1 /* 2 * atmel_ssc_dai.c -- ALSA SoC ATMEL SSC Audio Layer Platform driver 3 * 4 * Copyright (C) 2005 SAN People 5 * Copyright (C) 2008 Atmel 6 * 7 * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com> 8 * ATMEL CORP. 9 * 10 * Based on at91-ssc.c by 11 * Frank Mandarino <fmandarino@endrelia.com> 12 * Based on pxa2xx Platform drivers by 13 * Liam Girdwood <lrg@slimlogic.co.uk> 14 * 15 * This program is free software; you can redistribute it and/or modify 16 * it under the terms of the GNU General Public License as published by 17 * the Free Software Foundation; either version 2 of the License, or 18 * (at your option) any later version. 19 * 20 * This program is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 23 * GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with this program; if not, write to the Free Software 27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 28 */ 29 30 #include <linux/init.h> 31 #include <linux/module.h> 32 #include <linux/interrupt.h> 33 #include <linux/device.h> 34 #include <linux/delay.h> 35 #include <linux/clk.h> 36 #include <linux/atmel_pdc.h> 37 38 #include <linux/atmel-ssc.h> 39 #include <sound/core.h> 40 #include <sound/pcm.h> 41 #include <sound/pcm_params.h> 42 #include <sound/initval.h> 43 #include <sound/soc.h> 44 45 #include "atmel-pcm.h" 46 #include "atmel_ssc_dai.h" 47 48 49 #define NUM_SSC_DEVICES 3 50 51 /* 52 * SSC PDC registers required by the PCM DMA engine. 53 */ 54 static struct atmel_pdc_regs pdc_tx_reg = { 55 .xpr = ATMEL_PDC_TPR, 56 .xcr = ATMEL_PDC_TCR, 57 .xnpr = ATMEL_PDC_TNPR, 58 .xncr = ATMEL_PDC_TNCR, 59 }; 60 61 static struct atmel_pdc_regs pdc_rx_reg = { 62 .xpr = ATMEL_PDC_RPR, 63 .xcr = ATMEL_PDC_RCR, 64 .xnpr = ATMEL_PDC_RNPR, 65 .xncr = ATMEL_PDC_RNCR, 66 }; 67 68 /* 69 * SSC & PDC status bits for transmit and receive. 70 */ 71 static struct atmel_ssc_mask ssc_tx_mask = { 72 .ssc_enable = SSC_BIT(CR_TXEN), 73 .ssc_disable = SSC_BIT(CR_TXDIS), 74 .ssc_endx = SSC_BIT(SR_ENDTX), 75 .ssc_endbuf = SSC_BIT(SR_TXBUFE), 76 .ssc_error = SSC_BIT(SR_OVRUN), 77 .pdc_enable = ATMEL_PDC_TXTEN, 78 .pdc_disable = ATMEL_PDC_TXTDIS, 79 }; 80 81 static struct atmel_ssc_mask ssc_rx_mask = { 82 .ssc_enable = SSC_BIT(CR_RXEN), 83 .ssc_disable = SSC_BIT(CR_RXDIS), 84 .ssc_endx = SSC_BIT(SR_ENDRX), 85 .ssc_endbuf = SSC_BIT(SR_RXBUFF), 86 .ssc_error = SSC_BIT(SR_OVRUN), 87 .pdc_enable = ATMEL_PDC_RXTEN, 88 .pdc_disable = ATMEL_PDC_RXTDIS, 89 }; 90 91 92 /* 93 * DMA parameters. 94 */ 95 static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = { 96 {{ 97 .name = "SSC0 PCM out", 98 .pdc = &pdc_tx_reg, 99 .mask = &ssc_tx_mask, 100 }, 101 { 102 .name = "SSC0 PCM in", 103 .pdc = &pdc_rx_reg, 104 .mask = &ssc_rx_mask, 105 } }, 106 {{ 107 .name = "SSC1 PCM out", 108 .pdc = &pdc_tx_reg, 109 .mask = &ssc_tx_mask, 110 }, 111 { 112 .name = "SSC1 PCM in", 113 .pdc = &pdc_rx_reg, 114 .mask = &ssc_rx_mask, 115 } }, 116 {{ 117 .name = "SSC2 PCM out", 118 .pdc = &pdc_tx_reg, 119 .mask = &ssc_tx_mask, 120 }, 121 { 122 .name = "SSC2 PCM in", 123 .pdc = &pdc_rx_reg, 124 .mask = &ssc_rx_mask, 125 } }, 126 }; 127 128 129 static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = { 130 { 131 .name = "ssc0", 132 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock), 133 .dir_mask = SSC_DIR_MASK_UNUSED, 134 .initialized = 0, 135 }, 136 { 137 .name = "ssc1", 138 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock), 139 .dir_mask = SSC_DIR_MASK_UNUSED, 140 .initialized = 0, 141 }, 142 { 143 .name = "ssc2", 144 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock), 145 .dir_mask = SSC_DIR_MASK_UNUSED, 146 .initialized = 0, 147 }, 148 }; 149 150 151 /* 152 * SSC interrupt handler. Passes PDC interrupts to the DMA 153 * interrupt handler in the PCM driver. 