xref: /openbmc/linux/sound/soc/codecs/nau8825.c (revision 0984d159)
1 /*
2  * Nuvoton NAU8825 audio codec driver
3  *
4  * Copyright 2015 Google Chromium project.
5  *  Author: Anatol Pomozov <anatol@chromium.org>
6  * Copyright 2015 Nuvoton Technology Corp.
7  *  Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com>
8  *
9  * Licensed under the GPL-2.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/delay.h>
14 #include <linux/init.h>
15 #include <linux/i2c.h>
16 #include <linux/regmap.h>
17 #include <linux/slab.h>
18 #include <linux/clk.h>
19 #include <linux/acpi.h>
20 #include <linux/math64.h>
21 #include <linux/semaphore.h>
22 
23 #include <sound/initval.h>
24 #include <sound/tlv.h>
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 #include <sound/soc.h>
29 #include <sound/jack.h>
30 
31 
32 #include "nau8825.h"
33 
34 
35 #define NUVOTON_CODEC_DAI "nau8825-hifi"
36 
37 #define NAU_FREF_MAX 13500000
38 #define NAU_FVCO_MAX 124000000
39 #define NAU_FVCO_MIN 90000000
40 
41 /* cross talk suppression detection */
42 #define LOG10_MAGIC 646456993
43 #define GAIN_AUGMENT 22500
44 #define SIDETONE_BASE 207000
45 
46 
47 static int nau8825_configure_sysclk(struct nau8825 *nau8825,
48 		int clk_id, unsigned int freq);
49 
50 struct nau8825_fll {
51 	int mclk_src;
52 	int ratio;
53 	int fll_frac;
54 	int fll_int;
55 	int clk_ref_div;
56 };
57 
58 struct nau8825_fll_attr {
59 	unsigned int param;
60 	unsigned int val;
61 };
62 
63 /* scaling for mclk from sysclk_src output */
64 static const struct nau8825_fll_attr mclk_src_scaling[] = {
65 	{ 1, 0x0 },
66 	{ 2, 0x2 },
67 	{ 4, 0x3 },
68 	{ 8, 0x4 },
69 	{ 16, 0x5 },
70 	{ 32, 0x6 },
71 	{ 3, 0x7 },
72 	{ 6, 0xa },
73 	{ 12, 0xb },
74 	{ 24, 0xc },
75 	{ 48, 0xd },
76 	{ 96, 0xe },
77 	{ 5, 0xf },
78 };
79 
80 /* ratio for input clk freq */
81 static const struct nau8825_fll_attr fll_ratio[] = {
82 	{ 512000, 0x01 },
83 	{ 256000, 0x02 },
84 	{ 128000, 0x04 },
85 	{ 64000, 0x08 },
86 	{ 32000, 0x10 },
87 	{ 8000, 0x20 },
88 	{ 4000, 0x40 },
89 };
90 
91 static const struct nau8825_fll_attr fll_pre_scalar[] = {
92 	{ 1, 0x0 },
93 	{ 2, 0x1 },
94 	{ 4, 0x2 },
95 	{ 8, 0x3 },
96 };
97 
98 static const struct reg_default nau8825_reg_defaults[] = {
99 	{ NAU8825_REG_ENA_CTRL, 0x00ff },
100 	{ NAU8825_REG_IIC_ADDR_SET, 0x0 },
101 	{ NAU8825_REG_CLK_DIVIDER, 0x0050 },
102 	{ NAU8825_REG_FLL1, 0x0 },
103 	{ NAU8825_REG_FLL2, 0x3126 },
104 	{ NAU8825_REG_FLL3, 0x0008 },
105 	{ NAU8825_REG_FLL4, 0x0010 },
106 	{ NAU8825_REG_FLL5, 0x0 },
107 	{ NAU8825_REG_FLL6, 0x6000 },
108 	{ NAU8825_REG_FLL_VCO_RSV, 0xf13c },
109 	{ NAU8825_REG_HSD_CTRL, 0x000c },
110 	{ NAU8825_REG_JACK_DET_CTRL, 0x0 },
111 	{ NAU8825_REG_INTERRUPT_MASK, 0x0 },
112 	{ NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff },
113 	{ NAU8825_REG_SAR_CTRL, 0x0015 },
114 	{ NAU8825_REG_KEYDET_CTRL, 0x0110 },
115 	{ NAU8825_REG_VDET_THRESHOLD_1, 0x0 },
116 	{ NAU8825_REG_VDET_THRESHOLD_2, 0x0 },
117 	{ NAU8825_REG_VDET_THRESHOLD_3, 0x0 },
118 	{ NAU8825_REG_VDET_THRESHOLD_4, 0x0 },
119 	{ NAU8825_REG_GPIO34_CTRL, 0x0 },
120 	{ NAU8825_REG_GPIO12_CTRL, 0x0 },
121 	{ NAU8825_REG_TDM_CTRL, 0x0 },
122 	{ NAU8825_REG_I2S_PCM_CTRL1, 0x000b },
123 	{ NAU8825_REG_I2S_PCM_CTRL2, 0x8010 },
124 	{ NAU8825_REG_LEFT_TIME_SLOT, 0x0 },
125 	{ NAU8825_REG_RIGHT_TIME_SLOT, 0x0 },
126 	{ NAU8825_REG_BIQ_CTRL, 0x0 },
127 	{ NAU8825_REG_BIQ_COF1, 0x0 },
128 	{ NAU8825_REG_BIQ_COF2, 0x0 },
129 	{ NAU8825_REG_BIQ_COF3, 0x0 },
130 	{ NAU8825_REG_BIQ_COF4, 0x0 },
131 	{ NAU8825_REG_BIQ_COF5, 0x0 },
132 	{ NAU8825_REG_BIQ_COF6, 0x0 },
133 	{ NAU8825_REG_BIQ_COF7, 0x0 },
134 	{ NAU8825_REG_BIQ_COF8, 0x0 },
135 	{ NAU8825_REG_BIQ_COF9, 0x0 },
136 	{ NAU8825_REG_BIQ_COF10, 0x0 },
137 	{ NAU8825_REG_ADC_RATE, 0x0010 },
138 	{ NAU8825_REG_DAC_CTRL1, 0x0001 },
139 	{ NAU8825_REG_DAC_CTRL2, 0x0 },
140 	{ NAU8825_REG_DAC_DGAIN_CTRL, 0x0 },
141 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
142 	{ NAU8825_REG_MUTE_CTRL, 0x0 },
143 	{ NAU8825_REG_HSVOL_CTRL, 0x0 },
144 	{ NAU8825_REG_DACL_CTRL, 0x02cf },
145 	{ NAU8825_REG_DACR_CTRL, 0x00cf },
146 	{ NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 },
147 	{ NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 },
148 	{ NAU8825_REG_ADC_DRC_SLOPES, 0x25ff },
149 	{ NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 },
150 	{ NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 },
151 	{ NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 },
152 	{ NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 },
153 	{ NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 },
154 	{ NAU8825_REG_IMM_MODE_CTRL, 0x0 },
155 	{ NAU8825_REG_CLASSG_CTRL, 0x0 },
156 	{ NAU8825_REG_OPT_EFUSE_CTRL, 0x0 },
157 	{ NAU8825_REG_MISC_CTRL, 0x0 },
158 	{ NAU8825_REG_BIAS_ADJ, 0x0 },
159 	{ NAU8825_REG_TRIM_SETTINGS, 0x0 },
160 	{ NAU8825_REG_ANALOG_CONTROL_1, 0x0 },
161 	{ NAU8825_REG_ANALOG_CONTROL_2, 0x0 },
162 	{ NAU8825_REG_ANALOG_ADC_1, 0x0011 },
163 	{ NAU8825_REG_ANALOG_ADC_2, 0x0020 },
164 	{ NAU8825_REG_RDAC, 0x0008 },
165 	{ NAU8825_REG_MIC_BIAS, 0x0006 },
166 	{ NAU8825_REG_BOOST, 0x0 },
167 	{ NAU8825_REG_FEPGA, 0x0 },
168 	{ NAU8825_REG_POWER_UP_CONTROL, 0x0 },
169 	{ NAU8825_REG_CHARGE_PUMP, 0x0 },
170 };
171 
172 /* register backup table when cross talk detection */
173 static struct reg_default nau8825_xtalk_baktab[] = {
174 	{ NAU8825_REG_ADC_DGAIN_CTRL, 0 },
175 	{ NAU8825_REG_HSVOL_CTRL, 0 },
176 	{ NAU8825_REG_DACL_CTRL, 0 },
177 	{ NAU8825_REG_DACR_CTRL, 0 },
178 };
179 
180 static const unsigned short logtable[256] = {
181 	0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7,
182 	0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508,
183 	0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6,
184 	0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37,
185 	0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f,
186 	0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41,
187 	0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1,
188 	0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142,
189 	0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68,
190 	0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355,
191 	0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c,
192 	0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490,
193 	0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3,
194 	0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507,
195 	0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe,
196 	0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca,
197 	0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c,
198 	0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7,
199 	0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c,
200 	0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c,
201 	0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a,
202 	0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065,
203 	0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730,
204 	0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc,
205 	0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469,
206 	0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9,
207 	0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c,
208 	0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765,
209 	0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83,
210 	0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387,
211 	0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973,
212 	0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47
213 };
214 
215 static struct snd_soc_dai *nau8825_get_codec_dai(struct nau8825 *nau8825)
216 {
217 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(nau8825->dapm);
218 	struct snd_soc_component *component = &codec->component;
219 	struct snd_soc_dai *codec_dai, *_dai;
220 
221 	list_for_each_entry_safe(codec_dai, _dai, &component->dai_list, list) {
222 		if (!strncmp(codec_dai->name, NUVOTON_CODEC_DAI,
223 			strlen(NUVOTON_CODEC_DAI)))
224 			return codec_dai;
225 	}
226 	return NULL;
227 }
228 
229 static bool nau8825_dai_is_active(struct nau8825 *nau8825)
230 {
231 	struct snd_soc_dai *codec_dai = nau8825_get_codec_dai(nau8825);
232 
233 	if (codec_dai) {
234 		if (codec_dai->playback_active || codec_dai->capture_active)
235 			return true;
236 	}
237 	return false;
238 }
239 
240 /**
241  * nau8825_sema_acquire - acquire the semaphore of nau88l25
242  * @nau8825:  component to register the codec private data with
243  * @timeout: how long in jiffies to wait before failure or zero to wait
244  * until release
245  *
246  * Attempts to acquire the semaphore with number of jiffies. If no more
247  * tasks are allowed to acquire the semaphore, calling this function will
248  * put the task to sleep. If the semaphore is not released within the
249  * specified number of jiffies, this function returns.
250  * Acquires the semaphore without jiffies. If no more tasks are allowed
251  * to acquire the semaphore, calling this function will put the task to
252  * sleep until the semaphore is released.
253  * It returns if the semaphore was acquired.
254  */
255 static void nau8825_sema_acquire(struct nau8825 *nau8825, long timeout)
256 {
257 	int ret;
258 
259 	if (timeout)
260 		ret = down_timeout(&nau8825->xtalk_sem, timeout);
261 	else
262 		ret = down_interruptible(&nau8825->xtalk_sem);
263 
264 	if (ret < 0)
265 		dev_warn(nau8825->dev, "Acquire semaphone fail\n");
266 }
267 
268 /**
269  * nau8825_sema_release - release the semaphore of nau88l25
270  * @nau8825:  component to register the codec private data with
271  *
272  * Release the semaphore which may be called from any context and
273  * even by tasks which have never called down().
