1 /* 2 * NAU85L40 ALSA SoC audio driver 3 * 4 * Copyright 2016 Nuvoton Technology Corp. 5 * Author: John Hsu <KCHSU0@nuvoton.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/moduleparam.h> 14 #include <linux/init.h> 15 #include <linux/delay.h> 16 #include <linux/pm.h> 17 #include <linux/i2c.h> 18 #include <linux/regmap.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/spi/spi.h> 21 #include <linux/slab.h> 22 #include <linux/of_device.h> 23 #include <sound/core.h> 24 #include <sound/pcm.h> 25 #include <sound/pcm_params.h> 26 #include <sound/soc.h> 27 #include <sound/soc-dapm.h> 28 #include <sound/initval.h> 29 #include <sound/tlv.h> 30 #include "nau8540.h" 31 32 33 #define NAU_FREF_MAX 13500000 34 #define NAU_FVCO_MAX 100000000 35 #define NAU_FVCO_MIN 90000000 36 37 /* the maximum frequency of CLK_ADC */ 38 #define CLK_ADC_MAX 6144000 39 40 /* scaling for mclk from sysclk_src output */ 41 static const struct nau8540_fll_attr mclk_src_scaling[] = { 42 { 1, 0x0 }, 43 { 2, 0x2 }, 44 { 4, 0x3 }, 45 { 8, 0x4 }, 46 { 16, 0x5 }, 47 { 32, 0x6 }, 48 { 3, 0x7 }, 49 { 6, 0xa }, 50 { 12, 0xb }, 51 { 24, 0xc }, 52 }; 53 54 /* ratio for input clk freq */ 55 static const struct nau8540_fll_attr fll_ratio[] = { 56 { 512000, 0x01 }, 57 { 256000, 0x02 }, 58 { 128000, 0x04 }, 59 { 64000, 0x08 }, 60 { 32000, 0x10 }, 61 { 8000, 0x20 }, 62 { 4000, 0x40 }, 63 }; 64 65 static const struct nau8540_fll_attr fll_pre_scalar[] = { 66 { 1, 0x0 }, 67 { 2, 0x1 }, 68 { 4, 0x2 }, 69 { 8, 0x3 }, 70 }; 71 72 /* over sampling rate */ 73 static const struct nau8540_osr_attr osr_adc_sel[] = { 74 { 32, 3 }, /* OSR 32, SRC 1/8 */ 75 { 64, 2 }, /* OSR 64, SRC 1/4 */ 76 { 128, 1 }, /* OSR 128, SRC 1/2 */ 77 { 256, 0 }, /* OSR 256, SRC 1 */ 78 }; 79 80 static const struct reg_default nau8540_reg_defaults[] = { 81 {NAU8540_REG_POWER_MANAGEMENT, 0x0000}, 82 {NAU8540_REG_CLOCK_CTRL, 0x0000}, 83 {NAU8540_REG_CLOCK_SRC, 0x0000}, 84 {NAU8540_REG_FLL1, 0x0001}, 85 {NAU8540_REG_FLL2, 0x3126}, 86 {NAU8540_REG_FLL3, 0x0008}, 87 {NAU8540_REG_FLL4, 0x0010}, 88 {NAU8540_REG_FLL5, 0xC000}, 89 {NAU8540_REG_FLL6, 0x6000}, 90 {NAU8540_REG_FLL_VCO_RSV, 0xF13C}, 91 {NAU8540_REG_PCM_CTRL0, 0x000B}, 92 {NAU8540_REG_PCM_CTRL1, 0x3010}, 93 {NAU8540_REG_PCM_CTRL2, 0x0800}, 94 {NAU8540_REG_PCM_CTRL3, 0x0000}, 95 {NAU8540_REG_PCM_CTRL4, 0x000F}, 96 {NAU8540_REG_ALC_CONTROL_1, 0x0000}, 97 {NAU8540_REG_ALC_CONTROL_2, 0x700B}, 98 {NAU8540_REG_ALC_CONTROL_3, 0x0022}, 99 {NAU8540_REG_ALC_CONTROL_4, 0x1010}, 100 {NAU8540_REG_ALC_CONTROL_5, 0x1010}, 101 {NAU8540_REG_NOTCH_FIL1_CH1, 0x0000}, 102 {NAU8540_REG_NOTCH_FIL2_CH1, 0x0000}, 103 {NAU8540_REG_NOTCH_FIL1_CH2, 0x0000}, 104 {NAU8540_REG_NOTCH_FIL2_CH2, 0x0000}, 105 {NAU8540_REG_NOTCH_FIL1_CH3, 0x0000}, 106 {NAU8540_REG_NOTCH_FIL2_CH3, 0x0000}, 107 {NAU8540_REG_NOTCH_FIL1_CH4, 0x0000}, 108 {NAU8540_REG_NOTCH_FIL2_CH4, 0x0000}, 109 {NAU8540_REG_HPF_FILTER_CH12, 0x0000}, 110 {NAU8540_REG_HPF_FILTER_CH34, 0x0000}, 111 {NAU8540_REG_ADC_SAMPLE_RATE, 0x0002}, 112 {NAU8540_REG_DIGITAL_GAIN_CH1, 0x0400}, 113 {NAU8540_REG_DIGITAL_GAIN_CH2, 0x0400}, 114 {NAU8540_REG_DIGITAL_GAIN_CH3, 0x0400}, 115 {NAU8540_REG_DIGITAL_GAIN_CH4, 0x0400}, 116 {NAU8540_REG_DIGITAL_MUX, 0x00E4}, 117 {NAU8540_REG_GPIO_CTRL, 0x0000}, 118 {NAU8540_REG_MISC_CTRL, 0x0000}, 119 {NAU8540_REG_I2C_CTRL, 0xEFFF}, 120 {NAU8540_REG_VMID_CTRL, 0x0000}, 121 {NAU8540_REG_MUTE, 0x0000}, 122 {NAU8540_REG_ANALOG_ADC1, 0x0011}, 123 {NAU8540_REG_ANALOG_ADC2, 0x0020}, 124 {NAU8540_REG_ANALOG_PWR, 0x0000}, 125 {NAU8540_REG_MIC_BIAS, 0x0004}, 126 {NAU8540_REG_REFERENCE, 0x0000}, 127 {NAU8540_REG_FEPGA1, 0x0000}, 128 {NAU8540_REG_FEPGA2, 0x0000}, 129 {NAU8540_REG_FEPGA3, 0x0101}, 130 {NAU8540_REG_FEPGA4, 