154 */ 155 static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id) 156 { 157 struct atmel_ssc_info *ssc_p = dev_id; 158 struct atmel_pcm_dma_params *dma_params; 159 u32 ssc_sr; 160 u32 ssc_substream_mask; 161 int i; 162 163 ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR) 164 & (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR); 165 166 /* 167 * Loop through the substreams attached to this SSC. If 168 * a DMA-related interrupt occurred on that substream, call 169 * the DMA interrupt handler function, if one has been 170 * registered in the dma_params structure by the PCM driver. 171 */ 172 for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) { 173 dma_params = ssc_p->dma_params[i]; 174 175 if ((dma_params != NULL) && 176 (dma_params->dma_intr_handler != NULL)) { 177 ssc_substream_mask = (dma_params->mask->ssc_endx | 178 dma_params->mask->ssc_endbuf); 179 if (ssc_sr & ssc_substream_mask) { 180 dma_params->dma_intr_handler(ssc_sr, 181 dma_params-> 182 substream); 183 } 184 } 185 } 186 187 return IRQ_HANDLED; 188 } 189 190 /* 191 * When the bit clock is input, limit the maximum rate according to the 192 * Serial Clock Ratio Considerations section from the SSC documentation: 193 * 194 * The Transmitter and the Receiver can be programmed to operate 195 * with the clock signals provided on either the TK or RK pins. 196 * This allows the SSC to support many slave-mode data transfers. 197 * In this case, the maximum clock speed allowed on the RK pin is: 198 * - Peripheral clock divided by 2 if Receiver Frame Synchro is input 199 * - Peripheral clock divided by 3 if Receiver Frame Synchro is output 200 * In addition, the maximum clock speed allowed on the TK pin is: 201 * - Peripheral clock divided by 6 if Transmit Frame Synchro is input 202 * - Peripheral clock divided by 2 if Transmit Frame Synchro is output 203 * 204 * When the bit clock is output, limit the rate according to the 205 * SSC divider restrictions. 206 */ 207 static int atmel_ssc_hw_rule_rate(struct snd_pcm_hw_params *params, 208 struct snd_pcm_hw_rule *rule) 209 { 210 struct atmel_ssc_info *ssc_p = rule->private; 211 struct ssc_device *ssc = ssc_p->ssc; 212 struct snd_interval *i = hw_param_interval(params, rule->var); 213 struct snd_interval t; 214 struct snd_ratnum r = { 215 .den_min = 1, 216 .den_max = 4095, 217 .den_step = 1, 218 }; 219 unsigned int num = 0, den = 0; 220 int frame_size; 221 int mck_div = 2; 222 int ret; 223 224 frame_size = snd_soc_params_to_frame_size(params); 225 if (frame_size < 0) 226 return frame_size; 227 228 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) { 229 case SND_SOC_DAIFMT_CBM_CFS: 230 if ((ssc_p->dir_mask & SSC_DIR_MASK_CAPTURE) 231 && ssc->clk_from_rk_pin) 232 /* Receiver Frame Synchro (i.e. capture) 233 * is output (format is _CFS) and the RK pin 234 * is used for input (format is _CBM_). 235 */ 236 mck_div = 3; 237 break; 238 239 case SND_SOC_DAIFMT_CBM_CFM: 240 if ((ssc_p->dir_mask & SSC_DIR_MASK_PLAYBACK) 241 && !ssc->clk_from_rk_pin) 242 /* Transmit Frame Synchro (i.e. playback) 243 * is input (format is _CFM) and the TK pin 244 * is used for input (format _CBM_ but not 245 * using the RK pin). 