1 /* 2 * atmel_ssc_dai.c -- ALSA SoC ATMEL SSC Audio Layer Platform driver 3 * 4 * Copyright (C) 2005 SAN People 5 * Copyright (C) 2008 Atmel 6 * 7 * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com> 8 * ATMEL CORP. 9 * 10 * Based on at91-ssc.c by 11 * Frank Mandarino <fmandarino@endrelia.com> 12 * Based on pxa2xx Platform drivers by 13 * Liam Girdwood <lrg@slimlogic.co.uk> 14 * 15 * This program is free software; you can redistribute it and/or modify 16 * it under the terms of the GNU General Public License as published by 17 * the Free Software Foundation; either version 2 of the License, or 18 * (at your option) any later version. 19 * 20 * This program is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 23 * GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with this program; if not, write to the Free Software 27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 28 */ 29 30 #include <linux/init.h> 31 #include <linux/module.h> 32 #include <linux/interrupt.h> 33 #include <linux/device.h> 34 #include <linux/delay.h> 35 #include <linux/clk.h> 36 #include <linux/atmel_pdc.h> 37 38 #include <linux/atmel-ssc.h> 39 #include <sound/core.h> 40 #include <sound/pcm.h> 41 #include <sound/pcm_params.h> 42 #include <sound/initval.h> 43 #include <sound/soc.h> 44 45 #include <mach/hardware.h> 46 47 #include "atmel-pcm.h" 48 #include "atmel_ssc_dai.h" 49 50 51 #if defined(CONFIG_ARCH_AT91SAM9260) || defined(CONFIG_ARCH_AT91SAM9G20) 52 #define NUM_SSC_DEVICES 1 53 #else 54 #define NUM_SSC_DEVICES 3 55 #endif 56 57 /* 58 * SSC PDC registers required by the PCM DMA engine. 59 */ 60 static struct atmel_pdc_regs pdc_tx_reg = { 61 .xpr = ATMEL_PDC_TPR, 62 .xcr = ATMEL_PDC_TCR, 63 .xnpr = ATMEL_PDC_TNPR, 64 .xncr = ATMEL_PDC_TNCR, 65 }; 66 67 static struct atmel_pdc_regs pdc_rx_reg = { 68 .xpr = ATMEL_PDC_RPR, 69 .xcr = ATMEL_PDC_RCR, 70 .xnpr = ATMEL_PDC_RNPR, 71 .xncr = ATMEL_PDC_RNCR, 72 }; 73 74 /* 75 * SSC & PDC status bits for transmit and receive. 76 */ 77 static struct atmel_ssc_mask ssc_tx_mask = { 78 .ssc_enable = SSC_BIT(CR_TXEN), 79 .ssc_disable = SSC_BIT(CR_TXDIS), 80 .ssc_endx = SSC_BIT(SR_ENDTX), 81 .ssc_endbuf = SSC_BIT(SR_TXBUFE), 82 .pdc_enable = ATMEL_PDC_TXTEN, 83 .pdc_disable = ATMEL_PDC_TXTDIS, 84 }; 85 86 static struct atmel_ssc_mask ssc_rx_mask = { 87 .ssc_enable = SSC_BIT(CR_RXEN), 88 .ssc_disable = SSC_BIT(CR_RXDIS), 89 .ssc_endx = SSC_BIT(SR_ENDRX), 90 .ssc_endbuf = SSC_BIT(SR_RXBUFF), 91 .pdc_enable = ATMEL_PDC_RXTEN, 92 .pdc_disable = ATMEL_PDC_RXTDIS, 93 }; 94 95 96 /* 97 * DMA parameters. 98 */ 99 static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = { 100 {{ 101 .name = "SSC0 PCM out", 102 .pdc = &pdc_tx_reg, 103 .mask = &ssc_tx_mask, 104 }, 105 { 106 .name = "SSC0 PCM in", 107 .pdc = &pdc_rx_reg, 108 .mask = &ssc_rx_mask, 109 } }, 110 #if NUM_SSC_DEVICES == 3 111 {{ 112 .name = "SSC1 PCM out", 113 .pdc = &pdc_tx_reg, 114 .mask = &ssc_tx_mask, 115 }, 116 { 117 .name = "SSC1 PCM in", 118 .pdc = &pdc_rx_reg, 119 .mask = &ssc_rx_mask, 120 } }, 121 {{ 122 .name = "SSC2 PCM out", 123 .pdc = &pdc_tx_reg, 124 .mask = &ssc_tx_mask, 125 }, 126 { 127 .name = "SSC2 PCM in", 128 .pdc = &pdc_rx_reg, 129 .mask = &ssc_rx_mask, 130 } }, 131 #endif 132 }; 133 134 135 static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = { 136 { 137 .name = "ssc0", 138 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock), 139 .dir_mask = SSC_DIR_MASK_UNUSED, 140 .initialized = 0, 141 }, 142 #if NUM_SSC_DEVICES == 3 143 { 144 .name = "ssc1", 145 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock), 146 .dir_mask = SSC_DIR_MASK_UNUSED, 147 .initialized = 0, 148 }, 149 { 150 .name = "ssc2", 151 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock), 152 .dir_mask = SSC_DIR_MASK_UNUSED, 153 .initialized = 0, 154 }, 155 #endif 156 }; 157 158 159 /* 160 * SSC interrupt handler. Passes PDC interrupts to the DMA 161 * interrupt handler in the PCM driver. 