1 /* 2 * atmel_ssc_dai.c -- ALSA SoC ATMEL SSC Audio Layer Platform driver 3 * 4 * Copyright (C) 2005 SAN People 5 * Copyright (C) 2008 Atmel 6 * 7 * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com> 8 * ATMEL CORP. 9 * 10 * Based on at91-ssc.c by 11 * Frank Mandarino <fmandarino@endrelia.com> 12 * Based on pxa2xx Platform drivers by 13 * Liam Girdwood <lrg@slimlogic.co.uk> 14 * 15 * This program is free software; you can redistribute it and/or modify 16 * it under the terms of the GNU General Public License as published by 17 * the Free Software Foundation; either version 2 of the License, or 18 * (at your option) any later version. 19 * 20 * This program is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 23 * GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with this program; if not, write to the Free Software 27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 28 */ 29 30 #include <linux/init.h> 31 #include <linux/module.h> 32 #include <linux/interrupt.h> 33 #include <linux/device.h> 34 #include <linux/delay.h> 35 #include <linux/clk.h> 36 #include <linux/atmel_pdc.h> 37 38 #include <linux/atmel-ssc.h> 39 #include <sound/core.h> 40 #include <sound/pcm.h> 41 #include <sound/pcm_params.h> 42 #include <sound/initval.h> 43 #include <sound/soc.h> 44 45 #include "atmel-pcm.h" 46 #include "atmel_ssc_dai.h" 47 48 49 #define NUM_SSC_DEVICES 3 50 51 /* 52 * SSC PDC registers required by the PCM DMA engine. 53 */ 54 static struct atmel_pdc_regs pdc_tx_reg = { 55 .xpr = ATMEL_PDC_TPR, 56 .xcr = ATMEL_PDC_TCR, 57 .xnpr = ATMEL_PDC_TNPR, 58 .xncr = ATMEL_PDC_TNCR, 59 }; 60 61 static struct atmel_pdc_regs pdc_rx_reg = { 62 .xpr = ATMEL_PDC_RPR, 63 .xcr = ATMEL_PDC_RCR, 64 .xnpr = ATMEL_PDC_RNPR, 65 .xncr = ATMEL_PDC_RNCR, 66 }; 67 68 /* 69 * SSC & PDC status bits for transmit and receive. 70 */ 71 static struct atmel_ssc_mask ssc_tx_mask = { 72 .ssc_enable = SSC_BIT(CR_TXEN), 73 .ssc_disable = SSC_BIT(CR_TXDIS), 74 .ssc_endx = SSC_BIT(SR_ENDTX), 75 .ssc_endbuf = SSC_BIT(SR_TXBUFE), 76 .pdc_enable = ATMEL_PDC_TXTEN, 77 .pdc_disable = ATMEL_PDC_TXTDIS, 78 }; 79 80 static struct atmel_ssc_mask ssc_rx_mask = { 81 .ssc_enable = SSC_BIT(CR_RXEN), 82 .ssc_disable = SSC_BIT(CR_RXDIS), 83 .ssc_endx = SSC_BIT(SR_ENDRX), 84 .ssc_endbuf = SSC_BIT(SR_RXBUFF), 85 .pdc_enable = ATMEL_PDC_RXTEN, 86 .pdc_disable = ATMEL_PDC_RXTDIS, 87 }; 88 89 90 /* 91 * DMA parameters. 92 */ 93 static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = { 94 {{ 95 .name = "SSC0 PCM out", 96 .pdc = &pdc_tx_reg, 97 .mask = &ssc_tx_mask, 98 }, 99 { 100 .name = "SSC0 PCM in", 101 .pdc = &pdc_rx_reg, 102 .mask = &ssc_rx_mask, 103 } }, 104 {{ 105 .name = "SSC1 PCM out", 106 .pdc = &pdc_tx_reg, 107 .mask = &ssc_tx_mask, 108 }, 109 { 110 .name = "SSC1 PCM in", 111 .pdc = &pdc_rx_reg, 112 .mask = &ssc_rx_mask, 113 } }, 114 {{ 115 .name = "SSC2 PCM out", 116 .pdc = &pdc_tx_reg, 117 .mask = &ssc_tx_mask, 118 }, 119 { 120 .name = "SSC2 PCM in", 121 .pdc = &pdc_rx_reg, 122 .mask = &ssc_rx_mask, 123 } }, 124 }; 125 126 127 static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = { 128 { 129 .name = "ssc0", 130 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock), 131 .dir_mask = SSC_DIR_MASK_UNUSED, 132 .initialized = 0, 133 }, 134 { 135 .name = "ssc1", 136 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock), 137 .dir_mask = SSC_DIR_MASK_UNUSED, 138 .initialized = 0, 139 }, 140 { 141 .name = "ssc2", 142 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock), 143 .dir_mask = SSC_DIR_MASK_UNUSED, 144 .initialized = 0, 145 }, 146 }; 147 148 149 /* 150 * SSC interrupt handler. Passes PDC interrupts to the DMA 151 * interrupt handler in the PCM driver. 