0x0101}, 131 {NAU8540_REG_PWR, 0x0000}, 132 }; 133 134 static bool nau8540_readable_reg(struct device *dev, unsigned int reg) 135 { 136 switch (reg) { 137 case NAU8540_REG_POWER_MANAGEMENT ... NAU8540_REG_FLL_VCO_RSV: 138 case NAU8540_REG_PCM_CTRL0 ... NAU8540_REG_PCM_CTRL4: 139 case NAU8540_REG_ALC_CONTROL_1 ... NAU8540_REG_ALC_CONTROL_5: 140 case NAU8540_REG_ALC_GAIN_CH12 ... NAU8540_REG_ADC_SAMPLE_RATE: 141 case NAU8540_REG_DIGITAL_GAIN_CH1 ... NAU8540_REG_DIGITAL_MUX: 142 case NAU8540_REG_P2P_CH1 ... NAU8540_REG_I2C_CTRL: 143 case NAU8540_REG_I2C_DEVICE_ID: 144 case NAU8540_REG_VMID_CTRL ... NAU8540_REG_MUTE: 145 case NAU8540_REG_ANALOG_ADC1 ... NAU8540_REG_PWR: 146 return true; 147 default: 148 return false; 149 } 150 151 } 152 153 static bool nau8540_writeable_reg(struct device *dev, unsigned int reg) 154 { 155 switch (reg) { 156 case NAU8540_REG_SW_RESET ... NAU8540_REG_FLL_VCO_RSV: 157 case NAU8540_REG_PCM_CTRL0 ... NAU8540_REG_PCM_CTRL4: 158 case NAU8540_REG_ALC_CONTROL_1 ... NAU8540_REG_ALC_CONTROL_5: 159 case NAU8540_REG_NOTCH_FIL1_CH1 ... NAU8540_REG_ADC_SAMPLE_RATE: 160 case NAU8540_REG_DIGITAL_GAIN_CH1 ... NAU8540_REG_DIGITAL_MUX: 161 case NAU8540_REG_GPIO_CTRL ... NAU8540_REG_I2C_CTRL: 162 case NAU8540_REG_RST: 163 case NAU8540_REG_VMID_CTRL ... NAU8540_REG_MUTE: 164 case NAU8540_REG_ANALOG_ADC1 ... NAU8540_REG_PWR: 165 return true; 166 default: 167 return false; 168 } 169 } 170 171 static bool nau8540_volatile_reg(struct device *dev, unsigned int reg) 172 { 173 switch (reg) { 174 case NAU8540_REG_SW_RESET: 175 case NAU8540_REG_ALC_GAIN_CH12 ... NAU8540_REG_ALC_STATUS: 176 case NAU8540_REG_P2P_CH1 ... NAU8540_REG_PEAK_CH4: 177 case NAU8540_REG_I2C_DEVICE_ID: 178 case NAU8540_REG_RST: 179 return true; 180 default: 181 return false; 182 } 183 } 184 185 186 static const DECLARE_TLV_DB_MINMAX(adc_vol_tlv, -12800, 3600); 187 static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600); 188 189 static const struct snd_kcontrol_new nau8540_snd_controls[] = { 190 SOC_SINGLE_TLV("Mic1 Volume", NAU8540_REG_DIGITAL_GAIN_CH1, 191 0, 0x520, 0, adc_vol_tlv), 192 SOC_SINGLE_TLV("Mic2 Volume", NAU8540_REG_DIGITAL_GAIN_CH2, 193 0, 0x520, 0, adc_vol_tlv), 194 SOC_SINGLE_TLV("Mic3 Volume", NAU8540_REG_DIGITAL_GAIN_CH3, 195 0, 0x520, 0, adc_vol_tlv), 196 SOC_SINGLE_TLV("Mic4 Volume", NAU8540_REG_DIGITAL_GAIN_CH4, 197 0, 0x520, 0, adc_vol_tlv), 198 199 SOC_SINGLE_TLV("Frontend PGA1 Volume", NAU8540_REG_FEPGA3, 200 0, 0x25, 0, fepga_gain_tlv), 201 SOC_SINGLE_TLV("Frontend PGA2 Volume", NAU8540_REG_FEPGA3, 202 8, 0x25, 0, fepga_gain_tlv), 203 SOC_SINGLE_TLV("Frontend PGA3 Volume", NAU8540_REG_FEPGA4, 204 0, 0x25, 0, fepga_gain_tlv), 205 SOC_SINGLE_TLV("Frontend PGA4 Volume", NAU8540_REG_FEPGA4, 206 8, 0x25, 0, fepga_gain_tlv), 207 }; 208 209 static const char * const adc_channel[] = { 210 "ADC channel 1", "ADC channel 2", "ADC channel 3", "ADC channel 4" 211 }; 212 static SOC_ENUM_SINGLE_DECL( 213 digital_ch4_enum, NAU8540_REG_DIGITAL_MUX, 6, adc_channel); 214 215 static const struct snd_kcontrol_new digital_ch4_mux = 216 SOC_DAPM_ENUM("Digital CH4 Select", digital_ch4_enum); 217 218 static SOC_ENUM_SINGLE_DECL( 219 digital_ch3_enum, NAU8540_REG_DIGITAL_MUX, 4, adc_channel); 220 221 static const struct snd_kcontrol_new digital_ch3_mux = 222 SOC_DAPM_ENUM("Digital CH3 Select", digital_ch3_enum); 223 224 static SOC_ENUM_SINGLE_DECL( 225 digital_ch2_enum, NAU8540_REG_DIGITAL_MUX, 2, adc_channel); 226 227 static const struct snd_kcontrol_new digital_ch2_mux = 228 SOC_DAPM_ENUM("Digital CH2 Select", digital_ch2_enum); 229 230 static SOC_ENUM_SINGLE_DECL( 231 digital_ch1_enum, NAU8540_REG_DIGITAL_MUX, 0, adc_channel); 232 233 static const struct