1 /* 2 * atmel_ssc_dai.c -- ALSA SoC ATMEL SSC Audio Layer Platform driver 3 * 4 * Copyright (C) 2005 SAN People 5 * Copyright (C) 2008 Atmel 6 * 7 * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com> 8 * ATMEL CORP. 9 * 10 * Based on at91-ssc.c by 11 * Frank Mandarino <fmandarino@endrelia.com> 12 * Based on pxa2xx Platform drivers by 13 * Liam Girdwood <lrg@slimlogic.co.uk> 14 * 15 * This program is free software; you can redistribute it and/or modify 16 * it under the terms of the GNU General Public License as published by 17 * the Free Software Foundation; either version 2 of the License, or 18 * (at your option) any later version. 19 * 20 * This program is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 23 * GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with this program; if not, write to the Free Software 27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 28 */ 29 30 #include <linux/init.h> 31 #include <linux/module.h> 32 #include <linux/interrupt.h> 33 #include <linux/device.h> 34 #include <linux/delay.h> 35 #include <linux/clk.h> 36 #include <linux/atmel_pdc.h> 37 38 #include <linux/atmel-ssc.h> 39 #include <sound/core.h> 40 #include <sound/pcm.h> 41 #include <sound/pcm_params.h> 42 #include <sound/initval.h> 43 #include <sound/soc.h> 44 45 #include "atmel-pcm.h" 46 #include "atmel_ssc_dai.h" 47 48 49 #define NUM_SSC_DEVICES 3 50 51 /* 52 * SSC PDC registers required by the PCM DMA engine. 53 */ 54 static struct atmel_pdc_regs pdc_tx_reg = { 55 .xpr = ATMEL_PDC_TPR, 56 .xcr = ATMEL_PDC_TCR, 57 .xnpr = ATMEL_PDC_TNPR, 58 .xncr = ATMEL_PDC_TNCR, 59 }; 60 61 static struct atmel_pdc_regs pdc_rx_reg = { 62 .xpr = ATMEL_PDC_RPR, 63 .xcr = ATMEL_PDC_RCR, 64 .xnpr = ATMEL_PDC_RNPR, 65 .xncr = ATMEL_PDC_RNCR, 66 }; 67 68 /* 69 * SSC & PDC status bits for transmit and receive. 70 */ 71 static struct atmel_ssc_mask ssc_tx_mask = { 72 .ssc_enable = SSC_BIT(CR_TXEN), 73 .ssc_disable = SSC_BIT(CR_TXDIS), 74 .ssc_endx = SSC_BIT(SR_ENDTX), 75 .ssc_endbuf = SSC_BIT(SR_TXBUFE), 76 .ssc_error = SSC_BIT(SR_OVRUN), 77 .pdc_enable = ATMEL_PDC_TXTEN, 78 .pdc_disable = ATMEL_PDC_TXTDIS, 79 }; 80 81 static struct atmel_ssc_mask ssc_rx_mask = { 82 .ssc_enable = SSC_BIT(CR_RXEN), 83 .ssc_disable = SSC_BIT(CR_RXDIS), 84 .ssc_endx = SSC_BIT(SR_ENDRX), 85 .ssc_endbuf = SSC_BIT(SR_RXBUFF), 86 .ssc_error = SSC_BIT(SR_OVRUN), 87 .pdc_enable = ATMEL_PDC_RXTEN, 88 .pdc_disable = ATMEL_PDC_RXTDIS, 89 }; 90 91 92 /* 93 * DMA parameters. 94 */ 95 static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = { 96 {{ 97 .name = "SSC0 PCM out", 98 .pdc = &pdc_tx_reg, 99 .mask = &ssc_tx_mask, 100 }, 101 { 102 .name = "SSC0 PCM in", 103 .pdc = &pdc_rx_reg, 104 .mask = &ssc_rx_mask, 105 } }, 106 {{ 107 .name = "SSC1 PCM out", 108 .pdc = &pdc_tx_reg, 109 .mask = &ssc_tx_mask, 110 }, 111 { 112 .name = "SSC1 PCM in", 113 .pdc = &pdc_rx_reg, 114 .mask = &ssc_rx_mask, 115 } }, 116 {{ 117 .name = "SSC2 PCM out", 118 .pdc = &pdc_tx_reg, 119 .mask = &ssc_tx_mask, 120 }, 121 { 122 .name = "SSC2 PCM in", 123 .pdc = &pdc_rx_reg, 124 .mask = &ssc_rx_mask, 125 } }, 126 }; 127 128 129 static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = { 130 { 131 .name = "ssc0", 132 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock), 133 .dir_mask = SSC_DIR_MASK_UNUSED, 134 .initialized = 0, 135 }, 136 { 137 .name = "ssc1", 138 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock), 139 .dir_mask = SSC_DIR_MASK_UNUSED, 140 .initialized = 0, 141 }, 142 { 143 .name = "ssc2", 144 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock), 145 .dir_mask = SSC_DIR_MASK_UNUSED, 146 .initialized = 0, 147 }, 148 }; 149 150 151 /* 152 * SSC interrupt handler. Passes PDC interrupts to the DMA 153 * interrupt handler in the PCM driver. 