152 */ 153 static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id) 154 { 155 struct atmel_ssc_info *ssc_p = dev_id; 156 struct atmel_pcm_dma_params *dma_params; 157 u32 ssc_sr; 158 u32 ssc_substream_mask; 159 int i; 160 161 ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR) 162 & (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR); 163 164 /* 165 * Loop through the substreams attached to this SSC. If 166 * a DMA-related interrupt occurred on that substream, call 167 * the DMA interrupt handler function, if one has been 168 * registered in the dma_params structure by the PCM driver. 169 */ 170 for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) { 171 dma_params = ssc_p->dma_params[i]; 172 173 if ((dma_params != NULL) && 174 (dma_params->dma_intr_handler != NULL)) { 175 ssc_substream_mask = (dma_params->mask->ssc_endx | 176 dma_params->mask->ssc_endbuf); 177 if (ssc_sr & ssc_substream_mask) { 178 dma_params->dma_intr_handler(ssc_sr, 179 dma_params-> 180 substream); 181 } 182 } 183 } 184 185 return IRQ_HANDLED; 186 } 187 188 189 /*-------------------------------------------------------------------------*\ 190 * DAI functions 191 \*-------------------------------------------------------------------------*/ 192 /* 193 * Startup. Only that one substream allowed in each direction. 194 */ 195 static int atmel_ssc_startup(struct snd_pcm_substream *substream, 196 struct snd_soc_dai *dai) 197 { 198 struct atmel_ssc_info *ssc_p = &ssc_info[dai->id]; 199 int dir_mask; 200 201 pr_debug("atmel_ssc_startup: SSC_SR=0x%u\n", 202 ssc_readl(ssc_p->ssc->regs, SR)); 203 204 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 205 dir_mask = SSC_DIR_MASK_PLAYBACK; 206 else 207 dir_mask = SSC_DIR_MASK_CAPTURE; 208 209 spin_lock_irq(&ssc_p->lock); 210 if (ssc_p->dir_mask & dir_mask) { 211 spin_unlock_irq(&ssc_p->lock); 212 return -EBUSY; 213 } 214 ssc_p->dir_mask |= dir_mask; 215 spin_unlock_irq(&ssc_p->lock); 216 217 return 0; 218 } 219 220 /* 221 * Shutdown. Clear DMA parameters and shutdown the SSC if there 222 * are no other substreams open. 223 */ 224 static void atmel_ssc_shutdown(struct snd_pcm_substream *substream, 225 struct snd_soc_dai *dai) 226 { 227 struct atmel_ssc_info *ssc_p = &ssc_info[dai->id]; 228 struct atmel_pcm_dma_params *dma_params; 229 int dir, dir_mask; 230 231 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 232 dir = 0; 233 else 234 dir = 1; 235 236 dma_params = ssc_p->dma_params[dir]; 237 238 if (dma_params != NULL) { 239 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable); 240 pr_debug("atmel_ssc_shutdown: %s disabled SSC_SR=0x%08x\n", 241 (dir ? "receive" : "transmit"), 242 ssc_readl(ssc_p->ssc->regs, SR)); 243 244 dma_params->ssc = NULL; 245 dma_params->substream = NULL; 246 ssc_p->dma_params[dir] = NULL; 247 } 248 249 dir_mask = 1 << dir; 250 251 spin_lock_irq(&ssc_p->lock); 252 ssc_p->dir_mask &= ~dir_mask; 253 if (!ssc_p->dir_mask) { 254 if (ssc_p->initialized) { 255 /* Shutdown the SSC clock. */ 256 pr_debug("atmel_ssc_dau: Stopping clock\n"); 257 clk_disable(ssc_p->ssc->clk); 258 259 free_irq(ssc_p->ssc->irq, ssc_p); 260 ssc_p->initialized = 0; 261 } 262 263 /* Reset the SSC */ 264 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST)); 265 /* Clear the SSC dividers */ 266 ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0; 267 } 268 spin_unlock_irq(&ssc_p->lock); 269 } 270 271 272 /* 273 * Record the DAI format for use in hw_params(). 