1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * atmel_ssc_dai.c -- ALSA SoC ATMEL SSC Audio Layer Platform driver 4 * 5 * Copyright (C) 2005 SAN People 6 * Copyright (C) 2008 Atmel 7 * 8 * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com> 9 * ATMEL CORP. 10 * 11 * Based on at91-ssc.c by 12 * Frank Mandarino <fmandarino@endrelia.com> 13 * Based on pxa2xx Platform drivers by 14 * Liam Girdwood <lrg@slimlogic.co.uk> 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/interrupt.h> 20 #include <linux/device.h> 21 #include <linux/delay.h> 22 #include <linux/clk.h> 23 #include <linux/atmel_pdc.h> 24 25 #include <linux/atmel-ssc.h> 26 #include <sound/core.h> 27 #include <sound/pcm.h> 28 #include <sound/pcm_params.h> 29 #include <sound/initval.h> 30 #include <sound/soc.h> 31 32 #include "atmel-pcm.h" 33 #include "atmel_ssc_dai.h" 34 35 36 #define NUM_SSC_DEVICES 3 37 38 /* 39 * SSC PDC registers required by the PCM DMA engine. 40 */ 41 static struct atmel_pdc_regs pdc_tx_reg = { 42 .xpr = ATMEL_PDC_TPR, 43 .xcr = ATMEL_PDC_TCR, 44 .xnpr = ATMEL_PDC_TNPR, 45 .xncr = ATMEL_PDC_TNCR, 46 }; 47 48 static struct atmel_pdc_regs pdc_rx_reg = { 49 .xpr = ATMEL_PDC_RPR, 50 .xcr = ATMEL_PDC_RCR, 51 .xnpr = ATMEL_PDC_RNPR, 52 .xncr = ATMEL_PDC_RNCR, 53 }; 54 55 /* 56 * SSC & PDC status bits for transmit and receive. 57 */ 58 static struct atmel_ssc_mask ssc_tx_mask = { 59 .ssc_enable = SSC_BIT(CR_TXEN), 60 .ssc_disable = SSC_BIT(CR_TXDIS), 61 .ssc_endx = SSC_BIT(SR_ENDTX), 62 .ssc_endbuf = SSC_BIT(SR_TXBUFE), 63 .ssc_error = SSC_BIT(SR_OVRUN), 64 .pdc_enable = ATMEL_PDC_TXTEN, 65 .pdc_disable = ATMEL_PDC_TXTDIS, 66 }; 67 68 static struct atmel_ssc_mask ssc_rx_mask = { 69 .ssc_enable = SSC_BIT(CR_RXEN), 70 .ssc_disable = SSC_BIT(CR_RXDIS), 71 .ssc_endx = SSC_BIT(SR_ENDRX), 72 .ssc_endbuf = SSC_BIT(SR_RXBUFF), 73 .ssc_error = SSC_BIT(SR_OVRUN), 74 .pdc_enable = ATMEL_PDC_RXTEN, 75 .pdc_disable = ATMEL_PDC_RXTDIS, 76 }; 77 78 79 /* 80 * DMA parameters. 81 */ 82 static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = { 83 {{ 84 .name = "SSC0 PCM out", 85 .pdc = &pdc_tx_reg, 86 .mask = &ssc_tx_mask, 87 }, 88 { 89 .name = "SSC0 PCM in", 90 .pdc = &pdc_rx_reg, 91 .mask = &ssc_rx_mask, 92 } }, 93 {{ 94 .name = "SSC1 PCM out", 95 .pdc = &pdc_tx_reg, 96 .mask = &ssc_tx_mask, 97 }, 98 { 99 .name = "SSC1 PCM in", 100 .pdc = &pdc_rx_reg, 101 .mask = &ssc_rx_mask, 102 } }, 103 {{ 104 .name = "SSC2 PCM out", 105 .pdc = &pdc_tx_reg, 106 .mask = &ssc_tx_mask, 107 }, 108 { 109 .name = "SSC2 PCM in", 110 .pdc = &pdc_rx_reg, 111 .mask = &ssc_rx_mask, 112 } }, 113 }; 114 115 116 static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = { 117 { 118 .name = "ssc0", 119 .dir_mask = SSC_DIR_MASK_UNUSED, 120 .initialized = 0, 121 }, 122 { 123 .name = "ssc1", 124 .dir_mask = SSC_DIR_MASK_UNUSED, 125 .initialized = 0, 126 }, 127 { 128 .name = "ssc2", 129 .dir_mask = SSC_DIR_MASK_UNUSED, 130 .initialized = 0, 131 }, 132 }; 133 134 135 /* 136 * SSC interrupt handler. Passes PDC interrupts to the DMA 137 * interrupt handler in the PCM driver. 