xref: /openbmc/linux/sound/ppc/pmac.c (revision ecd25094)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * PMac DBDMA lowlevel functions
4   *
5   * Copyright (c) by Takashi Iwai <tiwai@suse.de>
6   * code based on dmasound.c.
7   */
8  
9  
10  #include <linux/io.h>
11  #include <asm/irq.h>
12  #include <linux/init.h>
13  #include <linux/delay.h>
14  #include <linux/slab.h>
15  #include <linux/interrupt.h>
16  #include <linux/pci.h>
17  #include <linux/dma-mapping.h>
18  #include <linux/of_address.h>
19  #include <linux/of_irq.h>
20  #include <sound/core.h>
21  #include "pmac.h"
22  #include <sound/pcm_params.h>
23  #include <asm/pmac_feature.h>
24  
25  
26  /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
27  static int awacs_freqs[8] = {
28  	44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
29  };
30  /* fixed frequency table for tumbler */
31  static int tumbler_freqs[1] = {
32  	44100
33  };
34  
35  
36  /*
37   * we will allocate a single 'emergency' dbdma cmd block to use if the
38   * tx status comes up "DEAD".  This happens on some PowerComputing Pmac
39   * clones, either owing to a bug in dbdma or some interaction between
40   * IDE and sound.  However, this measure would deal with DEAD status if
41   * it appeared elsewhere.
42   */
43  static struct pmac_dbdma emergency_dbdma;
44  static int emergency_in_use;
45  
46  
47  /*
48   * allocate DBDMA command arrays
49   */
50  static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
51  {
52  	unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
53  
54  	rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
55  					&rec->dma_base, GFP_KERNEL);
56  	if (rec->space == NULL)
57  		return -ENOMEM;
58  	rec->size = size;
59  	memset(rec->space, 0, rsize);
60  	rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
61  	rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
62  
63  	return 0;
64  }
65  
66  static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
67  {
68  	if (rec->space) {
69  		unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
70  
71  		dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
72  	}
73  }
74  
75  
76  /*
77   * pcm stuff
78   */
79  
80  /*
81   * look up frequency table
82   */
83  
84  unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
85  {
86  	int i, ok, found;
87  
88  	ok = rec->cur_freqs;
89  	if (rate > chip->freq_table[0])
90  		return 0;
91  	found = 0;
92  	for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
93  		if (! (ok & 1)) continue;
94  		found = i;
95  		if (rate >= chip->freq_table[i])
96  			break;
97  	}
98  	return found;
99  }
100  
101  /*
102   * check whether another stream is active
103   */
104  static inline int another_stream(int stream)
105  {
106  	return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
107  		SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
108  }
109  
110  /*
111   * allocate buffers
112   */
113  static int snd_pmac_pcm_hw_params(struct snd_pcm_substream *subs,
114  				  struct snd_pcm_hw_params *hw_params)
115  {
116  	return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params));
117  }
118  
119  /*
120   * release buffers
121   */
122  static int snd_pmac_pcm_hw_free(struct snd_pcm_substream *subs)
123  {
124  	snd_pcm_lib_free_pages(subs);
125  	return 0;
126  }
127  
128  /*
129   * get a stream of the opposite direction
130   */
131  static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
132  {
133  	switch (stream) {
134  	case SNDRV_PCM_STREAM_PLAYBACK:
135  		return &chip->playback;
136  	case SNDRV_PCM_STREAM_CAPTURE:
137  		return &chip->capture;
138  	default:
139  		snd_BUG();
140  		return NULL;
141  	}
142  }
143  
144  /*
145   * wait while run status is on
146   */
147  static inline void
148  snd_pmac_wait_ack(struct pmac_stream *rec)
149  {
150  	int timeout = 50000;
151  	while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
152  		udelay(1);
153  }
154  
155  /*
156   * set the format and rate to the chip.
157   * call the lowlevel function if defined (e.g. for AWACS).
158   */
159  static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
160  {
161  	/* set up frequency and format */
162  	out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
163  	out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
164  	if (chip->set_format)
165  		chip->set_format(chip);
166  }
167  
168  /*
169   * stop the DMA transfer
170   */
171  static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
172  {
173  	out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
174  	snd_pmac_wait_ack(rec);
175  }
176  
177  /*
178   * set the command pointer address
179   */
180  static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
181  {
182  	out_le32(&rec->dma->cmdptr, cmd->addr);
183  }
184  
185  /*
186   * start the DMA
187   */
188  static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
189  {
190  	out_le32(&rec->dma->control, status | (status << 16));
191  }
192  
193  
194  /*
195   * prepare playback/capture stream
196   */
197  static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
198  {
199  	int i;
200  	volatile struct dbdma_cmd __iomem *cp;
201  	struct snd_pcm_runtime *runtime = subs->runtime;
202  	int rate_index;
203  	long offset;
204  	struct pmac_stream *astr;
205  
206  	rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
207  	rec->period_size = snd_pcm_lib_period_bytes(subs);
208  	rec->nperiods = rec->dma_size / rec->period_size;
209  	rec->cur_period = 0;
210  	rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
211  
212  	/* set up constraints */
213  	astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
214  	if (! astr)
215  		return -EINVAL;
216  	astr->cur_freqs = 1 << rate_index;
217  	astr->cur_formats = 1 << runtime->format;
218  	chip->rate_index = rate_index;
219  	chip->format = runtime->format;
220  
221  	/* We really want to execute a DMA stop command, after the AWACS
222  	 * is initialized.