162 */ 163 static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id) 164 { 165 struct atmel_ssc_info *ssc_p = dev_id; 166 struct atmel_pcm_dma_params *dma_params; 167 u32 ssc_sr; 168 u32 ssc_substream_mask; 169 int i; 170 171 ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR) 172 & (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR); 173 174 /* 175 * Loop through the substreams attached to this SSC. If 176 * a DMA-related interrupt occurred on that substream, call 177 * the DMA interrupt handler function, if one has been 178 * registered in the dma_params structure by the PCM driver. 179 */ 180 for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) { 181 dma_params = ssc_p->dma_params[i]; 182 183 if ((dma_params != NULL) && 184 (dma_params->dma_intr_handler != NULL)) { 185 ssc_substream_mask = (dma_params->mask->ssc_endx | 186 dma_params->mask->ssc_endbuf); 187 if (ssc_sr & ssc_substream_mask) { 188 dma_params->dma_intr_handler(ssc_sr, 189 dma_params-> 190 substream); 191 } 192 } 193 } 194 195 return IRQ_HANDLED; 196 } 197 198 199 /*-------------------------------------------------------------------------*\ 200 * DAI functions 201 \*-------------------------------------------------------------------------*/ 202 /* 203 * Startup. Only that one substream allowed in each direction. 204 */ 205 static int atmel_ssc_startup(struct snd_pcm_substream *substream, 206 struct snd_soc_dai *dai) 207 { 208 struct snd_soc_pcm_runtime *rtd = snd_pcm_substream_chip(substream); 209 struct atmel_ssc_info *ssc_p = &ssc_info[rtd->dai->cpu_dai->id]; 210 int dir_mask; 211 212 pr_debug("atmel_ssc_startup: SSC_SR=0x%u\n", 213 ssc_readl(ssc_p->ssc->regs, SR)); 214 215 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 216 dir_mask = SSC_DIR_MASK_PLAYBACK; 217 else 218 dir_mask = SSC_DIR_MASK_CAPTURE; 219 220 spin_lock_irq(&ssc_p->lock); 221 if (ssc_p->dir_mask & dir_mask) { 222 spin_unlock_irq(&ssc_p->lock); 223 return -EBUSY; 224 } 225 ssc_p->dir_mask |= dir_mask; 226 spin_unlock_irq(&ssc_p->lock); 227 228 return 0; 229 } 230 231 /* 232 * Shutdown. Clear DMA parameters and shutdown the SSC if there 233 * are no other substreams open. 234 */ 235 static void atmel_ssc_shutdown(struct snd_pcm_substream *substream, 236 struct snd_soc_dai *dai) 237 { 238 struct snd_soc_pcm_runtime *rtd = snd_pcm_substream_chip(substream); 239 struct atmel_ssc_info *ssc_p = &ssc_info[rtd->dai->cpu_dai->id]; 240 struct atmel_pcm_dma_params *dma_params; 241 int dir, dir_mask; 242 243 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 244 dir = 0; 245 else 246 dir = 1; 247 248 dma_params = ssc_p->dma_params[dir]; 249 250 if (dma_params != NULL) { 251 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable); 252 pr_debug("atmel_ssc_shutdown: %s disabled SSC_SR=0x%08x\n", 253 (dir ? "receive" : "transmit"), 254 ssc_readl(ssc_p->ssc->regs, SR)); 255 256 dma_params->ssc = NULL; 257 dma_params->substream = NULL; 258 ssc_p->dma_params[dir] = NULL; 259 } 260 261 dir_mask = 1 << dir; 262 263 spin_lock_irq(&ssc_p->lock); 264 ssc_p->dir_mask &= ~dir_mask; 265 if (!ssc_p->dir_mask) { 266 if (ssc_p->initialized) { 267 /* Shutdown the SSC clock. */ 268 pr_debug("atmel_ssc_dau: Stopping clock\n"); 269 clk_disable(ssc_p->ssc->clk); 270 271 free_irq(ssc_p->ssc->irq, ssc_p); 272 ssc_p->initialized = 0; 273 } 274 275 /* Reset the SSC */ 276 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST)); 277 /* Clear the SSC dividers */ 278 ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0; 279 } 280 spin_unlock_irq(&ssc_p->lock); 281 } 282 283 284 /* 285 * Record the DAI format for use in hw_params(). 