274  */
275 static inline void nau8825_sema_release(struct nau8825 *nau8825)
276 {
277 	up(&nau8825->xtalk_sem);
278 }
279 
280 /**
281  * nau8825_sema_reset - reset the semaphore for nau88l25
282  * @nau8825:  component to register the codec private data with
283  *
284  * Reset the counter of the semaphore. Call this function to restart
285  * a new round task management.
286  */
287 static inline void nau8825_sema_reset(struct nau8825 *nau8825)
288 {
289 	nau8825->xtalk_sem.count = 1;
290 }
291 
292 /**
293  * Ramp up the headphone volume change gradually to target level.
294  *
295  * @nau8825:  component to register the codec private data with
296  * @vol_from: the volume to start up
297  * @vol_to: the target volume
298  * @step: the volume span to move on
299  *
300  * The headphone volume is from 0dB to minimum -54dB and -1dB per step.
301  * If the volume changes sharp, there is a pop noise heard in headphone. We
302  * provide the function to ramp up the volume up or down by delaying 10ms
303  * per step.
304  */
305 static void nau8825_hpvol_ramp(struct nau8825 *nau8825,
306 	unsigned int vol_from, unsigned int vol_to, unsigned int step)
307 {
308 	unsigned int value, volume, ramp_up, from, to;
309 
310 	if (vol_from == vol_to || step == 0) {
311 		return;
312 	} else if (vol_from < vol_to) {
313 		ramp_up = true;
314 		from = vol_from;
315 		to = vol_to;
316 	} else {
317 		ramp_up = false;
318 		from = vol_to;
319 		to = vol_from;
320 	}
321 	/* only handle volume from 0dB to minimum -54dB */
322 	if (to > NAU8825_HP_VOL_MIN)
323 		to = NAU8825_HP_VOL_MIN;
324 
325 	for (volume = from; volume < to; volume += step) {
326 		if (ramp_up)
327 			value = volume;
328 		else
329 			value = to - volume + from;
330 		regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
331 			NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
332 			(value << NAU8825_HPL_VOL_SFT) | value);
333 		usleep_range(10000, 10500);
334 	}
335 	if (ramp_up)
336 		value = to;
337 	else
338 		value = from;
339 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
340 		NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
341 		(value << NAU8825_HPL_VOL_SFT) | value);
342 }
343 
344 /**
345  * Computes log10 of a value; the result is round off to 3 decimal. This func-
346  * tion takes reference to dvb-math. The source code locates as the following.
347  * Linux/drivers/media/dvb-core/dvb_math.c
348  *
349  * return log10(value) * 1000
350  */
351 static u32 nau8825_intlog10_dec3(u32 value)
352 {
353 	u32 msb, logentry, significand, interpolation, log10val;
354 	u64 log2val;
355 
356 	/* first detect the msb (count begins at 0) */
357 	msb = fls(value) - 1;
358 	/**
359 	 *      now we use a logtable after the following method:
360 	 *
361 	 *      log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24
362 	 *      where x = msb and therefore 1 <= y < 2
363 	 *      first y is determined by shifting the value left
364 	 *      so that msb is bit 31
365 	 *              0x00231f56 -> 0x8C7D5800
366 	 *      the result is y * 2^31 -> "significand"
367 	 *      then the highest 9 bits are used for a table lookup
368 	 *      the highest bit is discarded because it's always set
369 	 *      the highest nine bits in our example are 100011000
370 	 *      so we would use the entry 0x18
371 	 */
372 	significand = value << (31 - msb);
373 	logentry = (significand >> 23) & 0xff;
374 	/**
375 	 *      last step we do is interpolation because of the
376 	 *      limitations of the log table the error is that part of
377 	 *      the significand which isn't used for lookup then we
378 	 *      compute the ratio between the error and the next table entry
379 	 *      and interpolate it between the log table entry used and the
380 	 *      next one the biggest error possible is 0x7fffff
381 	 *      (in our example it's 0x7D5800)
382 	 *      needed value for next table entry is 0x800000
383 	 *      so the interpolation is
384 	 *      (error / 0x800000) * (logtable_next - logtable_current)
385 	 *      in the implementation the division is moved to the end for
386 	 *      better accuracy there is also an overflow correction if
387 	 *      logtable_next is 256
388 	 */
389 	interpolation = ((significand & 0x7fffff) *
390 		((logtable[(logentry + 1) & 0xff] -
391 		logtable[logentry]) & 0xffff)) >> 15;
392 
393 	log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation);
394 	/**
395 	 *      log10(x) = log2(x) * log10(2)
396 	 */
397 	log10val = (log2val * LOG10_MAGIC) >> 31;
398 	/**
399 	 *      the result is round off to 3 decimal
400 	 */
401 	return log10val / ((1 << 24) / 1000);
402 }
403 
404 /**
405  * computes cross talk suppression sidetone gain.
406  *
407  * @sig_org: orignal signal level
408  * @sig_cros: cross talk signal level
409  *
410  * The orignal and cross talk signal vlues need to be characterized.
411  * Once these values have been characterized, this sidetone value
412  * can be converted to decibel with the equation below.
413  * sidetone = 20 * log (original signal level / crosstalk signal level)
414  *
415  * return cross talk sidetone gain
416  */
417 static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros)
418 {
419 	u32 gain, sidetone;
420 
421 	if (unlikely(sig_org == 0) || unlikely(sig_cros == 0)) {
422 		WARN_ON(1);
423 		return 0;
424 	}
425 
426 	sig_org = nau8825_intlog10_dec3(sig_org);
427 	sig_cros = nau8825_intlog10_dec3(sig_cros);
428 	if (sig_org >= sig_cros)
429 		gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT;
430 	else
431 		gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT;
432 	sidetone = SIDETONE_BASE - gain * 2;
433 	sidetone /= 1000;
434 
435 	return sidetone;
436 }
437 
438 static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg)
439 {
440 	int index;
441 
442 	for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++)
443 		if (nau8825_xtalk_baktab[index].reg == reg)
444 			return index;
445 	return -EINVAL;
446 }
447 
448 static void nau8825_xtalk_backup(struct nau8825 *nau8825)
449 {
450 	int i;
451 
452 	/* Backup some register values to backup table */
453 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++)
454 		regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
455 				&nau8825_xtalk_baktab[i].def);
456 }
457 
458 static void nau8825_xtalk_restore(struct nau8825 *nau8825)
459 {
460 	int i, volume;
461 
462 	/* Restore register values from backup table; When the driver restores
463 	 * the headphone volumem, it needs recover to original level gradually
464 	 * with 3dB per step for less pop noise.
465 	 */
466 	for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) {
467 		if (nau8825_xtalk_baktab[i].reg == NAU8825_REG_HSVOL_CTRL) {
468 			/* Ramping up the volume change to reduce pop noise */
469 			volume = nau8825_xtalk_baktab[i].def &
470 				NAU8825_HPR_VOL_MASK;
471 			nau8825_hpvol_ramp(nau8825, 0, volume, 3);
472 			continue;
473 		}
474 		regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
475 				nau8825_xtalk_baktab[i].def);
476 	}
477 }
478 
479 static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825)
480 {
481 	/* Enable power of DAC path */
482 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
483 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
484 		NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK |
485 		NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR |
486 		NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC |
487 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK);
488 	/* Prevent startup click by letting charge pump to ramp up and
489 	 * change bump enable
490 	 */
491 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
492 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN,
493 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN);
494 	/* Enable clock sync of DAC and DAC clock */
495 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
496 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN |
497 		NAU8825_RDAC_FS_BCLK_ENB,
498 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN);
499 	/* Power up output driver with 2 stage */
500 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
501 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
502 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L,
503 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
504 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L);
505 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
506 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L,
507 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L);
508 	/* HP outputs not shouted to ground  */
509 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
510 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0);
511 	/* Enable HP boost driver */
512 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
513 		NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS);
514 	/* Enable class G compare path to supply 1.8V or 0.9V. */
515 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL,
516 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN,
517 		NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN);
518 }
519 
520 static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825)
521 {
522 	/* Power up left ADC and raise 5dB than Vmid for Vref  */
523 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
524 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK,
525 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB);
526 }
527 
528 static void nau8825_xtalk_clock(struct nau8825 *nau8825)
529 {
530 	/* Recover FLL default value */
531 	regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0);
532 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126);
533 	regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008);
534 	regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010);
535 	regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0);
536 	regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000);
537 	/* Enable internal VCO clock for detection signal generated */
538 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
539 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
540 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN,
541 		NAU8825_DCO_EN);
542 	/* Given specific clock frequency of internal clock to
543 	 * generate signal.
544 	 */
545 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
546 		NAU8825_CLK_MCLK_SRC_MASK, 0xf);
547 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
548 		NAU8825_FLL_RATIO_MASK, 0x10);
549 }
550 
551 static void nau8825_xtalk_prepare(struct nau8825 *nau8825)
552 {
553 	int volume, index;
554 
555 	/* Backup those registers changed by cross talk detection */
556 	nau8825_xtalk_backup(nau8825);
557 	/* Config IIS as master to output signal by codec */
558 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
559 		NAU8825_I2S_MS_MASK | NAU8825_I2S_DRV_MASK |
560 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER |
561 		(0x2 << NAU8825_I2S_DRV_SFT) | 0x1);
562 	/* Ramp up headphone volume to 0dB to get better performance and
563 	 * avoid pop noise in headphone.
564 	 */
565 	index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL);
566 	if (index != -EINVAL) {
567 		volume = nau8825_xtalk_baktab[index].def &
568 				NAU8825_HPR_VOL_MASK;
569 		nau8825_hpvol_ramp(nau8825, volume, 0, 3);
570 	}
571 	nau8825_xtalk_clock(nau8825);
572 	nau8825_xtalk_prepare_dac(nau8825);
573 	nau8825_xtalk_prepare_adc(nau8825);
574 	/* Config channel path and digital gain */
575 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
576 		NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK,
577 		NAU8825_DACL_CH_SEL_L | 0xab);
578 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
579 		NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK,
580 		NAU8825_DACR_CH_SEL_R | 0xab);
581 	/* Config cross talk parameters and generate the 23Hz sine wave with
582 	 * 1/16 full scale of signal level for impedance measurement.