223  	 * For reasons I don't understand, it stops the hissing noise
224  	 * common to many PowerBook G3 systems and random noise otherwise
225  	 * captured on iBook2's about every third time. -ReneR
226  	 */
227  	spin_lock_irq(&chip->reg_lock);
228  	snd_pmac_dma_stop(rec);
229  	chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
230  	snd_pmac_dma_set_command(rec, &chip->extra_dma);
231  	snd_pmac_dma_run(rec, RUN);
232  	spin_unlock_irq(&chip->reg_lock);
233  	mdelay(5);
234  	spin_lock_irq(&chip->reg_lock);
235  	/* continuous DMA memory type doesn't provide the physical address,
236  	 * so we need to resolve the address here...
237  	 */
238  	offset = runtime->dma_addr;
239  	for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
240  		cp->phy_addr = cpu_to_le32(offset);
241  		cp->req_count = cpu_to_le16(rec->period_size);
242  		/*cp->res_count = cpu_to_le16(0);*/
243  		cp->xfer_status = cpu_to_le16(0);
244  		offset += rec->period_size;
245  	}
246  	/* make loop */
247  	cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS);
248  	cp->cmd_dep = cpu_to_le32(rec->cmd.addr);
249  
250  	snd_pmac_dma_stop(rec);
251  	snd_pmac_dma_set_command(rec, &rec->cmd);
252  	spin_unlock_irq(&chip->reg_lock);
253  
254  	return 0;
255  }
256  
257  
258  /*
259   * PCM trigger/stop
260   */
261  static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
262  				struct snd_pcm_substream *subs, int cmd)
263  {
264  	volatile struct dbdma_cmd __iomem *cp;
265  	int i, command;
266  
267  	switch (cmd) {
268  	case SNDRV_PCM_TRIGGER_START:
269  	case SNDRV_PCM_TRIGGER_RESUME:
270  		if (rec->running)
271  			return -EBUSY;
272  		command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
273  			   OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
274  		spin_lock(&chip->reg_lock);
275  		snd_pmac_beep_stop(chip);
276  		snd_pmac_pcm_set_format(chip);
277  		for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
278  			out_le16(&cp->command, command);
279  		snd_pmac_dma_set_command(rec, &rec->cmd);
280  		(void)in_le32(&rec->dma->status);
281  		snd_pmac_dma_run(rec, RUN|WAKE);
282  		rec->running = 1;
283  		spin_unlock(&chip->reg_lock);
284  		break;
285  
286  	case SNDRV_PCM_TRIGGER_STOP:
287  	case SNDRV_PCM_TRIGGER_SUSPEND:
288  		spin_lock(&chip->reg_lock);
289  		rec->running = 0;
290  		/*printk(KERN_DEBUG "stopped!!\n");*/
291  		snd_pmac_dma_stop(rec);
292  		for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
293  			out_le16(&cp->command, DBDMA_STOP);
294  		spin_unlock(&chip->reg_lock);
295  		break;
296  
297  	default:
298  		return -EINVAL;
299  	}
300  
301  	return 0;
302  }
303  
304  /*
305   * return the current pointer
306   */
307  inline
308  static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
309  					      struct pmac_stream *rec,
310  					      struct snd_pcm_substream *subs)
311  {
312  	int count = 0;
313  
314  #if 1 /* hmm.. how can we get the current dma pointer?? */
315  	int stat;
316  	volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
317  	stat = le16_to_cpu(cp->xfer_status);
318  	if (stat & (ACTIVE|DEAD)) {
319  		count = in_le16(&cp->res_count);
320  		if (count)
321  			count = rec->period_size - count;
322  	}
323  #endif
324  	count += rec->cur_period * rec->period_size;
325  	/*printk(KERN_DEBUG "pointer=%d\n", count);*/
326  	return bytes_to_frames(subs->runtime, count);
327  }
328  
329  /*
330   * playback
331   */
332  
333  static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
334  {
335  	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
336  	return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
337  }
338  
339  static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
340  				     int cmd)
341  {
342  	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
343  	return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
344  }
345  
346  static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
347  {
348  	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
349  	return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
350  }
351  
352  
353  /*
354   * capture
355   */
356  
357  static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
358  {
359  	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
360  	return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
361  }
362  
363  static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
364  				    int cmd)
365  {
366  	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
367  	return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
368  }
369  
370  static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
371  {
372  	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
373  	return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
374  }
375  
376  
377  /*
378   * Handle DEAD DMA transfers:
379   * if the TX status comes up "DEAD" - reported on some Power Computing machines
380   * we need to re-start the dbdma - but from a different physical start address
381   * and with a different transfer length.  It would get very messy to do this
382   * with the normal dbdma_cmd blocks - we would have to re-write the buffer start
383   * addresses each time.  So, we will keep a single dbdma_cmd block which can be
384   * fiddled with.