286 */ 287 static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai, 288 unsigned int fmt) 289 { 290 struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id]; 291 292 ssc_p->daifmt = fmt; 293 return 0; 294 } 295 296 /* 297 * Record SSC clock dividers for use in hw_params(). 298 */ 299 static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai, 300 int div_id, int div) 301 { 302 struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id]; 303 304 switch (div_id) { 305 case ATMEL_SSC_CMR_DIV: 306 /* 307 * The same master clock divider is used for both 308 * transmit and receive, so if a value has already 309 * been set, it must match this value. 310 */ 311 if (ssc_p->cmr_div == 0) 312 ssc_p->cmr_div = div; 313 else 314 if (div != ssc_p->cmr_div) 315 return -EBUSY; 316 break; 317 318 case ATMEL_SSC_TCMR_PERIOD: 319 ssc_p->tcmr_period = div; 320 break; 321 322 case ATMEL_SSC_RCMR_PERIOD: 323 ssc_p->rcmr_period = div; 324 break; 325 326 default: 327 return -EINVAL; 328 } 329 330 return 0; 331 } 332 333 /* 334 * Configure the SSC. 335 */ 336 static int atmel_ssc_hw_params(struct snd_pcm_substream *substream, 337 struct snd_pcm_hw_params *params, 338 struct snd_soc_dai *dai) 339 { 340 struct snd_soc_pcm_runtime *rtd = snd_pcm_substream_chip(substream); 341 int id = rtd->dai->cpu_dai->id; 342 struct atmel_ssc_info *ssc_p = &ssc_info[id]; 343 struct atmel_pcm_dma_params *dma_params; 344 int dir, channels, bits; 345 u32 tfmr, rfmr, tcmr, rcmr; 346 int start_event; 347 int ret; 348 349 /* 350 * Currently, there is only one set of dma params for 351 * each direction. If more are added, this code will 352 * have to be changed to select the proper set. 353 */ 354 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 355 dir = 0; 356 else 357 dir = 1; 358 359 dma_params = &ssc_dma_params[id][dir]; 360 dma_params->ssc = ssc_p->ssc; 361 dma_params->substream = substream; 362 363 ssc_p->dma_params[dir] = dma_params; 364 365 /* 366 * The cpu_dai->dma_data field is only used to communicate the 367 * appropriate DMA parameters to the pcm driver hw_params() 368 * function. It should not be used for other purposes 369 * as it is common to all substreams. 370 */ 371 rtd->dai->cpu_dai->dma_data = dma_params; 372 373 channels = params_channels(params); 374 375 /* 376 * Determine sample size in bits and the PDC increment. 377 */ 378 switch (params_format(params)) { 379 case SNDRV_PCM_FORMAT_S8: 380 bits = 8; 381 dma_params->pdc_xfer_size = 1; 382 break; 383 case SNDRV_PCM_FORMAT_S16_LE: 384 bits = 16; 385 dma_params->pdc_xfer_size = 2; 386 break; 387 case SNDRV_PCM_FORMAT_S24_LE: 388 bits = 24; 389 dma_params->pdc_xfer_size = 4; 390 break; 391 case SNDRV_PCM_FORMAT_S32_LE: 392 bits = 32; 393 dma_params->pdc_xfer_size = 4; 394 break; 395 default: 396 printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format"); 397 return -EINVAL; 398 } 399 400 /* 401 * The SSC only supports up to 16-bit samples in I2S format, due 402 * to the size of the Frame Mode Register FSLEN field. 403 */ 404 if ((ssc_p->daifmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_I2S 405 && bits > 16) { 406 printk(KERN_WARNING 407 "atmel_ssc_dai: sample size %d" 408 "is too large for I2S\n", bits); 409 return -EINVAL; 410 } 411 412 /* 413 * Compute SSC register settings. 414 */ 415 switch (ssc_p->daifmt 416 & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) { 417 418 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS: 419 /* 420 * I2S format, SSC provides BCLK and LRC clocks. 