246 */ 247 mck_div = 6; 248 break; 249 } 250 251 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) { 252 case SND_SOC_DAIFMT_CBS_CFS: 253 r.num = ssc_p->mck_rate / mck_div / frame_size; 254 255 ret = snd_interval_ratnum(i, 1, &r, &num, &den); 256 if (ret >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 257 params->rate_num = num; 258 params->rate_den = den; 259 } 260 break; 261 262 case SND_SOC_DAIFMT_CBM_CFS: 263 case SND_SOC_DAIFMT_CBM_CFM: 264 t.min = 8000; 265 t.max = ssc_p->mck_rate / mck_div / frame_size; 266 t.openmin = t.openmax = 0; 267 t.integer = 0; 268 ret = snd_interval_refine(i, &t); 269 break; 270 271 default: 272 ret = -EINVAL; 273 break; 274 } 275 276 return ret; 277 } 278 279 /*-------------------------------------------------------------------------*\ 280 * DAI functions 281 \*-------------------------------------------------------------------------*/ 282 /* 283 * Startup. Only that one substream allowed in each direction. 284 */ 285 static int atmel_ssc_startup(struct snd_pcm_substream *substream, 286 struct snd_soc_dai *dai) 287 { 288 struct atmel_ssc_info *ssc_p = &ssc_info[dai->id]; 289 struct atmel_pcm_dma_params *dma_params; 290 int dir, dir_mask; 291 int ret; 292 293 pr_debug("atmel_ssc_startup: SSC_SR=0x%x\n", 294 ssc_readl(ssc_p->ssc->regs, SR)); 295 296 /* Enable PMC peripheral clock for this SSC */ 297 pr_debug("atmel_ssc_dai: Starting clock\n"); 298 clk_enable(ssc_p->ssc->clk); 299 ssc_p->mck_rate = clk_get_rate(ssc_p->ssc->clk); 300 301 /* Reset the SSC to keep it at a clean status */ 302 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST)); 303 304 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 305 dir = 0; 306 dir_mask = SSC_DIR_MASK_PLAYBACK; 307 } else { 308 dir = 1; 309 dir_mask = SSC_DIR_MASK_CAPTURE; 310 } 311 312 ret = snd_pcm_hw_rule_add(substream->runtime, 0, 313 SNDRV_PCM_HW_PARAM_RATE, 314 atmel_ssc_hw_rule_rate, 315 ssc_p, 316 SNDRV_PCM_HW_PARAM_FRAME_BITS, 317 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 318 if (ret < 0) { 319 dev_err(dai->dev, "Failed to specify rate rule: %d\n", ret); 320 return ret; 321 } 322 323 dma_params = &ssc_dma_params[dai->id][dir]; 324 dma_params->ssc = ssc_p->ssc; 325 dma_params->substream = substream; 326 327 ssc_p->dma_params[dir] = dma_params; 328 329 snd_soc_dai_set_dma_data(dai, substream, dma_params); 330 331 spin_lock_irq(&ssc_p->lock); 332 if (ssc_p->dir_mask & dir_mask) { 333 spin_unlock_irq(&ssc_p->lock); 334 return -EBUSY; 335 } 336 ssc_p->dir_mask |= dir_mask; 337 spin_unlock_irq(&ssc_p->lock); 338 339 return 0; 340 } 341 342 /* 343 * Shutdown. Clear DMA parameters and shutdown the SSC if there 344 * are no other substreams open. 345 */ 346 static void atmel_ssc_shutdown(struct snd_pcm_substream *substream, 347 struct snd_soc_dai *dai) 348 { 349 struct atmel_ssc_info *ssc_p = &ssc_info[dai->id]; 350 struct atmel_pcm_dma_params *dma_params; 351 int dir, dir_mask; 352 353 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 354 dir = 0; 355 else 356 dir = 1; 357 358 dma_params = ssc_p->dma_params[dir]; 359 360 if (dma_params != NULL) { 361 dma_params->ssc = NULL; 362 dma_params->substream = NULL; 363 ssc_p->dma_params[dir] = NULL; 364 } 365 366 dir_mask = 1 << dir; 367 368 spin_lock_irq(&ssc_p->lock); 369 ssc_p->dir_mask &= ~dir_mask; 370 if (!ssc_p->dir_mask) { 371 if (ssc_p->initialized) { 372 free_irq(ssc_p->ssc->irq, ssc_p); 373 ssc_p->initialized = 0; 374 } 375 376 /* Reset the SSC */ 377 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST)); 378 /* Clear the SSC dividers */ 379 ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0; 380 } 381 spin_unlock_irq(&ssc_p->lock); 382 383 /* Shutdown the SSC clock. */ 384 pr_debug("atmel_ssc_dai: Stopping clock\n"); 385 clk_disable(ssc_p->ssc->clk); 386 } 387 388 389 /* 390 * Record the DAI format for use in hw_params(). 391 */ 392 static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai, 393 unsigned int fmt) 394 { 395 struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id]; 396 397 ssc_p->daifmt = fmt; 398 return 0; 399 } 400 401 /* 402 * Record SSC clock dividers for use in hw_params(). 