583 	 */
584 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
585 		NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK |
586 		NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK,
587 		(0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th |
588 		NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN);
589 	/* RMS intrruption enable */
590 	regmap_update_bits(nau8825->regmap,
591 		NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0);
592 	/* Power up left and right DAC */
593 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
594 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0);
595 }
596 
597 static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825)
598 {
599 	/* Disable HP boost driver */
600 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
601 		NAU8825_HP_BOOST_DIS, 0);
602 	/* HP outputs shouted to ground  */
603 	regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
604 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
605 		NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
606 	/* Power down left and right DAC */
607 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
608 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
609 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
610 	/* Enable the TESTDAC and  disable L/R HP impedance */
611 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
612 		NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP |
613 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
614 	/* Power down output driver with 2 stage */
615 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
616 		NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0);
617 	regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
618 		NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
619 		NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0);
620 	/* Disable clock sync of DAC and DAC clock */
621 	regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
622 		NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0);
623 	/* Disable charge pump ramp up function and change bump */
624 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
625 		NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0);
626 	/* Disable power of DAC path */
627 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
628 		NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
629 		NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0);
630 	if (!nau8825->irq)
631 		regmap_update_bits(nau8825->regmap,
632 			NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
633 }
634 
635 static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825)
636 {
637 	/* Power down left ADC and restore voltage to Vmid */
638 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
639 		NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0);
640 }
641 
642 static void nau8825_xtalk_clean(struct nau8825 *nau8825)
643 {
644 	/* Enable internal VCO needed for interruptions */
645 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
646 	nau8825_xtalk_clean_dac(nau8825);
647 	nau8825_xtalk_clean_adc(nau8825);
648 	/* Clear cross talk parameters and disable */
649 	regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0);
650 	/* RMS intrruption disable */
651 	regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK,
652 		NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN);
653 	/* Recover default value for IIS */
654 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
655 		NAU8825_I2S_MS_MASK | NAU8825_I2S_DRV_MASK |
656 		NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE);
657 	/* Restore value of specific register for cross talk */
658 	nau8825_xtalk_restore(nau8825);
659 }
660 
661 static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol)
662 {
663 	/* Apply ADC volume for better cross talk performance */
664 	regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL,
665 				NAU8825_ADC_DIG_VOL_MASK, vol);
666 	/* Disables JKTIP(HPL) DAC channel for right to left measurement.
667 	 * Do it before sending signal in order to erase pop noise.
668 	 */
669 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
670 		NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN,
671 		NAU8825_BIAS_TESTDACL_EN);
672 	switch (nau8825->xtalk_state) {
673 	case NAU8825_XTALK_HPR_R2L:
674 		/* Enable right headphone impedance */
675 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
676 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
677 			NAU8825_BIAS_HPR_IMP);
678 		break;
679 	case NAU8825_XTALK_HPL_R2L:
680 		/* Enable left headphone impedance */
681 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
682 			NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
683 			NAU8825_BIAS_HPL_IMP);
684 		break;
685 	default:
686 		break;
687 	}
688 	msleep(100);
689 	/* Impedance measurement mode enable */
690 	regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
691 				NAU8825_IMM_EN, NAU8825_IMM_EN);
692 }
693 
694 static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825)
695 {
696 	/* Impedance measurement mode disable */
697 	regmap_update_bits(nau8825->regmap,
698 		NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0);
699 }
700 
701 /* The cross talk measurement function can reduce cross talk across the
702  * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal
703  * level to determine what cross talk reduction gain is. This system works by
704  * sending a 23Hz -24dBV sine wave into the headset output DAC and through
705  * the PGA. The output of the PGA is then connected to an internal current
706  * sense which measures the attenuated 23Hz signal and passing the output to
707  * an ADC which converts the measurement to a binary code. With two separated
708  * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data
709  * can be separated read in IMM_RMS_L for HSR and HSL after each measurement.
710  * Thus, the measurement function has four states to complete whole sequence.
711  * 1. Prepare state : Prepare the resource for detection and transfer to HPR
712  *     IMM stat to make JKR1(HPR) impedance measure.
713  * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer
714  *     to HPL IMM state to make JKTIP(HPL) impedance measure.
715  * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and
716  *     transfer to IMM state to determine suppression sidetone gain.
717  * 4. IMM state : Computes cross talk suppression sidetone gain with orignal
718  *     and cross talk signal level. Apply this gain and then restore codec
719  *     configuration. Then transfer to Done state for ending.
720  */
721 static void nau8825_xtalk_measure(struct nau8825 *nau8825)
722 {
723 	u32 sidetone;
724 
725 	switch (nau8825->xtalk_state) {
726 	case NAU8825_XTALK_PREPARE:
727 		/* In prepare state, set up clock, intrruption, DAC path, ADC
728 		 * path and cross talk detection parameters for preparation.
729 		 */
730 		nau8825_xtalk_prepare(nau8825);
731 		msleep(280);
732 		/* Trigger right headphone impedance detection */
733 		nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L;
734 		nau8825_xtalk_imm_start(nau8825, 0x00d2);
735 		break;
736 	case NAU8825_XTALK_HPR_R2L:
737 		/* In right headphone IMM state, read out right headphone
738 		 * impedance measure result, and then start up left side.
739 		 */
740 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
741 			&nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
742 		dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n",
743 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
744 		/* Disable then re-enable IMM mode to update */
745 		nau8825_xtalk_imm_stop(nau8825);
746 		/* Trigger left headphone impedance detection */
747 		nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L;
748 		nau8825_xtalk_imm_start(nau8825, 0x00ff);
749 		break;
750 	case NAU8825_XTALK_HPL_R2L:
751 		/* In left headphone IMM state, read out left headphone
752 		 * impedance measure result, and delay some time to wait
753 		 * detection sine wave output finish. Then, we can calculate
754 		 * the cross talk suppresstion side tone according to the L/R
755 		 * headphone imedance.
756 		 */
757 		regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
758 			&nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
759 		dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n",
760 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
761 		nau8825_xtalk_imm_stop(nau8825);
762 		msleep(150);
763 		nau8825->xtalk_state = NAU8825_XTALK_IMM;
764 		break;
765 	case NAU8825_XTALK_IMM:
766 		/* In impedance measure state, the orignal and cross talk
767 		 * signal level vlues are ready. The side tone gain is deter-
768 		 * mined with these signal level. After all, restore codec
769 		 * configuration.
770 		 */
771 		sidetone = nau8825_xtalk_sidetone(
772 			nau8825->imp_rms[NAU8825_XTALK_HPR_R2L],
773 			nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
774 		dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone);
775 		regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL,
776 					(sidetone << 8) | sidetone);
777 		nau8825_xtalk_clean(nau8825);
778 		nau8825->xtalk_state = NAU8825_XTALK_DONE;
779 		break;
780 	default:
781 		break;
782 	}
783 }
784 
785 static void nau8825_xtalk_work(struct work_struct *work)
786 {
787 	struct nau8825 *nau8825 = container_of(
788 		work, struct nau8825, xtalk_work);
789 
790 	nau8825_xtalk_measure(nau8825);
791 	/* To determine the cross talk side tone gain when reach
792 	 * the impedance measure state.
793 	 */
794 	if (nau8825->xtalk_state == NAU8825_XTALK_IMM)
795 		nau8825_xtalk_measure(nau8825);
796 
797 	/* Delay jack report until cross talk detection process
798 	 * completed. It can avoid application to do playback
799 	 * preparation before cross talk detection is still working.
800 	 * Meanwhile, the protection of the cross talk detection
801 	 * is released.
802 	 */
803 	if (nau8825->xtalk_state == NAU8825_XTALK_DONE) {
804 		snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event,
805 				nau8825->xtalk_event_mask);
806 		nau8825_sema_release(nau8825);
807 		nau8825->xtalk_protect = false;
808 	}
809 }
810 
811 static void nau8825_xtalk_cancel(struct nau8825 *nau8825)
812 {
813 	/* If the xtalk_protect is true, that means the process is still
814 	 * on going. The driver forces to cancel the cross talk task and
815 	 * restores the configuration to original status.
816 	 */
817 	if (nau8825->xtalk_protect) {
818 		cancel_work_sync(&nau8825->xtalk_work);
819 		nau8825_xtalk_clean(nau8825);
820 	}
821 	/* Reset parameters for cross talk suppression function */
822 	nau8825_sema_reset(nau8825);
823 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
824 	nau8825->xtalk_protect = false;
825 }
826 
827 static bool nau8825_readable_reg(struct device *dev, unsigned int reg)
828 {
829 	switch (reg) {
830 	case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV:
831 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
832 	case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL:
833 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
834 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
835 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
836 	case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R:
837 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
838 	case NAU8825_REG_MISC_CTRL:
839 	case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS:
840 	case NAU8825_REG_BIAS_ADJ:
841 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
842 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
843 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
844 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS:
845 		return true;
846 	default:
847 		return false;
848 	}
849 
850 }
851 
852 static bool nau8825_writeable_reg(struct device *dev, unsigned int reg)
853 {
854 	switch (reg) {
855 	case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV:
856 	case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
857 	case NAU8825_REG_INTERRUPT_MASK:
858 	case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL:
859 	case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
860 	case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
861 	case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
862 	case NAU8825_REG_IMM_MODE_CTRL:
863 	case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
864 	case NAU8825_REG_MISC_CTRL:
865 	case NAU8825_REG_BIAS_ADJ:
866 	case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
867 	case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
868 	case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
869 	case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP:
870 		return true;
871 	default:
872 		return false;
873 	}
874 }
875 
876 static bool nau8825_volatile_reg(struct device *dev, unsigned int reg)
877 {
878 	switch (reg) {
879 	case NAU8825_REG_RESET:
880 	case NAU8825_REG_IRQ_STATUS:
881 	case NAU8825_REG_INT_CLR_KEY_STATUS:
882 	case NAU8825_REG_IMM_RMS_L:
883 	case NAU8825_REG_IMM_RMS_R:
884 	case NAU8825_REG_I2C_DEVICE_ID:
885 	case NAU8825_REG_SARDOUT_RAM_STATUS:
886 	case NAU8825_REG_CHARGE_PUMP_INPUT_READ:
887 	case NAU8825_REG_GENERAL_STATUS:
888 	case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10:
889 		return true;
890 	default:
891 		return false;
892 	}
893 }
894 
895 static int nau8825_adc_event(struct snd_soc_dapm_widget *w,
896 		struct snd_kcontrol *kcontrol, int event)
897 {
898 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
899 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
900 
901 	switch (event) {
902 	case SND_SOC_DAPM_POST_PMU:
903 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
904 			NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
905 		break;
906 	case SND_SOC_DAPM_POST_PMD:
907 		if (!nau8825->irq)
908 			regmap_update_bits(nau8825->regmap,
909 				NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
910 		break;
911 	default:
912 		return -EINVAL;
913 	}
914 
915 	return 0;
916 }
917 
918 static int nau8825_pump_event(struct snd_soc_dapm_widget *w,
919 	struct snd_kcontrol *kcontrol, int event)
920 {
921 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
922 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
923 
924 	switch (event) {
925 	case SND_SOC_DAPM_POST_PMU:
926 		/* Prevent startup click by letting charge pump to ramp up */
927 		msleep(10);
928 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
929 			NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW);
930 		break;
931 	case SND_SOC_DAPM_PRE_PMD:
932 		regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
933 			NAU8825_JAMNODCLOW, 0);
934 		break;
935 	default:
936 		return -EINVAL;
937 	}
938 
939 	return 0;
940 }
941 
942 static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w,
943 	struct snd_kcontrol *kcontrol, int event)
944 {
945 	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
946 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
947 
948 	switch (event) {
949 	case SND_SOC_DAPM_PRE_PMU:
950 		/* Disables the TESTDAC to let DAC signal pass through. */
951 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
952 			NAU8825_BIAS_TESTDAC_EN, 0);
953 		break;
954 	case SND_SOC_DAPM_POST_PMD:
955 		regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
956 			NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
957 		break;
958 	default:
959 		return -EINVAL;
960 	}
961 
962 	return 0;
963 }
964 
965 static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol,
966 				     struct snd_ctl_elem_value *ucontrol)
967 {
968 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
969 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
970 
971 	if (!component->regmap)
972 		return -EINVAL;
973 
974 	regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1,
975 		ucontrol->value.bytes.data, params->max);
976 	return 0;
977 }
978 
979 static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol,
980 				     struct snd_ctl_elem_value *ucontrol)
981 {
982 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
983 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
984 	void *data;
985 
986 	if (!component->regmap)
987 		return -EINVAL;
988 
989 	data = kmemdup(ucontrol->value.bytes.data,
990 		params->max, GFP_KERNEL | GFP_DMA);
991 	if (!data)
992 		return -ENOMEM;
993 
994 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
995 		NAU8825_BIQ_WRT_EN, 0);
996 	regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1,
997 		data, params->max);
998 	regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
999 		NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN);
1000 
1001 	kfree(data);
1002 	return 0;
1003 }
1004 
1005 static const char * const nau8825_biq_path[] = {
1006 	"ADC", "DAC"
1007 };
1008 
1009 static const struct soc_enum nau8825_biq_path_enum =
1010 	SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT,
1011 		ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path);
1012 
1013 static const char * const nau8825_adc_decimation[] = {
1014 	"32", "64", "128", "256"
1015 };
1016 
1017 static const struct soc_enum nau8825_adc_decimation_enum =
1018 	SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT,
1019 		ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation);
1020 
1021 static const char * const nau8825_dac_oversampl[] = {
1022 	"64", "256", "128", "", "32"
1023 };
1024 
1025 static const struct soc_enum nau8825_dac_oversampl_enum =
1026 	SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT,
1027 		ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl);
1028 
1029 static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400);
1030 static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0);
1031 static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0);
1032 static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
1033 static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400);
1034 
1035 static const struct snd_kcontrol_new nau8825_controls[] = {
1036 	SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1037 		0, 0xff, 0, adc_vol_tlv),
1038 	SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1039 		12, 8, 0x0f, 0, sidetone_vol_tlv),
1040 	SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL,
1041 		6, 0, 0x3f, 1, dac_vol_tlv),
1042 	SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL,
1043 		8, 37, 0, fepga_gain_tlv),
1044 	SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL,
1045 		0, 8, 0xff, 0, crosstalk_vol_tlv),
1046 
1047 	SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum),
1048 	SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum),
1049 	/* programmable biquad filter */
1050 	SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum),
1051 	SND_SOC_BYTES_EXT("BIQ Coefficients", 20,
1052 		  nau8825_biq_coeff_get, nau8825_biq_coeff_put),
1053 };
1054 
1055 /* DAC Mux 0x33[9] and 0x34[9] */
1056 static const char * const nau8825_dac_src[] = {
1057 	"DACL", "DACR",
1058 };
1059 
1060 static SOC_ENUM_SINGLE_DECL(
1061 	nau8825_dacl_enum, NAU8825_REG_DACL_CTRL,
1062 	NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src);
1063 
1064 static SOC_ENUM_SINGLE_DECL(
1065 	nau8825_dacr_enum, NAU8825_REG_DACR_CTRL,
1066 	NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src);
1067 
1068 static const struct snd_kcontrol_new nau8825_dacl_mux =
1069 	SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum);
1070 
1071 static const struct snd_kcontrol_new nau8825_dacr_mux =
1072 	SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum);
1073 
1074 
1075 static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = {
1076 	SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2,
1077 		15, 1),
1078 
1079 	SND_SOC_DAPM_INPUT("MIC"),
1080 	SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0),
1081 
1082 	SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0,
1083 		NULL, 0),
1084 
1085 	SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0,
1086 		nau8825_adc_event, SND_SOC_DAPM_POST_PMU |
1087 		SND_SOC_DAPM_POST_PMD),
1088 	SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0),
1089 	SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL,
1090 		0),
1091 
1092 	/* ADC for button press detection. A dapm supply widget is used to
1093 	 * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON
1094 	 * during suspend.
1095 	 */
1096 	SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL,
1097 		NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0),
1098 
1099 	SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0),
1100 	SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0),
1101 	SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0),
1102 	SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0),
1103 
1104 	SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL,
1105 		NAU8825_ENABLE_DACR_SFT, 0),
1106 	SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL,
1107 		NAU8825_ENABLE_DACL_SFT, 0),
1108 	SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0),
1109 
1110 	SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux),
1111 	SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux),
1112 
1113 	SND_SOC_DAPM_PGA_S("HP amp L", 0,
1114 		NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0),
1115 	SND_SOC_DAPM_PGA_S("HP amp R", 0,
1116 		NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0),
1117 
1118 	SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0,
1119 		nau8825_pump_event, SND_SOC_DAPM_POST_PMU |
1120 		SND_SOC_DAPM_PRE_PMD),
1121 
1122 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4,
1123 		NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0),
1124 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4,
1125 		NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0),
1126 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5,
1127 		NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0),
1128 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5,
1129 		NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0),
1130 	SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6,
1131 		NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0),
1132 	SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6,
1133 		NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0),
1134 
1135 	SND_SOC_DAPM_PGA_S("Output DACL", 7,
1136 		NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event,
1137 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1138 	SND_SOC_DAPM_PGA_S("Output DACR", 7,
1139 		NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event,
1140 		SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1141 
1142 	/* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */
1143 	SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8,
1144 		NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0),
1145 	SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8,
1146 		NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0),
1147 
1148 	/* High current HPOL/R boost driver */
1149 	SND_SOC_DAPM_PGA_S("HP Boost Driver", 9,
1150 		NAU8825_REG_BOOST, 9, 1, NULL, 0),
1151 
1152 	/* Class G operation control*/
1153 	SND_SOC_DAPM_PGA_S("Class G", 10,
1154 		NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0),
1155 
1156 	SND_SOC_DAPM_OUTPUT("HPOL"),
1157 	SND_SOC_DAPM_OUTPUT("HPOR"),
1158 };
1159 
1160 static const struct snd_soc_dapm_route nau8825_dapm_routes[] = {
1161 	{"Frontend PGA", NULL, "MIC"},
1162 	{"ADC", NULL, "Frontend PGA"},
1163 	{"ADC", NULL, "ADC Clock"},
1164 	{"ADC", NULL, "ADC Power"},
1165 	{"AIFTX", NULL, "ADC"},
1166 
1167 	{"DDACL", NULL, "Playback"},
1168 	{"DDACR", NULL, "Playback"},
1169 	{"DDACL", NULL, "DDAC Clock"},
1170 	{"DDACR", NULL, "DDAC Clock"},
1171 	{"DACL Mux", "DACL", "DDACL"},
1172 	{"DACL Mux", "DACR", "DDACR"},
1173 	{"DACR Mux", "DACL", "DDACL"},
1174 	{"DACR Mux", "DACR", "DDACR"},
1175 	{"HP amp L", NULL, "DACL Mux"},
1176 	{"HP amp R", NULL, "DACR Mux"},
1177 	{"Charge Pump", NULL, "HP amp L"},
1178 	{"Charge Pump", NULL, "HP amp R"},
1179 	{"ADACL", NULL, "Charge Pump"},
1180 	{"ADACR", NULL, "Charge Pump"},
1181 	{"ADACL Clock", NULL, "ADACL"},
1182 	{"ADACR Clock", NULL, "ADACR"},
1183 	{"Output Driver L Stage 1", NULL, "ADACL Clock"},
1184 	{"Output Driver R Stage 1", NULL, "ADACR Clock"},
1185 	{"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"},
1186 	{"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"},
1187 	{"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"},
1188 	{"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"},
1189 	{"Output DACL", NULL, "Output Driver L Stage 3"},
1190 	{"Output DACR", NULL, "Output Driver R Stage 3"},
1191 	{"HPOL Pulldown", NULL, "Output DACL"},
1192 	{"HPOR Pulldown", NULL, "Output DACR"},
1193 	{"HP Boost Driver", NULL, "HPOL Pulldown"},
1194 	{"HP Boost Driver", NULL, "HPOR Pulldown"},
1195 	{"Class G", NULL, "HP Boost Driver"},
1196 	{"HPOL", NULL, "Class G"},
1197 	{"HPOR", NULL, "Class G"},
1198 };
1199 
1200 static int nau8825_hw_params(struct snd_pcm_substream *substream,
1201 				struct snd_pcm_hw_params *params,
1202 				struct snd_soc_dai *dai)
1203 {
1204 	struct snd_soc_codec *codec = dai->codec;
1205 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1206 	unsigned int val_len = 0;
1207 
1208 	switch (params_width(params)) {
1209 	case 16:
1210 		val_len |= NAU8825_I2S_DL_16;
1211 		break;
1212 	case 20:
1213 		val_len |= NAU8825_I2S_DL_20;
1214 		break;
1215 	case 24:
1216 		val_len |= NAU8825_I2S_DL_24;
1217 		break;
1218 	case 32:
1219 		val_len |= NAU8825_I2S_DL_32;
1220 		break;
1221 	default:
1222 		return -EINVAL;
1223 	}
1224 
1225 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1226 		NAU8825_I2S_DL_MASK, val_len);
1227 
1228 	return 0;
1229 }
1230 
1231 static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
1232 {
1233 	struct snd_soc_codec *codec = codec_dai->codec;
1234 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1235 	unsigned int ctrl1_val = 0, ctrl2_val = 0;
1236 
1237 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1238 	case SND_SOC_DAIFMT_CBM_CFM:
1239 		ctrl2_val |= NAU8825_I2S_MS_MASTER;
1240 		break;
1241 	case SND_SOC_DAIFMT_CBS_CFS:
1242 		break;
1243 	default:
1244 		return -EINVAL;
1245 	}
1246 
1247 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1248 	case SND_SOC_DAIFMT_NB_NF:
1249 		break;
1250 	case SND_SOC_DAIFMT_IB_NF:
1251 		ctrl1_val |= NAU8825_I2S_BP_INV;
1252 		break;
1253 	default:
1254 		return -EINVAL;
1255 	}
1256 
1257 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1258 	case SND_SOC_DAIFMT_I2S:
1259 		ctrl1_val |= NAU8825_I2S_DF_I2S;
1260 		break;
1261 	case SND_SOC_DAIFMT_LEFT_J:
1262 		ctrl1_val |= NAU8825_I2S_DF_LEFT;
1263 		break;
1264 	case SND_SOC_DAIFMT_RIGHT_J:
1265 		ctrl1_val |= NAU8825_I2S_DF_RIGTH;
1266 		break;
1267 	case SND_SOC_DAIFMT_DSP_A:
1268 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1269 		break;
1270 	case SND_SOC_DAIFMT_DSP_B:
1271 		ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1272 		ctrl1_val |= NAU8825_I2S_PCMB_EN;
1273 		break;
1274 	default:
1275 		return -EINVAL;
1276 	}
1277 
1278 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1279 		NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK |
1280 		NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK,
1281 		ctrl1_val);
1282 	regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1283 		NAU8825_I2S_MS_MASK, ctrl2_val);
1284 
1285 	return 0;
1286 }
1287 
1288 static const struct snd_soc_dai_ops nau8825_dai_ops = {
1289 	.hw_params	= nau8825_hw_params,
1290 	.set_fmt	= nau8825_set_dai_fmt,
1291 };
1292 
1293 #define NAU8825_RATES	SNDRV_PCM_RATE_8000_192000
1294 #define NAU8825_FORMATS	(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
1295 			 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1296 
1297 static struct snd_soc_dai_driver nau8825_dai = {
1298 	.name = "nau8825-hifi",
1299 	.playback = {
1300 		.stream_name	 = "Playback",
1301 		.channels_min	 = 1,
1302 		.channels_max	 = 2,
1303 		.rates		 = NAU8825_RATES,
1304 		.formats	 = NAU8825_FORMATS,
1305 	},
1306 	.capture = {
1307 		.stream_name	 = "Capture",
1308 		.channels_min	 = 1,
1309 		.channels_max	 = 1,
1310 		.rates		 = NAU8825_RATES,
1311 		.formats	 = NAU8825_FORMATS,
1312 	},
1313 	.ops = &nau8825_dai_ops,
1314 };
1315 
1316 /**
1317  * nau8825_enable_jack_detect - Specify a jack for event reporting
1318  *
1319  * @component:  component to register the jack with
1320  * @jack: jack to use to report headset and button events on
1321  *
1322  * After this function has been called the headset insert/remove and button
1323  * events will be routed to the given jack.  Jack can be null to stop
1324  * reporting.