385   * When DEAD status is first reported the content of the faulted dbdma block is
386   * copied into the emergency buffer and we note that the buffer is in use.
387   * we then bump the start physical address by the amount that was successfully
388   * output before it died.
389   * On any subsequent DEAD result we just do the bump-ups (we know that we are
390   * already using the emergency dbdma_cmd).
391   * CHECK: this just tries to "do it".  It is possible that we should abandon
392   * xfers when the number of residual bytes gets below a certain value - I can
393   * see that this might cause a loop-forever if a too small transfer causes
394   * DEAD status.  However this is a TODO for now - we'll see what gets reported.
395   * When we get a successful transfer result with the emergency buffer we just
396   * pretend that it completed using the original dmdma_cmd and carry on.  The
397   * 'next_cmd' field will already point back to the original loop of blocks.
398   */
399  static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec,
400  					  volatile struct dbdma_cmd __iomem *cp)
401  {
402  	unsigned short req, res ;
403  	unsigned int phy ;
404  
405  	/* printk(KERN_WARNING "snd-powermac: DMA died - patching it up!\n"); */
406  
407  	/* to clear DEAD status we must first clear RUN
408  	   set it to quiescent to be on the safe side */
409  	(void)in_le32(&rec->dma->status);
410  	out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
411  
412  	if (!emergency_in_use) { /* new problem */
413  		memcpy((void *)emergency_dbdma.cmds, (void *)cp,
414  		       sizeof(struct dbdma_cmd));
415  		emergency_in_use = 1;
416  		cp->xfer_status = cpu_to_le16(0);
417  		cp->req_count = cpu_to_le16(rec->period_size);
418  		cp = emergency_dbdma.cmds;
419  	}
420  
421  	/* now bump the values to reflect the amount
422  	   we haven't yet shifted */
423  	req = le16_to_cpu(cp->req_count);
424  	res = le16_to_cpu(cp->res_count);
425  	phy = le32_to_cpu(cp->phy_addr);
426  	phy += (req - res);
427  	cp->req_count = cpu_to_le16(res);
428  	cp->res_count = cpu_to_le16(0);
429  	cp->xfer_status = cpu_to_le16(0);
430  	cp->phy_addr = cpu_to_le32(phy);
431  
432  	cp->cmd_dep = cpu_to_le32(rec->cmd.addr
433  		+ sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods));
434  
435  	cp->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS);
436  
437  	/* point at our patched up command block */
438  	out_le32(&rec->dma->cmdptr, emergency_dbdma.addr);
439  
440  	/* we must re-start the controller */
441  	(void)in_le32(&rec->dma->status);
442  	/* should complete clearing the DEAD status */
443  	out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
444  }
445  
446  /*
447   * update playback/capture pointer from interrupts
448   */
449  static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
450  {
451  	volatile struct dbdma_cmd __iomem *cp;
452  	int c;
453  	int stat;
454  
455  	spin_lock(&chip->reg_lock);
456  	if (rec->running) {
457  		for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
458  
459  			if (emergency_in_use)   /* already using DEAD xfer? */
460  				cp = emergency_dbdma.cmds;
461  			else
462  				cp = &rec->cmd.cmds[rec->cur_period];
463  
464  			stat = le16_to_cpu(cp->xfer_status);
465  
466  			if (stat & DEAD) {
467  				snd_pmac_pcm_dead_xfer(rec, cp);
468  				break; /* this block is still going */
469  			}
470  
471  			if (emergency_in_use)
472  				emergency_in_use = 0 ; /* done that */
473  
474  			if (! (stat & ACTIVE))
475  				break;
476  
477  			/*printk(KERN_DEBUG "update frag %d\n", rec->cur_period);*/
478  			cp->xfer_status = cpu_to_le16(0);
479  			cp->req_count = cpu_to_le16(rec->period_size);
480  			/*cp->res_count = cpu_to_le16(0);*/
481  			rec->cur_period++;
482  			if (rec->cur_period >= rec->nperiods) {
483  				rec->cur_period = 0;
484  			}
485  
486  			spin_unlock(&chip->reg_lock);
487  			snd_pcm_period_elapsed(rec->substream);
488  			spin_lock(&chip->reg_lock);
489  		}
490  	}
491  	spin_unlock(&chip->reg_lock);
492  }
493  
494  
495  /*
496   * hw info
497   */
498  
499  static const struct snd_pcm_hardware snd_pmac_playback =
500  {
501  	.info =			(SNDRV_PCM_INFO_INTERLEAVED |
502  				 SNDRV_PCM_INFO_MMAP |
503  				 SNDRV_PCM_INFO_MMAP_VALID |
504  				 SNDRV_PCM_INFO_RESUME),
505  	.formats =		SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
506  	.rates =		SNDRV_PCM_RATE_8000_44100,
507  	.rate_min =		7350,