snd_kcontrol_new digital_ch1_mux = 234 SOC_DAPM_ENUM("Digital CH1 Select", digital_ch1_enum); 235 236 static int adc_power_control(struct snd_soc_dapm_widget *w, 237 struct snd_kcontrol *k, int event) 238 { 239 struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm); 240 struct nau8540 *nau8540 = snd_soc_codec_get_drvdata(codec); 241 242 if (SND_SOC_DAPM_EVENT_ON(event)) { 243 msleep(300); 244 /* DO12 and DO34 pad output enable */ 245 regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL1, 246 NAU8540_I2S_DO12_TRI, 0); 247 regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL2, 248 NAU8540_I2S_DO34_TRI, 0); 249 } else if (SND_SOC_DAPM_EVENT_OFF(event)) { 250 regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL1, 251 NAU8540_I2S_DO12_TRI, NAU8540_I2S_DO12_TRI); 252 regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL2, 253 NAU8540_I2S_DO34_TRI, NAU8540_I2S_DO34_TRI); 254 } 255 return 0; 256 } 257 258 static int aiftx_power_control(struct snd_soc_dapm_widget *w, 259 struct snd_kcontrol *k, int event) 260 { 261 struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm); 262 struct nau8540 *nau8540 = snd_soc_codec_get_drvdata(codec); 263 264 if (SND_SOC_DAPM_EVENT_OFF(event)) { 265 regmap_write(nau8540->regmap, NAU8540_REG_RST, 0x0001); 266 regmap_write(nau8540->regmap, NAU8540_REG_RST, 0x0000); 267 } 268 return 0; 269 } 270 271 static const struct snd_soc_dapm_widget nau8540_dapm_widgets[] = { 272 SND_SOC_DAPM_SUPPLY("MICBIAS2", NAU8540_REG_MIC_BIAS, 11, 0, NULL, 0), 273 SND_SOC_DAPM_SUPPLY("MICBIAS1", NAU8540_REG_MIC_BIAS, 10, 0, NULL, 0), 274 275 SND_SOC_DAPM_INPUT("MIC1"), 276 SND_SOC_DAPM_INPUT("MIC2"), 277 SND_SOC_DAPM_INPUT("MIC3"), 278 SND_SOC_DAPM_INPUT("MIC4"), 279 280 SND_SOC_DAPM_PGA("Frontend PGA1", NAU8540_REG_PWR, 12, 0, NULL, 0), 281 SND_SOC_DAPM_PGA("Frontend PGA2", NAU8540_REG_PWR, 13, 0, NULL, 0), 282 SND_SOC_DAPM_PGA("Frontend PGA3", NAU8540_REG_PWR, 14, 0, NULL, 0), 283 SND_SOC_DAPM_PGA("Frontend PGA4", NAU8540_REG_PWR, 15, 0, NULL, 0), 284 285 SND_SOC_DAPM_ADC_E("ADC1", NULL, 286 NAU8540_REG_POWER_MANAGEMENT, 0, 0, adc_power_control, 287 SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), 288 SND_SOC_DAPM_ADC_E("ADC2", NULL, 289 NAU8540_REG_POWER_MANAGEMENT, 1, 0, adc_power_control, 290 SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), 291 SND_SOC_DAPM_ADC_E("ADC3", NULL, 292 NAU8540_REG_POWER_MANAGEMENT, 2, 0, adc_power_control, 293 SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), 294 SND_SOC_DAPM_ADC_E("ADC4", NULL, 295 NAU8540_REG_POWER_MANAGEMENT, 3, 0, adc_power_control, 296 SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), 297 298 SND_SOC_DAPM_PGA("ADC CH1", NAU8540_REG_ANALOG_PWR, 0, 0, NULL, 0), 299 SND_SOC_DAPM_PGA("ADC CH2", NAU8540_REG_ANALOG_PWR, 1, 0, NULL, 0), 300 SND_SOC_DAPM_PGA("ADC CH3", NAU8540_REG_ANALOG_PWR, 2, 0, NULL, 0), 301 SND_SOC_DAPM_PGA("ADC CH4", NAU8540_REG_ANALOG_PWR, 3, 0, NULL, 0), 302 303 SND_SOC_DAPM_MUX("Digital CH4 Mux", 304 SND_SOC_NOPM, 0, 0, &digital_ch4_mux), 305 SND_SOC_DAPM_MUX("Digital CH3 Mux", 306 SND_SOC_NOPM, 0, 0, &digital_ch3_mux), 307 SND_SOC_DAPM_MUX("Digital CH2 Mux", 308 SND_SOC_NOPM, 0, 0, &digital_ch2_mux), 309 SND_SOC_DAPM_MUX("Digital CH1 Mux", 310 SND_SOC_NOPM, 0, 0, &digital_ch1_mux), 311 312 SND_SOC_DAPM_AIF_OUT_E("AIFTX", "Capture", 0, SND_SOC_NOPM, 0, 0, 313 aiftx_power_control, SND_SOC_DAPM_POST_PMD), 314 }; 315 316 static const struct snd_soc_dapm_route nau8540_dapm_routes[] = { 317 {"Frontend PGA1", NULL, "MIC1"}, 318 {"Frontend PGA2", NULL, "MIC2"}, 319 {"Frontend PGA3", NULL, "MIC3"}, 320 {"Frontend PGA4", NULL, "MIC4"}, 321 322 {"ADC1", NULL, "Frontend PGA1"}, 323 {"ADC2", NULL, "Frontend PGA2"}, 324 {"ADC3", NULL, "Frontend PGA3"}, 325 {"ADC4", NULL, "Frontend PGA4"}, 326 327 {"ADC CH1", NULL, "ADC1"}, 328 {"ADC CH2", NULL, "ADC2"}, 329 {"ADC CH3", NULL, "ADC3"}, 330 {"ADC CH4", NULL, "ADC4"}, 331 332 {"ADC1", NULL, "MICBIAS1"}, 333 {"ADC2", NULL, "MICBIAS1"}, 334 {"ADC3", NULL, "MICBIAS2"}, 335 {"ADC4", NULL, "MICBIAS2"}, 336 337 {"Digital CH1 Mux", "ADC channel 1", "ADC CH1"}, 338 {"Digital CH1 Mux", "ADC channel 2", "ADC CH2"}, 339 {"Digital CH1 Mux", "ADC channel 3", "ADC CH3"}, 340 {"Digital CH1 Mux", "ADC channel 4", "ADC CH4"}, 341 342 {"Digital CH2 Mux", "ADC channel 1", "ADC CH1"}, 343 {"Digital CH2 Mux", "ADC channel 2", "ADC CH2"}, 344 {"Digital CH2 Mux", "ADC channel 3", "ADC CH3"}, 345 {"Digital CH2 Mux", "ADC channel 4", "ADC CH4"}, 346 347 {"Digital CH3 Mux", "ADC channel 1", "ADC CH1"}, 348 {"Digital CH3 Mux", "ADC channel 2", "ADC CH2"}, 349 {"Digital CH3 Mux", "ADC channel 3", "ADC CH3"}, 350 {"Digital CH3 Mux", "ADC channel 4", "ADC CH4"}, 351 352 {"Digital CH4 Mux", "ADC channel 1", "ADC CH1"}, 353 {"Digital CH4 Mux", "ADC channel 2", "ADC CH2"}, 354 {"Digital CH4 Mux", "ADC channel 3", "ADC CH3"}, 355 {"Digital CH4 Mux", "ADC channel 4", "ADC CH4"}, 356 357 {"AIFTX", NULL, "Digital CH1 Mux"}, 358 {"AIFTX", NULL, "Digital CH2 Mux"}, 359 {"AIFTX", NULL, "Digital CH3 Mux"}, 360 {"AIFTX", NULL, "Digital CH4 Mux"}, 361 }; 362 363 static int nau8540_clock_check(struct nau8540 *nau8540, int rate, int osr) 364 { 365 int osrate; 366 367 if (osr >= ARRAY_SIZE(osr_adc_sel)) 368 return -EINVAL; 369 osrate = osr_adc_sel[osr].osr; 370 371 if (rate * osr > CLK_ADC_MAX) { 372 dev_err(nau8540->dev, "exceed the maximum frequency of CLK_ADC\n"); 373 return -EINVAL; 374 } 375 376 return 0; 377 } 378 379 static int nau8540_hw_params(struct snd_pcm_substream *substream, 380 struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) 381 { 382 struct snd_soc_codec *codec = dai->codec; 383 struct nau8540 *nau8540 = snd_soc_codec_get_drvdata(codec); 384 unsigned int val_len = 0, osr; 385 386 /* CLK_ADC = OSR * FS 387 * ADC clock frequency is defined as Over Sampling Rate (OSR) 388 * multiplied by the audio sample rate (Fs). Note that the OSR and Fs 389 * values must be selected such that the maximum frequency is less 390 * than 6.144 MHz. 391 */ 392 regmap_read(nau8540->regmap, NAU8540_REG_ADC_SAMPLE_RATE, &osr); 393 osr &= NAU8540_ADC_OSR_MASK; 394 if (nau8540_clock_check(nau8540, params_rate(params), osr)) 395 return -EINVAL; 396 regmap_update_bits(nau8540->regmap, NAU8540_REG_CLOCK_SRC, 397 NAU8540_CLK_ADC_SRC_MASK, 398 osr_adc_sel[osr].clk_src << NAU8540_CLK_ADC_SRC_SFT); 399 400 switch (params_width(params)) { 401 case 16: 402 val_len |= NAU8540_I2S_DL_16; 403 break; 404 case 20: 405 val_len |= NAU8540_I2S_DL_20; 406 break; 407 case 24: 408 val_len |= NAU8540_I2S_DL_24; 409 break; 410 case 32: 411 val_len |= NAU8540_I2S_DL_32; 412 break; 413 default: 414 return -EINVAL; 415 } 416 417 regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL0, 418 NAU8540_I2S_DL_MASK, val_len); 419 420 return 0; 421 } 422 423 static int nau8540_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) 424 { 425 struct snd_soc_codec *codec = dai->codec; 426 struct nau8540 *nau8540 = snd_soc_codec_get_drvdata(codec); 427 unsigned int ctrl1_val = 0, ctrl2_val = 0; 428 429 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { 430 case SND_SOC_DAIFMT_CBM_CFM: 431 ctrl2_val |= NAU8540_I2S_MS_MASTER; 432 break; 433 case SND_SOC_DAIFMT_CBS_CFS: 434 break; 435 default: 436 return -EINVAL; 437 } 438 439 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 440 case SND_SOC_DAIFMT_NB_NF: 441 break; 442 case SND_SOC_DAIFMT_IB_NF: 443 ctrl1_val |= NAU8540_I2S_BP_INV; 