} else {
1254 		regmap_read(nau8825->regmap, NAU8825_REG_ADC_RATE, &osr);
1255 		osr &= NAU8825_ADC_SYNC_DOWN_MASK;
1256 		if (nau8825_clock_check(nau8825, substream->stream,
1257 			params_rate(params), osr))
1258 			return -EINVAL;
1259 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1260 			NAU8825_CLK_ADC_SRC_MASK,
1261 			osr_adc_sel[osr].clk_src << NAU8825_CLK_ADC_SRC_SFT);
1262 	}
1263 
1264 	/* make BCLK and LRC divde configuration if the codec as master. */
1265 	regmap_read(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, &ctrl_val);
1266 	if (ctrl_val & NAU8825_I2S_MS_MASTER) {
1267 		/* get the bclk and fs ratio */
1268 		bclk_fs = snd_soc_params_to_bclk(params) / params_rate(params);
1269 		if (bclk_fs <= 32)
1270 			bclk_div = 2;
1271 		else if (bclk_fs <= 64)
1272 			bclk_div = 1;
1273 		else if (bclk_fs <= 128)
1274 			bclk_div = 0;
1275 		else
1276 			return -EINVAL;
1277 		regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1278 			NAU8825_I2S_LRC_DIV_MASK | NAU8825_I2S_BLK_DIV_MASK,
1279 			((bclk_div + 1) << NAU8825_I2S_LRC_DIV_SFT) | bclk_div);
1280 	}
1281 
1282 	switch (params_width(params)) {
1283 	case 16:
1284 		val_len |= NAU8825_I2S_DL_16;
1285 		break;
1286 	case 20:
1287 		val_len |= NAU8825_I2S_DL_20;
1288 		break;
1289 	case 24:
1290 		val_len |= NAU8825_I2S_DL_24;
1291 		break;
1292 	case 32:
1293 		val_len |= NAU8825_I2S_DL_32;
1294 		break;
1295 	default:
1296 		return -EINVAL;
1297 	}
1298 
1299 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1300 		NAU8825_I2S_DL_MASK, val_len);
1301 
1302 	/* Release the semaphone. */
1303 	nau8825_sema_release(nau8825);
1304 
1305 	return 0;
1306 }
1307 
1308 static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
1309 {
1310 	struct snd_soc_codec *codec = codec_dai->codec;
1311 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1312 	unsigned int ctrl1_val = 0, ctrl2_val = 0;
1313 
1314 	nau8825_sema_acquire(nau8825, 3 * HZ);
1315 
1316 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1317 	case SND_SOC_DAIFMT_CBM_CFM:
1318 		ctrl2_val |= NAU8825_I2S_MS_MASTER;
1319 		break;
1320 	case SND_SOC_DAIFMT_CBS_CFS:
1321 		break;
1322 	default:
1323 		return -EINVAL;
1324 	}
1325 
1326 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1327 	case SND_SOC_DAIFMT_NB_NF:
1328 		break;
1329 	case SND_SOC_DAIFMT_IB_NF:
1330 		ctrl1_val |= NAU8825_I2S_BP_INV;
1331 		break;
1332 	default:
1333 		return -EINVAL;
1334 	}
1335 
1336 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1337 	case SND_SOC_DAIFMT_I2S:
1338 		ctrl1_val |= NAU8825_I2S_DF_I2S;
1339 		break;
1340 	case SND_SOC_DAIFMT_LEFT_J:
1341 		ctrl1_val |= NAU8825_I2S_DF_LEFT;
1342 		break;
1343 	case SND_SOC_DAIFMT_RIGHT_J:
1344 		ctrl1_val |= NAU8825_I2S_DF_RIGTH;
1345 		break;
1346 	case SND_SOC_DAIFMT_DSP_A:
1347 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1348 		break;
1349 	case SND_SOC_DAIFMT_DSP_B:
1350 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1351 		ctrl1_val |= NAU8825_I2S_PCMB_EN;
1352 		break;
1353 	default:
1354 		return -EINVAL;
1355 	}
1356 
1357 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1358 		NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK |
1359 		NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK,
1360 		ctrl1_val);
1361 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1362 		NAU8825_I2S_MS_MASK, ctrl2_val);
1363 
1364 	/* Release the semaphone. */
1365 	nau8825_sema_release(nau8825);
1366 
1367 	return 0;
1368 }
1369 
1370 static const struct snd_soc_dai_ops nau8825_dai_ops = {
1371 	.hw_params	= nau8825_hw_params,
1372 	.set_fmt	= nau8825_set_dai_fmt,
1373 };
1374 
1375 #define NAU8825_RATES	SNDRV_PCM_RATE_8000_192000
1376 #define NAU8825_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
1377 			 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1378 
1379 static struct snd_soc_dai_driver nau8825_dai = {
1380 	.name = "nau8825-hifi",
1381 	.playback = {
1382 		.stream_name	 = "Playback",
1383 		.channels_min	 = 1,
1384 		.channels_max	 = 2,
1385 		.rates		 = NAU8825_RATES,
1386 		.formats	 = NAU8825_FORMATS,
1387 	},
1388 	.capture = {
1389 		.stream_name	 = "Capture",
1390 		.channels_min	 = 1,
1391 		.channels_max	 = 1,
1392 		.rates		 = NAU8825_RATES,
1393 		.formats	 = NAU8825_FORMATS,
1394 	},
1395 	.ops = &nau8825_dai_ops,
1396 };
1397 
1398 /**
1399  * nau8825_enable_jack_detect - Specify a jack for event reporting
1400  *
1401  * @component:  component to register the jack with
1402  * @jack: jack to use to report headset and button events on
1403  *
1404  * After this function has been called the headset insert/remove and button
1405  * events will be routed to the given jack.  Jack can be null to stop
1406  * reporting.
1407  */
1408 int nau8825_enable_jack_detect(struct snd_soc_codec *codec,
1409 				struct snd_soc_jack *jack)
1410 {
1411 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1412 	struct regmap *regmap = nau8825->regmap;
1413 
1414 	nau8825->jack = jack;
1415 
1416 	/* Ground HP Outputs[1:0], needed for headset auto detection
1417 	 * Enable Automatic Mic/Gnd switching reading on insert interrupt[6]
1418 	 */
1419 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1420 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
1421 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
1422 
1423 	return 0;
1424 }
1425 EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect);
1426 
1427 
1428 static bool nau8825_is_jack_inserted(struct regmap *regmap)
1429 {
1430 	bool active_high, is_high;
1431 	int status, jkdet;
1432 
1433 	regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet);
1434 	active_high = jkdet & NAU8825_JACK_POLARITY;
1435 	regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status);
1436 	is_high = status & NAU8825_GPIO2JD1;
1437 	/* return jack connection status according to jack insertion logic
1438 	 * active high or active low.