508  	.rate_max =		44100,
509  	.channels_min =		2,
510  	.channels_max =		2,
511  	.buffer_bytes_max =	131072,
512  	.period_bytes_min =	256,
513  	.period_bytes_max =	16384,
514  	.periods_min =		3,
515  	.periods_max =		PMAC_MAX_FRAGS,
516  };
517  
518  static const struct snd_pcm_hardware snd_pmac_capture =
519  {
520  	.info =			(SNDRV_PCM_INFO_INTERLEAVED |
521  				 SNDRV_PCM_INFO_MMAP |
522  				 SNDRV_PCM_INFO_MMAP_VALID |
523  				 SNDRV_PCM_INFO_RESUME),
524  	.formats =		SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
525  	.rates =		SNDRV_PCM_RATE_8000_44100,
526  	.rate_min =		7350,
527  	.rate_max =		44100,
528  	.channels_min =		2,
529  	.channels_max =		2,
530  	.buffer_bytes_max =	131072,
531  	.period_bytes_min =	256,
532  	.period_bytes_max =	16384,
533  	.periods_min =		3,
534  	.periods_max =		PMAC_MAX_FRAGS,
535  };
536  
537  
538  #if 0 // NYI
539  static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
540  				 struct snd_pcm_hw_rule *rule)
541  {
542  	struct snd_pmac *chip = rule->private;
543  	struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
544  	int i, freq_table[8], num_freqs;
545  
546  	if (! rec)
547  		return -EINVAL;
548  	num_freqs = 0;
549  	for (i = chip->num_freqs - 1; i >= 0; i--) {
550  		if (rec->cur_freqs & (1 << i))
551  			freq_table[num_freqs++] = chip->freq_table[i];
552  	}
553  
554  	return snd_interval_list(hw_param_interval(params, rule->var),
555  				 num_freqs, freq_table, 0);
556  }
557  
558  static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
559  				   struct snd_pcm_hw_rule *rule)
560  {
561  	struct snd_pmac *chip = rule->private;
562  	struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
563  
564  	if (! rec)
565  		return -EINVAL;
566  	return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
567  				   rec->cur_formats);
568  }
569  #endif // NYI
570  
571  static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
572  			     struct snd_pcm_substream *subs)
573  {
574  	struct snd_pcm_runtime *runtime = subs->runtime;
575  	int i;
576  
577  	/* look up frequency table and fill bit mask */
578  	runtime->hw.rates = 0;
579  	for (i = 0; i < chip->num_freqs; i++)
580  		if (chip->freqs_ok & (1 << i))
581  			runtime->hw.rates |=
582  				snd_pcm_rate_to_rate_bit(chip->freq_table[i]);
583  
584  	/* check for minimum and maximum rates */
585  	for (i = 0; i < chip->num_freqs; i++) {
586  		if (chip->freqs_ok & (1 << i)) {
587  			runtime->hw.rate_max = chip->freq_table[i];
588  			break;
589  		}
590  	}
591  	for (i = chip->num_freqs - 1; i >= 0; i--) {
592  		if (chip->freqs_ok & (1 << i)) {
593  			runtime->hw.rate_min = chip->freq_table[i];
594  			break;
595  		}
596  	}
597  	runtime->hw.formats = chip->formats_ok;
598  	if (chip->can_capture) {
599  		if (! chip->can_duplex)
600  			runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
601  		runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
602  	}
603  	runtime->private_data = rec;
604  	rec->substream = subs;
605  
606  #if 0 /* FIXME: still under development.. */
607  	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
608  			    snd_pmac_hw_rule_rate, chip, rec->stream, -1);
609  	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
610  			    snd_pmac_hw_rule_format, chip, rec->stream, -1);
611  #endif
612  
613  	runtime->hw.periods_max = rec->cmd.size - 1;
614  
615  	/* constraints to fix choppy sound */
616  	snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
617  	return 0;
618  }
619  
620  static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
621  			      struct snd_pcm_substream *subs)
622  {
623  	struct pmac_stream *astr;
624  
625  	snd_pmac_dma_stop(rec);
626  
627  	astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
628  	if (! astr)
629  		return -EINVAL;
630  
631  	/* reset constraints */
632  	astr->cur_freqs = chip->freqs_ok;
633  	astr->cur_formats = chip->formats_ok;
634  
635  	return 0;
636  }
637  
638  static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
639  {
640  	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
641  
642  	subs->runtime->hw = snd_pmac_playback;
643  	return snd_pmac_pcm_open(chip, &chip->playback, subs);
644  }
645  
646  static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
647  {
648  	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
649  
650  	subs->runtime->hw = snd_pmac_capture;
651  	return snd_pmac_pcm_open(chip, &chip->capture, subs);
652  }
653  