274 */ 275 static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai, 276 unsigned int fmt) 277 { 278 struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id]; 279 280 ssc_p->daifmt = fmt; 281 return 0; 282 } 283 284 /* 285 * Record SSC clock dividers for use in hw_params(). 286 */ 287 static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai, 288 int div_id, int div) 289 { 290 struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id]; 291 292 switch (div_id) { 293 case ATMEL_SSC_CMR_DIV: 294 /* 295 * The same master clock divider is used for both 296 * transmit and receive, so if a value has already 297 * been set, it must match this value. 298 */ 299 if (ssc_p->cmr_div == 0) 300 ssc_p->cmr_div = div; 301 else 302 if (div != ssc_p->cmr_div) 303 return -EBUSY; 304 break; 305 306 case ATMEL_SSC_TCMR_PERIOD: 307 ssc_p->tcmr_period = div; 308 break; 309 310 case ATMEL_SSC_RCMR_PERIOD: 311 ssc_p->rcmr_period = div; 312 break; 313 314 default: 315 return -EINVAL; 316 } 317 318 return 0; 319 } 320 321 /* 322 * Configure the SSC. 323 */ 324 static int atmel_ssc_hw_params(struct snd_pcm_substream *substream, 325 struct snd_pcm_hw_params *params, 326 struct snd_soc_dai *dai) 327 { 328 struct snd_soc_pcm_runtime *rtd = snd_pcm_substream_chip(substream); 329 int id = dai->id; 330 struct atmel_ssc_info *ssc_p = &ssc_info[id]; 331 struct atmel_pcm_dma_params *dma_params; 332 int dir, channels, bits; 333 u32 tfmr, rfmr, tcmr, rcmr; 334 int start_event; 335 int ret; 336 337 /* 338 * Currently, there is only one set of dma params for 339 * each direction. If more are added, this code will 340 * have to be changed to select the proper set. 341 */ 342 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 343 dir = 0; 344 else 345 dir = 1; 346 347 dma_params = &ssc_dma_params[id][dir]; 348 dma_params->ssc = ssc_p->ssc; 349 dma_params->substream = substream; 350 351 ssc_p->dma_params[dir] = dma_params; 352 353 /* 354 * The snd_soc_pcm_stream->dma_data field is only used to communicate 355 * the appropriate DMA parameters to the pcm driver hw_params() 356 * function. It should not be used for other purposes 357 * as it is common to all substreams. 358 */ 359 snd_soc_dai_set_dma_data(rtd->cpu_dai, substream, dma_params); 360 361 channels = params_channels(params); 362 363 /* 364 * Determine sample size in bits and the PDC increment. 365 */ 366 switch (params_format(params)) { 367 case SNDRV_PCM_FORMAT_S8: 368 bits = 8; 369 dma_params->pdc_xfer_size = 1; 370 break; 371 case SNDRV_PCM_FORMAT_S16_LE: 372 bits = 16; 373 dma_params->pdc_xfer_size = 2; 374 break; 375 case SNDRV_PCM_FORMAT_S24_LE: 376 bits = 24; 377 dma_params->pdc_xfer_size = 4; 378 break; 379 case SNDRV_PCM_FORMAT_S32_LE: 380 bits = 32; 381 dma_params->pdc_xfer_size = 4; 382 break; 383 default: 384 printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format"); 385 return -EINVAL; 386 } 387 388 /* 389 * The SSC only supports up to 16-bit samples in I2S format, due 390 * to the size of the Frame Mode Register FSLEN field. 391 */ 392 if ((ssc_p->daifmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_I2S 393 && bits > 16) { 394 printk(KERN_WARNING 395 "atmel_ssc_dai: sample size %d " 396 "is too large for I2S\n", bits); 397 return -EINVAL; 398 } 399 400 /* 401 * Compute SSC register settings. 