154 */ 155 static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id) 156 { 157 struct atmel_ssc_info *ssc_p = dev_id; 158 struct atmel_pcm_dma_params *dma_params; 159 u32 ssc_sr; 160 u32 ssc_substream_mask; 161 int i; 162 163 ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR) 164 & (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR); 165 166 /* 167 * Loop through the substreams attached to this SSC. If 168 * a DMA-related interrupt occurred on that substream, call 169 * the DMA interrupt handler function, if one has been 170 * registered in the dma_params structure by the PCM driver. 171 */ 172 for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) { 173 dma_params = ssc_p->dma_params[i]; 174 175 if ((dma_params != NULL) && 176 (dma_params->dma_intr_handler != NULL)) { 177 ssc_substream_mask = (dma_params->mask->ssc_endx | 178 dma_params->mask->ssc_endbuf); 179 if (ssc_sr & ssc_substream_mask) { 180 dma_params->dma_intr_handler(ssc_sr, 181 dma_params-> 182 substream); 183 } 184 } 185 } 186 187 return IRQ_HANDLED; 188 } 189 190 /* 191 * When the bit clock is input, limit the maximum rate according to the 192 * Serial Clock Ratio Considerations section from the SSC documentation: 193 * 194 * The Transmitter and the Receiver can be programmed to operate 195 * with the clock signals provided on either the TK or RK pins. 196 * This allows the SSC to support many slave-mode data transfers. 197 * In this case, the maximum clock speed allowed on the RK pin is: 198 * - Peripheral clock divided by 2 if Receiver Frame Synchro is input 199 * - Peripheral clock divided by 3 if Receiver Frame Synchro is output 200 * In addition, the maximum clock speed allowed on the TK pin is: 201 * - Peripheral clock divided by 6 if Transmit Frame Synchro is input 202 * - Peripheral clock divided by 2 if Transmit Frame Synchro is output 203 * 204 * When the bit clock is output, limit the rate according to the 205 * SSC divider restrictions. 206 */ 207 static int atmel_ssc_hw_rule_rate(struct snd_pcm_hw_params *params, 208 struct snd_pcm_hw_rule *rule) 209 { 210 struct atmel_ssc_info *ssc_p = rule->private; 211 struct ssc_device *ssc = ssc_p->ssc; 212 struct snd_interval *i = hw_param_interval(params, rule->var); 213 struct snd_interval t; 214 struct snd_ratnum r = { 215 .den_min = 1, 216 .den_max = 4095, 217 .den_step = 1, 218 }; 219 unsigned int num = 0, den = 0; 220 int frame_size; 221 int mck_div = 2; 222 int ret; 223 224 frame_size = snd_soc_params_to_frame_size(params); 225 if (frame_size < 0) 226 return frame_size; 227 228 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) { 229 case SND_SOC_DAIFMT_CBM_CFS: 230 if ((ssc_p->dir_mask & SSC_DIR_MASK_CAPTURE) 231 && ssc->clk_from_rk_pin) 232 /* Receiver Frame Synchro (i.e. capture) 233 * is output (format is _CFS) and the RK pin 234 * is used for input (format is _CBM_). 235 */ 236 mck_div = 3; 237 break; 238 239 case SND_SOC_DAIFMT_CBM_CFM: 240 if ((ssc_p->dir_mask & SSC_DIR_MASK_PLAYBACK) 241 && !ssc->clk_from_rk_pin) 242 /* Transmit Frame Synchro (i.e. playback) 243 * is input (format is _CFM) and the TK pin 244 * is used for input (format _CBM_ but not 245 * using the RK pin). 246 */ 247 mck_div = 6; 248 break; 249 } 250 251 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) { 252 case SND_SOC_DAIFMT_CBS_CFS: 253 r.num = ssc_p->mck_rate / mck_div / frame_size; 254 255 ret = snd_interval_ratnum(i, 1, &r, &num, &den); 256 if (ret >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 257 params->rate_num = num; 258 params->rate_den = den; 259 } 260 break; 261 262 case SND_SOC_DAIFMT_CBM_CFS: 263 case SND_SOC_DAIFMT_CBM_CFM: 264 t.min = 8000; 265 t.max = ssc_p->mck_rate / mck_div / frame_size; 266 t.openmin = t.openmax = 0; 267 t.integer = 0; 268 ret = snd_interval_refine(i, &t); 269 break; 270 271 default: 272 ret = -EINVAL; 273 break; 274 } 275 276 return ret; 277 } 278 279 /*-------------------------------------------------------------------------*\ 280 * DAI functions 281 \*-------------------------------------------------------------------------*/ 282 /* 283 * Startup. Only that one substream allowed in each direction. 