421 * 422 * The SSC transmit and receive clocks are generated 423 * from the MCK divider, and the BCLK signal 424 * is output on the SSC TK line. 425 */ 426 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period) 427 | SSC_BF(RCMR_STTDLY, START_DELAY) 428 | SSC_BF(RCMR_START, SSC_START_FALLING_RF) 429 | SSC_BF(RCMR_CKI, SSC_CKI_RISING) 430 | SSC_BF(RCMR_CKO, SSC_CKO_NONE) 431 | SSC_BF(RCMR_CKS, SSC_CKS_DIV); 432 433 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 434 | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE) 435 | SSC_BF(RFMR_FSLEN, (bits - 1)) 436 | SSC_BF(RFMR_DATNB, (channels - 1)) 437 | SSC_BIT(RFMR_MSBF) 438 | SSC_BF(RFMR_LOOP, 0) 439 | SSC_BF(RFMR_DATLEN, (bits - 1)); 440 441 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period) 442 | SSC_BF(TCMR_STTDLY, START_DELAY) 443 | SSC_BF(TCMR_START, SSC_START_FALLING_RF) 444 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING) 445 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS) 446 | SSC_BF(TCMR_CKS, SSC_CKS_DIV); 447 448 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 449 | SSC_BF(TFMR_FSDEN, 0) 450 | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE) 451 | SSC_BF(TFMR_FSLEN, (bits - 1)) 452 | SSC_BF(TFMR_DATNB, (channels - 1)) 453 | SSC_BIT(TFMR_MSBF) 454 | SSC_BF(TFMR_DATDEF, 0) 455 | SSC_BF(TFMR_DATLEN, (bits - 1)); 456 break; 457 458 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM: 459 /* 460 * I2S format, CODEC supplies BCLK and LRC clocks. 461 * 462 * The SSC transmit clock is obtained from the BCLK signal on 463 * on the TK line, and the SSC receive clock is 464 * generated from the transmit clock. 465 * 466 * For single channel data, one sample is transferred 467 * on the falling edge of the LRC clock. 468 * For two channel data, one sample is 469 * transferred on both edges of the LRC clock. 470 */ 471 start_event = ((channels == 1) 472 ? SSC_START_FALLING_RF 473 : SSC_START_EDGE_RF); 474 475 rcmr = SSC_BF(RCMR_PERIOD, 0) 476 | SSC_BF(RCMR_STTDLY, START_DELAY) 477 | SSC_BF(RCMR_START, start_event) 478 | SSC_BF(RCMR_CKI, SSC_CKI_RISING) 479 | SSC_BF(RCMR_CKO, SSC_CKO_NONE) 480 | SSC_BF(RCMR_CKS, SSC_CKS_CLOCK); 481 482 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 483 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE) 484 | SSC_BF(RFMR_FSLEN, 0) 485 | SSC_BF(RFMR_DATNB, 0) 486 | SSC_BIT(RFMR_MSBF) 487 | SSC_BF(RFMR_LOOP, 0) 488 | SSC_BF(RFMR_DATLEN, (bits - 1)); 489 490 tcmr = SSC_BF(TCMR_PERIOD, 0) 491 | SSC_BF(TCMR_STTDLY, START_DELAY) 492 | SSC_BF(TCMR_START, start_event) 493 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING) 494 | SSC_BF(TCMR_CKO, SSC_CKO_NONE) 495 | SSC_BF(TCMR_CKS, SSC_CKS_PIN); 496 497 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 498 | SSC_BF(TFMR_FSDEN, 0) 499 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE) 500 | SSC_BF(TFMR_FSLEN, 0) 501 | SSC_BF(TFMR_DATNB, 0) 502 | SSC_BIT(TFMR_MSBF) 503 | SSC_BF(TFMR_DATDEF, 0) 504 | SSC_BF(TFMR_DATLEN, (bits - 1)); 505 break; 506 507 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS: 508 /* 509 * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks. 510 * 511 * The SSC transmit and receive clocks are generated from the 512 * MCK divider, and the BCLK signal is output 513 * on the SSC TK line. 514 */ 515 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period) 516 | SSC_BF(RCMR_STTDLY, 1) 517 | SSC_BF(RCMR_START, SSC_START_RISING_RF) 518 | SSC_BF(RCMR_CKI, SSC_CKI_RISING) 519 | SSC_BF(RCMR_CKO, SSC_CKO_NONE) 520 | SSC_BF(RCMR_CKS, SSC_CKS_DIV); 521 522 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 523 | SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE) 524 | SSC_BF(RFMR_FSLEN, 0) 525 | SSC_BF(RFMR_DATNB, (channels - 1)) 526 | SSC_BIT(RFMR_MSBF) 527 | SSC_BF(RFMR_LOOP, 0) 528 | SSC_BF(RFMR_DATLEN, (bits - 1)); 529 530 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period) 531 | SSC_BF(TCMR_STTDLY, 1) 532 | SSC_BF(TCMR_START, SSC_START_RISING_RF) 