402 */ 403 switch (ssc_p->daifmt 404 & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) { 405 406 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS: 407 /* 408 * I2S format, SSC provides BCLK and LRC clocks. 409 * 410 * The SSC transmit and receive clocks are generated 411 * from the MCK divider, and the BCLK signal 412 * is output on the SSC TK line. 413 */ 414 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period) 415 | SSC_BF(RCMR_STTDLY, START_DELAY) 416 | SSC_BF(RCMR_START, SSC_START_FALLING_RF) 417 | SSC_BF(RCMR_CKI, SSC_CKI_RISING) 418 | SSC_BF(RCMR_CKO, SSC_CKO_NONE) 419 | SSC_BF(RCMR_CKS, SSC_CKS_DIV); 420 421 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 422 | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE) 423 | SSC_BF(RFMR_FSLEN, (bits - 1)) 424 | SSC_BF(RFMR_DATNB, (channels - 1)) 425 | SSC_BIT(RFMR_MSBF) 426 | SSC_BF(RFMR_LOOP, 0) 427 | SSC_BF(RFMR_DATLEN, (bits - 1)); 428 429 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period) 430 | SSC_BF(TCMR_STTDLY, START_DELAY) 431 | SSC_BF(TCMR_START, SSC_START_FALLING_RF) 432 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING) 433 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS) 434 | SSC_BF(TCMR_CKS, SSC_CKS_DIV); 435 436 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 437 | SSC_BF(TFMR_FSDEN, 0) 438 | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE) 439 | SSC_BF(TFMR_FSLEN, (bits - 1)) 440 | SSC_BF(TFMR_DATNB, (channels - 1)) 441 | SSC_BIT(TFMR_MSBF) 442 | SSC_BF(TFMR_DATDEF, 0) 443 | SSC_BF(TFMR_DATLEN, (bits - 1)); 444 break; 445 446 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM: 447 /* 448 * I2S format, CODEC supplies BCLK and LRC clocks. 449 * 450 * The SSC transmit clock is obtained from the BCLK signal on 451 * on the TK line, and the SSC receive clock is 452 * generated from the transmit clock. 453 * 454 * For single channel data, one sample is transferred 455 * on the falling edge of the LRC clock. 456 * For two channel data, one sample is 457 * transferred on both edges of the LRC clock. 458 */ 459 start_event = ((channels == 1) 460 ? SSC_START_FALLING_RF 461 : SSC_START_EDGE_RF); 462 463 rcmr = SSC_BF(RCMR_PERIOD, 0) 464 | SSC_BF(RCMR_STTDLY, START_DELAY) 465 | SSC_BF(RCMR_START, start_event) 466 | SSC_BF(RCMR_CKI, SSC_CKI_RISING) 467 | SSC_BF(RCMR_CKO, SSC_CKO_NONE) 468 | SSC_BF(RCMR_CKS, SSC_CKS_CLOCK); 469 470 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 471 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE) 472 | SSC_BF(RFMR_FSLEN, 0) 473 | SSC_BF(RFMR_DATNB, 0) 474 | SSC_BIT(RFMR_MSBF) 475 | SSC_BF(RFMR_LOOP, 0) 476 | SSC_BF(RFMR_DATLEN, (bits - 1)); 477 478 tcmr = SSC_BF(TCMR_PERIOD, 0) 479 | SSC_BF(TCMR_STTDLY, START_DELAY) 480 | SSC_BF(TCMR_START, start_event) 481 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING) 482 | SSC_BF(TCMR_CKO, SSC_CKO_NONE) 483 | SSC_BF(TCMR_CKS, SSC_CKS_PIN); 484 485 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 486 | SSC_BF(TFMR_FSDEN, 0) 487 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE) 488 | SSC_BF(TFMR_FSLEN, 0) 489 | SSC_BF(TFMR_DATNB, 0) 490 | SSC_BIT(TFMR_MSBF) 491 | SSC_BF(TFMR_DATDEF, 0) 492 | SSC_BF(TFMR_DATLEN, (bits - 1)); 493 break; 494 495 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS: 496 /* 497 * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks. 498 * 499 * The SSC transmit and receive clocks are generated from the 500 * MCK divider, and the BCLK signal is output 501 * on the SSC TK line. 502 */ 503 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period) 504 | SSC_BF(RCMR_STTDLY, 1) 505 | SSC_BF(RCMR_START, SSC_START_RISING_RF) 506 | SSC_BF(RCMR_CKI, SSC_CKI_RISING) 507 | SSC_BF(RCMR_CKO, SSC_CKO_NONE) 508 | SSC_BF(RCMR_CKS, SSC_CKS_DIV); 509 510 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 511 | SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE) 512 | SSC_BF(RFMR_FSLEN, 0) 513 | SSC_BF(RFMR_DATNB, (channels - 1)) 514 | SSC_BIT(RFMR_MSBF) 515 | SSC_BF(RFMR_LOOP, 0) 516 | SSC_BF(RFMR_DATLEN, (bits - 1)); 517 518 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period) 519 | SSC_BF(TCMR_STTDLY, 1) 520 | SSC_BF(TCMR_START, SSC_START_RISING_RF) 521 | SSC_BF(TCMR_CKI, SSC_CKI_RISING) 522 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS) 523 | SSC_BF(TCMR_CKS, SSC_CKS_DIV); 524 525 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 526 | SSC_BF(TFMR_FSDEN, 0) 527 | SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE) 528 | SSC_BF(TFMR_FSLEN, 0) 529 | SSC_BF(TFMR_DATNB, (channels - 1)) 530 | SSC_BIT(TFMR_MSBF) 531 | SSC_BF(TFMR_DATDEF, 0) 532 | SSC_BF(TFMR_DATLEN, (bits - 1)); 533 break; 534 535 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM: 536 /* 537 * DSP/PCM Mode A format, CODEC supplies BCLK and LRC clocks. 538 * 539 * The SSC transmit clock is obtained from the BCLK signal on 540 * on the TK line, and the SSC receive clock is 541 * generated from the transmit clock. 542 * 543 * Data is transferred on first BCLK after LRC pulse rising 544 * edge.If stereo, the right channel data is contiguous with 545 * the left channel data. 546 */ 547 rcmr = SSC_BF(RCMR_PERIOD, 0) 548 | SSC_BF(RCMR_STTDLY, START_DELAY) 549 | SSC_BF(RCMR_START, SSC_START_RISING_RF) 550 | SSC_BF(RCMR_CKI, SSC_CKI_RISING) 551 | SSC_BF(RCMR_CKO, SSC_CKO_NONE) 552 | SSC_BF(RCMR_CKS, SSC_CKS_PIN); 553 554 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 555 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE) 556 | SSC_BF(RFMR_FSLEN, 0) 557 | SSC_BF(RFMR_DATNB, (channels - 1)) 558 | SSC_BIT(RFMR_MSBF) 559 | SSC_BF(RFMR_LOOP, 0) 560 | SSC_BF(RFMR_DATLEN, (bits - 1)); 561 562 tcmr = SSC_BF(TCMR_PERIOD, 0) 563 | SSC_BF(TCMR_STTDLY, START_DELAY) 564 | SSC_BF(TCMR_START, SSC_START_RISING_RF) 565 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING) 566 | SSC_BF(TCMR_CKO, SSC_CKO_NONE) 567 | SSC_BF(TCMR_CKS, SSC_CKS_PIN); 568 569 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE) 570 | SSC_BF(TFMR_FSDEN, 0) 571 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE) 572 | SSC_BF(TFMR_FSLEN, 0) 573 | SSC_BF(TFMR_DATNB, (channels - 1)) 574 | SSC_BIT(TFMR_MSBF) 575 | SSC_BF(TFMR_DATDEF, 0) 576 | SSC_BF(TFMR_DATLEN, (bits - 1)); 577 break; 578 579 default: 580 printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n", 581 ssc_p->daifmt); 582 return -EINVAL; 583 } 584 pr_debug("atmel_ssc_hw_params: " 585 "RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n", 586 rcmr, rfmr, tcmr, tfmr); 587 588 if (!ssc_p->initialized) { 589 590 /* Enable PMC peripheral clock for this SSC */ 591 pr_debug("atmel_ssc_dai: Starting clock\n"); 592 clk_enable(ssc_p->ssc->clk); 593 594 /* Reset the SSC and its PDC registers */ 595 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST)); 596 597 ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0); 