1439 	 */
1440 	return active_high == is_high;
1441 }
1442 
1443 static void nau8825_restart_jack_detection(struct regmap *regmap)
1444 {
1445 	/* this will restart the entire jack detection process including MIC/GND
1446 	 * switching and create interrupts. We have to go from 0 to 1 and back
1447 	 * to 0 to restart.
1448 	 */
1449 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1450 		NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART);
1451 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1452 		NAU8825_JACK_DET_RESTART, 0);
1453 }
1454 
1455 static void nau8825_int_status_clear_all(struct regmap *regmap)
1456 {
1457 	int active_irq, clear_irq, i;
1458 
1459 	/* Reset the intrruption status from rightmost bit if the corres-
1460 	 * ponding irq event occurs.
1461 	 */
1462 	regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq);
1463 	for (i = 0; i < NAU8825_REG_DATA_LEN; i++) {
1464 		clear_irq = (0x1 << i);
1465 		if (active_irq & clear_irq)
1466 			regmap_write(regmap,
1467 				NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1468 	}
1469 }
1470 
1471 static void nau8825_eject_jack(struct nau8825 *nau8825)
1472 {
1473 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1474 	struct regmap *regmap = nau8825->regmap;
1475 
1476 	/* Force to cancel the cross talk detection process */
1477 	nau8825_xtalk_cancel(nau8825);
1478 
1479 	snd_soc_dapm_disable_pin(dapm, "SAR");
1480 	snd_soc_dapm_disable_pin(dapm, "MICBIAS");
1481 	/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
1482 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1483 		NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
1484 	/* ground HPL/HPR, MICGRND1/2 */
1485 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf);
1486 
1487 	snd_soc_dapm_sync(dapm);
1488 
1489 	/* Clear all interruption status */
1490 	nau8825_int_status_clear_all(regmap);
1491 
1492 	/* Enable the insertion interruption, disable the ejection inter-
1493 	 * ruption, and then bypass de-bounce circuit.
1494 	 */
1495 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
1496 		NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS,
1497 		NAU8825_IRQ_EJECT_DIS);
1498 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1499 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1500 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN,
1501 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1502 		NAU8825_IRQ_HEADSET_COMPLETE_EN);
1503 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1504 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
1505 
1506 	/* Disable ADC needed for interruptions at audo mode */
1507 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1508 		NAU8825_ENABLE_ADC, 0);
1509 
1510 	/* Close clock for jack type detection at manual mode */
1511 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1512 }
1513 
1514 /* Enable audo mode interruptions with internal clock. */
1515 static void nau8825_setup_auto_irq(struct nau8825 *nau8825)
1516 {
1517 	struct regmap *regmap = nau8825->regmap;
1518 
1519 	/* Enable headset jack type detection complete interruption and
1520 	 * jack ejection interruption.
1521 	 */
1522 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1523 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0);
1524 
1525 	/* Enable internal VCO needed for interruptions */
1526 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
1527 
1528 	/* Enable ADC needed for interruptions */
1529 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1530 		NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
1531 
1532 	/* Chip needs one FSCLK cycle in order to generate interruptions,
1533 	 * as we cannot guarantee one will be provided by the system. Turning
1534 	 * master mode on then off enables us to generate that FSCLK cycle
1535 	 * with a minimum of contention on the clock bus.
1536 	 */
1537 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1538 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER);
1539 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1540 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE);
1541 
1542 	/* Not bypass de-bounce circuit */
1543 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1544 		NAU8825_JACK_DET_DB_BYPASS, 0);
1545 
1546 	/* Unmask all interruptions */
1547 	regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0);
1548 
1549 	/* Restart the jack detection process at auto mode */
1550 	nau8825_restart_jack_detection(regmap);
1551 }
1552 
1553 static int nau8825_button_decode(int value)
1554 {
1555 	int buttons = 0;
1556 
1557 	/* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */
1558 	if (value & BIT(0))
1559 		buttons |= SND_JACK_BTN_0;
1560 	if (value & BIT(1))
1561 		buttons |= SND_JACK_BTN_1;
1562 	if (value & BIT(2))
1563 		buttons |= SND_JACK_BTN_2;
1564 	if (value & BIT(3))
1565 		buttons |= SND_JACK_BTN_3;
1566 	if (value & BIT(4))
1567 		buttons |= SND_JACK_BTN_4;
1568 	if (value & BIT(5))
1569 		buttons |= SND_JACK_BTN_5;
1570 
1571 	return buttons;
1572 }
1573 
1574 static int nau8825_jack_insert(struct nau8825 *nau8825)
1575 {
1576 	struct regmap *regmap = nau8825->regmap;
1577 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1578 	int jack_status_reg, mic_detected;
1579 	int type = 0;
1580 
1581 	regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg);
1582 	mic_detected = (jack_status_reg >> 10) & 3;
1583 	/* The JKSLV and JKR2 all detected in high impedance headset */
1584 	if (mic_detected == 0x3)
1585 		nau8825->high_imped = true;
1586 	else
1587 		nau8825->high_imped = false;
1588 
1589 	switch (mic_detected) {
1590 	case 0:
1591 		/* no mic */
1592 		type = SND_JACK_HEADPHONE;
1593 		break;
1594 	case 1:
1595 		dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n");
1596 		type = SND_JACK_HEADSET;
1597 
1598 		/* Unground MICGND1 */
1599 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1600 			1 << 2);
1601 		/* Attach 2kOhm Resistor from MICBIAS to MICGND1 */
1602 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1603 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1604 			NAU8825_MICBIAS_JKR2);
1605 		/* Attach SARADC to MICGND1 */
1606 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1607 			NAU8825_SAR_INPUT_MASK,
1608 			NAU8825_SAR_INPUT_JKR2);
1609 
1610 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1611 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1612 		snd_soc_dapm_sync(dapm);
1613 		break;
1614 	case 2:
1615 	case 3:
1616 		dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n");
1617 		type = SND_JACK_HEADSET;
1618 
1619 		/* Unground MICGND2 */
1620 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1621 			2 << 2);
1622 		/* Attach 2kOhm Resistor from MICBIAS to MICGND2 */
1623 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1624 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1625 			NAU8825_MICBIAS_JKSLV);
1626 		/* Attach SARADC to MICGND2 */
1627 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1628 			NAU8825_SAR_INPUT_MASK,
1629 			NAU8825_SAR_INPUT_JKSLV);
1630 
1631 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1632 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1633 		snd_soc_dapm_sync(dapm);
1634 		break;
1635 	}
1636 
1637 	/* Leaving HPOL/R grounded after jack insert by default. They will be
1638 	 * ungrounded as part of the widget power up sequence at the beginning
1639 	 * of playback to reduce pop.