284 */ 285 static int atmel_ssc_startup(struct snd_pcm_substream *substream, 286 struct snd_soc_dai *dai) 287 { 288 struct platform_device *pdev = to_platform_device(dai->dev); 289 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id]; 290 struct atmel_pcm_dma_params *dma_params; 291 int dir, dir_mask; 292 int ret; 293 294 pr_debug("atmel_ssc_startup: SSC_SR=0x%x\n", 295 ssc_readl(ssc_p->ssc->regs, SR)); 296 297 /* Enable PMC peripheral clock for this SSC */ 298 pr_debug("atmel_ssc_dai: Starting clock\n"); 299 clk_enable(ssc_p->ssc->clk); 300 ssc_p->mck_rate = clk_get_rate(ssc_p->ssc->clk); 301 302 /* Reset the SSC unless initialized to keep it in a clean state */ 303 if (!ssc_p->initialized) 304 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST)); 305 306 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 307 dir = 0; 308 dir_mask = SSC_DIR_MASK_PLAYBACK; 309 } else { 310 dir = 1; 311 dir_mask = SSC_DIR_MASK_CAPTURE; 312 } 313 314 ret = snd_pcm_hw_rule_add(substream->runtime, 0, 315 SNDRV_PCM_HW_PARAM_RATE, 316 atmel_ssc_hw_rule_rate, 317 ssc_p, 318 SNDRV_PCM_HW_PARAM_FRAME_BITS, 319 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 320 if (ret < 0) { 321 dev_err(dai->dev, "Failed to specify rate rule: %d\n", ret); 322 return ret; 323 } 324 325 dma_params = &ssc_dma_params[pdev->id][dir]; 326 dma_params->ssc = ssc_p->ssc; 327 dma_params->substream = substream; 328 329 ssc_p->dma_params[dir] = dma_params; 330 331 snd_soc_dai_set_dma_data(dai, substream, dma_params); 332 333 spin_lock_irq(&ssc_p->lock); 334 if (ssc_p->dir_mask & dir_mask) { 335 spin_unlock_irq(&ssc_p->lock); 336 return -EBUSY; 337 } 338 ssc_p->dir_mask |= dir_mask; 339 spin_unlock_irq(&ssc_p->lock); 340 341 return 0; 342 } 343 344 /* 345 * Shutdown. Clear DMA parameters and shutdown the SSC if there 346 * are no other substreams open. 347 */ 348 static void atmel_ssc_shutdown(struct snd_pcm_substream *substream, 349 struct snd_soc_dai *dai) 350 { 351 struct platform_device *pdev = to_platform_device(dai->dev); 352 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id]; 353 struct atmel_pcm_dma_params *dma_params; 354 int dir, dir_mask; 355 356 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 357 dir = 0; 358 else 359 dir = 1; 360 361 dma_params = ssc_p->dma_params[dir]; 362 363 if (dma_params != NULL) { 364 dma_params->ssc = NULL; 365 dma_params->substream = NULL; 366 ssc_p->dma_params[dir] = NULL; 367 } 368 369 dir_mask = 1 << dir; 370 371 spin_lock_irq(&ssc_p->lock); 372 ssc_p->dir_mask &= ~dir_mask; 373 if (!ssc_p->dir_mask) { 374 if (ssc_p->initialized) { 375 free_irq(ssc_p->ssc->irq, ssc_p); 376 ssc_p->initialized = 0; 377 } 378 379 /* Reset the SSC */ 380 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST)); 381 /* Clear the SSC dividers */ 382 ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0; 383 ssc_p->forced_divider = 0; 384 } 385 spin_unlock_irq(&ssc_p->lock); 386 387 /* Shutdown the SSC clock. */ 388 pr_debug("atmel_ssc_dai: Stopping clock\n"); 389 clk_disable(ssc_p->ssc->clk); 390 } 391 392 393 /* 394 * Record the DAI format for use in hw_params(). 395 */ 396 static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai, 397 unsigned int fmt) 398 { 399 struct platform_device *pdev = to_platform_device(cpu_dai->dev); 400 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id]; 401 402 ssc_p->daifmt = fmt; 403 return 0; 404 } 405 406 /* 407 * Record SSC clock dividers for use in hw_params(). 408 */ 409 static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai, 410 int div_id, int div) 411 { 412 struct platform_device *pdev = to_platform_device(cpu_dai->dev); 413 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id]; 414 415 switch (div_id) { 416 case ATMEL_SSC_CMR_DIV: 417 /* 418 * The same master clock divider is used for both 419 * transmit and receive, so if a value has already 420 * been set, it must match this value. 