598 ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0); 599 ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0); 600 ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0); 601 602 ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0); 603 ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0); 604 ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0); 605 ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0); 606 607 ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0, 608 ssc_p->name, ssc_p); 609 if (ret < 0) { 610 printk(KERN_WARNING 611 "atmel_ssc_dai: request_irq failure\n"); 612 pr_debug("Atmel_ssc_dai: Stoping clock\n"); 613 clk_disable(ssc_p->ssc->clk); 614 return ret; 615 } 616 617 ssc_p->initialized = 1; 618 } 619 620 /* set SSC clock mode register */ 621 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->cmr_div); 622 623 /* set receive clock mode and format */ 624 ssc_writel(ssc_p->ssc->regs, RCMR, rcmr); 625 ssc_writel(ssc_p->ssc->regs, RFMR, rfmr); 626 627 /* set transmit clock mode and format */ 628 ssc_writel(ssc_p->ssc->regs, TCMR, tcmr); 629 ssc_writel(ssc_p->ssc->regs, TFMR, tfmr); 630 631 pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n"); 632 return 0; 633 } 634 635 636 static int atmel_ssc_prepare(struct snd_pcm_substream *substream, 637 struct snd_soc_dai *dai) 638 { 639 struct atmel_ssc_info *ssc_p = &ssc_info[dai->id]; 640 struct atmel_pcm_dma_params *dma_params; 641 int dir; 642 643 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 644 dir = 0; 645 else 646 dir = 1; 647 648 dma_params = ssc_p->dma_params[dir]; 649 650 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable); 651 652 pr_debug("%s enabled SSC_SR=0x%08x\n", 653 dir ? "receive" : "transmit", 654 ssc_readl(ssc_p->ssc->regs, SR)); 655 return 0; 656 } 657 658 659 #ifdef CONFIG_PM 660 static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai) 661 { 662 struct atmel_ssc_info *ssc_p; 663 664 if (!cpu_dai->active) 665 return 0; 666 667 ssc_p = &ssc_info[cpu_dai->id]; 668 669 /* Save the status register before disabling transmit and receive */ 670 ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR); 671 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS)); 672 673 /* Save the current interrupt mask, then disable unmasked interrupts */ 674 ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR); 675 ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr); 676 677 ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR); 678 ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR); 679 ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR); 680 ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR); 681 ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR); 682 683 return 0; 684 } 685 686 687 688 static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai) 689 { 690 struct atmel_ssc_info *ssc_p; 691 u32 cr; 692 693 if (!cpu_dai->active) 694 return 0; 695 696 ssc_p = &ssc_info[cpu_dai->id]; 697 698 /* restore SSC register settings */ 699 ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr); 700 ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr); 701 ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr); 702 ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr); 703 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr); 704 705 /* re-enable interrupts */ 706 ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr); 707 708 /* Re-enable