1325  */
1326 int nau8825_enable_jack_detect(struct snd_soc_codec *codec,
1327 				struct snd_soc_jack *jack)
1328 {
1329 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1330 	struct regmap *regmap = nau8825->regmap;
1331 
1332 	nau8825->jack = jack;
1333 
1334 	/* Ground HP Outputs[1:0], needed for headset auto detection
1335 	 * Enable Automatic Mic/Gnd switching reading on insert interrupt[6]
1336 	 */
1337 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1338 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
1339 		NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
1340 
1341 	return 0;
1342 }
1343 EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect);
1344 
1345 
1346 static bool nau8825_is_jack_inserted(struct regmap *regmap)
1347 {
1348 	bool active_high, is_high;
1349 	int status, jkdet;
1350 
1351 	regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet);
1352 	active_high = jkdet & NAU8825_JACK_POLARITY;
1353 	regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status);
1354 	is_high = status & NAU8825_GPIO2JD1;
1355 	/* return jack connection status according to jack insertion logic
1356 	 * active high or active low.
1357 	 */
1358 	return active_high == is_high;
1359 }
1360 
1361 static void nau8825_restart_jack_detection(struct regmap *regmap)
1362 {
1363 	/* this will restart the entire jack detection process including MIC/GND
1364 	 * switching and create interrupts. We have to go from 0 to 1 and back
1365 	 * to 0 to restart.
1366 	 */
1367 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1368 		NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART);
1369 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1370 		NAU8825_JACK_DET_RESTART, 0);
1371 }
1372 
1373 static void nau8825_int_status_clear_all(struct regmap *regmap)
1374 {
1375 	int active_irq, clear_irq, i;
1376 
1377 	/* Reset the intrruption status from rightmost bit if the corres-
1378 	 * ponding irq event occurs.
1379 	 */
1380 	regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq);
1381 	for (i = 0; i < NAU8825_REG_DATA_LEN; i++) {
1382 		clear_irq = (0x1 << i);
1383 		if (active_irq & clear_irq)
1384 			regmap_write(regmap,
1385 				NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1386 	}
1387 }
1388 
1389 static void nau8825_eject_jack(struct nau8825 *nau8825)
1390 {
1391 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1392 	struct regmap *regmap = nau8825->regmap;
1393 
1394 	/* Force to cancel the cross talk detection process */
1395 	nau8825_xtalk_cancel(nau8825);
1396 
1397 	snd_soc_dapm_disable_pin(dapm, "SAR");
1398 	snd_soc_dapm_disable_pin(dapm, "MICBIAS");
1399 	/* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
1400 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1401 		NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
1402 	/* ground HPL/HPR, MICGRND1/2 */
1403 	regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf);
1404 
1405 	snd_soc_dapm_sync(dapm);
1406 
1407 	/* Clear all interruption status */
1408 	nau8825_int_status_clear_all(regmap);
1409 
1410 	/* Enable the insertion interruption, disable the ejection inter-
1411 	 * ruption, and then bypass de-bounce circuit.
1412 	 */
1413 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
1414 		NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS,
1415 		NAU8825_IRQ_EJECT_DIS);
1416 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1417 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1418 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN,
1419 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1420 		NAU8825_IRQ_HEADSET_COMPLETE_EN);
1421 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1422 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
1423 
1424 	/* Disable ADC needed for interruptions at audo mode */
1425 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1426 		NAU8825_ENABLE_ADC, 0);
1427 
1428 	/* Close clock for jack type detection at manual mode */
1429 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1430 }
1431 
1432 /* Enable audo mode interruptions with internal clock. */
1433 static void nau8825_setup_auto_irq(struct nau8825 *nau8825)
1434 {
1435 	struct regmap *regmap = nau8825->regmap;
1436 
1437 	/* Enable headset jack type detection complete interruption and
1438 	 * jack ejection interruption.
1439 	 */
1440 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1441 		NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0);
1442 
1443 	/* Enable internal VCO needed for interruptions */
1444 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
1445 
1446 	/* Enable ADC needed for interruptions */
1447 	regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1448 		NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
1449 
1450 	/* Chip needs one FSCLK cycle in order to generate interruptions,
1451 	 * as we cannot guarantee one will be provided by the system. Turning
1452 	 * master mode on then off enables us to generate that FSCLK cycle
1453 	 * with a minimum of contention on the clock bus.
1454 	 */
1455 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1456 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER);
1457 	regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1458 		NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE);
1459 
1460 	/* Not bypass de-bounce circuit */
1461 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1462 		NAU8825_JACK_DET_DB_BYPASS, 0);
1463 
1464 	/* Unmask all interruptions */
1465 	regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0);
1466 
1467 	/* Restart the jack detection process at auto mode */
1468 	nau8825_restart_jack_detection(regmap);
1469 }
1470 
1471 static int nau8825_button_decode(int value)
1472 {
1473 	int buttons = 0;
1474 
1475 	/* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */
1476 	if (value & BIT(0))
1477 		buttons |= SND_JACK_BTN_0;
1478 	if (value & BIT(1))
1479 		buttons |= SND_JACK_BTN_1;
1480 	if (value & BIT(2))
1481 		buttons |= SND_JACK_BTN_2;
1482 	if (value & BIT(3))
1483 		buttons |= SND_JACK_BTN_3;
1484 	if (value & BIT(4))
1485 		buttons |= SND_JACK_BTN_4;
1486 	if (value & BIT(5))
1487 		buttons |= SND_JACK_BTN_5;
1488 
1489 	return buttons;
1490 }
1491 
1492 static int nau8825_jack_insert(struct nau8825 *nau8825)
1493 {
1494 	struct regmap *regmap = nau8825->regmap;
1495 	struct snd_soc_dapm_context *dapm = nau8825->dapm;
1496 	int jack_status_reg, mic_detected;
1497 	int type = 0;
1498 
1499 	regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg);
1500 	mic_detected = (jack_status_reg >> 10) & 3;
1501 	/* The JKSLV and JKR2 all detected in high impedance headset */
1502 	if (mic_detected == 0x3)
1503 		nau8825->high_imped = true;
1504 	else
1505 		nau8825->high_imped = false;
1506 
1507 	switch (mic_detected) {
1508 	case 0:
1509 		/* no mic */
1510 		type = SND_JACK_HEADPHONE;
1511 		break;
1512 	case 1:
1513 		dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n");
1514 		type = SND_JACK_HEADSET;
1515 
1516 		/* Unground MICGND1 */
1517 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1518 			1 << 2);
1519 		/* Attach 2kOhm Resistor from MICBIAS to MICGND1 */
1520 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1521 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1522 			NAU8825_MICBIAS_JKR2);
1523 		/* Attach SARADC to MICGND1 */
1524 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1525 			NAU8825_SAR_INPUT_MASK,
1526 			NAU8825_SAR_INPUT_JKR2);
1527 
1528 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1529 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1530 		snd_soc_dapm_sync(dapm);
1531 		break;
1532 	case 2:
1533 	case 3:
1534 		dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n");
1535 		type = SND_JACK_HEADSET;
1536 
1537 		/* Unground MICGND2 */
1538 		regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1539 			2 << 2);
1540 		/* Attach 2kOhm Resistor from MICBIAS to MICGND2 */
1541 		regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1542 			NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1543 			NAU8825_MICBIAS_JKSLV);
1544 		/* Attach SARADC to MICGND2 */
1545 		regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1546 			NAU8825_SAR_INPUT_MASK,
1547 			NAU8825_SAR_INPUT_JKSLV);
1548 
1549 		snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1550 		snd_soc_dapm_force_enable_pin(dapm, "SAR");
1551 		snd_soc_dapm_sync(dapm);
1552 		break;
1553 	}
1554 
1555 	/* Leaving HPOL/R grounded after jack insert by default. They will be
1556 	 * ungrounded as part of the widget power up sequence at the beginning
1557 	 * of playback to reduce pop.
1558 	 */
1559 	return type;
1560 }
1561 
1562 #define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \
1563 		SND_JACK_BTN_2 | SND_JACK_BTN_3)
1564 
1565 static irqreturn_t nau8825_interrupt(int irq, void *data)
1566 {
1567 	struct nau8825 *nau8825 = (struct nau8825 *)data;
1568 	struct regmap *regmap = nau8825->regmap;
1569 	int active_irq, clear_irq = 0, event = 0, event_mask = 0;
1570 
1571 	if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) {
1572 		dev_err(nau8825->dev, "failed to read irq status\n");
1573 		return IRQ_NONE;
1574 	}
1575 
1576 	if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) ==
1577 		NAU8825_JACK_EJECTION_DETECTED) {
1578 
1579 		nau8825_eject_jack(nau8825);
1580 		event_mask |= SND_JACK_HEADSET;
1581 		clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK;
1582 	} else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) {
1583 		int key_status;
1584 
1585 		regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS,
1586 			&key_status);
1587 
1588 		/* upper 8 bits of the register are for short pressed keys,
1589 		 * lower 8 bits - for long pressed buttons
1590 		 */
1591 		nau8825->button_pressed = nau8825_button_decode(
1592 			key_status >> 8);
1593 
1594 		event |= nau8825->button_pressed;
1595 		event_mask |= NAU8825_BUTTONS;
1596 		clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ;
1597 	} else if (active_irq & NAU8825_KEY_RELEASE_IRQ) {
1598 		event_mask = NAU8825_BUTTONS;
1599 		clear_irq = NAU8825_KEY_RELEASE_IRQ;
1600 	} else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) {
1601 		if (nau8825_is_jack_inserted(regmap)) {
1602 			event |= nau8825_jack_insert(nau8825);
1603 			if (!nau8825->high_imped) {
1604 				/* Apply the cross talk suppression in the
1605 				 * headset without high impedance.