403 */ 404 static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai, 405 int div_id, int div) 406 { 407 struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id]; 408 409 switch (div_id) { 410 case ATMEL_SSC_CMR_DIV: 411 /* 412 * The same master clock divider is used for both 413 * transmit and receive, so if a value has already 414 * been set, it must match this value. 415 */ 416 if (ssc_p->dir_mask != 417 (SSC_DIR_MASK_PLAYBACK | SSC_DIR_MASK_CAPTURE)) 418 ssc_p->cmr_div = div; 419 else if (ssc_p->cmr_div == 0) 420 ssc_p->cmr_div = div; 421 else 422 if (div != ssc_p->cmr_div) 423 return -EBUSY; 424 break; 425 426 case ATMEL_SSC_TCMR_PERIOD: 427 ssc_p->tcmr_period = div; 428 break; 429 430 case ATMEL_SSC_RCMR_PERIOD: 431 ssc_p->rcmr_period = div; 432 break; 433 434 default: 435 return -EINVAL; 436 } 437 438 return 0; 439 } 440 441 /* 442 * Configure the SSC. 443 */ 444 static int atmel_ssc_hw_params(struct snd_pcm_substream *substream, 445 struct snd_pcm_hw_params *params, 446 struct snd_soc_dai *dai) 447 { 448 int id = dai->id; 449 struct atmel_ssc_info *ssc_p = &ssc_info[id]; 450 struct ssc_device *ssc = ssc_p->ssc; 451 struct atmel_pcm_dma_params *dma_params; 452 int dir, channels, bits; 453 u32 tfmr, rfmr, tcmr, rcmr; 454 int ret; 455 int fslen, fslen_ext; 456 457 /* 458 * Currently, there is only one set of dma params for 459 * each direction. If more are added, this code will 460 * have to be changed to select the proper set. 461 */ 462 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 463 dir = 0; 464 else 465 dir = 1; 466 467 dma_params = ssc_p->dma_params[dir]; 468 469 channels = params_channels(params); 470 471 /* 472 * Determine sample size in bits and the PDC increment. 473 */ 474 switch (params_format(params)) { 475 case SNDRV_PCM_FORMAT_S8: 476 bits = 8; 477 dma_params->pdc_xfer_size = 1; 478 break; 479 case SNDRV_PCM_FORMAT_S16_LE: 480 bits = 16; 481 dma_params->pdc_xfer_size = 2; 482 break; 483 case SNDRV_PCM_FORMAT_S24_LE: 484 bits = 24; 485 dma_params->pdc_xfer_size = 4; 486 break; 487 case SNDRV_PCM_FORMAT_S32_LE: 488 bits = 32; 489 dma_params->pdc_xfer_size = 4; 490 break; 491 default: 492 printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format"); 493 return -EINVAL; 494 } 495 496 /* 497 * Compute SSC register settings. 498 */ 499 switch (ssc_p->daifmt 500 & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) { 501 502 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS: 503 /* 504 * I2S format, SSC provides BCLK and LRC clocks. 505 * 506 * The SSC transmit and receive clocks are generated 507 * from the MCK divider, and the BCLK signal 508 * is output on the SSC TK line. 509 */ 510 511 if (bits > 16 && !ssc->pdata->has_fslen_ext) { 512 dev_err(dai->dev, 513 "sample size %d is too large for SSC device\n", 514 bits); 515 return -EINVAL; 516 } 517 518 fslen_ext = (bits - 1) / 16; 519 fslen = (bits - 1) % 16; 520 521 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period) 522 | SSC_BF(RCMR_STTDLY, START_DELAY) 523 | SSC_BF(RCMR_START, SSC_START_FALLING_RF) 524 | SSC_BF(RCMR_CKI, SSC_CKI_RISING) 525 | SSC_BF(RCMR_CKO, SSC_CKO_NONE) 526 | SSC_BF(RCMR_CKS, SSC_CKS_DIV); 527 528 rfmr = SSC_BF(RFMR_FSLEN_EXT, fslen_ext) 529 | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 530 | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE) 531 | SSC_BF(RFMR_FSLEN, fslen) 532 | SSC_BF(RFMR_DATNB, (channels - 1)) 533 | SSC_BIT(RFMR_MSBF) 534 | SSC_BF(RFMR_LOOP, 0) 535 | SSC_BF(RFMR_DATLEN, (bits - 1)); 536 537 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period) 538 | SSC_BF(TCMR_STTDLY, START_DELAY) 539 | SSC_BF(TCMR_START, SSC_START_FALLING_RF) 