1640 	 */
1641 	return type;
1642 }
1643 
1644 #define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \
1645 		SND_JACK_BTN_2 | SND_JACK_BTN_3)
1646 
1647 static irqreturn_t nau8825_interrupt(int irq, void *data)
1648 {
1649 	struct nau8825 *nau8825 = (struct nau8825 *)data;
1650 	struct regmap *regmap = nau8825->regmap;
1651 	int active_irq, clear_irq = 0, event = 0, event_mask = 0;
1652 
1653 	if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) {
1654 		dev_err(nau8825->dev, "failed to read irq status\n");
1655 		return IRQ_NONE;
1656 	}
1657 
1658 	if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) ==
1659 		NAU8825_JACK_EJECTION_DETECTED) {
1660 
1661 		nau8825_eject_jack(nau8825);
1662 		event_mask |= SND_JACK_HEADSET;
1663 		clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK;
1664 	} else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) {
1665 		int key_status;
1666 
1667 		regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS,
1668 			&key_status);
1669 
1670 		/* upper 8 bits of the register are for short pressed keys,
1671 		 * lower 8 bits - for long pressed buttons
1672 		 */
1673 		nau8825->button_pressed = nau8825_button_decode(
1674 			key_status >> 8);
1675 
1676 		event |= nau8825->button_pressed;
1677 		event_mask |= NAU8825_BUTTONS;
1678 		clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ;
1679 	} else if (active_irq & NAU8825_KEY_RELEASE_IRQ) {
1680 		event_mask = NAU8825_BUTTONS;
1681 		clear_irq = NAU8825_KEY_RELEASE_IRQ;
1682 	} else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) {
1683 		if (nau8825_is_jack_inserted(regmap)) {
1684 			event |= nau8825_jack_insert(nau8825);
1685 			if (!nau8825->high_imped) {
1686 				/* Apply the cross talk suppression in the
1687 				 * headset without high impedance.
1688 				 */
1689 				if (!nau8825->xtalk_protect) {
1690 					/* Raise protection for cross talk de-
1691 					 * tection if no protection before.
1692 					 * The driver has to cancel the pro-
1693 					 * cess and restore changes if process
1694 					 * is ongoing when ejection.
1695 					 */
1696 					int ret;
1697 					nau8825->xtalk_protect = true;
1698 					ret = nau8825_sema_acquire(nau8825, 0);
1699 					if (ret < 0)
1700 						nau8825->xtalk_protect = false;
1701 				}
1702 				/* Startup cross talk detection process */
1703 				nau8825->xtalk_state = NAU8825_XTALK_PREPARE;
1704 				schedule_work(&nau8825->xtalk_work);
1705 			} else {
1706 				/* The cross talk suppression shouldn't apply
1707 				 * in the headset with high impedance. Thus,
1708 				 * relieve the protection raised before.
1709 				 */
1710 				if (nau8825->xtalk_protect) {
1711 					nau8825_sema_release(nau8825);
1712 					nau8825->xtalk_protect = false;
1713 				}
1714 			}
1715 		} else {
1716 			dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n");
1717 			nau8825_eject_jack(nau8825);
1718 		}
1719 
1720 		event_mask |= SND_JACK_HEADSET;
1721 		clear_irq = NAU8825_HEADSET_COMPLETION_IRQ;
1722 		/* Record the interruption report event for driver to report
1723 		 * the event later. The jack report will delay until cross
1724 		 * talk detection process is done.
1725 		 */
1726 		if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) {
1727 			nau8825->xtalk_event = event;
1728 			nau8825->xtalk_event_mask = event_mask;
1729 		}
1730 	} else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) {
1731 		schedule_work(&nau8825->xtalk_work);
1732 		clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ;
1733 	} else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) ==
1734 		NAU8825_JACK_INSERTION_DETECTED) {
1735 		/* One more step to check GPIO status directly. Thus, the
1736 		 * driver can confirm the real insertion interruption because
1737 		 * the intrruption at manual mode has bypassed debounce
1738 		 * circuit which can get rid of unstable status.
1739 		 */
1740 		if (nau8825_is_jack_inserted(regmap)) {
1741 			/* Turn off insertion interruption at manual mode */
1742 			regmap_update_bits(regmap,
1743 				NAU8825_REG_INTERRUPT_DIS_CTRL,
1744 				NAU8825_IRQ_INSERT_DIS,
1745 				NAU8825_IRQ_INSERT_DIS);
1746 			regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1747 				NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN);
1748 			/* Enable interruption for jack type detection at audo
1749 			 * mode which can detect microphone and jack type.
1750 			 */
1751 			nau8825_setup_auto_irq(nau8825);
1752 		}
1753 	}
1754 
1755 	if (!clear_irq)
1756 		clear_irq = active_irq;
1757 	/* clears the rightmost interruption */
1758 	regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1759 
1760 	/* Delay jack report until cross talk detection is done. It can avoid
1761 	 * application to do playback preparation when cross talk detection
1762 	 * process is still working. Otherwise, the resource like clock and
1763 	 * power will be issued by them at the same time and conflict happens.