444 break; 445 default: 446 return -EINVAL; 447 } 448 449 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 450 case SND_SOC_DAIFMT_I2S: 451 ctrl1_val |= NAU8540_I2S_DF_I2S; 452 break; 453 case SND_SOC_DAIFMT_LEFT_J: 454 ctrl1_val |= NAU8540_I2S_DF_LEFT; 455 break; 456 case SND_SOC_DAIFMT_RIGHT_J: 457 ctrl1_val |= NAU8540_I2S_DF_RIGTH; 458 break; 459 case SND_SOC_DAIFMT_DSP_A: 460 ctrl1_val |= NAU8540_I2S_DF_PCM_AB; 461 break; 462 case SND_SOC_DAIFMT_DSP_B: 463 ctrl1_val |= NAU8540_I2S_DF_PCM_AB; 464 ctrl1_val |= NAU8540_I2S_PCMB_EN; 465 break; 466 default: 467 return -EINVAL; 468 } 469 470 regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL0, 471 NAU8540_I2S_DL_MASK | NAU8540_I2S_DF_MASK | 472 NAU8540_I2S_BP_INV | NAU8540_I2S_PCMB_EN, ctrl1_val); 473 regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL1, 474 NAU8540_I2S_MS_MASK | NAU8540_I2S_DO12_OE, ctrl2_val); 475 regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL2, 476 NAU8540_I2S_DO34_OE, 0); 477 478 return 0; 479 } 480 481 /** 482 * nau8540_set_tdm_slot - configure DAI TX TDM. 483 * @dai: DAI 484 * @tx_mask: bitmask representing active TX slots. Ex. 485 * 0xf for normal 4 channel TDM. 486 * 0xf0 for shifted 4 channel TDM 487 * @rx_mask: no used. 488 * @slots: Number of slots in use. 489 * @slot_width: Width in bits for each slot. 490 * 491 * Configures a DAI for TDM operation. Only support 4 slots TDM. 492 */ 493 static int nau8540_set_tdm_slot(struct snd_soc_dai *dai, 494 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) 495 { 496 struct snd_soc_codec *codec = dai->codec; 497 struct nau8540 *nau8540 = snd_soc_codec_get_drvdata(codec); 498 unsigned int ctrl2_val = 0, ctrl4_val = 0; 499 500 if (slots > 4 || ((tx_mask & 0xf0) && (tx_mask & 0xf))) 501 return -EINVAL; 502 503 ctrl4_val |= (NAU8540_TDM_MODE | NAU8540_TDM_OFFSET_EN); 504 if (tx_mask & 0xf0) { 505 ctrl2_val = 4 * slot_width; 506 ctrl4_val |= (tx_mask >> 4); 507 } else { 508 ctrl4_val |= tx_mask; 509 } 510 regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL4, 511 NAU8540_TDM_MODE | NAU8540_TDM_OFFSET_EN | 512 NAU8540_TDM_TX_MASK, ctrl4_val); 513 regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL1, 514 NAU8540_I2S_DO12_OE, NAU8540_I2S_DO12_OE); 515 regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL2, 516 NAU8540_I2S_DO34_OE | NAU8540_I2S_TSLOT_L_MASK, 517 NAU8540_I2S_DO34_OE | ctrl2_val); 518 519 return 0; 520 } 521 522 523 static const struct snd_soc_dai_ops nau8540_dai_ops = { 524 .hw_params = nau8540_hw_params, 525 .set_fmt = nau8540_set_fmt, 526 .set_tdm_slot = nau8540_set_tdm_slot, 527 }; 528 529 #define NAU8540_RATES SNDRV_PCM_RATE_8000_48000 530 #define NAU8540_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \ 531 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE) 532 533 static struct snd_soc_dai_driver nau8540_dai = { 534 .name = "nau8540-hifi", 535 .capture = { 536 .stream_name = "Capture", 537 .channels_min = 1, 538 .channels_max = 4, 539 .rates = NAU8540_RATES, 540 .formats = NAU8540_FORMATS, 541 }, 542 .ops = &nau8540_dai_ops, 543 }; 544 545 /** 546 * nau8540_calc_fll_param - Calculate FLL parameters. 547 * @fll_in: external clock provided to codec. 548 * @fs: sampling rate. 549 * @fll_param: Pointer to structure of FLL parameters. 550 * 551 * Calculate FLL parameters to configure codec. 