540 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING) 541 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS) 542 | SSC_BF(TCMR_CKS, SSC_CKS_DIV); 543 544 tfmr = SSC_BF(TFMR_FSLEN_EXT, fslen_ext) 545 | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 546 | SSC_BF(TFMR_FSDEN, 0) 547 | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE) 548 | SSC_BF(TFMR_FSLEN, fslen) 549 | SSC_BF(TFMR_DATNB, (channels - 1)) 550 | SSC_BIT(TFMR_MSBF) 551 | SSC_BF(TFMR_DATDEF, 0) 552 | SSC_BF(TFMR_DATLEN, (bits - 1)); 553 break; 554 555 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM: 556 /* I2S format, CODEC supplies BCLK and LRC clocks. */ 557 rcmr = SSC_BF(RCMR_PERIOD, 0) 558 | SSC_BF(RCMR_STTDLY, START_DELAY) 559 | SSC_BF(RCMR_START, SSC_START_FALLING_RF) 560 | SSC_BF(RCMR_CKI, SSC_CKI_RISING) 561 | SSC_BF(RCMR_CKO, SSC_CKO_NONE) 562 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ? 563 SSC_CKS_PIN : SSC_CKS_CLOCK); 564 565 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 566 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE) 567 | SSC_BF(RFMR_FSLEN, 0) 568 | SSC_BF(RFMR_DATNB, (channels - 1)) 569 | SSC_BIT(RFMR_MSBF) 570 | SSC_BF(RFMR_LOOP, 0) 571 | SSC_BF(RFMR_DATLEN, (bits - 1)); 572 573 tcmr = SSC_BF(TCMR_PERIOD, 0) 574 | SSC_BF(TCMR_STTDLY, START_DELAY) 575 | SSC_BF(TCMR_START, SSC_START_FALLING_RF) 576 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING) 577 | SSC_BF(TCMR_CKO, SSC_CKO_NONE) 578 | SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ? 579 SSC_CKS_CLOCK : SSC_CKS_PIN); 580 581 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 582 | SSC_BF(TFMR_FSDEN, 0) 583 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE) 584 | SSC_BF(TFMR_FSLEN, 0) 585 | SSC_BF(TFMR_DATNB, (channels - 1)) 586 | SSC_BIT(TFMR_MSBF) 587 | SSC_BF(TFMR_DATDEF, 0) 588 | SSC_BF(TFMR_DATLEN, (bits - 1)); 589 break; 590 591 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFS: 592 /* I2S format, CODEC supplies BCLK, SSC supplies LRCLK. */ 593 if (bits > 16 && !ssc->pdata->has_fslen_ext) { 594 dev_err(dai->dev, 595 "sample size %d is too large for SSC device\n", 596 bits); 597 return -EINVAL; 598 } 599 600 fslen_ext = (bits - 1) / 16; 601 fslen = (bits - 1) % 16; 602 603 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period) 604 | SSC_BF(RCMR_STTDLY, START_DELAY) 605 | SSC_BF(RCMR_START, SSC_START_FALLING_RF) 606 | SSC_BF(RCMR_CKI, SSC_CKI_RISING) 607 | SSC_BF(RCMR_CKO, SSC_CKO_NONE) 608 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ? 609 SSC_CKS_PIN : SSC_CKS_CLOCK); 610 611 rfmr = SSC_BF(RFMR_FSLEN_EXT, fslen_ext) 612 | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 613 | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE) 614 | SSC_BF(RFMR_FSLEN, fslen) 615 | SSC_BF(RFMR_DATNB, (channels - 1)) 616 | SSC_BIT(RFMR_MSBF) 617 | SSC_BF(RFMR_LOOP, 0) 618 | SSC_BF(RFMR_DATLEN, (bits - 1)); 619 620 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period) 621 | SSC_BF(TCMR_STTDLY, START_DELAY) 622 | SSC_BF(TCMR_START, SSC_START_FALLING_RF) 623 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING) 624 | SSC_BF(TCMR_CKO, SSC_CKO_NONE) 625 | SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ? 