138 */ 139 static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id) 140 { 141 struct atmel_ssc_info *ssc_p = dev_id; 142 struct atmel_pcm_dma_params *dma_params; 143 u32 ssc_sr; 144 u32 ssc_substream_mask; 145 int i; 146 147 ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR) 148 & (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR); 149 150 /* 151 * Loop through the substreams attached to this SSC. If 152 * a DMA-related interrupt occurred on that substream, call 153 * the DMA interrupt handler function, if one has been 154 * registered in the dma_params structure by the PCM driver. 155 */ 156 for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) { 157 dma_params = ssc_p->dma_params[i]; 158 159 if ((dma_params != NULL) && 160 (dma_params->dma_intr_handler != NULL)) { 161 ssc_substream_mask = (dma_params->mask->ssc_endx | 162 dma_params->mask->ssc_endbuf); 163 if (ssc_sr & ssc_substream_mask) { 164 dma_params->dma_intr_handler(ssc_sr, 165 dma_params-> 166 substream); 167 } 168 } 169 } 170 171 return IRQ_HANDLED; 172 } 173 174 /* 175 * When the bit clock is input, limit the maximum rate according to the 176 * Serial Clock Ratio Considerations section from the SSC documentation: 177 * 178 * The Transmitter and the Receiver can be programmed to operate 179 * with the clock signals provided on either the TK or RK pins. 180 * This allows the SSC to support many slave-mode data transfers. 181 * In this case, the maximum clock speed allowed on the RK pin is: 182 * - Peripheral clock divided by 2 if Receiver Frame Synchro is input 183 * - Peripheral clock divided by 3 if Receiver Frame Synchro is output 184 * In addition, the maximum clock speed allowed on the TK pin is: 185 * - Peripheral clock divided by 6 if Transmit Frame Synchro is input 186 * - Peripheral clock divided by 2 if Transmit Frame Synchro is output 187 * 188 * When the bit clock is output, limit the rate according to the 189 * SSC divider restrictions. 190 */ 191 static int atmel_ssc_hw_rule_rate(struct snd_pcm_hw_params *params, 192 struct snd_pcm_hw_rule *rule) 193 { 194 struct atmel_ssc_info *ssc_p = rule->private; 195 struct ssc_device *ssc = ssc_p->ssc; 196 struct snd_interval *i = hw_param_interval(params, rule->var); 197 struct snd_interval t; 198 struct snd_ratnum r = { 199 .den_min = 1, 200 .den_max = 4095, 201 .den_step = 1, 202 }; 203 unsigned int num = 0, den = 0; 204 int frame_size; 205 int mck_div = 2; 206 int ret; 207 208 frame_size = snd_soc_params_to_frame_size(params); 209 if (frame_size < 0) 210 return frame_size; 211 212 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) { 213 case SND_SOC_DAIFMT_CBM_CFS: 214 if ((ssc_p->dir_mask & SSC_DIR_MASK_CAPTURE) 215 && ssc->clk_from_rk_pin) 216 /* Receiver Frame Synchro (i.e. capture) 217 * is output (format is _CFS) and the RK pin 218 * is used for input (format is _CBM_). 219 */ 220 mck_div = 3; 221 break; 222 223 case SND_SOC_DAIFMT_CBM_CFM: 224 if ((ssc_p->dir_mask & SSC_DIR_MASK_PLAYBACK) 225 && !ssc->clk_from_rk_pin) 226 /* Transmit Frame Synchro (i.e. playback) 227 * is input (format is _CFM) and the TK pin 228 * is used for input (format _CBM_ but not 229 * using the RK pin). 