654  static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
655  {
656  	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
657  
658  	return snd_pmac_pcm_close(chip, &chip->playback, subs);
659  }
660  
661  static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
662  {
663  	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
664  
665  	return snd_pmac_pcm_close(chip, &chip->capture, subs);
666  }
667  
668  /*
669   */
670  
671  static const struct snd_pcm_ops snd_pmac_playback_ops = {
672  	.open =		snd_pmac_playback_open,
673  	.close =	snd_pmac_playback_close,
674  	.ioctl =	snd_pcm_lib_ioctl,
675  	.hw_params =	snd_pmac_pcm_hw_params,
676  	.hw_free =	snd_pmac_pcm_hw_free,
677  	.prepare =	snd_pmac_playback_prepare,
678  	.trigger =	snd_pmac_playback_trigger,
679  	.pointer =	snd_pmac_playback_pointer,
680  };
681  
682  static const struct snd_pcm_ops snd_pmac_capture_ops = {
683  	.open =		snd_pmac_capture_open,
684  	.close =	snd_pmac_capture_close,
685  	.ioctl =	snd_pcm_lib_ioctl,
686  	.hw_params =	snd_pmac_pcm_hw_params,
687  	.hw_free =	snd_pmac_pcm_hw_free,
688  	.prepare =	snd_pmac_capture_prepare,
689  	.trigger =	snd_pmac_capture_trigger,
690  	.pointer =	snd_pmac_capture_pointer,
691  };
692  
693  int snd_pmac_pcm_new(struct snd_pmac *chip)
694  {
695  	struct snd_pcm *pcm;
696  	int err;
697  	int num_captures = 1;
698  
699  	if (! chip->can_capture)
700  		num_captures = 0;
701  	err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
702  	if (err < 0)
703  		return err;
704  
705  	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
706  	if (chip->can_capture)
707  		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
708  
709  	pcm->private_data = chip;
710  	pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
711  	strcpy(pcm->name, chip->card->shortname);
712  	chip->pcm = pcm;
713  
714  	chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
715  	if (chip->can_byte_swap)
716  		chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
717  
718  	chip->playback.cur_formats = chip->formats_ok;
719  	chip->capture.cur_formats = chip->formats_ok;
720  	chip->playback.cur_freqs = chip->freqs_ok;
721  	chip->capture.cur_freqs = chip->freqs_ok;
722  
723  	/* preallocate 64k buffer */
724  	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
725  					      &chip->pdev->dev,
726  					      64 * 1024, 64 * 1024);
727  
728  	return 0;
729  }
730  
731  
732  static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
733  {
734  	out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
735  	snd_pmac_wait_ack(&chip->playback);
736  	out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
737  	snd_pmac_wait_ack(&chip->capture);
738  }
739  
740  
741  /*
742   * handling beep
743   */
744  void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
745  {
746  	struct pmac_stream *rec = &chip->playback;
747  
748  	snd_pmac_dma_stop(rec);
749  	chip->extra_dma.cmds->req_count = cpu_to_le16(bytes);
750  	chip->extra_dma.cmds->xfer_status = cpu_to_le16(0);
751  	chip->extra_dma.cmds->cmd_dep = cpu_to_le32(chip->extra_dma.addr);
752  	chip->extra_dma.cmds->phy_addr = cpu_to_le32(addr);
753  	chip->extra_dma.cmds->command = cpu_to_le16(OUTPUT_MORE + BR_ALWAYS);
754  	out_le32(&chip->awacs->control,
755  		 (in_le32(&chip->awacs->control) & ~0x1f00)
756  		 | (speed << 8));
757  	out_le32(&chip->awacs->byteswap, 0);
758  	snd_pmac_dma_set_command(rec, &chip->extra_dma);
759  	snd_pmac_dma_run(rec, RUN);
760  }
761  
762  void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
763  {
764  	snd_pmac_dma_stop(&chip->playback);
765  	chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
766  	snd_pmac_pcm_set_format(chip); /* reset format */
767  }
768  
769  
770  /*
771   * interrupt handlers
772   */
773  static irqreturn_t
774  snd_pmac_tx_intr(int irq, void *devid)
775  {
776  	struct snd_pmac *chip = devid;
777  	snd_pmac_pcm_update(chip, &chip->playback);
778  	return IRQ_HANDLED;
779  }
780  
781  
782  static irqreturn_t
783  snd_pmac_rx_intr(int irq, void *devid)
784  {
785  	struct snd_pmac *chip = devid;
786  	snd_pmac_pcm_update(chip, &chip->capture);
787  	return IRQ_HANDLED;
788  }
789  
790  
791  static irqreturn_t
792  snd_pmac_ctrl_intr(int irq, void *devid)
793  {
794  	struct snd_pmac *chip = devid;
795  	int ctrl = in_le32(&chip->awacs->control);
796  
797  	/*printk(KERN_DEBUG "pmac: control interrupt.. 0x%x\n", ctrl);*/
798  	if (ctrl & MASK_PORTCHG) {