626 SSC_CKS_CLOCK : SSC_CKS_PIN); 627 628 tfmr = SSC_BF(TFMR_FSLEN_EXT, fslen_ext) 629 | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_NEGATIVE) 630 | SSC_BF(TFMR_FSDEN, 0) 631 | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE) 632 | SSC_BF(TFMR_FSLEN, fslen) 633 | SSC_BF(TFMR_DATNB, (channels - 1)) 634 | SSC_BIT(TFMR_MSBF) 635 | SSC_BF(TFMR_DATDEF, 0) 636 | SSC_BF(TFMR_DATLEN, (bits - 1)); 637 break; 638 639 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS: 640 /* 641 * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks. 642 * 643 * The SSC transmit and receive clocks are generated from the 644 * MCK divider, and the BCLK signal is output 645 * on the SSC TK line. 646 */ 647 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period) 648 | SSC_BF(RCMR_STTDLY, 1) 649 | SSC_BF(RCMR_START, SSC_START_RISING_RF) 650 | SSC_BF(RCMR_CKI, SSC_CKI_FALLING) 651 | SSC_BF(RCMR_CKO, SSC_CKO_NONE) 652 | SSC_BF(RCMR_CKS, SSC_CKS_DIV); 653 654 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 655 | SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE) 656 | SSC_BF(RFMR_FSLEN, 0) 657 | SSC_BF(RFMR_DATNB, (channels - 1)) 658 | SSC_BIT(RFMR_MSBF) 659 | SSC_BF(RFMR_LOOP, 0) 660 | SSC_BF(RFMR_DATLEN, (bits - 1)); 661 662 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period) 663 | SSC_BF(TCMR_STTDLY, 1) 664 | SSC_BF(TCMR_START, SSC_START_RISING_RF) 665 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING) 666 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS) 667 | SSC_BF(TCMR_CKS, SSC_CKS_DIV); 668 669 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 670 | SSC_BF(TFMR_FSDEN, 0) 671 | SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE) 672 | SSC_BF(TFMR_FSLEN, 0) 673 | SSC_BF(TFMR_DATNB, (channels - 1)) 674 | SSC_BIT(TFMR_MSBF) 675 | SSC_BF(TFMR_DATDEF, 0) 676 | SSC_BF(TFMR_DATLEN, (bits - 1)); 677 break; 678 679 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM: 680 /* 681 * DSP/PCM Mode A format, CODEC supplies BCLK and LRC clocks. 682 * 683 * Data is transferred on first BCLK after LRC pulse rising 684 * edge.If stereo, the right channel data is contiguous with 685 * the left channel data. 686 */ 687 rcmr = SSC_BF(RCMR_PERIOD, 0) 688 | SSC_BF(RCMR_STTDLY, START_DELAY) 689 | SSC_BF(RCMR_START, SSC_START_RISING_RF) 690 | SSC_BF(RCMR_CKI, SSC_CKI_FALLING) 691 | SSC_BF(RCMR_CKO, SSC_CKO_NONE) 692 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ? 693 SSC_CKS_PIN : SSC_CKS_CLOCK); 694 695 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 696 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE) 697 | SSC_BF(RFMR_FSLEN, 0) 698 | SSC_BF(RFMR_DATNB, (channels - 1)) 699 | SSC_BIT(RFMR_MSBF) 700 | SSC_BF(RFMR_LOOP, 0) 701 | SSC_BF(RFMR_DATLEN, (bits - 1)); 702 703 tcmr = SSC_BF(TCMR_PERIOD, 0) 704 | SSC_BF(TCMR_STTDLY, START_DELAY) 705 | SSC_BF(TCMR_START, SSC_START_RISING_RF) 706 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING) 707 | SSC_BF(TCMR_CKO, SSC_CKO_NONE) 708 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ? 709 SSC_CKS_CLOCK : SSC_CKS_PIN); 710 711 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 712 | SSC_BF(TFMR_FSDEN, 0) 713 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE) 714 | SSC_BF(TFMR_FSLEN, 0) 715 | SSC_BF(TFMR_DATNB, (channels - 1)) 716 | SSC_BIT(TFMR_MSBF) 717 | SSC_BF(TFMR_DATDEF, 0) 718 | SSC_BF(TFMR_DATLEN, (bits - 1)); 719 break; 720 721 default: 722 printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n", 723 ssc_p->daifmt); 724 return -EINVAL; 725 } 726 pr_debug("atmel_ssc_hw_params: " 727 "RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n", 728 rcmr, rfmr, tcmr, tfmr); 729 730 if (!ssc_p->initialized) { 731 if (!ssc_p->ssc->pdata->use_dma) { 732 ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0); 733 ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0); 734 ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0); 735 ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0); 736 737 ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0); 738 ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0); 739 ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0); 740 ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0); 741 } 742 743 ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0, 744 ssc_p->name, ssc_p); 745 if (ret < 0) { 746 printk(KERN_WARNING 747 "atmel_ssc_dai: request_irq failure\n"); 748 pr_debug("Atmel_ssc_dai: Stoping clock\n"); 749 clk_disable(ssc_p->ssc->clk); 750 return ret; 751 } 752 753 ssc_p->initialized = 1; 754 } 755 756 /* set SSC clock mode register */ 757 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->cmr_div); 758 759 /* set receive clock mode and format */ 760 ssc_writel(ssc_p->ssc->regs, RCMR, rcmr); 761 ssc_writel(ssc_p->ssc->regs, RFMR, rfmr); 762 763 /* set transmit clock mode and format */ 764 ssc_writel(ssc_p->ssc->regs, TCMR, tcmr); 765 ssc_writel(ssc_p->ssc->regs, TFMR, tfmr); 766 767 pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n"); 768 return 0; 769 } 770 771 772 static int atmel_ssc_prepare(struct snd_pcm_substream *substream, 773 struct snd_soc_dai *dai) 774 { 775 struct atmel_ssc_info *ssc_p = &ssc_info[dai->id]; 776 struct atmel_pcm_dma_params *dma_params; 777 int dir; 778 779 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 780 dir = 0; 781 else 782 dir = 1; 783 784 dma_params = ssc_p->dma_params[dir]; 785 786 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable); 787 ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error); 788 789 pr_debug("%s enabled SSC_SR=0x%08x\n", 790 dir ? "receive" : "transmit", 791 ssc_readl(ssc_p->ssc->regs, SR)); 792 return 0; 793 } 794 795 static int atmel_ssc_trigger(struct snd_pcm_substream *substream, 796 int cmd, struct snd_soc_dai *dai) 797 { 798 struct atmel_ssc_info *ssc_p = &ssc_info[dai->id]; 799 struct atmel_pcm_dma_params *dma_params; 800 int dir; 801 802 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 803 dir = 0; 804 else 805 dir = 1; 806 807 dma_params = ssc_p->dma_params[dir]; 808 809 switch (cmd) { 810 case SNDRV_PCM_TRIGGER_START: 811 case SNDRV_PCM_TRIGGER_RESUME: 812 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 813 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable); 814 break; 815 default: 816 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable); 817 break; 818 } 819 820 return 0; 821 } 822 823 #ifdef CONFIG_PM 824 static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai) 825 { 826 struct atmel_ssc_info *ssc_p; 827 828 if (!cpu_dai->active) 829 return 0; 830 831 ssc_p = &ssc_info[cpu_dai->id]; 832 833 /* Save the status register before disabling transmit and receive */ 834 ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR); 835 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS)); 836 837 /* Save the current interrupt mask, then disable unmasked interrupts */ 838 ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR); 839 ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr); 840 841 ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR); 842 ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR); 843 ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR); 844 ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR); 845 ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR); 846 847 return 0; 848 } 849 850 851 852 static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai) 853 { 854 struct atmel_ssc_info *ssc_p; 855 u32 cr; 856 857 if (!cpu_dai->active) 858 return 0; 859 860 ssc_p = &ssc_info[cpu_dai->id]; 861 862 /* restore SSC register settings */ 863 ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr); 864 ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr); 865 ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr); 866 ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr); 867 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr); 