421 */ 422 if (ssc_p->dir_mask != 423 (SSC_DIR_MASK_PLAYBACK | SSC_DIR_MASK_CAPTURE)) 424 ssc_p->cmr_div = div; 425 else if (ssc_p->cmr_div == 0) 426 ssc_p->cmr_div = div; 427 else 428 if (div != ssc_p->cmr_div) 429 return -EBUSY; 430 ssc_p->forced_divider |= BIT(ATMEL_SSC_CMR_DIV); 431 break; 432 433 case ATMEL_SSC_TCMR_PERIOD: 434 ssc_p->tcmr_period = div; 435 ssc_p->forced_divider |= BIT(ATMEL_SSC_TCMR_PERIOD); 436 break; 437 438 case ATMEL_SSC_RCMR_PERIOD: 439 ssc_p->rcmr_period = div; 440 ssc_p->forced_divider |= BIT(ATMEL_SSC_RCMR_PERIOD); 441 break; 442 443 default: 444 return -EINVAL; 445 } 446 447 return 0; 448 } 449 450 /* Is the cpu-dai master of the frame clock? */ 451 static int atmel_ssc_cfs(struct atmel_ssc_info *ssc_p) 452 { 453 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) { 454 case SND_SOC_DAIFMT_CBM_CFS: 455 case SND_SOC_DAIFMT_CBS_CFS: 456 return 1; 457 } 458 return 0; 459 } 460 461 /* Is the cpu-dai master of the bit clock? */ 462 static int atmel_ssc_cbs(struct atmel_ssc_info *ssc_p) 463 { 464 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) { 465 case SND_SOC_DAIFMT_CBS_CFM: 466 case SND_SOC_DAIFMT_CBS_CFS: 467 return 1; 468 } 469 return 0; 470 } 471 472 /* 473 * Configure the SSC. 474 */ 475 static int atmel_ssc_hw_params(struct snd_pcm_substream *substream, 476 struct snd_pcm_hw_params *params, 477 struct snd_soc_dai *dai) 478 { 479 struct platform_device *pdev = to_platform_device(dai->dev); 480 int id = pdev->id; 481 struct atmel_ssc_info *ssc_p = &ssc_info[id]; 482 struct ssc_device *ssc = ssc_p->ssc; 483 struct atmel_pcm_dma_params *dma_params; 484 int dir, channels, bits; 485 u32 tfmr, rfmr, tcmr, rcmr; 486 int ret; 487 int fslen, fslen_ext; 488 u32 cmr_div; 489 u32 tcmr_period; 490 u32 rcmr_period; 491 492 /* 493 * Currently, there is only one set of dma params for 494 * each direction. If more are added, this code will 495 * have to be changed to select the proper set. 496 */ 497 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 498 dir = 0; 499 else 500 dir = 1; 501 502 /* 503 * If the cpu dai should provide BCLK, but noone has provided the 504 * divider needed for that to work, fall back to something sensible. 505 */ 506 cmr_div = ssc_p->cmr_div; 507 if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_CMR_DIV)) && 508 atmel_ssc_cbs(ssc_p)) { 509 int bclk_rate = snd_soc_params_to_bclk(params); 510 511 if (bclk_rate < 0) { 512 dev_err(dai->dev, "unable to calculate cmr_div: %d\n", 513 bclk_rate); 514 return bclk_rate; 515 } 516 517 cmr_div = DIV_ROUND_CLOSEST(ssc_p->mck_rate, 2 * bclk_rate); 518 } 519 520 /* 521 * If the cpu dai should provide LRCLK, but noone has provided the 522 * dividers needed for that to work, fall back to something sensible. 523 */ 524 tcmr_period = ssc_p->tcmr_period; 525 rcmr_period = ssc_p->rcmr_period; 526 if (atmel_ssc_cfs(ssc_p)) { 527 int frame_size = snd_soc_params_to_frame_size(params); 528 529 if (frame_size < 0) { 530 dev_err(dai->dev, 531 "unable to calculate tx/rx cmr_period: %d\n", 532 frame_size); 533 return frame_size; 534 } 535 536 if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_TCMR_PERIOD))) 537 tcmr_period = frame_size / 2 - 1; 538 if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_RCMR_PERIOD))) 539 rcmr_period = frame_size / 2 - 1; 540 } 541 542 dma_params = ssc_p->dma_params[dir]; 543 544 channels = params_channels(params); 545 546 /* 547 * Determine sample size in bits and the PDC increment. 548 */ 549 switch (params_format(params)) { 550 case SNDRV_PCM_FORMAT_S8: 551 bits = 8; 552 dma_params->pdc_xfer_size = 1; 553 break; 554 case SNDRV_PCM_FORMAT_S16_LE: 555 bits = 16; 556 dma_params->pdc_xfer_size = 2; 557 break; 558 case SNDRV_PCM_FORMAT_S24_LE: 559 bits = 24; 560 dma_params->pdc_xfer_size = 4; 561 break; 562 case SNDRV_PCM_FORMAT_S32_LE: 563 bits = 32; 564 dma_params->pdc_xfer_size = 4; 565 break; 566 default: 567 printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format"); 568 return -EINVAL; 569 } 570 571 /* 572 * Compute SSC register settings. 573 */ 574 switch (ssc_p->daifmt 575 & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) { 576 577 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS: 578 /* 579 * I2S format, SSC provides BCLK and LRC clocks. 