799  		/* do something when headphone is plugged/unplugged? */
800  		if (chip->update_automute)
801  			chip->update_automute(chip, 1);
802  	}
803  	if (ctrl & MASK_CNTLERR) {
804  		int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
805  		if (err && chip->model <= PMAC_SCREAMER)
806  			snd_printk(KERN_DEBUG "error %x\n", err);
807  	}
808  	/* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
809  	out_le32(&chip->awacs->control, ctrl);
810  	return IRQ_HANDLED;
811  }
812  
813  
814  /*
815   * a wrapper to feature call for compatibility
816   */
817  static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
818  {
819  	if (ppc_md.feature_call)
820  		ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
821  }
822  
823  /*
824   * release resources
825   */
826  
827  static int snd_pmac_free(struct snd_pmac *chip)
828  {
829  	/* stop sounds */
830  	if (chip->initialized) {
831  		snd_pmac_dbdma_reset(chip);
832  		/* disable interrupts from awacs interface */
833  		out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
834  	}
835  
836  	if (chip->node)
837  		snd_pmac_sound_feature(chip, 0);
838  
839  	/* clean up mixer if any */
840  	if (chip->mixer_free)
841  		chip->mixer_free(chip);
842  
843  	snd_pmac_detach_beep(chip);
844  
845  	/* release resources */
846  	if (chip->irq >= 0)
847  		free_irq(chip->irq, (void*)chip);
848  	if (chip->tx_irq >= 0)
849  		free_irq(chip->tx_irq, (void*)chip);
850  	if (chip->rx_irq >= 0)
851  		free_irq(chip->rx_irq, (void*)chip);
852  	snd_pmac_dbdma_free(chip, &chip->playback.cmd);
853  	snd_pmac_dbdma_free(chip, &chip->capture.cmd);
854  	snd_pmac_dbdma_free(chip, &chip->extra_dma);
855  	snd_pmac_dbdma_free(chip, &emergency_dbdma);
856  	iounmap(chip->macio_base);
857  	iounmap(chip->latch_base);
858  	iounmap(chip->awacs);
859  	iounmap(chip->playback.dma);
860  	iounmap(chip->capture.dma);
861  
862  	if (chip->node) {
863  		int i;
864  		for (i = 0; i < 3; i++) {
865  			if (chip->requested & (1 << i))
866  				release_mem_region(chip->rsrc[i].start,
867  						   resource_size(&chip->rsrc[i]));
868  		}
869  	}
870  
871  	pci_dev_put(chip->pdev);
872  	of_node_put(chip->node);
873  	kfree(chip);
874  	return 0;
875  }
876  
877  
878  /*
879   * free the device
880   */
881  static int snd_pmac_dev_free(struct snd_device *device)
882  {
883  	struct snd_pmac *chip = device->device_data;
884  	return snd_pmac_free(chip);
885  }
886  
887  
888  /*
889   * check the machine support byteswap (little-endian)
890   */
891  
892  static void detect_byte_swap(struct snd_pmac *chip)
893  {
894  	struct device_node *mio;
895  
896  	/* if seems that Keylargo can't byte-swap  */
897  	for (mio = chip->node->parent; mio; mio = mio->parent) {
898  		if (of_node_name_eq(mio, "mac-io")) {
899  			if (of_device_is_compatible(mio, "Keylargo"))
900  				chip->can_byte_swap = 0;
901  			break;
902  		}
903  	}
904  
905  	/* it seems the Pismo & iBook can't byte-swap in hardware. */
906  	if (of_machine_is_compatible("PowerBook3,1") ||
907  	    of_machine_is_compatible("PowerBook2,1"))
908  		chip->can_byte_swap = 0 ;
909  
910  	if (of_machine_is_compatible("PowerBook2,1"))
911  		chip->can_duplex = 0;
912  }
913  
914  
915  /*
916   * detect a sound chip
917   */
918  static int snd_pmac_detect(struct snd_pmac *chip)
919  {
920  	struct device_node *sound;
921  	struct device_node *dn;
922  	const unsigned int *prop;
923  	unsigned int l;
924  	struct macio_chip* macio;
925  
926  	if (!machine_is(powermac))
927  		return -ENODEV;
928  
929  	chip->subframe = 0;
930  	chip->revision = 0;
931  	chip->freqs_ok = 0xff; /* all ok */
932  	chip->model = PMAC_AWACS;
933  	chip->can_byte_swap = 1;
934  	chip->can_duplex = 1;
935  	chip->can_capture = 1;
936  	chip->num_freqs = ARRAY_SIZE(awacs_freqs);
937  	chip->freq_table = awacs_freqs;
938  	chip->pdev = NULL;
939  
940  	chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
941  
942  	/* check machine type */
943  	if (of_machine_is_compatible("AAPL,3400/2400")
944  	    || of_machine_is_compatible("AAPL,3500"))
945  		chip->is_pbook_3400 = 1;
946  	else if (of_machine_is_compatible("PowerBook1,1")
947  		 || of_machine_is_compatible("AAPL,PowerBook1998"))
948  		chip->is_pbook_G3 = 1;
949  	chip->node = of_find_node_by_name(NULL, "awacs");
950  	sound = of_node_get(chip->node);
951  
952  	/*
953  	 * powermac G3 models have a node called "davbus"
954  	 * with a child called "sound".