552 * 553 * Returns 0 for success or negative error code. 554 */ 555 static int nau8540_calc_fll_param(unsigned int fll_in, 556 unsigned int fs, struct nau8540_fll *fll_param) 557 { 558 u64 fvco, fvco_max; 559 unsigned int fref, i, fvco_sel; 560 561 /* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing 562 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar. 563 * FREF = freq_in / NAU8540_FLL_REF_DIV_MASK 564 */ 565 for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) { 566 fref = fll_in / fll_pre_scalar[i].param; 567 if (fref <= NAU_FREF_MAX) 568 break; 569 } 570 if (i == ARRAY_SIZE(fll_pre_scalar)) 571 return -EINVAL; 572 fll_param->clk_ref_div = fll_pre_scalar[i].val; 573 574 /* Choose the FLL ratio based on FREF */ 575 for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) { 576 if (fref >= fll_ratio[i].param) 577 break; 578 } 579 if (i == ARRAY_SIZE(fll_ratio)) 580 return -EINVAL; 581 fll_param->ratio = fll_ratio[i].val; 582 583 /* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs. 584 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be 585 * guaranteed across the full range of operation. 586 * FDCO = freq_out * 2 * mclk_src_scaling 587 */ 588 fvco_max = 0; 589 fvco_sel = ARRAY_SIZE(mclk_src_scaling); 590 for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) { 591 fvco = 256 * fs * 2 * mclk_src_scaling[i].param; 592 if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX && 593 fvco_max < fvco) { 594 fvco_max = fvco; 595 fvco_sel = i; 596 } 597 } 598 if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel) 599 return -EINVAL; 600 fll_param->mclk_src = mclk_src_scaling[fvco_sel].val; 601 602 /* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional 603 * input based on FDCO, FREF and FLL ratio. 604 */ 605 fvco = div_u64(fvco_max << 16, fref * fll_param->ratio); 606 fll_param->fll_int = (fvco >> 16) & 0x3FF; 607 fll_param->fll_frac = fvco & 0xFFFF; 608 return 0; 609 } 610 611 static void nau8540_fll_apply(struct regmap *regmap, 612 struct nau8540_fll *fll_param) 613 { 614 regmap_update_bits(regmap, NAU8540_REG_CLOCK_SRC, 615 NAU8540_CLK_SRC_MASK | NAU8540_CLK_MCLK_SRC_MASK, 616 NAU8540_CLK_SRC_MCLK | fll_param->mclk_src); 617 regmap_update_bits(regmap, NAU8540_REG_FLL1, 618 NAU8540_FLL_RATIO_MASK | NAU8540_ICTRL_LATCH_MASK, 619 fll_param->ratio | (0x6 << NAU8540_ICTRL_LATCH_SFT)); 620 /* FLL 16-bit fractional input */ 621 regmap_write(regmap, NAU8540_REG_FLL2, fll_param->fll_frac); 622 /* FLL 10-bit integer input */ 623 regmap_update_bits(regmap, NAU8540_REG_FLL3, 624 NAU8540_FLL_INTEGER_MASK, fll_param->fll_int); 625 /* FLL pre-scaler */ 626 regmap_update_bits(regmap, NAU8540_REG_FLL4, 627 NAU8540_FLL_REF_DIV_MASK, 628 fll_param->clk_ref_div << NAU8540_FLL_REF_DIV_SFT); 629 regmap_update_bits(regmap, NAU8540_REG_FLL5, 630 NAU8540_FLL_CLK_SW_MASK, NAU8540_FLL_CLK_SW_REF); 631 regmap_update_bits(regmap, 632 NAU8540_REG_FLL6, NAU8540_DCO_EN, 0); 633 if (fll_param->fll_frac) { 634 regmap_update_bits(regmap, NAU8540_REG_FLL5, 635 NAU8540_FLL_PDB_DAC_EN | NAU8540_FLL_LOOP_FTR_EN | 636 NAU8540_FLL_FTR_SW_MASK, 637 NAU8540_FLL_PDB_DAC_EN | NAU8540_FLL_LOOP_FTR_EN | 638 NAU8540_FLL_FTR_SW_FILTER); 639 regmap_update_bits(regmap, NAU8540_REG_FLL6, 640 NAU8540_SDM_EN | NAU8540_CUTOFF500, 641 NAU8540_SDM_EN | NAU8540_CUTOFF500); 642 } else { 643 regmap_update_bits(regmap, NAU8540_REG_FLL5, 644 NAU8540_FLL_PDB_DAC_EN | NAU8540_FLL_LOOP_FTR_EN | 645 NAU8540_FLL_FTR_SW_MASK, NAU8540_FLL_FTR_SW_ACCU); 646 regmap_update_bits(regmap, NAU8540_REG_FLL6, 647 NAU8540_SDM_EN | NAU8540_CUTOFF500, 0); 648 } 649 } 650 651 /* freq_out must be 256*Fs in order to achieve the best performance */ 652 static int nau8540_set_pll(struct snd_soc_codec *codec, int pll_id, int source, 653 unsigned int freq_in, unsigned int freq_out) 654 { 655 struct nau8540 *nau8540 = snd_soc_codec_get_drvdata(codec); 656 struct nau8540_fll fll_param; 657 int ret, fs; 658 659 switch (pll_id) { 660 case NAU8540_CLK_FLL_MCLK: 661 regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL3, 662 NAU8540_FLL_CLK_SRC_MASK | NAU8540_GAIN_ERR_MASK, 663 NAU8540_FLL_CLK_SRC_MCLK | 0); 664 break; 665 666 case NAU8540_CLK_FLL_BLK: 667 regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL3, 668 NAU8540_FLL_CLK_SRC_MASK | NAU8540_GAIN_ERR_MASK, 669 NAU8540_FLL_CLK_SRC_BLK | 670 (0xf << NAU8540_GAIN_ERR_SFT)); 671 break; 672 673 case NAU8540_CLK_FLL_FS: 674 regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL3, 675 NAU8540_FLL_CLK_SRC_MASK | NAU8540_GAIN_ERR_MASK, 676 NAU8540_FLL_CLK_SRC_FS | 677 (0xf << NAU8540_GAIN_ERR_SFT)); 678 break; 679 680 default: 681 dev_err(nau8540->dev, "Invalid clock id (%d)\n", pll_id); 682 return -EINVAL; 683 } 684 dev_dbg(nau8540->dev, "Sysclk is %dHz and clock id is %d\n", 685 freq_out, pll_id); 686 687 fs = freq_out / 256; 688 ret = nau8540_calc_fll_param(freq_in, fs, &fll_param); 689 if (ret < 0) { 690 dev_err(nau8540->dev, "Unsupported input clock %d\n", freq_in); 691 return ret; 692 } 693 dev_dbg(nau8540->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n", 694 fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac, 695 fll_param.fll_int, fll_param.clk_ref_div); 696 697 nau8540_fll_apply(nau8540->regmap, &fll_param); 698 mdelay(2); 699 regmap_update_bits(nau8540->regmap, NAU8540_REG_CLOCK_SRC, 700 NAU8540_CLK_SRC_MASK, NAU8540_CLK_SRC_VCO); 701 702 return 0; 703 } 704 705 static int nau8540_set_sysclk(struct snd_soc_codec *codec, 706 int clk_id, int source, unsigned int freq, int dir) 707 { 708 struct nau8540 *nau8540 = snd_soc_codec_get_drvdata(codec); 709 710 switch (clk_id) { 711 case NAU8540_CLK_DIS: 712 case NAU8540_CLK_MCLK: 713 regmap_update_bits(nau8540->regmap, NAU8540_REG_CLOCK_SRC, 714 NAU8540_CLK_SRC_MASK, NAU8540_CLK_SRC_MCLK); 715 regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL6, 716 NAU8540_DCO_EN, 0); 717 break; 718 719 case NAU8540_CLK_INTERNAL: 720 regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL6, 721 NAU8540_DCO_EN, NAU8540_DCO_EN); 722 regmap_update_bits(nau8540->regmap, NAU8540_REG_CLOCK_SRC, 723 NAU8540_CLK_SRC_MASK, NAU8540_CLK_SRC_VCO); 724 break; 725 726 default: 727 dev_err(nau8540->dev, "Invalid clock id (%d)\n", clk_id); 728 return -EINVAL; 729 } 730 731 dev_dbg(nau8540->dev, "Sysclk is %dHz and clock id is %d\n", 732 freq, clk_id); 733 734 return 0; 735 } 736 737 static void nau8540_reset_chip(struct regmap *regmap) 738 { 739 regmap_write(regmap, NAU8540_REG_SW_RESET, 0x00); 740 regmap_write(regmap, NAU8540_REG_SW_RESET, 0x00); 741 } 742 743 static void nau8540_init_regs(struct nau8540 *nau8540) 744 { 745 struct regmap *regmap = nau8540->regmap; 746 747 /* Enable Bias/VMID/VMID Tieoff */ 748 regmap_update_bits(regmap, NAU8540_REG_VMID_CTRL, 749 NAU8540_VMID_EN | NAU8540_VMID_SEL_MASK, 750 NAU8540_VMID_EN | (0x2 << NAU8540_VMID_SEL_SFT)); 751 regmap_update_bits(regmap, NAU8540_REG_REFERENCE, 752 NAU8540_PRECHARGE_DIS | NAU8540_GLOBAL_BIAS_EN, 753 NAU8540_PRECHARGE_DIS | NAU8540_GLOBAL_BIAS_EN); 754 mdelay(2); 755 regmap_update_bits(regmap, NAU8540_REG_MIC_BIAS, 756 NAU8540_PU_PRE, NAU8540_PU_PRE); 757 regmap_update_bits(regmap, NAU8540_REG_CLOCK_CTRL, 758 NAU8540_CLK_ADC_EN | NAU8540_CLK_I2S_EN, 759 NAU8540_CLK_ADC_EN | NAU8540_CLK_I2S_EN); 760 /* ADC OSR selection, CLK_ADC = Fs * OSR; 761 * Channel time alignment enable. 