1764 	 */
1765 	if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE)
1766 		snd_soc_jack_report(nau8825->jack, event, event_mask);
1767 
1768 	return IRQ_HANDLED;
1769 }
1770 
1771 static void nau8825_setup_buttons(struct nau8825 *nau8825)
1772 {
1773 	struct regmap *regmap = nau8825->regmap;
1774 
1775 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1776 		NAU8825_SAR_TRACKING_GAIN_MASK,
1777 		nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT);
1778 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1779 		NAU8825_SAR_COMPARE_TIME_MASK,
1780 		nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT);
1781 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1782 		NAU8825_SAR_SAMPLING_TIME_MASK,
1783 		nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT);
1784 
1785 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1786 		NAU8825_KEYDET_LEVELS_NR_MASK,
1787 		(nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT);
1788 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1789 		NAU8825_KEYDET_HYSTERESIS_MASK,
1790 		nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT);
1791 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1792 		NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK,
1793 		nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT);
1794 
1795 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1,
1796 		(nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]);
1797 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2,
1798 		(nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]);
1799 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3,
1800 		(nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]);
1801 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4,
1802 		(nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]);
1803 
1804 	/* Enable short press and release interruptions */
1805 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1806 		NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN,
1807 		0);
1808 }
1809 
1810 static void nau8825_init_regs(struct nau8825 *nau8825)
1811 {
1812 	struct regmap *regmap = nau8825->regmap;
1813 
1814 	/* Latch IIC LSB value */
1815 	regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001);
1816 	/* Enable Bias/Vmid */
1817 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1818 		NAU8825_BIAS_VMID, NAU8825_BIAS_VMID);
1819 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
1820 		NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN);
1821 
1822 	/* VMID Tieoff */
1823 	regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ,
1824 		NAU8825_BIAS_VMID_SEL_MASK,
1825 		nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT);
1826 	/* Disable Boost Driver, Automatic Short circuit protection enable */
1827 	regmap_update_bits(regmap, NAU8825_REG_BOOST,
1828 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1829 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN,
1830 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1831 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN);
1832 
1833 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1834 		NAU8825_JKDET_OUTPUT_EN,
1835 		nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN);
1836 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1837 		NAU8825_JKDET_PULL_EN,
1838 		nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN);
1839 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1840 		NAU8825_JKDET_PULL_UP,
1841 		nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0);
1842 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1843 		NAU8825_JACK_POLARITY,
1844 		/* jkdet_polarity - 1  is for active-low */
1845 		nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY);
1846 
1847 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1848 		NAU8825_JACK_INSERT_DEBOUNCE_MASK,
1849 		nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT);
1850 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1851 		NAU8825_JACK_EJECT_DEBOUNCE_MASK,
1852 		nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT);
1853 
1854 	/* Mask unneeded IRQs: 1 - disable, 0 - enable */
1855 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff);
1856 
1857 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1858 		NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage);
1859 
1860 	if (nau8825->sar_threshold_num)
1861 		nau8825_setup_buttons(nau8825);
1862 
1863 	/* Default oversampling/decimations settings are unusable
1864 	 * (audible hiss). Set it to something better.
1865 	 */
1866 	regmap_update_bits(regmap, NAU8825_REG_ADC_RATE,
1867 		NAU8825_ADC_SYNC_DOWN_MASK | NAU8825_ADC_SINC4_EN,
1868 		NAU8825_ADC_SYNC_DOWN_64);
1869 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1870 		NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_64);
1871 	/* Disable DACR/L power */
1872 	regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP,
1873 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
1874 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
1875 	/* Enable TESTDAC. This sets the analog DAC inputs to a '0' input
1876 	 * signal to avoid any glitches due to power up transients in both
1877 	 * the analog and digital DAC circuit.
1878 	 */
1879 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1880 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
1881 	/* CICCLP off */
1882 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1883 		NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF);
1884 
1885 	/* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */
1886 	regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2,
1887 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1888 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB,
1889 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1890 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB);
1891 	/* Class G timer 64ms */
1892 	regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL,
1893 		NAU8825_CLASSG_TIMER_MASK,
1894 		0x20 << NAU8825_CLASSG_TIMER_SFT);
1895 	/* DAC clock delay 2ns, VREF */
1896 	regmap_update_bits(regmap, NAU8825_REG_RDAC,
1897 		NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK,
1898 		(0x2 << NAU8825_RDAC_CLK_DELAY_SFT) |
1899 		(0x3 << NAU8825_RDAC_VREF_SFT));
1900 	/* Config L/R channel */
1901 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
1902 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L);
1903 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
1904 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R);
1905 	/* Disable short Frame Sync detection logic */
1906 	regmap_update_bits(regmap, NAU8825_REG_LEFT_TIME_SLOT,
1907 		NAU8825_DIS_FS_SHORT_DET, NAU8825_DIS_FS_SHORT_DET);
1908 }
1909 
1910 static const struct regmap_config nau8825_regmap_config = {
1911 	.val_bits = NAU8825_REG_DATA_LEN,
1912 	.reg_bits = NAU8825_REG_ADDR_LEN,
1913 
1914 	.max_register = NAU8825_REG_MAX,
1915 	.readable_reg = nau8825_readable_reg,
1916 	.writeable_reg = nau8825_writeable_reg,
1917 	.volatile_reg = nau8825_volatile_reg,
1918 
1919 	.cache_type = REGCACHE_RBTREE,
1920 	.reg_defaults = nau8825_reg_defaults,
1921 	.num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults),
1922 };
1923 
1924 static int nau8825_codec_probe(struct snd_soc_codec *codec)
1925 {
1926 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1927 	struct snd_soc_dapm_context *dapm = snd_soc_codec_get_dapm(codec);
1928 
1929 	nau8825->dapm = dapm;
1930 
1931 	return 0;
1932 }
1933 
1934 static int nau8825_codec_remove(struct snd_soc_codec *codec)
1935 {
1936 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1937 
1938 	/* Cancel and reset cross tak suppresstion detection funciton */
1939 	nau8825_xtalk_cancel(nau8825);
1940 
1941 	return 0;
1942 }
1943 
1944 /**
1945  * nau8825_calc_fll_param - Calculate FLL parameters.
1946  * @fll_in: external clock provided to codec.
1947  * @fs: sampling rate.
1948  * @fll_param: Pointer to structure of FLL parameters.
1949  *
1950  * Calculate FLL parameters to configure codec.
1951  *
1952  * Returns 0 for success or negative error code.