955  	 */
956  	if (!chip->node)
957  		chip->node = of_find_node_by_name(NULL, "davbus");
958  	/*
959  	 * if we didn't find a davbus device, try 'i2s-a' since
960  	 * this seems to be what iBooks have
961  	 */
962  	if (! chip->node) {
963  		chip->node = of_find_node_by_name(NULL, "i2s-a");
964  		if (chip->node && chip->node->parent &&
965  		    chip->node->parent->parent) {
966  			if (of_device_is_compatible(chip->node->parent->parent,
967  						 "K2-Keylargo"))
968  				chip->is_k2 = 1;
969  		}
970  	}
971  	if (! chip->node)
972  		return -ENODEV;
973  
974  	if (!sound) {
975  		for_each_node_by_name(sound, "sound")
976  			if (sound->parent == chip->node)
977  				break;
978  	}
979  	if (! sound) {
980  		of_node_put(chip->node);
981  		chip->node = NULL;
982  		return -ENODEV;
983  	}
984  	prop = of_get_property(sound, "sub-frame", NULL);
985  	if (prop && *prop < 16)
986  		chip->subframe = *prop;
987  	prop = of_get_property(sound, "layout-id", NULL);
988  	if (prop) {
989  		/* partly deprecate snd-powermac, for those machines
990  		 * that have a layout-id property for now */
991  		printk(KERN_INFO "snd-powermac no longer handles any "
992  				 "machines with a layout-id property "
993  				 "in the device-tree, use snd-aoa.\n");
994  		of_node_put(sound);
995  		of_node_put(chip->node);
996  		chip->node = NULL;
997  		return -ENODEV;
998  	}
999  	/* This should be verified on older screamers */
1000  	if (of_device_is_compatible(sound, "screamer")) {
1001  		chip->model = PMAC_SCREAMER;
1002  		// chip->can_byte_swap = 0; /* FIXME: check this */
1003  	}
1004  	if (of_device_is_compatible(sound, "burgundy")) {
1005  		chip->model = PMAC_BURGUNDY;
1006  		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1007  	}
1008  	if (of_device_is_compatible(sound, "daca")) {
1009  		chip->model = PMAC_DACA;
1010  		chip->can_capture = 0;  /* no capture */
1011  		chip->can_duplex = 0;
1012  		// chip->can_byte_swap = 0; /* FIXME: check this */
1013  		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1014  	}
1015  	if (of_device_is_compatible(sound, "tumbler")) {
1016  		chip->model = PMAC_TUMBLER;
1017  		chip->can_capture = of_machine_is_compatible("PowerMac4,2")
1018  				|| of_machine_is_compatible("PowerBook3,2")
1019  				|| of_machine_is_compatible("PowerBook3,3")
1020  				|| of_machine_is_compatible("PowerBook4,1")
1021  				|| of_machine_is_compatible("PowerBook4,2")
1022  				|| of_machine_is_compatible("PowerBook4,3");
1023  		chip->can_duplex = 0;
1024  		// chip->can_byte_swap = 0; /* FIXME: check this */
1025  		chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1026  		chip->freq_table = tumbler_freqs;
1027  		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1028  	}
1029  	if (of_device_is_compatible(sound, "snapper")) {
1030  		chip->model = PMAC_SNAPPER;
1031  		// chip->can_byte_swap = 0; /* FIXME: check this */
1032  		chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1033  		chip->freq_table = tumbler_freqs;
1034  		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1035  	}
1036  	prop = of_get_property(sound, "device-id", NULL);
1037  	if (prop)
1038  		chip->device_id = *prop;
1039  	dn = of_find_node_by_name(NULL, "perch");
1040  	chip->has_iic = (dn != NULL);
1041  	of_node_put(dn);
1042  
1043  	/* We need the PCI device for DMA allocations, let's use a crude method
1044  	 * for now ...