1606 				 */
1607 				if (!nau8825->xtalk_protect) {
1608 					/* Raise protection for cross talk de-
1609 					 * tection if no protection before.
1610 					 * The driver has to cancel the pro-
1611 					 * cess and restore changes if process
1612 					 * is ongoing when ejection.
1613 					 */
1614 					nau8825->xtalk_protect = true;
1615 					nau8825_sema_acquire(nau8825, 0);
1616 				}
1617 				/* Startup cross talk detection process */
1618 				nau8825->xtalk_state = NAU8825_XTALK_PREPARE;
1619 				schedule_work(&nau8825->xtalk_work);
1620 			} else {
1621 				/* The cross talk suppression shouldn't apply
1622 				 * in the headset with high impedance. Thus,
1623 				 * relieve the protection raised before.
1624 				 */
1625 				if (nau8825->xtalk_protect) {
1626 					nau8825_sema_release(nau8825);
1627 					nau8825->xtalk_protect = false;
1628 				}
1629 			}
1630 		} else {
1631 			dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n");
1632 			nau8825_eject_jack(nau8825);
1633 		}
1634 
1635 		event_mask |= SND_JACK_HEADSET;
1636 		clear_irq = NAU8825_HEADSET_COMPLETION_IRQ;
1637 		/* Record the interruption report event for driver to report
1638 		 * the event later. The jack report will delay until cross
1639 		 * talk detection process is done.
1640 		 */
1641 		if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) {
1642 			nau8825->xtalk_event = event;
1643 			nau8825->xtalk_event_mask = event_mask;
1644 		}
1645 	} else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) {
1646 		schedule_work(&nau8825->xtalk_work);
1647 		clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ;
1648 	} else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) ==
1649 		NAU8825_JACK_INSERTION_DETECTED) {
1650 		/* One more step to check GPIO status directly. Thus, the
1651 		 * driver can confirm the real insertion interruption because
1652 		 * the intrruption at manual mode has bypassed debounce
1653 		 * circuit which can get rid of unstable status.
1654 		 */
1655 		if (nau8825_is_jack_inserted(regmap)) {
1656 			/* Turn off insertion interruption at manual mode */
1657 			regmap_update_bits(regmap,
1658 				NAU8825_REG_INTERRUPT_DIS_CTRL,
1659 				NAU8825_IRQ_INSERT_DIS,
1660 				NAU8825_IRQ_INSERT_DIS);
1661 			regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1662 				NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN);
1663 			/* Enable interruption for jack type detection at audo
1664 			 * mode which can detect microphone and jack type.
1665 			 */
1666 			nau8825_setup_auto_irq(nau8825);
1667 		}
1668 	}
1669 
1670 	if (!clear_irq)
1671 		clear_irq = active_irq;
1672 	/* clears the rightmost interruption */
1673 	regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1674 
1675 	/* Delay jack report until cross talk detection is done. It can avoid
1676 	 * application to do playback preparation when cross talk detection
1677 	 * process is still working. Otherwise, the resource like clock and
1678 	 * power will be issued by them at the same time and conflict happens.
1679 	 */
1680 	if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE)
1681 		snd_soc_jack_report(nau8825->jack, event, event_mask);
1682 
1683 	return IRQ_HANDLED;
1684 }
1685 
1686 static void nau8825_setup_buttons(struct nau8825 *nau8825)
1687 {
1688 	struct regmap *regmap = nau8825->regmap;
1689 
1690 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1691 		NAU8825_SAR_TRACKING_GAIN_MASK,
1692 		nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT);
1693 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1694 		NAU8825_SAR_COMPARE_TIME_MASK,
1695 		nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT);
1696 	regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1697 		NAU8825_SAR_SAMPLING_TIME_MASK,
1698 		nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT);
1699 
1700 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1701 		NAU8825_KEYDET_LEVELS_NR_MASK,
1702 		(nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT);
1703 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1704 		NAU8825_KEYDET_HYSTERESIS_MASK,
1705 		nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT);
1706 	regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1707 		NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK,
1708 		nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT);
1709 
1710 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1,
1711 		(nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]);
1712 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2,
1713 		(nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]);
1714 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3,
1715 		(nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]);
1716 	regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4,
1717 		(nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]);
1718 
1719 	/* Enable short press and release interruptions */
1720 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1721 		NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN,
1722 		0);
1723 }
1724 
1725 static void nau8825_init_regs(struct nau8825 *nau8825)
1726 {
1727 	struct regmap *regmap = nau8825->regmap;
1728 
1729 	/* Latch IIC LSB value */
1730 	regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001);
1731 	/* Enable Bias/Vmid */
1732 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1733 		NAU8825_BIAS_VMID, NAU8825_BIAS_VMID);
1734 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
1735 		NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN);
1736 
1737 	/* VMID Tieoff */
1738 	regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ,
1739 		NAU8825_BIAS_VMID_SEL_MASK,
1740 		nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT);
1741 	/* Disable Boost Driver, Automatic Short circuit protection enable */
1742 	regmap_update_bits(regmap, NAU8825_REG_BOOST,
1743 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1744 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN,
1745 		NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1746 		NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN);
1747 
1748 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1749 		NAU8825_JKDET_OUTPUT_EN,
1750 		nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN);
1751 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1752 		NAU8825_JKDET_PULL_EN,
1753 		nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN);
1754 	regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1755 		NAU8825_JKDET_PULL_UP,
1756 		nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0);
1757 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1758 		NAU8825_JACK_POLARITY,
1759 		/* jkdet_polarity - 1  is for active-low */
1760 		nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY);
1761 
1762 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1763 		NAU8825_JACK_INSERT_DEBOUNCE_MASK,
1764 		nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT);
1765 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1766 		NAU8825_JACK_EJECT_DEBOUNCE_MASK,
1767 		nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT);
1768 
1769 	/* Mask unneeded IRQs: 1 - disable, 0 - enable */
1770 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff);
1771 
1772 	regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1773 		NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage);
1774 
1775 	if (nau8825->sar_threshold_num)
1776 		nau8825_setup_buttons(nau8825);
1777 
1778 	/* Default oversampling/decimations settings are unusable
1779 	 * (audible hiss). Set it to something better.
1780 	 */
1781 	regmap_update_bits(regmap, NAU8825_REG_ADC_RATE,
1782 		NAU8825_ADC_SYNC_DOWN_MASK, NAU8825_ADC_SYNC_DOWN_128);
1783 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1784 		NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_128);
1785 	/* Disable DACR/L power */
1786 	regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP,
1787 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
1788 		NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
1789 	/* Enable TESTDAC. This sets the analog DAC inputs to a '0' input
1790 	 * signal to avoid any glitches due to power up transients in both
1791 	 * the analog and digital DAC circuit.
1792 	 */
1793 	regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1794 		NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
1795 	/* CICCLP off */
1796 	regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1797 		NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF);
1798 
1799 	/* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */
1800 	regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2,
1801 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1802 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB,
1803 		NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1804 		NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB);
1805 	/* Class G timer 64ms */
1806 	regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL,
1807 		NAU8825_CLASSG_TIMER_MASK,
1808 		0x20 << NAU8825_CLASSG_TIMER_SFT);
1809 	/* DAC clock delay 2ns, VREF */
1810 	regmap_update_bits(regmap, NAU8825_REG_RDAC,
1811 		NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK,
1812 		(0x2 << NAU8825_RDAC_CLK_DELAY_SFT) |
1813 		(0x3 << NAU8825_RDAC_VREF_SFT));
1814 	/* Config L/R channel */
1815 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
1816 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L);
1817 	regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
1818 		NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R);
1819 }
1820 
1821 static const struct regmap_config nau8825_regmap_config = {
1822 	.val_bits = NAU8825_REG_DATA_LEN,
1823 	.reg_bits = NAU8825_REG_ADDR_LEN,
1824 
1825 	.max_register = NAU8825_REG_MAX,
1826 	.readable_reg = nau8825_readable_reg,
1827 	.writeable_reg = nau8825_writeable_reg,
1828 	.volatile_reg = nau8825_volatile_reg,
1829 
1830 	.cache_type = REGCACHE_RBTREE,
1831 	.reg_defaults = nau8825_reg_defaults,
1832 	.num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults),
1833 };
1834 
1835 static int nau8825_codec_probe(struct snd_soc_codec *codec)
1836 {
1837 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1838 	struct snd_soc_dapm_context *dapm = snd_soc_codec_get_dapm(codec);
1839 
1840 	nau8825->dapm = dapm;
1841 
1842 	return 0;
1843 }
1844 
1845 static int nau8825_codec_remove(struct snd_soc_codec *codec)
1846 {
1847 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1848 
1849 	/* Cancel and reset cross tak suppresstion detection funciton */
1850 	nau8825_xtalk_cancel(nau8825);
1851 
1852 	return 0;
1853 }
1854 
1855 /**
1856  * nau8825_calc_fll_param - Calculate FLL parameters.
1857  * @fll_in: external clock provided to codec.
1858  * @fs: sampling rate.
1859  * @fll_param: Pointer to structure of FLL parameters.
1860  *
1861  * Calculate FLL parameters to configure codec.
1862  *
1863  * Returns 0 for success or negative error code.
1864  */
1865 static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs,
1866 		struct nau8825_fll *fll_param)
1867 {
1868 	u64 fvco, fvco_max;
1869 	unsigned int fref, i, fvco_sel;
1870 
1871 	/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
1872 	 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
1873 	 * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK
1874 	 */
1875 	for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
1876 		fref = fll_in / fll_pre_scalar[i].param;
1877 		if (fref <= NAU_FREF_MAX)
1878 			break;
1879 	}
1880 	if (i == ARRAY_SIZE(fll_pre_scalar))
1881 		return -EINVAL;
1882 	fll_param->clk_ref_div = fll_pre_scalar[i].val;
1883 
1884 	/* Choose the FLL ratio based on FREF */
1885 	for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
1886 		if (fref >= fll_ratio[i].param)
1887 			break;
1888 	}
1889 	if (i == ARRAY_SIZE(fll_ratio))
1890 		return -EINVAL;
1891 	fll_param->ratio = fll_ratio[i].val;
1892 
1893 	/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
1894 	 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be
1895 	 * guaranteed across the full range of operation.
1896 	 * FDCO = freq_out * 2 * mclk_src_scaling
1897 	 */
1898 	fvco_max = 0;
1899 	fvco_sel = ARRAY_SIZE(mclk_src_scaling);
1900 	for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
1901 		fvco = 256 * fs * 2 * mclk_src_scaling[i].param;
1902 		if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
1903 			fvco_max < fvco) {
1904 			fvco_max = fvco;
1905 			fvco_sel = i;
1906 		}
1907 	}
1908 	if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
1909 		return -EINVAL;
1910 	fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
1911 
1912 	/* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
1913 	 * input based on FDCO, FREF and FLL ratio.