230 */ 231 mck_div = 6; 232 break; 233 } 234 235 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) { 236 case SND_SOC_DAIFMT_CBS_CFS: 237 r.num = ssc_p->mck_rate / mck_div / frame_size; 238 239 ret = snd_interval_ratnum(i, 1, &r, &num, &den); 240 if (ret >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 241 params->rate_num = num; 242 params->rate_den = den; 243 } 244 break; 245 246 case SND_SOC_DAIFMT_CBM_CFS: 247 case SND_SOC_DAIFMT_CBM_CFM: 248 t.min = 8000; 249 t.max = ssc_p->mck_rate / mck_div / frame_size; 250 t.openmin = t.openmax = 0; 251 t.integer = 0; 252 ret = snd_interval_refine(i, &t); 253 break; 254 255 default: 256 ret = -EINVAL; 257 break; 258 } 259 260 return ret; 261 } 262 263 /*-------------------------------------------------------------------------*\ 264 * DAI functions 265 \*-------------------------------------------------------------------------*/ 266 /* 267 * Startup. Only that one substream allowed in each direction. 268 */ 269 static int atmel_ssc_startup(struct snd_pcm_substream *substream, 270 struct snd_soc_dai *dai) 271 { 272 struct platform_device *pdev = to_platform_device(dai->dev); 273 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id]; 274 struct atmel_pcm_dma_params *dma_params; 275 int dir, dir_mask; 276 int ret; 277 278 pr_debug("atmel_ssc_startup: SSC_SR=0x%x\n", 279 ssc_readl(ssc_p->ssc->regs, SR)); 280 281 /* Enable PMC peripheral clock for this SSC */ 282 pr_debug("atmel_ssc_dai: Starting clock\n"); 283 clk_enable(ssc_p->ssc->clk); 284 ssc_p->mck_rate = clk_get_rate(ssc_p->ssc->clk); 285 286 /* Reset the SSC unless initialized to keep it in a clean state */ 287 if (!ssc_p->initialized) 288 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST)); 289 290 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 291 dir = 0; 292 dir_mask = SSC_DIR_MASK_PLAYBACK; 293 } else { 294 dir = 1; 295 dir_mask = SSC_DIR_MASK_CAPTURE; 296 } 297 298 ret = snd_pcm_hw_rule_add(substream->runtime, 0, 299 SNDRV_PCM_HW_PARAM_RATE, 300 atmel_ssc_hw_rule_rate, 301 ssc_p, 302 SNDRV_PCM_HW_PARAM_FRAME_BITS, 303 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 304 if (ret < 0) { 305 dev_err(dai->dev, "Failed to specify rate rule: %d\n", ret); 306 return ret; 307 } 308 309 dma_params = &ssc_dma_params[pdev->id][dir]; 310 dma_params->ssc = ssc_p->ssc; 311 dma_params->substream = substream; 312 313 ssc_p->dma_params[dir] = dma_params; 314 315 snd_soc_dai_set_dma_data(dai, substream, dma_params); 316 317 if (ssc_p->dir_mask & dir_mask) 318 return -EBUSY; 319 320 ssc_p->dir_mask |= dir_mask; 321 322 return 0; 323 } 324 325 /* 326 * Shutdown. Clear DMA parameters and shutdown the SSC if there 327 * are no other substreams open. 328 */ 329 static void atmel_ssc_shutdown(struct snd_pcm_substream *substream, 330 struct snd_soc_dai *dai) 331 { 332 struct platform_device *pdev = to_platform_device(dai->dev); 333 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id]; 334 struct atmel_pcm_dma_params *dma_params; 335 int dir, dir_mask; 336 337 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 338 dir = 0; 339 else 340 dir = 1; 341 342 dma_params = ssc_p->dma_params[dir]; 343 344 if (dma_params != NULL) { 345 dma_params->ssc = NULL; 346 dma_params->substream = NULL; 347 ssc_p->dma_params[dir] = NULL; 348 } 349 350 dir_mask = 1 << dir; 351 352 ssc_p->dir_mask &= ~dir_mask; 353 if (!ssc_p->dir_mask) { 354 if (ssc_p->initialized) { 355 free_irq(ssc_p->ssc->irq, ssc_p); 356 ssc_p->initialized = 0; 357 } 358 359 /* Reset the SSC */ 360 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST)); 361 /* Clear the SSC dividers */ 362 ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0; 363 ssc_p->forced_divider = 0; 364 } 365 366 /* Shutdown the SSC clock. */ 367 pr_debug("atmel_ssc_dai: Stopping clock\n"); 368 clk_disable(ssc_p->ssc->clk); 369 } 370 371 372 /* 373 * Record the DAI format for use in hw_params(). 374 */ 375 static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai, 376 unsigned int fmt) 377 { 378 struct platform_device *pdev = to_platform_device(cpu_dai->dev); 379 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id]; 380 381 ssc_p->daifmt = fmt; 382 return 0; 383 } 384 385 /* 386 * Record SSC clock dividers for use in hw_params(). 387 */ 388 static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai, 389 int div_id, int div) 390 { 391 struct platform_device *pdev = to_platform_device(cpu_dai->dev); 392 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id]; 393 394 switch (div_id) { 395 case ATMEL_SSC_CMR_DIV: 396 /* 397 * The same master clock divider is used for both 398 * transmit and receive, so if a value has already 399 * been set, it must match this value. 400 */ 401 if (ssc_p->dir_mask != 402 (SSC_DIR_MASK_PLAYBACK | SSC_DIR_MASK_CAPTURE)) 403 ssc_p->cmr_div = div; 404 else if (ssc_p->cmr_div == 0) 405 ssc_p->cmr_div = div; 406 else 407 if (div != ssc_p->cmr_div) 408 return -EBUSY; 409 ssc_p->forced_divider |= BIT(ATMEL_SSC_CMR_DIV); 410 break; 411 412 case ATMEL_SSC_TCMR_PERIOD: 413 ssc_p->tcmr_period = div; 414 ssc_p->forced_divider |= BIT(ATMEL_SSC_TCMR_PERIOD); 415 break; 416 417 case ATMEL_SSC_RCMR_PERIOD: 418 ssc_p->rcmr_period = div; 419 ssc_p->forced_divider |= BIT(ATMEL_SSC_RCMR_PERIOD); 420 break; 421 422 default: 423 return -EINVAL; 424 } 425 426 return 0; 427 } 428 429 /* Is the cpu-dai master of the frame clock? */ 430 static int atmel_ssc_cfs(struct atmel_ssc_info *ssc_p) 431 { 432 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) { 433 case SND_SOC_DAIFMT_CBM_CFS: 434 case SND_SOC_DAIFMT_CBS_CFS: 435 return 1; 436 } 437 return 0; 438 } 439 440 /* Is the cpu-dai master of the bit clock? */ 441 static int atmel_ssc_cbs(struct atmel_ssc_info *ssc_p) 442 { 443 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) { 444 case SND_SOC_DAIFMT_CBS_CFM: 445 case SND_SOC_DAIFMT_CBS_CFS: 446 return 1; 447 } 448 return 0; 449 } 450 451 /* 452 * Configure the SSC. 453 */ 454 static int atmel_ssc_hw_params(struct snd_pcm_substream *substream, 455 struct snd_pcm_hw_params *params, 456 struct snd_soc_dai *dai) 457 { 458 struct platform_device *pdev = to_platform_device(dai->dev); 459 int id = pdev->id; 460 struct atmel_ssc_info *ssc_p = &ssc_info[id]; 461 struct ssc_device *ssc = ssc_p->ssc; 462 struct atmel_pcm_dma_params *dma_params; 463 int dir, channels, bits; 464 u32 tfmr, rfmr, tcmr, rcmr; 465 int ret; 466 int fslen, fslen_ext, fs_osync, fs_edge; 467 u32 cmr_div; 468 u32 tcmr_period; 469 u32 rcmr_period; 470 471 /* 472 * Currently, there is only one set of dma params for 473 * each direction. If more are added, this code will 474 * have to be changed to select the proper set. 475 */ 476 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 477 dir = 0; 478 else 479 dir = 1; 480 481 /* 482 * If the cpu dai should provide BCLK, but noone has provided the 483 * divider needed for that to work, fall back to something sensible. 