1953  */
1954 static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs,
1955 		struct nau8825_fll *fll_param)
1956 {
1957 	u64 fvco, fvco_max;
1958 	unsigned int fref, i, fvco_sel;
1959 
1960 	/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
1961 	 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
1962 	 * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK
1963 	 */
1964 	for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
1965 		fref = fll_in / fll_pre_scalar[i].param;
1966 		if (fref <= NAU_FREF_MAX)
1967 			break;
1968 	}
1969 	if (i == ARRAY_SIZE(fll_pre_scalar))
1970 		return -EINVAL;
1971 	fll_param->clk_ref_div = fll_pre_scalar[i].val;
1972 
1973 	/* Choose the FLL ratio based on FREF */
1974 	for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
1975 		if (fref >= fll_ratio[i].param)
1976 			break;
1977 	}
1978 	if (i == ARRAY_SIZE(fll_ratio))
1979 		return -EINVAL;
1980 	fll_param->ratio = fll_ratio[i].val;
1981 
1982 	/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
1983 	 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be
1984 	 * guaranteed across the full range of operation.
1985 	 * FDCO = freq_out * 2 * mclk_src_scaling
1986 	 */
1987 	fvco_max = 0;
1988 	fvco_sel = ARRAY_SIZE(mclk_src_scaling);
1989 	for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
1990 		fvco = 256 * fs * 2 * mclk_src_scaling[i].param;
1991 		if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
1992 			fvco_max < fvco) {
1993 			fvco_max = fvco;
1994 			fvco_sel = i;
1995 		}
1996 	}
1997 	if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
1998 		return -EINVAL;
1999 	fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
2000 
2001 	/* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
2002 	 * input based on FDCO, FREF and FLL ratio.
2003 	 */
2004 	fvco = div_u64(fvco_max << 16, fref * fll_param->ratio);
2005 	fll_param->fll_int = (fvco >> 16) & 0x3FF;
2006 	fll_param->fll_frac = fvco & 0xFFFF;
2007 	return 0;
2008 }
2009 
2010 static void nau8825_fll_apply(struct nau8825 *nau8825,
2011 		struct nau8825_fll *fll_param)
2012 {
2013 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2014 		NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK,
2015 		NAU8825_CLK_SRC_MCLK | fll_param->mclk_src);
2016 	/* Make DSP operate at high speed for better performance. */
2017 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
2018 		NAU8825_FLL_RATIO_MASK | NAU8825_ICTRL_LATCH_MASK,
2019 		fll_param->ratio | (0x6 << NAU8825_ICTRL_LATCH_SFT));
2020 	/* FLL 16-bit fractional input */
2021 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac);
2022 	/* FLL 10-bit integer input */
2023 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3,
2024 			NAU8825_FLL_INTEGER_MASK, fll_param->fll_int);
2025 	/* FLL pre-scaler */
2026 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4,
2027 			NAU8825_FLL_REF_DIV_MASK,
2028 			fll_param->clk_ref_div << NAU8825_FLL_REF_DIV_SFT);
2029 	/* select divided VCO input */
2030 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2031 		NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF);
2032 	/* Disable free-running mode */
2033 	regmap_update_bits(nau8825->regmap,
2034 		NAU8825_REG_FLL6, NAU8825_DCO_EN, 0);
2035 	if (fll_param->fll_frac) {
2036 		/* set FLL loop filter enable and cutoff frequency at 500Khz */
2037 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2038 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2039 			NAU8825_FLL_FTR_SW_MASK,
2040 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2041 			NAU8825_FLL_FTR_SW_FILTER);
2042 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2043 			NAU8825_SDM_EN | NAU8825_CUTOFF500,
2044 			NAU8825_SDM_EN | NAU8825_CUTOFF500);
2045 	} else {
2046 		/* disable FLL loop filter and cutoff frequency */
2047 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2048 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2049 			NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU);
2050 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2051 			NAU8825_SDM_EN | NAU8825_CUTOFF500, 0);
2052 	}
2053 }
2054 
2055 /* freq_out must be 256*Fs in order to achieve the best performance */
2056 static int nau8825_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
2057 		unsigned int freq_in, unsigned int freq_out)
2058 {
2059 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2060 	struct nau8825_fll fll_param;
2061 	int ret, fs;
2062 
2063 	fs = freq_out / 256;
2064 	ret = nau8825_calc_fll_param(freq_in, fs, &fll_param);
2065 	if (ret < 0) {
2066 		dev_err(codec->dev, "Unsupported input clock %d\n", freq_in);
2067 		return ret;
2068 	}
2069 	dev_dbg(codec->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
2070 		fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
2071 		fll_param.fll_int, fll_param.clk_ref_div);
2072 
2073 	nau8825_fll_apply(nau8825, &fll_param);
2074 	mdelay(2);
2075 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2076 			NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2077 	return 0;
2078 }
2079 
2080 static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq)
2081 {
2082 	int ret = 0;
2083 
2084 	nau8825->mclk = devm_clk_get(nau8825->dev, "mclk");
2085 	if (IS_ERR(nau8825->mclk)) {
2086 		dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally");
2087 		return 0;
2088 	}
2089 
2090 	if (!nau8825->mclk_freq) {
2091 		ret = clk_prepare_enable(nau8825->mclk);
2092 		if (ret) {
2093 			dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2094 			return ret;
2095 		}
2096 	}
2097 
2098 	if (nau8825->mclk_freq != freq) {
2099 		freq = clk_round_rate(nau8825->mclk, freq);
2100 		ret = clk_set_rate(nau8825->mclk, freq);
2101 		if (ret) {
2102 			dev_err(nau8825->dev, "Unable to set mclk rate\n");
2103 			return ret;
2104 		}
2105 		nau8825->mclk_freq = freq;
2106 	}
2107 
2108 	return 0;
2109 }
2110 
2111 static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap)
2112 {
2113 	regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2114 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK);
2115 	regmap_update_bits(regmap, NAU8825_REG_FLL6,
2116 		NAU8825_DCO_EN, 0);
2117 	/* Make DSP operate as default setting for power saving. */
2118 	regmap_update_bits(regmap, NAU8825_REG_FLL1,
2119 		NAU8825_ICTRL_LATCH_MASK, 0);
2120 }
2121 
2122 static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id,
2123 	unsigned int freq)
2124 {
2125 	struct regmap *regmap = nau8825->regmap;
2126 	int ret;
2127 
2128 	switch (clk_id) {
2129 	case NAU8825_CLK_DIS:
2130 		/* Clock provided externally and disable internal VCO clock */
2131 		nau8825_configure_mclk_as_sysclk(regmap);
2132 		if (nau8825->mclk_freq) {
2133 			clk_disable_unprepare(nau8825->mclk);
2134 			nau8825->mclk_freq = 0;
2135 		}
2136 
2137 		break;
2138 	case NAU8825_CLK_MCLK:
2139 		/* Acquire the semaphone to synchronize the playback and
2140 		 * interrupt handler. In order to avoid the playback inter-
2141 		 * fered by cross talk process, the driver make the playback
2142 		 * preparation halted until cross talk process finish.