1914 	 */
1915 	fvco = div_u64(fvco << 16, fref * fll_param->ratio);
1916 	fll_param->fll_int = (fvco >> 16) & 0x3FF;
1917 	fll_param->fll_frac = fvco & 0xFFFF;
1918 	return 0;
1919 }
1920 
1921 static void nau8825_fll_apply(struct nau8825 *nau8825,
1922 		struct nau8825_fll *fll_param)
1923 {
1924 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1925 		NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK,
1926 		NAU8825_CLK_SRC_MCLK | fll_param->mclk_src);
1927 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
1928 			NAU8825_FLL_RATIO_MASK, fll_param->ratio);
1929 	/* FLL 16-bit fractional input */
1930 	regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac);
1931 	/* FLL 10-bit integer input */
1932 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3,
1933 			NAU8825_FLL_INTEGER_MASK, fll_param->fll_int);
1934 	/* FLL pre-scaler */
1935 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4,
1936 			NAU8825_FLL_REF_DIV_MASK, fll_param->clk_ref_div);
1937 	/* select divided VCO input */
1938 	regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
1939 		NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF);
1940 	/* Disable free-running mode */
1941 	regmap_update_bits(nau8825->regmap,
1942 		NAU8825_REG_FLL6, NAU8825_DCO_EN, 0);
1943 	if (fll_param->fll_frac) {
1944 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
1945 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
1946 			NAU8825_FLL_FTR_SW_MASK,
1947 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
1948 			NAU8825_FLL_FTR_SW_FILTER);
1949 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
1950 			NAU8825_SDM_EN, NAU8825_SDM_EN);
1951 	} else {
1952 		regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
1953 			NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
1954 			NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU);
1955 		regmap_update_bits(nau8825->regmap,
1956 			NAU8825_REG_FLL6, NAU8825_SDM_EN, 0);
1957 	}
1958 }
1959 
1960 /* freq_out must be 256*Fs in order to achieve the best performance */
1961 static int nau8825_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
1962 		unsigned int freq_in, unsigned int freq_out)
1963 {
1964 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1965 	struct nau8825_fll fll_param;
1966 	int ret, fs;
1967 
1968 	fs = freq_out / 256;
1969 	ret = nau8825_calc_fll_param(freq_in, fs, &fll_param);
1970 	if (ret < 0) {
1971 		dev_err(codec->dev, "Unsupported input clock %d\n", freq_in);
1972 		return ret;
1973 	}
1974 	dev_dbg(codec->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
1975 		fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
1976 		fll_param.fll_int, fll_param.clk_ref_div);
1977 
1978 	nau8825_fll_apply(nau8825, &fll_param);
1979 	mdelay(2);
1980 	regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1981 			NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
1982 	return 0;
1983 }
1984 
1985 static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq)
1986 {
1987 	int ret = 0;
1988 
1989 	nau8825->mclk = devm_clk_get(nau8825->dev, "mclk");
1990 	if (IS_ERR(nau8825->mclk)) {
1991 		dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally");
1992 		return 0;
1993 	}
1994 
1995 	if (!nau8825->mclk_freq) {
1996 		ret = clk_prepare_enable(nau8825->mclk);
1997 		if (ret) {
1998 			dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
1999 			return ret;
2000 		}
2001 	}
2002 
2003 	if (nau8825->mclk_freq != freq) {
2004 		freq = clk_round_rate(nau8825->mclk, freq);
2005 		ret = clk_set_rate(nau8825->mclk, freq);
2006 		if (ret) {
2007 			dev_err(nau8825->dev, "Unable to set mclk rate\n");
2008 			return ret;
2009 		}
2010 		nau8825->mclk_freq = freq;
2011 	}
2012 
2013 	return 0;
2014 }
2015 
2016 static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap)
2017 {
2018 	regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2019 		NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK);
2020 	regmap_update_bits(regmap, NAU8825_REG_FLL6,
2021 		NAU8825_DCO_EN, 0);
2022 }
2023 
2024 static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id,
2025 	unsigned int freq)
2026 {
2027 	struct regmap *regmap = nau8825->regmap;
2028 	int ret;
2029 
2030 	switch (clk_id) {
2031 	case NAU8825_CLK_DIS:
2032 		/* Clock provided externally and disable internal VCO clock */
2033 		nau8825_configure_mclk_as_sysclk(regmap);
2034 		if (nau8825->mclk_freq) {
2035 			clk_disable_unprepare(nau8825->mclk);
2036 			nau8825->mclk_freq = 0;
2037 		}
2038 
2039 		break;
2040 	case NAU8825_CLK_MCLK:
2041 		/* Acquire the semaphone to synchronize the playback and
2042 		 * interrupt handler. In order to avoid the playback inter-
2043 		 * fered by cross talk process, the driver make the playback
2044 		 * preparation halted until cross talk process finish.
2045 		 */
2046 		nau8825_sema_acquire(nau8825, 2 * HZ);
2047 		nau8825_configure_mclk_as_sysclk(regmap);
2048 		/* MCLK not changed by clock tree */
2049 		regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2050 			NAU8825_CLK_MCLK_SRC_MASK, 0);
2051 		/* Release the semaphone. */
2052 		nau8825_sema_release(nau8825);
2053 
2054 		ret = nau8825_mclk_prepare(nau8825, freq);
2055 		if (ret)
2056 			return ret;
2057 
2058 		break;
2059 	case NAU8825_CLK_INTERNAL:
2060 		if (nau8825_is_jack_inserted(nau8825->regmap)) {
2061 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2062 				NAU8825_DCO_EN, NAU8825_DCO_EN);
2063 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2064 				NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2065 			/* Decrease the VCO frequency for power saving */
2066 			regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2067 				NAU8825_CLK_MCLK_SRC_MASK, 0xf);
2068 			regmap_update_bits(regmap, NAU8825_REG_FLL1,
2069 				NAU8825_FLL_RATIO_MASK, 0x10);
2070 			regmap_update_bits(regmap, NAU8825_REG_FLL6,
2071 				NAU8825_SDM_EN, NAU8825_SDM_EN);
2072 		} else {
2073 			/* The clock turns off intentionally for power saving
2074 			 * when no headset connected.
2075 			 */
2076 			nau8825_configure_mclk_as_sysclk(regmap);
2077 			dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n");
2078 		}
2079 		if (nau8825->mclk_freq) {
2080 			clk_disable_unprepare(nau8825->mclk);
2081 			nau8825->mclk_freq = 0;
2082 		}
2083 
2084 		break;
2085 	case NAU8825_CLK_FLL_MCLK:
2086 		/* Acquire the semaphone to synchronize the playback and
2087 		 * interrupt handler. In order to avoid the playback inter-
2088 		 * fered by cross talk process, the driver make the playback
2089 		 * preparation halted until cross talk process finish.
2090 		 */
2091 		nau8825_sema_acquire(nau8825, 2 * HZ);
2092 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2093 			NAU8825_FLL_CLK_SRC_MASK, NAU8825_FLL_CLK_SRC_MCLK);
2094 		/* Release the semaphone. */
2095 		nau8825_sema_release(nau8825);
2096 
2097 		ret = nau8825_mclk_prepare(nau8825, freq);
2098 		if (ret)
2099 			return ret;
2100 
2101 		break;
2102 	case NAU8825_CLK_FLL_BLK:
2103 		/* Acquire the semaphone to synchronize the playback and
2104 		 * interrupt handler. In order to avoid the playback inter-
2105 		 * fered by cross talk process, the driver make the playback
2106 		 * preparation halted until cross talk process finish.
2107 		 */
2108 		nau8825_sema_acquire(nau8825, 2 * HZ);
2109 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2110 			NAU8825_FLL_CLK_SRC_MASK, NAU8825_FLL_CLK_SRC_BLK);
2111 		/* Release the semaphone. */
2112 		nau8825_sema_release(nau8825);
2113 
2114 		if (nau8825->mclk_freq) {
2115 			clk_disable_unprepare(nau8825->mclk);
2116 			nau8825->mclk_freq = 0;
2117 		}
2118 
2119 		break;
2120 	case NAU8825_CLK_FLL_FS:
2121 		/* Acquire the semaphone to synchronize the playback and
2122 		 * interrupt handler. In order to avoid the playback inter-
2123 		 * fered by cross talk process, the driver make the playback
2124 		 * preparation halted until cross talk process finish.
2125 		 */
2126 		nau8825_sema_acquire(nau8825, 2 * HZ);
2127 		regmap_update_bits(regmap, NAU8825_REG_FLL3,
2128 			NAU8825_FLL_CLK_SRC_MASK, NAU8825_FLL_CLK_SRC_FS);
2129 		/* Release the semaphone. */
2130 		nau8825_sema_release(nau8825);
2131 
2132 		if (nau8825->mclk_freq) {
2133 			clk_disable_unprepare(nau8825->mclk);
2134 			nau8825->mclk_freq = 0;
2135 		}
2136 
2137 		break;
2138 	default:
2139 		dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id);
2140 		return -EINVAL;
2141 	}
2142 
2143 	dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq,
2144 		clk_id);
2145 	return 0;
2146 }
2147 
2148 static int nau8825_set_sysclk(struct snd_soc_codec *codec, int clk_id,
2149 	int source, unsigned int freq, int dir)
2150 {
2151 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2152 
2153 	return nau8825_configure_sysclk(nau8825, clk_id, freq);
2154 }
2155 
2156 static int nau8825_resume_setup(struct nau8825 *nau8825)
2157 {
2158 	struct regmap *regmap = nau8825->regmap;
2159 
2160 	/* Close clock when jack type detection at manual mode */
2161 	nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
2162 
2163 	/* Clear all interruption status */
2164 	nau8825_int_status_clear_all(regmap);
2165 
2166 	/* Enable both insertion and ejection interruptions, and then
2167 	 * bypass de-bounce circuit.
2168 	 */
2169 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2170 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN |
2171 		NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN,
2172 		NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN);
2173 	regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2174 		NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
2175 	regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
2176 		NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0);
2177 
2178 	return 0;
2179 }
2180 
2181 static int nau8825_set_bias_level(struct snd_soc_codec *codec,
2182 				   enum snd_soc_bias_level level)
2183 {
2184 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2185 	int ret;
2186 
2187 	switch (level) {
2188 	case SND_SOC_BIAS_ON:
2189 		break;
2190 
2191 	case SND_SOC_BIAS_PREPARE:
2192 		break;
2193 
2194 	case SND_SOC_BIAS_STANDBY:
2195 		if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) {
2196 			if (nau8825->mclk_freq) {
2197 				ret = clk_prepare_enable(nau8825->mclk);
2198 				if (ret) {
2199 					dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2200 					return ret;
2201 				}
2202 			}
2203 			/* Setup codec configuration after resume */
2204 			nau8825_resume_setup(nau8825);
2205 		}
2206 		break;
2207 
2208 	case SND_SOC_BIAS_OFF:
2209 		/* Cancel and reset cross talk detection funciton */
2210 		nau8825_xtalk_cancel(nau8825);
2211 		/* Turn off all interruptions before system shutdown. Keep the
2212 		 * interruption quiet before resume setup completes.