receive and transmit as appropriate */ 709 cr = 0; 710 cr |= 711 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0; 712 cr |= 713 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0; 714 ssc_writel(ssc_p->ssc->regs, CR, cr); 715 716 return 0; 717 } 718 #else /* CONFIG_PM */ 719 # define atmel_ssc_suspend NULL 720 # define atmel_ssc_resume NULL 721 #endif /* CONFIG_PM */ 722 723 #define ATMEL_SSC_RATES (SNDRV_PCM_RATE_8000_96000) 724 725 #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\ 726 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE) 727 728 static const struct snd_soc_dai_ops atmel_ssc_dai_ops = { 729 .startup = atmel_ssc_startup, 730 .shutdown = atmel_ssc_shutdown, 731 .prepare = atmel_ssc_prepare, 732 .hw_params = atmel_ssc_hw_params, 733 .set_fmt = atmel_ssc_set_dai_fmt, 734 .set_clkdiv = atmel_ssc_set_dai_clkdiv, 735 }; 736 737 static struct snd_soc_dai_driver atmel_ssc_dai = { 738 .suspend = atmel_ssc_suspend, 739 .resume = atmel_ssc_resume, 740 .playback = { 741 .channels_min = 1, 742 .channels_max = 2, 743 .rates = ATMEL_SSC_RATES, 744 .formats = ATMEL_SSC_FORMATS,}, 745 .capture = { 746 .channels_min = 1, 747 .channels_max = 2, 748 .rates = ATMEL_SSC_RATES, 749 .formats = ATMEL_SSC_FORMATS,}, 750 .ops = &atmel_ssc_dai_ops, 751 }; 752 753 static const struct snd_soc_component_driver atmel_ssc_component = { 754 .name = "atmel-ssc", 755 }; 756 757 static int asoc_ssc_init(struct device *dev) 758 { 759 struct platform_device *pdev = to_platform_device(dev); 760 struct ssc_device *ssc = platform_get_drvdata(pdev); 761 int ret; 762 763 ret = snd_soc_register_component(dev, &atmel_ssc_component, 764 &atmel_ssc_dai, 1); 765 if (ret) { 766 dev_err(dev, "Could not register DAI: %d\n", ret); 767 goto err; 768 } 769 770 if (ssc->pdata->use_dma) 771 ret = atmel_pcm_dma_platform_register(dev); 772 else 773 ret = atmel_pcm_pdc_platform_register(dev); 774 775 if (ret) { 776 dev_err(dev, "Could not register PCM: %d\n", ret); 777 goto err_unregister_dai; 778 }; 779 780 return 0; 781 782 err_unregister_dai: 783 snd_soc_unregister_component(dev); 784 err: 785 return ret; 786 } 787 788 static void asoc_ssc_exit(struct device *dev) 789 { 790 struct platform_device *pdev = to_platform_device(dev); 791 struct ssc_device *ssc = platform_get_drvdata(pdev); 792 793 if (ssc->pdata->use_dma) 794 atmel_pcm_dma_platform_unregister(dev); 795 else 796 atmel_pcm_pdc_platform_unregister(dev); 797 798 snd_soc_unregister_component(dev); 799 } 800 801 /** 802 * atmel_ssc_set_audio - Allocate the specified SSC for audio use. 803 */ 804 int atmel_ssc_set_audio(int ssc_id) 805 { 806 struct ssc_device *ssc; 807 int ret; 808 809 /* If we can grab the SSC briefly to parent the DAI device off it */ 810 ssc = ssc_request(ssc_id); 811 if (IS_ERR(ssc)) { 812 pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n", 813 PTR_ERR(ssc)); 814 return PTR_ERR(ssc); 815 } else { 816 ssc_info[ssc_id].ssc = ssc; 817 } 818 819 ret = asoc_ssc_init(&ssc->pdev->dev); 820 821 return ret; 822 } 823 EXPORT_SYMBOL_GPL(atmel_ssc_set_audio); 824 825 void atmel_ssc_put_audio(int ssc_id) 826 { 827 struct ssc_device *ssc = ssc_info[ssc_id].ssc; 828 829 asoc_ssc_exit(&ssc->pdev->dev); 830 ssc_free(ssc); 831 } 832 EXPORT_SYMBOL_GPL(atmel_ssc_put_audio); 833 834 /* Module information */ 835 MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com"); 836 MODULE_DESCRIPTION("ATMEL SSC ASoC Interface"); 837 MODULE_LICENSE("GPL"); 838