533 | SSC_BF(TCMR_CKI, SSC_CKI_RISING) 534 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS) 535 | SSC_BF(TCMR_CKS, SSC_CKS_DIV); 536 537 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 538 | SSC_BF(TFMR_FSDEN, 0) 539 | SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE) 540 | SSC_BF(TFMR_FSLEN, 0) 541 | SSC_BF(TFMR_DATNB, (channels - 1)) 542 | SSC_BIT(TFMR_MSBF) 543 | SSC_BF(TFMR_DATDEF, 0) 544 | SSC_BF(TFMR_DATLEN, (bits - 1)); 545 break; 546 547 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM: 548 default: 549 printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n", 550 ssc_p->daifmt); 551 return -EINVAL; 552 break; 553 } 554 pr_debug("atmel_ssc_hw_params: " 555 "RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n", 556 rcmr, rfmr, tcmr, tfmr); 557 558 if (!ssc_p->initialized) { 559 560 /* Enable PMC peripheral clock for this SSC */ 561 pr_debug("atmel_ssc_dai: Starting clock\n"); 562 clk_enable(ssc_p->ssc->clk); 563 564 /* Reset the SSC and its PDC registers */ 565 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST)); 566 567 ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0); 568 ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0); 569 ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0); 570 ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0); 571 572 ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0); 573 ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0); 574 ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0); 575 ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0); 576 577 ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0, 578 ssc_p->name, ssc_p); 579 if (ret < 0) { 580 printk(KERN_WARNING 581 "atmel_ssc_dai: request_irq failure\n"); 582 pr_debug("Atmel_ssc_dai: Stoping clock\n"); 583 clk_disable(ssc_p->ssc->clk); 584 return ret; 585 } 586 587 ssc_p->initialized = 1; 588 } 589 590 /* set SSC clock mode register */ 591 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->cmr_div); 592 593 /* set receive clock mode and format */ 594 ssc_writel(ssc_p->ssc->regs, RCMR, rcmr); 595 ssc_writel(ssc_p->ssc->regs, RFMR, rfmr); 596 597 /* set transmit clock mode and format */ 598 ssc_writel(ssc_p->ssc->regs, TCMR, tcmr); 599 ssc_writel(ssc_p->ssc->regs, TFMR, tfmr); 600 601 pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n"); 602 return 0; 603 } 604 605 606 static int atmel_ssc_prepare(struct snd_pcm_substream *substream, 607 struct snd_soc_dai *dai) 608 { 609 struct snd_soc_pcm_runtime *rtd = snd_pcm_substream_chip(substream); 610 struct atmel_ssc_info *ssc_p = &ssc_info[rtd->dai->cpu_dai->id]; 611 struct atmel_pcm_dma_params *dma_params; 612 int dir; 613 614 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 615 dir = 0; 616 else 617 dir = 1; 618 619 dma_params = ssc_p->dma_params[dir]; 620 621 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable); 622 623 pr_debug("%s enabled SSC_SR=0x%08x\n", 624 dir ? "receive" : "transmit", 625 ssc_readl(ssc_p->ssc->regs, SR)); 626 return 0; 627 } 628 629 630 #ifdef CONFIG_PM 631 static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai) 632 { 633 struct atmel_ssc_info *ssc_p; 634 635 if (!cpu_dai->active) 636 return 0; 637 638 ssc_p = &ssc_info[cpu_dai->id]; 639 640 /* Save the status register before disabling transmit and receive */ 641 ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR); 642 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS)); 643 644 /* Save the current interrupt mask, then disable unmasked interrupts */ 645 ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR); 646 ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr); 647 648 ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR); 649 ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR); 