868 869 /* re-enable interrupts */ 870 ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr); 871 872 /* Re-enable receive and transmit as appropriate */ 873 cr = 0; 874 cr |= 875 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0; 876 cr |= 877 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0; 878 ssc_writel(ssc_p->ssc->regs, CR, cr); 879 880 return 0; 881 } 882 #else /* CONFIG_PM */ 883 # define atmel_ssc_suspend NULL 884 # define atmel_ssc_resume NULL 885 #endif /* CONFIG_PM */ 886 887 #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\ 888 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE) 889 890 static const struct snd_soc_dai_ops atmel_ssc_dai_ops = { 891 .startup = atmel_ssc_startup, 892 .shutdown = atmel_ssc_shutdown, 893 .prepare = atmel_ssc_prepare, 894 .trigger = atmel_ssc_trigger, 895 .hw_params = atmel_ssc_hw_params, 896 .set_fmt = atmel_ssc_set_dai_fmt, 897 .set_clkdiv = atmel_ssc_set_dai_clkdiv, 898 }; 899 900 static struct snd_soc_dai_driver atmel_ssc_dai = { 901 .suspend = atmel_ssc_suspend, 902 .resume = atmel_ssc_resume, 903 .playback = { 904 .channels_min = 1, 905 .channels_max = 2, 906 .rates = SNDRV_PCM_RATE_CONTINUOUS, 907 .rate_min = 8000, 908 .rate_max = 384000, 909 .formats = ATMEL_SSC_FORMATS,}, 910 .capture = { 911 .channels_min = 1, 912 .channels_max = 2, 913 .rates = SNDRV_PCM_RATE_CONTINUOUS, 914 .rate_min = 8000, 915 .rate_max = 384000, 916 .formats = ATMEL_SSC_FORMATS,}, 917 .ops = &atmel_ssc_dai_ops, 918 }; 919 920 static const struct snd_soc_component_driver atmel_ssc_component = { 921 .name = "atmel-ssc", 922 }; 923 924 static int asoc_ssc_init(struct device *dev) 925 { 926 struct platform_device *pdev = to_platform_device(dev); 927 struct ssc_device *ssc = platform_get_drvdata(pdev); 928 int ret; 929 930 ret = snd_soc_register_component(dev, &atmel_ssc_component, 931 &atmel_ssc_dai, 1); 932 if (ret) { 933 dev_err(dev, "Could not register DAI: %d\n", ret); 934 goto err; 935 } 936 937 if (ssc->pdata->use_dma) 938 ret = atmel_pcm_dma_platform_register(dev); 939 else 940 ret = atmel_pcm_pdc_platform_register(dev); 941 942 if (ret) { 943 dev_err(dev, "Could not register PCM: %d\n", ret); 944 goto err_unregister_dai; 945 } 946 947 return 0; 948 949 err_unregister_dai: 950 snd_soc_unregister_component(dev); 951 err: 952 return ret; 953 } 954 955 static void asoc_ssc_exit(struct device *dev) 956 { 957 struct platform_device *pdev = to_platform_device(dev); 958 struct ssc_device *ssc = platform_get_drvdata(pdev); 959 960 if (ssc->pdata->use_dma) 961 atmel_pcm_dma_platform_unregister(dev); 962 else 963 atmel_pcm_pdc_platform_unregister(dev); 964 965 snd_soc_unregister_component(dev); 966 } 967 968 /** 969 * atmel_ssc_set_audio - Allocate the specified SSC for audio use. 970 */ 971 int atmel_ssc_set_audio(int ssc_id) 972 { 973 struct ssc_device *ssc; 974 int ret; 975 976 /* If we can grab the SSC briefly to parent the DAI device off it */ 977 ssc = ssc_request(ssc_id); 978 if (IS_ERR(ssc)) { 979 pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n", 980 PTR_ERR(ssc)); 981 return PTR_ERR(ssc); 982 } else { 983 ssc_info[ssc_id].ssc = ssc; 984 } 985 986 ret = asoc_ssc_init(&ssc->pdev->dev); 987 988 return ret; 989 } 990 EXPORT_SYMBOL_GPL(atmel_ssc_set_audio); 991 992 void atmel_ssc_put_audio(int ssc_id) 993 { 994 struct ssc_device *ssc = ssc_info[ssc_id].ssc; 995 996 asoc_ssc_exit(&ssc->pdev->dev); 997 ssc_free(ssc); 998 } 999 EXPORT_SYMBOL_GPL(atmel_ssc_put_audio); 1000 1001 /* Module information */ 1002 MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com"); 1003 MODULE_DESCRIPTION("ATMEL SSC ASoC Interface"); 1004 MODULE_LICENSE("GPL"); 1005