484 */ 485 cmr_div = ssc_p->cmr_div; 486 if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_CMR_DIV)) && 487 atmel_ssc_cbs(ssc_p)) { 488 int bclk_rate = snd_soc_params_to_bclk(params); 489 490 if (bclk_rate < 0) { 491 dev_err(dai->dev, "unable to calculate cmr_div: %d\n", 492 bclk_rate); 493 return bclk_rate; 494 } 495 496 cmr_div = DIV_ROUND_CLOSEST(ssc_p->mck_rate, 2 * bclk_rate); 497 } 498 499 /* 500 * If the cpu dai should provide LRCLK, but noone has provided the 501 * dividers needed for that to work, fall back to something sensible. 502 */ 503 tcmr_period = ssc_p->tcmr_period; 504 rcmr_period = ssc_p->rcmr_period; 505 if (atmel_ssc_cfs(ssc_p)) { 506 int frame_size = snd_soc_params_to_frame_size(params); 507 508 if (frame_size < 0) { 509 dev_err(dai->dev, 510 "unable to calculate tx/rx cmr_period: %d\n", 511 frame_size); 512 return frame_size; 513 } 514 515 if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_TCMR_PERIOD))) 516 tcmr_period = frame_size / 2 - 1; 517 if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_RCMR_PERIOD))) 518 rcmr_period = frame_size / 2 - 1; 519 } 520 521 dma_params = ssc_p->dma_params[dir]; 522 523 channels = params_channels(params); 524 525 /* 526 * Determine sample size in bits and the PDC increment. 527 */ 528 switch (params_format(params)) { 529 case SNDRV_PCM_FORMAT_S8: 530 bits = 8; 531 dma_params->pdc_xfer_size = 1; 532 break; 533 case SNDRV_PCM_FORMAT_S16_LE: 534 bits = 16; 535 dma_params->pdc_xfer_size = 2; 536 break; 537 case SNDRV_PCM_FORMAT_S24_LE: 538 bits = 24; 539 dma_params->pdc_xfer_size = 4; 540 break; 541 case SNDRV_PCM_FORMAT_S32_LE: 542 bits = 32; 543 dma_params->pdc_xfer_size = 4; 544 break; 545 default: 546 printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format"); 547 return -EINVAL; 548 } 549 550 /* 551 * Compute SSC register settings. 552 */ 553 554 fslen_ext = (bits - 1) / 16; 555 fslen = (bits - 1) % 16; 556 557 switch (ssc_p->daifmt & SND_SOC_DAIFMT_FORMAT_MASK) { 558 559 case SND_SOC_DAIFMT_LEFT_J: 560 fs_osync = SSC_FSOS_POSITIVE; 561 fs_edge = SSC_START_RISING_RF; 562 563 rcmr = SSC_BF(RCMR_STTDLY, 0); 564 tcmr = SSC_BF(TCMR_STTDLY, 0); 565 566 break; 567 568 case SND_SOC_DAIFMT_I2S: 569 fs_osync = SSC_FSOS_NEGATIVE; 570 fs_edge = SSC_START_FALLING_RF; 571 572 rcmr = SSC_BF(RCMR_STTDLY, 1); 573 tcmr = SSC_BF(TCMR_STTDLY, 1); 574 575 break; 576 577 case SND_SOC_DAIFMT_DSP_A: 578 /* 579 * DSP/PCM Mode A format 580 * 581 * Data is transferred on first BCLK after LRC pulse rising 582 * edge.If stereo, the right channel data is contiguous with 583 * the left channel data. 584 */ 585 fs_osync = SSC_FSOS_POSITIVE; 586 fs_edge = SSC_START_RISING_RF; 587 fslen = fslen_ext = 0; 588 589 rcmr = SSC_BF(RCMR_STTDLY, 1); 590 tcmr = SSC_BF(TCMR_STTDLY, 1); 591 592 break; 593 594 default: 595 printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n", 596 ssc_p->daifmt); 597 return -EINVAL; 598 } 599 