2213 		 */
2214 		regmap_write(nau8825->regmap,
2215 			NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff);
2216 		/* Disable ADC needed for interruptions at audo mode */
2217 		regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
2218 			NAU8825_ENABLE_ADC, 0);
2219 		if (nau8825->mclk_freq)
2220 			clk_disable_unprepare(nau8825->mclk);
2221 		break;
2222 	}
2223 	return 0;
2224 }
2225 
2226 static int __maybe_unused nau8825_suspend(struct snd_soc_codec *codec)
2227 {
2228 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2229 
2230 	disable_irq(nau8825->irq);
2231 	snd_soc_codec_force_bias_level(codec, SND_SOC_BIAS_OFF);
2232 	regcache_cache_only(nau8825->regmap, true);
2233 	regcache_mark_dirty(nau8825->regmap);
2234 
2235 	return 0;
2236 }
2237 
2238 static int __maybe_unused nau8825_resume(struct snd_soc_codec *codec)
2239 {
2240 	struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2241 
2242 	regcache_cache_only(nau8825->regmap, false);
2243 	regcache_sync(nau8825->regmap);
2244 	if (nau8825_is_jack_inserted(nau8825->regmap)) {
2245 		/* If the jack is inserted, we need to check whether the play-
2246 		 * back is active before suspend. If active, the driver has to
2247 		 * raise the protection for cross talk function to avoid the
2248 		 * playback recovers before cross talk process finish. Other-
2249 		 * wise, the playback will be interfered by cross talk func-
2250 		 * tion. It is better to apply hardware related parameters
2251 		 * before starting playback or record.
2252 		 */
2253 		if (nau8825_dai_is_active(nau8825)) {
2254 			nau8825->xtalk_protect = true;
2255 			nau8825_sema_acquire(nau8825, 0);
2256 		}
2257 	}
2258 	enable_irq(nau8825->irq);
2259 
2260 	return 0;
2261 }
2262 
2263 static struct snd_soc_codec_driver nau8825_codec_driver = {
2264 	.probe = nau8825_codec_probe,
2265 	.remove = nau8825_codec_remove,
2266 	.set_sysclk = nau8825_set_sysclk,
2267 	.set_pll = nau8825_set_pll,
2268 	.set_bias_level = nau8825_set_bias_level,
2269 	.suspend_bias_off = true,
2270 	.suspend = nau8825_suspend,
2271 	.resume = nau8825_resume,
2272 
2273 	.controls = nau8825_controls,
2274 	.num_controls = ARRAY_SIZE(nau8825_controls),
2275 	.dapm_widgets = nau8825_dapm_widgets,
2276 	.num_dapm_widgets = ARRAY_SIZE(nau8825_dapm_widgets),
2277 	.dapm_routes = nau8825_dapm_routes,
2278 	.num_dapm_routes = ARRAY_SIZE(nau8825_dapm_routes),
2279 };
2280 
2281 static void nau8825_reset_chip(struct regmap *regmap)
2282 {
2283 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2284 	regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2285 }
2286 
2287 static void nau8825_print_device_properties(struct nau8825 *nau8825)
2288 {
2289 	int i;
2290 	struct device *dev = nau8825->dev;
2291 
2292 	dev_dbg(dev, "jkdet-enable:         %d\n", nau8825->jkdet_enable);
2293 	dev_dbg(dev, "jkdet-pull-enable:    %d\n", nau8825->jkdet_pull_enable);
2294 	dev_dbg(dev, "jkdet-pull-up:        %d\n", nau8825->jkdet_pull_up);
2295 	dev_dbg(dev, "jkdet-polarity:       %d\n", nau8825->jkdet_polarity);
2296 	dev_dbg(dev, "micbias-voltage:      %d\n", nau8825->micbias_voltage);
2297 	dev_dbg(dev, "vref-impedance:       %d\n", nau8825->vref_impedance);
2298 
2299 	dev_dbg(dev, "sar-threshold-num:    %d\n", nau8825->sar_threshold_num);
2300 	for (i = 0; i < nau8825->sar_threshold_num; i++)
2301 		dev_dbg(dev, "sar-threshold[%d]=%d\n", i,
2302 				nau8825->sar_threshold[i]);
2303 
2304 	dev_dbg(dev, "sar-hysteresis:       %d\n", nau8825->sar_hysteresis);
2305 	dev_dbg(dev, "sar-voltage:          %d\n", nau8825->sar_voltage);
2306 	dev_dbg(dev, "sar-compare-time:     %d\n", nau8825->sar_compare_time);
2307 	dev_dbg(dev, "sar-sampling-time:    %d\n", nau8825->sar_sampling_time);
2308 	dev_dbg(dev, "short-key-debounce:   %d\n", nau8825->key_debounce);
2309 	dev_dbg(dev, "jack-insert-debounce: %d\n",
2310 			nau8825->jack_insert_debounce);
2311 	dev_dbg(dev, "jack-eject-debounce:  %d\n",
2312 			nau8825->jack_eject_debounce);
2313 }
2314 
2315 static int nau8825_read_device_properties(struct device *dev,
2316 	struct nau8825 *nau8825) {
2317 
2318 	nau8825->jkdet_enable = device_property_read_bool(dev,
2319 		"nuvoton,jkdet-enable");
2320 	nau8825->jkdet_pull_enable = device_property_read_bool(dev,
2321 		"nuvoton,jkdet-pull-enable");
2322 	nau8825->jkdet_pull_up = device_property_read_bool(dev,
2323 		"nuvoton,jkdet-pull-up");
2324 	device_property_read_u32(dev, "nuvoton,jkdet-polarity",
2325 		&nau8825->jkdet_polarity);
2326 	device_property_read_u32(dev, "nuvoton,micbias-voltage",
2327 		&nau8825->micbias_voltage);
2328 	device_property_read_u32(dev, "nuvoton,vref-impedance",
2329 		&nau8825->vref_impedance);
2330 	device_property_read_u32(dev, "nuvoton,sar-threshold-num",
2331 		&nau8825->sar_threshold_num);
2332 	device_property_read_u32_array(dev, "nuvoton,sar-threshold",
2333 		nau8825->sar_threshold, nau8825->sar_threshold_num);
2334 	device_property_read_u32(dev, "nuvoton,sar-hysteresis",
2335 		&nau8825->sar_hysteresis);
2336 	device_property_read_u32(dev, "nuvoton,sar-voltage",
2337 		&nau8825->sar_voltage);
2338 	device_property_read_u32(dev, "nuvoton,sar-compare-time",
2339 		&nau8825->sar_compare_time);
2340 	device_property_read_u32(dev, "nuvoton,sar-sampling-time",
2341 		&nau8825->sar_sampling_time);
2342 	device_property_read_u32(dev, "nuvoton,short-key-debounce",
2343 		&nau8825->key_debounce);
2344 	device_property_read_u32(dev, "nuvoton,jack-insert-debounce",
2345 		&nau8825->jack_insert_debounce);
2346 	device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
2347 		&nau8825->jack_eject_debounce);
2348 
2349 	nau8825->mclk = devm_clk_get(dev, "mclk");
2350 	if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) {
2351 		return -EPROBE_DEFER;
2352 	} else if (PTR_ERR(nau8825->mclk) == -ENOENT) {
2353 		/* The MCLK is managed externally or not used at all */
2354 		nau8825->mclk = NULL;
2355 		dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally");
2356 	} else if (IS_ERR(nau8825->mclk)) {
2357 		return -EINVAL;
2358 	}
2359 
2360 	return 0;
2361 }
2362 
2363 static int nau8825_setup_irq(struct nau8825 *nau8825)
2364 {
2365 	int ret;
2366 
2367 	ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL,
2368 		nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2369 		"nau8825", nau8825);
2370 
2371 	if (ret) {
2372 		dev_err(nau8825->dev, "Cannot request irq %d (%d)\n",
2373 			nau8825->irq, ret);
2374 		return ret;
2375 	}
2376 
2377 	return 0;
2378 }
2379 
2380 static int nau8825_i2c_probe(struct i2c_client *i2c,
2381 	const struct i2c_device_id *id)
2382 {
2383 	struct device *dev = &i2c->dev;
2384 	struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev);
2385 	int ret, value;
2386 
2387 	if (!nau8825) {
2388 		nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL);
2389 		if (!nau8825)
2390 			return -ENOMEM;
2391 		ret = nau8825_read_device_properties(dev, nau8825);
2392 		if (ret)
2393 			return ret;
2394 	}
2395 
2396 	i2c_set_clientdata(i2c, nau8825);
2397 
2398 	nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config);
2399 	if (IS_ERR(nau8825->regmap))
2400 		return PTR_ERR(nau8825->regmap);
2401 	nau8825->dev = dev;
2402 	nau8825->irq = i2c->irq;
2403 	/* Initiate parameters, semaphone and work queue which are needed in
2404 	 * cross talk suppression measurment function.
2405 	 */
2406 	nau8825->xtalk_state = NAU8825_XTALK_DONE;
2407 	nau8825->xtalk_protect = false;
2408 	sema_init(&nau8825->xtalk_sem, 1);
2409 	INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work);
2410 
2411 	nau8825_print_device_properties(nau8825);
2412 
2413 	nau8825_reset_chip(nau8825->regmap);
2414 	ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value);
2415 	if (ret < 0) {
2416 		dev_err(dev, "Failed to read device id from the NAU8825: %d\n",
2417 			ret);
2418 		return ret;
2419 	}
2420 	if ((value & NAU8825_SOFTWARE_ID_MASK) !=
2421 			NAU8825_SOFTWARE_ID_NAU8825) {
2422 		dev_err(dev, "Not a NAU8825 chip\n");
2423 		return -ENODEV;
2424 	}
2425 
2426 	nau8825_init_regs(nau8825);
2427 
2428 	if (i2c->irq)
2429 		nau8825_setup_irq(nau8825);
2430 
2431 	return snd_soc_register_codec(&i2c->dev, &nau8825_codec_driver,
2432 		&nau8825_dai, 1);
2433 }
2434 
2435 static int nau8825_i2c_remove(struct i2c_client *client)
2436 {
2437 	snd_soc_unregister_codec(&client->dev);
2438 	return 0;
2439 }
2440 
2441 static const struct i2c_device_id nau8825_i2c_ids[] = {
2442 	{ "nau8825", 0 },
2443 	{ }
2444 };
2445 MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids);
2446 
2447 #ifdef CONFIG_OF
2448 static const struct of_device_id nau8825_of_ids[] = {
2449 	{ .compatible = "nuvoton,nau8825", },
2450 	{}
2451 };
2452 MODULE_DEVICE_TABLE(of, nau8825_of_ids);
2453 #endif
2454 
2455 #ifdef CONFIG_ACPI
2456 static const struct acpi_device_id nau8825_acpi_match[] = {
2457 	{ "10508825", 0 },
2458 	{},
2459 };
2460 MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match);
2461 #endif
2462 
2463 static struct i2c_driver nau8825_driver = {
2464 	.driver = {
2465 		.name = "nau8825",
2466 		.of_match_table = of_match_ptr(nau8825_of_ids),
2467 		.acpi_match_table = ACPI_PTR(nau8825_acpi_match),
2468 	},
2469 	.probe = nau8825_i2c_probe,
2470 	.remove = nau8825_i2c_remove,
2471 	.id_table = nau8825_i2c_ids,
2472 };
2473 module_i2c_driver(nau8825_driver);
2474 
2475 MODULE_DESCRIPTION("ASoC nau8825 driver");
2476 MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>");
2477 MODULE_LICENSE("GPL");
2478