580 * 581 * The SSC transmit and receive clocks are generated 582 * from the MCK divider, and the BCLK signal 583 * is output on the SSC TK line. 584 */ 585 586 if (bits > 16 && !ssc->pdata->has_fslen_ext) { 587 dev_err(dai->dev, 588 "sample size %d is too large for SSC device\n", 589 bits); 590 return -EINVAL; 591 } 592 593 fslen_ext = (bits - 1) / 16; 594 fslen = (bits - 1) % 16; 595 596 rcmr = SSC_BF(RCMR_PERIOD, rcmr_period) 597 | SSC_BF(RCMR_STTDLY, START_DELAY) 598 | SSC_BF(RCMR_START, SSC_START_FALLING_RF) 599 | SSC_BF(RCMR_CKI, SSC_CKI_RISING) 600 | SSC_BF(RCMR_CKO, SSC_CKO_NONE) 601 | SSC_BF(RCMR_CKS, SSC_CKS_DIV); 602 603 rfmr = SSC_BF(RFMR_FSLEN_EXT, fslen_ext) 604 | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 605 | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE) 606 | SSC_BF(RFMR_FSLEN, fslen) 607 | SSC_BF(RFMR_DATNB, (channels - 1)) 608 | SSC_BIT(RFMR_MSBF) 609 | SSC_BF(RFMR_LOOP, 0) 610 | SSC_BF(RFMR_DATLEN, (bits - 1)); 611 612 tcmr = SSC_BF(TCMR_PERIOD, tcmr_period) 613 | SSC_BF(TCMR_STTDLY, START_DELAY) 614 | SSC_BF(TCMR_START, SSC_START_FALLING_RF) 615 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING) 616 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS) 617 | SSC_BF(TCMR_CKS, SSC_CKS_DIV); 618 619 tfmr = SSC_BF(TFMR_FSLEN_EXT, fslen_ext) 620 | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 621 | SSC_BF(TFMR_FSDEN, 0) 622 | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE) 623 | SSC_BF(TFMR_FSLEN, fslen) 624 | SSC_BF(TFMR_DATNB, (channels - 1)) 625 | SSC_BIT(TFMR_MSBF) 626 | SSC_BF(TFMR_DATDEF, 0) 627 | SSC_BF(TFMR_DATLEN, (bits - 1)); 628 break; 629 630 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM: 631 /* I2S format, CODEC supplies BCLK and LRC clocks. */ 632 rcmr = SSC_BF(RCMR_PERIOD, 0) 633 | SSC_BF(RCMR_STTDLY, START_DELAY) 634 | SSC_BF(RCMR_START, SSC_START_FALLING_RF) 635 | SSC_BF(RCMR_CKI, SSC_CKI_RISING) 636 | SSC_BF(RCMR_CKO, SSC_CKO_NONE) 637 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ? 638 SSC_CKS_PIN : SSC_CKS_CLOCK); 639 640 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 641 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE) 642 | SSC_BF(RFMR_FSLEN, 0) 643 | SSC_BF(RFMR_DATNB, (channels - 1)) 644 | SSC_BIT(RFMR_MSBF) 645 | SSC_BF(RFMR_LOOP, 0) 646 | SSC_BF(RFMR_DATLEN, (bits - 1)); 647 648 tcmr = SSC_BF(TCMR_PERIOD, 0) 649 | SSC_BF(TCMR_STTDLY, START_DELAY) 650 | SSC_BF(TCMR_START, SSC_START_FALLING_RF) 651 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING) 652 | SSC_BF(TCMR_CKO, SSC_CKO_NONE) 653 | SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ? 654 SSC_CKS_CLOCK : SSC_CKS_PIN); 655 656 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 657 | SSC_BF(TFMR_FSDEN, 0) 658 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE) 659 | SSC_BF(TFMR_FSLEN, 0) 660 | SSC_BF(TFMR_DATNB, (channels - 1)) 661 | SSC_BIT(TFMR_MSBF) 662 | SSC_BF(TFMR_DATDEF, 0) 663 | SSC_BF(TFMR_DATLEN, (bits - 1)); 664 break; 665 666 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFS: 667 /* I2S format, CODEC supplies BCLK, SSC supplies LRCLK. */ 668 if (bits > 16 && !ssc->pdata->has_fslen_ext) { 669 dev_err(dai->dev, 670 "sample size %d is too large for SSC device\n", 671 bits); 672 return -EINVAL; 673 } 674 675 fslen_ext = (bits - 1) / 16; 676 fslen = (bits - 1) % 16; 677 678 rcmr = SSC_BF(RCMR_PERIOD, rcmr_period) 679 | SSC_BF(RCMR_STTDLY, START_DELAY) 680 | SSC_BF(RCMR_START, SSC_START_FALLING_RF) 681 | SSC_BF(RCMR_CKI, SSC_CKI_RISING) 682 | SSC_BF(RCMR_CKO, SSC_CKO_NONE) 683 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ? 684 SSC_CKS_PIN : SSC_CKS_CLOCK); 685 686 rfmr = SSC_BF(RFMR_FSLEN_EXT, fslen_ext) 687 | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 688 | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE) 689 | SSC_BF(RFMR_FSLEN, fslen) 690 | SSC_BF(RFMR_DATNB, (channels - 1)) 691 | SSC_BIT(RFMR_MSBF) 692 | SSC_BF(RFMR_LOOP, 0) 693 | SSC_BF(RFMR_DATLEN, (bits - 1)); 694 695 tcmr = SSC_BF(TCMR_PERIOD, tcmr_period) 696 | SSC_BF(TCMR_STTDLY, START_DELAY) 697 | SSC_BF(TCMR_START, SSC_START_FALLING_RF) 698 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING) 699 | SSC_BF(TCMR_CKO, SSC_CKO_NONE) 700 | SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ? 