600 if (!atmel_ssc_cfs(ssc_p)) { 601 fslen = fslen_ext = 0; 602 rcmr_period = tcmr_period = 0; 603 fs_osync = SSC_FSOS_NONE; 604 } 605 606 rcmr |= SSC_BF(RCMR_START, fs_edge); 607 tcmr |= SSC_BF(TCMR_START, fs_edge); 608 609 if (atmel_ssc_cbs(ssc_p)) { 610 /* 611 * SSC provides BCLK 612 * 613 * The SSC transmit and receive clocks are generated from the 614 * MCK divider, and the BCLK signal is output 615 * on the SSC TK line. 616 */ 617 rcmr |= SSC_BF(RCMR_CKS, SSC_CKS_DIV) 618 | SSC_BF(RCMR_CKO, SSC_CKO_NONE); 619 620 tcmr |= SSC_BF(TCMR_CKS, SSC_CKS_DIV) 621 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS); 622 } else { 623 rcmr |= SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ? 624 SSC_CKS_PIN : SSC_CKS_CLOCK) 625 | SSC_BF(RCMR_CKO, SSC_CKO_NONE); 626 627 tcmr |= SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ? 628 SSC_CKS_CLOCK : SSC_CKS_PIN) 629 | SSC_BF(TCMR_CKO, SSC_CKO_NONE); 630 } 631 632 rcmr |= SSC_BF(RCMR_PERIOD, rcmr_period) 633 | SSC_BF(RCMR_CKI, SSC_CKI_RISING); 634 635 tcmr |= SSC_BF(TCMR_PERIOD, tcmr_period) 636 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING); 637 638 rfmr = SSC_BF(RFMR_FSLEN_EXT, fslen_ext) 639 | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 640 | SSC_BF(RFMR_FSOS, fs_osync) 641 | SSC_BF(RFMR_FSLEN, fslen) 642 | SSC_BF(RFMR_DATNB, (channels - 1)) 643 | SSC_BIT(RFMR_MSBF) 644 | SSC_BF(RFMR_LOOP, 0) 645 | SSC_BF(RFMR_DATLEN, (bits - 1)); 646 647 tfmr = SSC_BF(TFMR_FSLEN_EXT, fslen_ext) 648 | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 649 | SSC_BF(TFMR_FSDEN, 0) 650 | SSC_BF(TFMR_FSOS, fs_osync) 651 | SSC_BF(TFMR_FSLEN, fslen) 652 | SSC_BF(TFMR_DATNB, (channels - 1)) 653 | SSC_BIT(TFMR_MSBF) 654 | SSC_BF(TFMR_DATDEF, 0) 655 | SSC_BF(TFMR_DATLEN, (bits - 1)); 656 657 if (fslen_ext && !ssc->pdata->has_fslen_ext) { 658 dev_err(dai->dev, "sample size %d is too large for SSC device\n", 659 bits); 660 return -EINVAL; 661 } 662 663 pr_debug("atmel_ssc_hw_params: " 664 "RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n", 665 rcmr, rfmr, tcmr, tfmr); 666 667 if (!ssc_p->initialized) { 668 if (!ssc_p->ssc->pdata->use_dma) { 669 ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0); 670 ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0); 671 ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0); 672 ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0); 673 674 ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0); 675 ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0); 676 ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0); 677 ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0); 678 } 679 680 ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0, 681 ssc_p->name, ssc_p); 682 if (ret < 0) { 683 printk(KERN_WARNING 684 "atmel_ssc_dai: request_irq failure\n"); 685 pr_debug("Atmel_ssc_dai: Stopping clock\n"); 686 clk_disable(ssc_p->ssc->clk); 687 return ret; 688 } 689 690 ssc_p->initialized = 1; 691 } 692 693 /* set SSC clock mode register */ 694 ssc_writel(ssc_p->ssc->regs, CMR, cmr_div); 695 696 /* set receive clock mode and format */ 697 ssc_writel(ssc_p->ssc->regs, RCMR, rcmr); 698 ssc_writel(ssc_p->ssc->regs, RFMR, rfmr); 699 700 /* set transmit clock mode