2143 		 */
2144 		nau8825_sema_acquire(nau8825, 3 * HZ);
2145 		nau8825_configure_mclk_as_sysclk(regmap);
2146 		/* MCLK not changed by clock tree */
2147 		regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2148 			NAU8825_CLK_MCLK_SRC_MASK, 0);
2149 		/* Release the semaphone. */
2150 		nau8825_sema_release(nau8825);
2151 
2152 		ret = nau8825_mclk_prepare(nau8825, freq);
2153 		if (ret)
2154 			return ret;
2155 
2156 		break;
2157 	case NAU8825_CLK_INTERNAL:
2158 		if (nau8825_is_jack_inserted(nau8825->regmap)) {
2159 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2160 				NAU8825_DCO_EN, NAU8825_DCO_EN);
2161 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2162 				NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2163 			/* Decrease the VCO frequency and make DSP operate
2164 			 * as default setting for power saving.
2165 			 */
2166 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2167 				NAU8825_CLK_MCLK_SRC_MASK, 0xf);
2168 			regmap_update_bits(regmap, NAU8825_REG_FLL1,
2169 				NAU8825_ICTRL_LATCH_MASK |
2170 				NAU8825_FLL_RATIO_MASK, 0x10);
2171 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2172 				NAU8825_SDM_EN, NAU8825_SDM_EN);
2173 		} else {
2174 			/* The clock turns off intentionally for power saving
2175 			 * when no headset connected.
2176 			 */
2177 			nau8825_configure_mclk_as_sysclk(regmap);
2178 			dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n");
2179 		}
2180 		if (nau8825->mclk_freq) {
2181 			clk_disable_unprepare(nau8825->mclk);
2182 			nau8825->mclk_freq = 0;
2183 		}
2184 
2185 		break;
2186 	case NAU8825_CLK_FLL_MCLK:
2187 		/* Acquire the semaphone to synchronize the playback and
2188 		 * interrupt handler. In order to avoid the playback inter-
2189 		 * fered by cross talk process, the driver make the playback
2190 		 * preparation halted until cross talk process finish.
2191 		 */
2192 		nau8825_sema_acquire(nau8825, 3 * HZ);
2193 		/* Higher FLL reference input frequency can only set lower
2194 		 * gain error, such as 0000 for input reference from MCLK
2195 		 * 12.288Mhz.
2196 		 */
2197 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2198 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2199 			NAU8825_FLL_CLK_SRC_MCLK | 0);
2200 		/* Release the semaphone. */
2201 		nau8825_sema_release(nau8825);
2202 
2203 		ret = nau8825_mclk_prepare(nau8825, freq);
2204 		if (ret)
2205 			return ret;
2206 
2207 		break;
2208 	case NAU8825_CLK_FLL_BLK:
2209 		/* Acquire the semaphone to synchronize the playback and
2210 		 * interrupt handler. In order to avoid the playback inter-
2211 		 * fered by cross talk process, the driver make the playback
2212 		 * preparation halted until cross talk process finish.
2213 		 */
2214 		nau8825_sema_acquire(nau8825, 3 * HZ);
2215 		/* If FLL reference input is from low frequency source,
2216 		 * higher error gain can apply such as 0xf which has
2217 		 * the most sensitive gain error correction threshold,
2218 		 * Therefore, FLL has the most accurate DCO to
2219 		 * target frequency.
2220 		 */
2221 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2222 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2223 			NAU8825_FLL_CLK_SRC_BLK |
2224 			(0xf << NAU8825_GAIN_ERR_SFT));
2225 		/* Release the semaphone. */
2226 		nau8825_sema_release(nau8825);
2227 
2228 		if (nau8825->mclk_freq) {
2229 			clk_disable_unprepare(nau8825->mclk);
2230 			nau8825->mclk_freq = 0;
2231 		}
2232 
2233 		break;
2234 	case NAU8825_CLK_FLL_FS:
2235 		/* Acquire the semaphone to synchronize the playback and
2236 		 * interrupt handler. In order to avoid the playback inter-
2237 		 * fered by cross talk process, the driver make the playback
2238 		 * preparation halted until cross talk process finish.
2239 		 */
2240 		nau8825_sema_acquire(nau8825, 3 * HZ);
2241 		/* If FLL reference input is from low frequency source,
2242 		 * higher error gain can apply such as 0xf which has
2243 		 * the most sensitive gain error correction threshold,
2244 		 * Therefore, FLL has the most accurate DCO to
2245 		 * target frequency.
2246 		 */
2247 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2248 			NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2249 			NAU8825_FLL_CLK_SRC_FS |
2250 			(0xf << NAU8825_GAIN_ERR_SFT));
2251 		/* Release the semaphone. */
2252 		nau8825_sema_release(nau8825);
2253 
2254 		if (nau8825->mclk_freq) {
2255 			clk_disable_unprepare(nau8825->mclk);
2256 			nau8825->mclk_freq = 0;
2257 		}
2258 
2259 		break;
2260 	default:
2261 		dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id);
2262 		return -EINVAL;
2263 	}
2264 
2265 	dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq,
2266 		clk_id);
2267 	return 0;
2268 }
2269 
2270 static int nau8825_set_sysclk(struct snd_soc_codec *codec, int clk_id,
2271 	int source, unsigned int freq, int dir)
2272 {
2273 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2274 
2275 	return nau8825_configure_sysclk(nau8825, clk_id, freq);
2276 }
2277 
2278 static int nau8825_resume_setup(struct nau8825 *nau8825)
2279 {
2280 	struct regmap *regmap = nau8825->regmap;
2281 
2282 	/* Close clock when jack type detection at manual mode */
2283 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
2284 
2285 	/* Clear all interruption status */
2286 	nau8825_int_status_clear_all(regmap);
2287 
2288 	/* Enable both insertion and ejection interruptions, and then
2289 	 * bypass de-bounce circuit.