701 SSC_CKS_CLOCK : SSC_CKS_PIN); 702 703 tfmr = SSC_BF(TFMR_FSLEN_EXT, fslen_ext) 704 | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_NEGATIVE) 705 | SSC_BF(TFMR_FSDEN, 0) 706 | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE) 707 | SSC_BF(TFMR_FSLEN, fslen) 708 | SSC_BF(TFMR_DATNB, (channels - 1)) 709 | SSC_BIT(TFMR_MSBF) 710 | SSC_BF(TFMR_DATDEF, 0) 711 | SSC_BF(TFMR_DATLEN, (bits - 1)); 712 break; 713 714 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS: 715 /* 716 * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks. 717 * 718 * The SSC transmit and receive clocks are generated from the 719 * MCK divider, and the BCLK signal is output 720 * on the SSC TK line. 721 */ 722 rcmr = SSC_BF(RCMR_PERIOD, rcmr_period) 723 | SSC_BF(RCMR_STTDLY, 1) 724 | SSC_BF(RCMR_START, SSC_START_RISING_RF) 725 | SSC_BF(RCMR_CKI, SSC_CKI_RISING) 726 | SSC_BF(RCMR_CKO, SSC_CKO_NONE) 727 | SSC_BF(RCMR_CKS, SSC_CKS_DIV); 728 729 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 730 | SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE) 731 | SSC_BF(RFMR_FSLEN, 0) 732 | SSC_BF(RFMR_DATNB, (channels - 1)) 733 | SSC_BIT(RFMR_MSBF) 734 | SSC_BF(RFMR_LOOP, 0) 735 | SSC_BF(RFMR_DATLEN, (bits - 1)); 736 737 tcmr = SSC_BF(TCMR_PERIOD, tcmr_period) 738 | SSC_BF(TCMR_STTDLY, 1) 739 | SSC_BF(TCMR_START, SSC_START_RISING_RF) 740 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING) 741 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS) 742 | SSC_BF(TCMR_CKS, SSC_CKS_DIV); 743 744 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 745 | SSC_BF(TFMR_FSDEN, 0) 746 | SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE) 747 | SSC_BF(TFMR_FSLEN, 0) 748 | SSC_BF(TFMR_DATNB, (channels - 1)) 749 | SSC_BIT(TFMR_MSBF) 750 | SSC_BF(TFMR_DATDEF, 0) 751 | SSC_BF(TFMR_DATLEN, (bits - 1)); 752 break; 753 754 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM: 755 /* 756 * DSP/PCM Mode A format, CODEC supplies BCLK and LRC clocks. 757 * 758 * Data is transferred on first BCLK after LRC pulse rising 759 * edge.If stereo, the right channel data is contiguous with 760 * the left channel data. 761 */ 762 rcmr = SSC_BF(RCMR_PERIOD, 0) 763 | SSC_BF(RCMR_STTDLY, START_DELAY) 764 | SSC_BF(RCMR_START, SSC_START_RISING_RF) 765 | SSC_BF(RCMR_CKI, SSC_CKI_RISING) 766 | SSC_BF(RCMR_CKO, SSC_CKO_NONE) 767 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ? 768 SSC_CKS_PIN : SSC_CKS_CLOCK); 769 770 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 771 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE) 772 | SSC_BF(RFMR_FSLEN, 0) 773 | SSC_BF(RFMR_DATNB, (channels - 1)) 774 | SSC_BIT(RFMR_MSBF) 775 | SSC_BF(RFMR_LOOP, 0) 776 | SSC_BF(RFMR_DATLEN, (bits - 1)); 777 778 tcmr = SSC_BF(TCMR_PERIOD, 0) 779 | SSC_BF(TCMR_STTDLY, START_DELAY) 780 | SSC_BF(TCMR_START, SSC_START_RISING_RF) 781 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING) 782 | SSC_BF(TCMR_CKO, SSC_CKO_NONE) 783 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ? 784 SSC_CKS_CLOCK : SSC_CKS_PIN); 785 786 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 787 | SSC_BF(TFMR_FSDEN, 0) 788 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE) 789 | SSC_BF(TFMR_FSLEN, 0) 790 | SSC_BF(TFMR_DATNB, (channels - 1)) 791 | SSC_BIT(TFMR_MSBF) 792 | SSC_BF(TFMR_DATDEF, 0) 793 | SSC_BF(TFMR_DATLEN, (bits - 1)); 794 break; 795 796 default: 797 printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n", 798 ssc_p->daifmt); 799 return -EINVAL; 800 } 801 pr_debug("atmel_ssc_hw_params: " 802 "RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n", 803 rcmr, rfmr, tcmr, tfmr); 804 805 if (!ssc_p->initialized) { 806 if (!ssc_p->ssc->pdata->use_dma) { 807 ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0); 808 ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0); 