650 ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR); 651 ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR); 652 ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR); 653 654 return 0; 655 } 656 657 658 659 static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai) 660 { 661 struct atmel_ssc_info *ssc_p; 662 u32 cr; 663 664 if (!cpu_dai->active) 665 return 0; 666 667 ssc_p = &ssc_info[cpu_dai->id]; 668 669 /* restore SSC register settings */ 670 ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr); 671 ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr); 672 ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr); 673 ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr); 674 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr); 675 676 /* re-enable interrupts */ 677 ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr); 678 679 /* Re-enable recieve and transmit as appropriate */ 680 cr = 0; 681 cr |= 682 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0; 683 cr |= 684 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0; 685 ssc_writel(ssc_p->ssc->regs, CR, cr); 686 687 return 0; 688 } 689 #else /* CONFIG_PM */ 690 # define atmel_ssc_suspend NULL 691 # define atmel_ssc_resume NULL 692 #endif /* CONFIG_PM */ 693 694 695 #define ATMEL_SSC_RATES (SNDRV_PCM_RATE_8000_96000) 696 697 #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\ 698 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE) 699 700 static struct snd_soc_dai_ops atmel_ssc_dai_ops = { 701 .startup = atmel_ssc_startup, 702 .shutdown = atmel_ssc_shutdown, 703 .prepare = atmel_ssc_prepare, 704 .hw_params = atmel_ssc_hw_params, 705 .set_fmt = atmel_ssc_set_dai_fmt, 706 .set_clkdiv = atmel_ssc_set_dai_clkdiv, 707 }; 708 709 struct snd_soc_dai atmel_ssc_dai[NUM_SSC_DEVICES] = { 710 { .name = "atmel-ssc0", 711 .id = 0, 712 .suspend = atmel_ssc_suspend, 713 .resume = atmel_ssc_resume, 714 .playback = { 715 .channels_min = 1, 716 .channels_max = 2, 717 .rates = ATMEL_SSC_RATES, 718 .formats = ATMEL_SSC_FORMATS,}, 719 .capture = { 720 .channels_min = 1, 721 .channels_max = 2, 722 .rates = ATMEL_SSC_RATES, 723 .formats = ATMEL_SSC_FORMATS,}, 724 .ops = &atmel_ssc_dai_ops, 725 .private_data = &ssc_info[0], 726 }, 727 #if NUM_SSC_DEVICES == 3 728 { .name = "atmel-ssc1", 729 .id = 1, 730 .suspend = atmel_ssc_suspend, 731 .resume = atmel_ssc_resume, 732 .playback = { 733 .channels_min = 1, 734 .channels_max = 2, 735 .rates = ATMEL_SSC_RATES, 736 .formats = ATMEL_SSC_FORMATS,}, 737 .capture = { 738 .channels_min = 1, 739 .channels_max = 2, 740 .rates = ATMEL_SSC_RATES, 741 .formats = ATMEL_SSC_FORMATS,}, 742 .ops = &atmel_ssc_dai_ops, 743 .private_data = &ssc_info[1], 744 }, 745 { .name = "atmel-ssc2", 746 .id = 2, 747 .suspend = atmel_ssc_suspend, 748 .resume = atmel_ssc_resume, 749 .playback = { 750 .channels_min = 1, 751 .channels_max = 2, 752 .rates = ATMEL_SSC_RATES, 753 .formats = ATMEL_SSC_FORMATS,}, 754 .capture = { 755 .channels_min = 1, 756 .channels_max = 2, 757 .rates = ATMEL_SSC_RATES, 758 .formats = ATMEL_SSC_FORMATS,}, 759 .ops = &atmel_ssc_dai_ops, 760 .private_data = &ssc_info[2], 761 }, 762 #endif 763 }; 764 EXPORT_SYMBOL_GPL(atmel_ssc_dai); 765 766 static int __init atmel_ssc_modinit(void) 767 { 768 return snd_soc_register_dais(atmel_ssc_dai, ARRAY_SIZE(atmel_ssc_dai)); 769 } 770 module_init(atmel_ssc_modinit); 771 772 static void __exit atmel_ssc_modexit(void) 773 { 774 snd_soc_unregister_dais(atmel_ssc_dai, ARRAY_SIZE(atmel_ssc_dai)); 775 } 776 module_exit(atmel_ssc_modexit); 777 778 /* Module information */ 779 MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com"); 780 MODULE_DESCRIPTION("ATMEL SSC ASoC Interface"); 781 MODULE_LICENSE("GPL"); 782