2290 	 */
2291 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2292 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN |
2293 		NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN,
2294 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN);
2295 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2296 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
2297 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
2298 		NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0);
2299 
2300 	return 0;
2301 }
2302 
2303 static int nau8825_set_bias_level(struct snd_soc_codec *codec,
2304 				   enum snd_soc_bias_level level)
2305 {
2306 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2307 	int ret;
2308 
2309 	switch (level) {
2310 	case SND_SOC_BIAS_ON:
2311 		break;
2312 
2313 	case SND_SOC_BIAS_PREPARE:
2314 		break;
2315 
2316 	case SND_SOC_BIAS_STANDBY:
2317 		if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) {
2318 			if (nau8825->mclk_freq) {
2319 				ret = clk_prepare_enable(nau8825->mclk);
2320 				if (ret) {
2321 					dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2322 					return ret;
2323 				}
2324 			}
2325 			/* Setup codec configuration after resume */
2326 			nau8825_resume_setup(nau8825);
2327 		}
2328 		break;
2329 
2330 	case SND_SOC_BIAS_OFF:
2331 		/* Cancel and reset cross talk detection funciton */
2332 		nau8825_xtalk_cancel(nau8825);
2333 		/* Turn off all interruptions before system shutdown. Keep the
2334 		 * interruption quiet before resume setup completes.
2335 		 */
2336 		regmap_write(nau8825->regmap,
2337 			NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff);
2338 		/* Disable ADC needed for interruptions at audo mode */
2339 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
2340 			NAU8825_ENABLE_ADC, 0);
2341 		if (nau8825->mclk_freq)
2342 			clk_disable_unprepare(nau8825->mclk);
2343 		break;
2344 	}
2345 	return 0;
2346 }
2347 
2348 static int __maybe_unused nau8825_suspend(struct snd_soc_codec *codec)
2349 {
2350 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2351 
2352 	disable_irq(nau8825->irq);
2353 	snd_soc_codec_force_bias_level(codec, SND_SOC_BIAS_OFF);
2354 	regcache_cache_only(nau8825->regmap, true);
2355 	regcache_mark_dirty(nau8825->regmap);
2356 
2357 	return 0;
2358 }
2359 
2360 static int __maybe_unused nau8825_resume(struct snd_soc_codec *codec)
2361 {
2362 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2363 	int ret;
2364 
2365 	regcache_cache_only(nau8825->regmap, false);
2366 	regcache_sync(nau8825->regmap);
2367 	nau8825->xtalk_protect = true;
2368 	ret = nau8825_sema_acquire(nau8825, 0);
2369 	if (ret < 0)
2370 		nau8825->xtalk_protect = false;
2371 	enable_irq(nau8825->irq);
2372 
2373 	return 0;
2374 }
2375 
2376 static struct snd_soc_codec_driver nau8825_codec_driver = {
2377 	.probe = nau8825_codec_probe,
2378 	.remove = nau8825_codec_remove,
2379 	.set_sysclk = nau8825_set_sysclk,
2380 	.set_pll = nau8825_set_pll,
2381 	.set_bias_level = nau8825_set_bias_level,
2382 	.suspend_bias_off = true,
2383 	.suspend = nau8825_suspend,
2384 	.resume = nau8825_resume,
2385 
2386 	.component_driver = {
2387 		.controls		= nau8825_controls,
2388 		.num_controls		= ARRAY_SIZE(nau8825_controls),
2389 		.dapm_widgets		= nau8825_dapm_widgets,
2390 		.num_dapm_widgets	= ARRAY_SIZE(nau8825_dapm_widgets),
2391 		.dapm_routes		= nau8825_dapm_routes,
2392 		.num_dapm_routes	= ARRAY_SIZE(nau8825_dapm_routes),
2393 	},
2394 };
2395 
2396 static void nau8825_reset_chip(struct regmap *regmap)
2397 {
2398 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2399 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2400 }
2401 
2402 static void nau8825_print_device_properties(struct nau8825 *nau8825)
2403 {
2404 	int i;
2405 	struct device *dev = nau8825->dev;
2406 
2407 	dev_dbg(dev, "jkdet-enable:         %d\n", nau8825->jkdet_enable);
2408 	dev_dbg(dev, "jkdet-pull-enable:    %d\n", nau8825->jkdet_pull_enable);
2409 	dev_dbg(dev, "jkdet-pull-up:        %d\n", nau8825->jkdet_pull_up);
2410 	dev_dbg(dev, "jkdet-polarity:       %d\n", nau8825->jkdet_polarity);
2411 	dev_dbg(dev, "micbias-voltage:      %d\n", nau8825->micbias_voltage);
2412 	dev_dbg(dev, "vref-impedance:       %d\n", nau8825->vref_impedance);
2413 
2414 	dev_dbg(dev, "sar-threshold-num:    %d\n", nau8825->sar_threshold_num);
2415 	for (i = 0; i < nau8825->sar_threshold_num; i++)
2416 		dev_dbg(dev, "sar-threshold[%d]=%d\n", i,
2417 				nau8825->sar_threshold[i]);
2418 
2419 	dev_dbg(dev, "sar-hysteresis:       %d\n", nau8825->sar_hysteresis);
2420 	dev_dbg(dev, "sar-voltage:          %d\n", nau8825->sar_voltage);
2421 	dev_dbg(dev, "sar-compare-time:     %d\n", nau8825->sar_compare_time);
2422 	dev_dbg(dev, "sar-sampling-time:    %d\n", nau8825->sar_sampling_time);
2423 	dev_dbg(dev, "short-key-debounce:   %d\n", nau8825->key_debounce);
2424 	dev_dbg(dev, "jack-insert-debounce: %d\n",
2425 			nau8825->jack_insert_debounce);
2426 	dev_dbg(dev, "jack-eject-debounce:  %d\n",
2427 			nau8825->jack_eject_debounce);
2428 }
2429 
2430 static int nau8825_read_device_properties(struct device *dev,
2431 	struct nau8825 *nau8825) {
2432 
2433 	nau8825->jkdet_enable = device_property_read_bool(dev,
2434 		"nuvoton,jkdet-enable");