809 ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0); 810 ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0); 811 812 ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0); 813 ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0); 814 ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0); 815 ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0); 816 } 817 818 ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0, 819 ssc_p->name, ssc_p); 820 if (ret < 0) { 821 printk(KERN_WARNING 822 "atmel_ssc_dai: request_irq failure\n"); 823 pr_debug("Atmel_ssc_dai: Stoping clock\n"); 824 clk_disable(ssc_p->ssc->clk); 825 return ret; 826 } 827 828 ssc_p->initialized = 1; 829 } 830 831 /* set SSC clock mode register */ 832 ssc_writel(ssc_p->ssc->regs, CMR, cmr_div); 833 834 /* set receive clock mode and format */ 835 ssc_writel(ssc_p->ssc->regs, RCMR, rcmr); 836 ssc_writel(ssc_p->ssc->regs, RFMR, rfmr); 837 838 /* set transmit clock mode and format */ 839 ssc_writel(ssc_p->ssc->regs, TCMR, tcmr); 840 ssc_writel(ssc_p->ssc->regs, TFMR, tfmr); 841 842 pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n"); 843 return 0; 844 } 845 846 847 static int atmel_ssc_prepare(struct snd_pcm_substream *substream, 848 struct snd_soc_dai *dai) 849 { 850 struct platform_device *pdev = to_platform_device(dai->dev); 851 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id]; 852 struct atmel_pcm_dma_params *dma_params; 853 int dir; 854 855 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 856 dir = 0; 857 else 858 dir = 1; 859 860 dma_params = ssc_p->dma_params[dir]; 861 862 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable); 863 ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error); 864 865 pr_debug("%s enabled SSC_SR=0x%08x\n", 866 dir ? "receive" : "transmit", 867 ssc_readl(ssc_p->ssc->regs, SR)); 868 return 0; 869 } 870 871 static int atmel_ssc_trigger(struct snd_pcm_substream *substream, 872 int cmd, struct snd_soc_dai *dai) 873 { 874 struct platform_device *pdev = to_platform_device(dai->dev); 875 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id]; 876 struct atmel_pcm_dma_params *dma_params; 877 int dir; 878 879 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 880 dir = 0; 881 else 882 dir = 1; 883 884 dma_params = ssc_p->dma_params[dir]; 885 886 switch (cmd) { 887 case SNDRV_PCM_TRIGGER_START: 888 case SNDRV_PCM_TRIGGER_RESUME: 889 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 890 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable); 891 break; 892 default: 893 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable); 894 break; 895 } 896 897 return 0; 898 } 899 900 #ifdef CONFIG_PM 901 static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai) 902 { 903 struct atmel_ssc_info *ssc_p; 904 struct platform_device *pdev = to_platform_device(cpu_dai->dev); 905 906 if (!cpu_dai->active) 907 return 0; 908 909 ssc_p = &ssc_info[pdev->id]; 910 911 /* Save the status register before disabling transmit and receive */ 912 ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR); 913 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS)); 914 915 /* Save the current interrupt mask, then disable unmasked interrupts */ 916 ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR); 917 ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr); 918 919 ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR); 920 ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR); 921 ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR); 922 ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR); 923 ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR); 924 925 return 0; 926 } 927 928 929 930 static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai) 931 { 932 struct atmel_ssc_info *ssc_p; 933 struct platform_device *pdev = to_platform_device(cpu_dai->dev); 934 u32 cr; 935 936 if (!cpu_dai->active) 937 return 0; 938 939 ssc_p = &ssc_info[pdev->id]; 940 941 /* restore SSC register settings */ 942 ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr); 943 ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr); 944 ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr); 945 ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr); 946 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr); 947 948 /* re-enable interrupts */ 949 ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr); 950 951 /* Re-enable receive and transmit as appropriate */ 952 cr = 0; 953 cr |= 954 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0; 955 cr |= 956 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0; 957 ssc_writel(ssc_p->ssc->regs, CR, cr); 958 959 return 0; 960 } 961 #else /* CONFIG_PM */ 962 # define atmel_ssc_suspend NULL 963 # define atmel_ssc_resume NULL 964 #endif /* CONFIG_PM */ 965 966 #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\ 967 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE) 968 969 static const struct snd_soc_dai_ops atmel_ssc_dai_ops = { 970 .startup = atmel_ssc_startup, 971 .shutdown = atmel_ssc_shutdown, 972 .prepare = atmel_ssc_prepare, 973 .trigger = atmel_ssc_trigger, 974 .hw_params = atmel_ssc_hw_params, 975 .set_fmt = atmel_ssc_set_dai_fmt, 976 .set_clkdiv = atmel_ssc_set_dai_clkdiv, 977 }; 978 979 static struct snd_soc_dai_driver atmel_ssc_dai = { 980 .suspend = atmel_ssc_suspend, 981 .resume = atmel_ssc_resume, 982 .playback = { 983 .channels_min = 1, 984 .channels_max = 2, 985 .rates = SNDRV_PCM_RATE_CONTINUOUS, 986 .rate_min = 8000, 987 .rate_max = 384000, 988 .formats = ATMEL_SSC_FORMATS,}, 989 .capture = { 990 .channels_min = 1, 991 .channels_max = 2, 992 .rates = SNDRV_PCM_RATE_CONTINUOUS, 993 .rate_min = 8000, 994 .rate_max = 384000, 995 .formats = ATMEL_SSC_FORMATS,}, 996 .ops = &atmel_ssc_dai_ops, 997 }; 998 999 static const struct snd_soc_component_driver atmel_ssc_component = { 1000 .name = "atmel-ssc", 1001 }; 1002 1003 static int asoc_ssc_init(struct device *dev) 1004 { 1005 struct platform_device *pdev = to_platform_device(dev); 1006 struct ssc_device *ssc = platform_get_drvdata(pdev); 1007 int ret; 1008 1009 ret = snd_soc_register_component(dev, &atmel_ssc_component, 1010 &atmel_ssc_dai, 1); 1011 if (ret) { 1012 dev_err(dev, "Could not register DAI: %d\n", ret); 1013 goto err; 1014 } 1015 1016 if (ssc->pdata->use_dma) 1017 ret = atmel_pcm_dma_platform_register(dev); 1018 else 1019 ret = atmel_pcm_pdc_platform_register(dev); 1020 1021 if (ret) { 1022 dev_err(dev, "Could not register PCM: %d\n", ret); 1023 goto err_unregister_dai; 1024 } 1025 1026 return 0; 1027 1028 err_unregister_dai: 1029 snd_soc_unregister_component(dev); 1030 err: 1031 return ret; 1032 } 1033 1034 static void asoc_ssc_exit(struct device *dev) 1035 { 1036 struct platform_device *pdev = to_platform_device(dev); 1037 struct ssc_device *ssc = platform_get_drvdata(pdev); 1038 1039 if (ssc->pdata->use_dma) 1040 atmel_pcm_dma_platform_unregister(dev); 1041 else 1042 atmel_pcm_pdc_platform_unregister(dev); 1043 1044 snd_soc_unregister_component(dev); 1045 } 1046 1047 /** 1048 * atmel_ssc_set_audio - Allocate the specified SSC for audio use. 1049 */ 1050 int atmel_ssc_set_audio(int ssc_id) 1051 { 1052 struct ssc_device *ssc; 1053 int ret; 1054 1055 /* If we can grab the SSC briefly to parent the DAI device off it */ 1056 ssc = ssc_request(ssc_id); 1057 if (IS_ERR(ssc)) { 1058 pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n", 1059 PTR_ERR(ssc)); 1060 return PTR_ERR(ssc); 1061 } else { 1062 ssc_info[ssc_id].ssc = ssc; 1063 } 1064 1065 ret = asoc_ssc_init(&ssc->pdev->dev); 1066 1067 return ret; 1068 } 1069 EXPORT_SYMBOL_GPL(atmel_ssc_set_audio); 1070 1071 void atmel_ssc_put_audio(int ssc_id) 1072 { 1073 struct ssc_device *ssc = ssc_info[ssc_id].ssc; 1074 1075 asoc_ssc_exit(&ssc->pdev->dev); 1076 ssc_free(ssc); 1077 } 1078 EXPORT_SYMBOL_GPL(atmel_ssc_put_audio); 1079 1080 /* Module information */ 1081 MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com"); 1082 MODULE_DESCRIPTION("ATMEL SSC ASoC Interface"); 1083 MODULE_LICENSE("GPL"); 1084