762 */ 763 regmap_update_bits(regmap, NAU8540_REG_ADC_SAMPLE_RATE, 764 NAU8540_CH_SYNC | NAU8540_ADC_OSR_MASK, 765 NAU8540_CH_SYNC | NAU8540_ADC_OSR_64); 766 /* PGA input mode selection */ 767 regmap_update_bits(regmap, NAU8540_REG_FEPGA1, 768 NAU8540_FEPGA1_MODCH2_SHT | NAU8540_FEPGA1_MODCH1_SHT, 769 NAU8540_FEPGA1_MODCH2_SHT | NAU8540_FEPGA1_MODCH1_SHT); 770 regmap_update_bits(regmap, NAU8540_REG_FEPGA2, 771 NAU8540_FEPGA2_MODCH4_SHT | NAU8540_FEPGA2_MODCH3_SHT, 772 NAU8540_FEPGA2_MODCH4_SHT | NAU8540_FEPGA2_MODCH3_SHT); 773 /* DO12 and DO34 pad output disable */ 774 regmap_update_bits(regmap, NAU8540_REG_PCM_CTRL1, 775 NAU8540_I2S_DO12_TRI, NAU8540_I2S_DO12_TRI); 776 regmap_update_bits(regmap, NAU8540_REG_PCM_CTRL2, 777 NAU8540_I2S_DO34_TRI, NAU8540_I2S_DO34_TRI); 778 } 779 780 static int __maybe_unused nau8540_suspend(struct snd_soc_codec *codec) 781 { 782 struct nau8540 *nau8540 = snd_soc_codec_get_drvdata(codec); 783 784 regcache_cache_only(nau8540->regmap, true); 785 regcache_mark_dirty(nau8540->regmap); 786 787 return 0; 788 } 789 790 static int __maybe_unused nau8540_resume(struct snd_soc_codec *codec) 791 { 792 struct nau8540 *nau8540 = snd_soc_codec_get_drvdata(codec); 793 794 regcache_cache_only(nau8540->regmap, false); 795 regcache_sync(nau8540->regmap); 796 797 return 0; 798 } 799 800 static const struct snd_soc_codec_driver nau8540_codec_driver = { 801 .set_sysclk = nau8540_set_sysclk, 802 .set_pll = nau8540_set_pll, 803 .suspend = nau8540_suspend, 804 .resume = nau8540_resume, 805 .suspend_bias_off = true, 806 807 .component_driver = { 808 .controls = nau8540_snd_controls, 809 .num_controls = ARRAY_SIZE(nau8540_snd_controls), 810 .dapm_widgets = nau8540_dapm_widgets, 811 .num_dapm_widgets = ARRAY_SIZE(nau8540_dapm_widgets), 812 .dapm_routes = nau8540_dapm_routes, 813 .num_dapm_routes = ARRAY_SIZE(nau8540_dapm_routes), 814 }, 815 }; 816 817 static const struct regmap_config nau8540_regmap_config = { 818 .val_bits = 16, 819 .reg_bits = 16, 820 821 .max_register = NAU8540_REG_MAX, 822 .readable_reg = nau8540_readable_reg, 823 .writeable_reg = nau8540_writeable_reg, 824 .volatile_reg = nau8540_volatile_reg, 825 826 .cache_type = REGCACHE_RBTREE, 827 .reg_defaults = nau8540_reg_defaults, 828 .num_reg_defaults = ARRAY_SIZE(nau8540_reg_defaults), 829 }; 830 831 static int nau8540_i2c_probe(struct i2c_client *i2c, 832 const struct i2c_device_id *id) 833 { 834 struct device *dev = &i2c->dev; 835 struct nau8540 *nau8540 = dev_get_platdata(dev); 836 int ret, value; 837 838 if (!nau8540) { 839 nau8540 = devm_kzalloc(dev, sizeof(*nau8540), GFP_KERNEL); 840 if (!nau8540) 841 return -ENOMEM; 842 } 843 i2c_set_clientdata(i2c, nau8540); 844 845 nau8540->regmap = devm_regmap_init_i2c(i2c, &nau8540_regmap_config); 846 if (IS_ERR(nau8540->regmap)) 847 return PTR_ERR(nau8540->regmap); 848 ret = regmap_read(nau8540->regmap, NAU8540_REG_I2C_DEVICE_ID, &value); 849 if (ret < 0) { 850 dev_err(dev, "Failed to read device id from the NAU85L40: %d\n", 851 ret); 852 return ret; 853 } 854 855 nau8540->dev = dev; 856 nau8540_reset_chip(nau8540->regmap); 857 nau8540_init_regs(nau8540); 858 859 return snd_soc_register_codec(dev, 860 &nau8540_codec_driver, &nau8540_dai, 1); 861 } 862 863 static int nau8540_i2c_remove(struct i2c_client *client) 864 { 865 snd_soc_unregister_codec(&client->dev); 866 return 0; 867 } 868 869 870 static const struct i2c_device_id nau8540_i2c_ids[] = { 871 { "nau8540", 0 }, 872 { } 873 }; 874 MODULE_DEVICE_TABLE(i2c, nau8540_i2c_ids); 875 876 #ifdef CONFIG_OF 877 static const struct of_device_id nau8540_of_ids[] = { 878 { .compatible = "nuvoton,nau8540", }, 879 {} 880 }; 881 MODULE_DEVICE_TABLE(of, nau8540_of_ids); 882 #endif 883 884 static struct i2c_driver nau8540_i2c_driver = { 885 .driver = { 886 .name = "nau8540", 887 .of_match_table = of_match_ptr(nau8540_of_ids), 888 }, 889 .probe = nau8540_i2c_probe, 890 .remove = nau8540_i2c_remove, 891 .id_table = nau8540_i2c_ids, 892 }; 893 module_i2c_driver(nau8540_i2c_driver); 894 895 MODULE_DESCRIPTION("ASoC NAU85L40 driver"); 896 MODULE_AUTHOR("John Hsu <KCHSU0@nuvoton.com>"); 897 MODULE_LICENSE("GPL v2"); 898