2435 	nau8825->jkdet_pull_enable = device_property_read_bool(dev,
2436 		"nuvoton,jkdet-pull-enable");
2437 	nau8825->jkdet_pull_up = device_property_read_bool(dev,
2438 		"nuvoton,jkdet-pull-up");
2439 	device_property_read_u32(dev, "nuvoton,jkdet-polarity",
2440 		&nau8825->jkdet_polarity);
2441 	device_property_read_u32(dev, "nuvoton,micbias-voltage",
2442 		&nau8825->micbias_voltage);
2443 	device_property_read_u32(dev, "nuvoton,vref-impedance",
2444 		&nau8825->vref_impedance);
2445 	device_property_read_u32(dev, "nuvoton,sar-threshold-num",
2446 		&nau8825->sar_threshold_num);
2447 	device_property_read_u32_array(dev, "nuvoton,sar-threshold",
2448 		nau8825->sar_threshold, nau8825->sar_threshold_num);
2449 	device_property_read_u32(dev, "nuvoton,sar-hysteresis",
2450 		&nau8825->sar_hysteresis);
2451 	device_property_read_u32(dev, "nuvoton,sar-voltage",
2452 		&nau8825->sar_voltage);
2453 	device_property_read_u32(dev, "nuvoton,sar-compare-time",
2454 		&nau8825->sar_compare_time);
2455 	device_property_read_u32(dev, "nuvoton,sar-sampling-time",
2456 		&nau8825->sar_sampling_time);
2457 	device_property_read_u32(dev, "nuvoton,short-key-debounce",
2458 		&nau8825->key_debounce);
2459 	device_property_read_u32(dev, "nuvoton,jack-insert-debounce",
2460 		&nau8825->jack_insert_debounce);
2461 	device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
2462 		&nau8825->jack_eject_debounce);
2463 
2464 	nau8825->mclk = devm_clk_get(dev, "mclk");
2465 	if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) {
2466 		return -EPROBE_DEFER;
2467 	} else if (PTR_ERR(nau8825->mclk) == -ENOENT) {
2468 		/* The MCLK is managed externally or not used at all */
2469 		nau8825->mclk = NULL;
2470 		dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally");
2471 	} else if (IS_ERR(nau8825->mclk)) {
2472 		return -EINVAL;
2473 	}
2474 
2475 	return 0;
2476 }
2477 
2478 static int nau8825_setup_irq(struct nau8825 *nau8825)
2479 {
2480 	int ret;
2481 
2482 	ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL,
2483 		nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2484 		"nau8825", nau8825);
2485 
2486 	if (ret) {
2487 		dev_err(nau8825->dev, "Cannot request irq %d (%d)\n",
2488 			nau8825->irq, ret);
2489 		return ret;
2490 	}
2491 
2492 	return 0;
2493 }
2494 
2495 static int nau8825_i2c_probe(struct i2c_client *i2c,
2496 	const struct i2c_device_id *id)
2497 {
2498 	struct device *dev = &i2c->dev;
2499 	struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev);
2500 	int ret, value;
2501 
2502 	if (!nau8825) {
2503 		nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL);
2504 		if (!nau8825)
2505 			return -ENOMEM;
2506 		ret = nau8825_read_device_properties(dev, nau8825);
2507 		if (ret)
2508 			return ret;
2509 	}
2510 
2511 	i2c_set_clientdata(i2c, nau8825);
2512 
2513 	nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config);
2514 	if (IS_ERR(nau8825->regmap))
2515 		return PTR_ERR(nau8825->regmap);
2516 	nau8825->dev = dev;
2517 	nau8825->irq = i2c->irq;
2518 	/* Initiate parameters, semaphone and work queue which are needed in
2519 	 * cross talk suppression measurment function.
2520 	 */
2521 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
2522 	nau8825->xtalk_protect = false;
2523 	sema_init(&nau8825->xtalk_sem, 1);
2524 	INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work);
2525 
2526 	nau8825_print_device_properties(nau8825);
2527 
2528 	nau8825_reset_chip(nau8825->regmap);
2529 	ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value);
2530 	if (ret < 0) {
2531 		dev_err(dev, "Failed to read device id from the NAU8825: %d\n",
2532 			ret);
2533 		return ret;
2534 	}
2535 	if ((value & NAU8825_SOFTWARE_ID_MASK) !=
2536 			NAU8825_SOFTWARE_ID_NAU8825) {
2537 		dev_err(dev, "Not a NAU8825 chip\n");
2538 		return -ENODEV;
2539 	}
2540 
2541 	nau8825_init_regs(nau8825);
2542 
2543 	if (i2c->irq)
2544 		nau8825_setup_irq(nau8825);
2545 
2546 	return snd_soc_register_codec(&i2c->dev, &nau8825_codec_driver,
2547 		&nau8825_dai, 1);
2548 }
2549 
2550 static int nau8825_i2c_remove(struct i2c_client *client)
2551 {
2552 	snd_soc_unregister_codec(&client->dev);
2553 	return 0;
2554 }
2555 
2556 static const struct i2c_device_id nau8825_i2c_ids[] = {
2557 	{ "nau8825", 0 },
2558 	{ }
2559 };
2560 MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids);
2561 
2562 #ifdef CONFIG_OF
2563 static const struct of_device_id nau8825_of_ids[] = {
2564 	{ .compatible = "nuvoton,nau8825", },
2565 	{}
2566 };
2567 MODULE_DEVICE_TABLE(of, nau8825_of_ids);
2568 #endif
2569 
2570 #ifdef CONFIG_ACPI
2571 static const struct acpi_device_id nau8825_acpi_match[] = {
2572 	{ "10508825", 0 },
2573 	{},
2574 };
2575 MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match);
2576 #endif
2577 
2578 static struct i2c_driver nau8825_driver = {
2579 	.driver = {
2580 		.name = "nau8825",
2581 		.of_match_table = of_match_ptr(nau8825_of_ids),
2582 		.acpi_match_table = ACPI_PTR(nau8825_acpi_match),
2583 	},
2584 	.probe = nau8825_i2c_probe,
2585 	.remove = nau8825_i2c_remove,
2586 	.id_table = nau8825_i2c_ids,
2587 };
2588 module_i2c_driver(nau8825_driver);
2589 
2590 MODULE_DESCRIPTION("ASoC nau8825 driver");
2591 MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>");
2592 MODULE_LICENSE("GPL");
2593