and format */ 701 ssc_writel(ssc_p->ssc->regs, TCMR, tcmr); 702 ssc_writel(ssc_p->ssc->regs, TFMR, tfmr); 703 704 pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n"); 705 return 0; 706 } 707 708 709 static int atmel_ssc_prepare(struct snd_pcm_substream *substream, 710 struct snd_soc_dai *dai) 711 { 712 struct platform_device *pdev = to_platform_device(dai->dev); 713 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id]; 714 struct atmel_pcm_dma_params *dma_params; 715 int dir; 716 717 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 718 dir = 0; 719 else 720 dir = 1; 721 722 dma_params = ssc_p->dma_params[dir]; 723 724 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable); 725 ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error); 726 727 pr_debug("%s enabled SSC_SR=0x%08x\n", 728 dir ? "receive" : "transmit", 729 ssc_readl(ssc_p->ssc->regs, SR)); 730 return 0; 731 } 732 733 static int atmel_ssc_trigger(struct snd_pcm_substream *substream, 734 int cmd, struct snd_soc_dai *dai) 735 { 736 struct platform_device *pdev = to_platform_device(dai->dev); 737 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id]; 738 struct atmel_pcm_dma_params *dma_params; 739 int dir; 740 741 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 742 dir = 0; 743 else 744 dir = 1; 745 746 dma_params = ssc_p->dma_params[dir]; 747 748 switch (cmd) { 749 case SNDRV_PCM_TRIGGER_START: 750 case SNDRV_PCM_TRIGGER_RESUME: 751 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 752 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable); 753 break; 754 default: 755 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable); 756 break; 757 } 758 759 return 0; 760 } 761 762 #ifdef CONFIG_PM 763 static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai) 764 { 765 struct atmel_ssc_info *ssc_p; 766 struct platform_device *pdev = to_platform_device(cpu_dai->dev); 767 768 if (!cpu_dai->active) 769 return 0; 770 771 ssc_p = &ssc_info[pdev->id]; 772 773 /* Save the status register before disabling transmit and receive */ 774 ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR); 775 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS)); 776 777 /* Save the current interrupt mask, then disable unmasked interrupts */ 778 ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR); 779 ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr); 780 781 ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR); 782 ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR); 783 ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR); 784 ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR); 785 ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR); 786 787 return 0; 788 } 789 790 791 792 static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai) 793 { 794 struct atmel_ssc_info *ssc_p; 795 struct platform_device *pdev = to_platform_device(cpu_dai->dev); 796 u32 cr; 797 798 if (!cpu_dai->active) 799 return 0; 800 801 ssc_p = &ssc_info[pdev->id]; 802 803 /* restore SSC register settings */ 804 ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr); 805 ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr); 806 ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr); 807 ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr); 808 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr); 809 810 /* re-enable interrupts */ 811 ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr); 812 813 /* Re-enable receive and transmit as appropriate */ 814 cr = 0; 815 cr |= 816 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0; 817 cr |= 818 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0; 819 ssc_writel(ssc_p->ssc->regs, CR, cr); 820 821 return 0; 822 } 823 #else /* CONFIG_PM */ 824 # define atmel_ssc_suspend NULL 825 # define atmel_ssc_resume NULL 826 #endif /* CONFIG_PM */ 827 828 #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\ 829 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE) 830 831 static const struct snd_soc_dai_ops atmel_ssc_dai_ops = { 832 .startup = atmel_ssc_startup, 833 .shutdown = atmel_ssc_shutdown, 834 .prepare = atmel_ssc_prepare, 835 .trigger = atmel_ssc_trigger, 836 .hw_params = atmel_ssc_hw_params, 837 .set_fmt = atmel_ssc_set_dai_fmt, 838 .set_clkdiv = atmel_ssc_set_dai_clkdiv, 839 }; 840 841 static struct snd_soc_dai_driver atmel_ssc_dai = { 842 .suspend = atmel_ssc_suspend, 843 .resume = atmel_ssc_resume, 844 .playback = { 845 .channels_min = 1, 846 .channels_max = 2, 847 .rates = SNDRV_PCM_RATE_CONTINUOUS, 848 .rate_min = 8000, 849 .rate_max = 384000, 850 .formats = ATMEL_SSC_FORMATS,}, 851 .capture = { 852 .channels_min = 1, 853 .channels_max = 2, 854 .rates = SNDRV_PCM_RATE_CONTINUOUS, 855 .rate_min = 8000, 856 .rate_max = 384000, 857 .formats = ATMEL_SSC_FORMATS,}, 858 .ops = &atmel_ssc_dai_ops, 859 }; 860 861 static const struct snd_soc_component_driver atmel_ssc_component = { 862 .name = "atmel-ssc", 863 }; 864 865 static int asoc_ssc_init(struct device *dev) 866 { 867 struct ssc_device *ssc = dev_get_drvdata(dev); 868 int ret; 869 870 ret = devm_snd_soc_register_component(dev, &atmel_ssc_component, 871 &atmel_ssc_dai, 1); 872 if (ret) { 873 dev_err(dev, "Could not register DAI: %d\n", ret); 874 return ret; 875 } 876 877 if (ssc->pdata->use_dma) 878 ret = atmel_pcm_dma_platform_register(dev); 879 else 880 ret = atmel_pcm_pdc_platform_register(dev); 881 882 if (ret) { 883 dev_err(dev, "Could not register PCM: %d\n", ret); 884 return ret; 885 } 886 887 return 0; 888 } 889 890 /** 891 * atmel_ssc_set_audio - Allocate the specified SSC for audio use. 892 */ 893 int atmel_ssc_set_audio(int ssc_id) 894 { 895 struct ssc_device *ssc; 896 int ret; 897 898 /* If we can grab the SSC briefly to parent the DAI device off it */ 899 ssc = ssc_request(ssc_id); 900 if (IS_ERR(ssc)) { 901 pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n", 902 PTR_ERR(ssc)); 903 return PTR_ERR(ssc); 904 } else { 905 ssc_info[ssc_id].ssc = ssc; 906 } 907 908 ret = asoc_ssc_init(&ssc->pdev->dev); 909 910 return ret; 911 } 912 EXPORT_SYMBOL_GPL(atmel_ssc_set_audio); 913 914 void atmel_ssc_put_audio(int ssc_id) 915 { 916 struct ssc_device *ssc = ssc_info[ssc_id].ssc; 917 918 ssc_free(ssc); 919 } 920 EXPORT_SYMBOL_GPL(atmel_ssc_put_audio); 921 922 /* Module information */ 923 MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com"); 924 MODULE_DESCRIPTION("ATMEL SSC ASoC Interface"); 925 MODULE_LICENSE("GPL"); 926