1045  	 */
1046  	macio = macio_find(chip->node, macio_unknown);
1047  	if (macio == NULL)
1048  		printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
1049  	else {
1050  		struct pci_dev *pdev = NULL;
1051  
1052  		for_each_pci_dev(pdev) {
1053  			struct device_node *np = pci_device_to_OF_node(pdev);
1054  			if (np && np == macio->of_node) {
1055  				chip->pdev = pdev;
1056  				break;
1057  			}
1058  		}
1059  	}
1060  	if (chip->pdev == NULL)
1061  		printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
1062  		       " device !\n");
1063  
1064  	detect_byte_swap(chip);
1065  
1066  	/* look for a property saying what sample rates
1067  	   are available */
1068  	prop = of_get_property(sound, "sample-rates", &l);
1069  	if (! prop)
1070  		prop = of_get_property(sound, "output-frame-rates", &l);
1071  	if (prop) {
1072  		int i;
1073  		chip->freqs_ok = 0;
1074  		for (l /= sizeof(int); l > 0; --l) {
1075  			unsigned int r = *prop++;
1076  			/* Apple 'Fixed' format */
1077  			if (r >= 0x10000)
1078  				r >>= 16;
1079  			for (i = 0; i < chip->num_freqs; ++i) {
1080  				if (r == chip->freq_table[i]) {
1081  					chip->freqs_ok |= (1 << i);
1082  					break;
1083  				}
1084  			}
1085  		}
1086  	} else {
1087  		/* assume only 44.1khz */
1088  		chip->freqs_ok = 1;
1089  	}
1090  
1091  	of_node_put(sound);
1092  	return 0;
1093  }
1094  
1095  #ifdef PMAC_SUPPORT_AUTOMUTE
1096  /*
1097   * auto-mute
1098   */
1099  static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
1100  			      struct snd_ctl_elem_value *ucontrol)
1101  {
1102  	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1103  	ucontrol->value.integer.value[0] = chip->auto_mute;
1104  	return 0;
1105  }
1106  
1107  static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
1108  			      struct snd_ctl_elem_value *ucontrol)
1109  {
1110  	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1111  	if (ucontrol->value.integer.value[0] != chip->auto_mute) {
1112  		chip->auto_mute = !!ucontrol->value.integer.value[0];
1113  		if (chip->update_automute)
1114  			chip->update_automute(chip, 1);
1115  		return 1;
1116  	}
1117  	return 0;
1118  }
1119  
1120  static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
1121  			      struct snd_ctl_elem_value *ucontrol)
1122  {
1123  	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1124  	if (chip->detect_headphone)
1125  		ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
1126  	else
1127  		ucontrol->value.integer.value[0] = 0;
1128  	return 0;
1129  }
1130  
1131  static struct snd_kcontrol_new auto_mute_controls[] = {
1132  	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1133  	  .name = "Auto Mute Switch",
1134  	  .info = snd_pmac_boolean_mono_info,
1135  	  .get = pmac_auto_mute_get,
1136  	  .put = pmac_auto_mute_put,
1137  	},
1138  	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1139  	  .name = "Headphone Detection",
1140  	  .access = SNDRV_CTL_ELEM_ACCESS_READ,
1141  	  .info = snd_pmac_boolean_mono_info,
1142  	  .get = pmac_hp_detect_get,
1143  	},
1144  };
1145  
1146  int snd_pmac_add_automute(struct snd_pmac *chip)
1147  {
1148  	int err;
1149  	chip->auto_mute = 1;
1150  	err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
1151  	if (err < 0) {
1152  		printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
1153  		return err;
1154  	}
1155  	chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
1156  	return snd_ctl_add(chip->card, chip->hp_detect_ctl);
1157  }
1158  #endif /* PMAC_SUPPORT_AUTOMUTE */
1159  
1160  /*
1161   * create and detect a pmac chip record
1162   */
1163  int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
1164  {
1165  	struct snd_pmac *chip;
1166  	struct device_node *np;
1167  	int i, err;
1168  	unsigned int irq;
1169  	unsigned long ctrl_addr, txdma_addr, rxdma_addr;
1170  	static struct snd_device_ops ops = {
1171  		.dev_free =	snd_pmac_dev_free,
1172  	};
1173  
1174  	*chip_return = NULL;
1175  
1176  	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1177  	if (chip == NULL)
1178  		return -ENOMEM;
1179  	chip->card = card;
1180  
1181  	spin_lock_init(&chip->reg_lock);
1182  	chip->irq = chip->tx_irq = chip->rx_irq = -1;
1183  
1184  	chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
1185  	chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
1186  
1187  	if ((err = snd_pmac_detect(chip)) < 0)
1188  		goto __error;
1189  
1190  	if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1191  	    snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1192  	    snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 ||
1193  	    snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) {
1194  		err = -ENOMEM;
1195  		goto __error;
1196  	}
1197  
1198  	np = chip->node;
1199  	chip->requested = 0;
1200  	if (chip->is_k2) {
1201  		static char *rnames[] = {
1202  			"Sound Control", "Sound DMA" };
1203  		for (i = 0; i < 2; i ++) {
1204  			if (of_address_to_resource(np->parent, i,
1205  						   &chip->rsrc[i])) {
1206  				printk(KERN_ERR "snd: can't translate rsrc "
1207  				       " %d (%s)\n", i, rnames[i]);
1208  				err = -ENODEV;
1209  				goto __error;
1210  			}
1211  			if (request_mem_region(chip->rsrc[i].start,
1212  					       resource_size(&chip->rsrc[i]),
1213  					       rnames[i]) == NULL) {
1214  				printk(KERN_ERR "snd: can't request rsrc "
1215  				       " %d (%s: %pR)\n",
1216  				       i, rnames[i], &chip->rsrc[i]);
1217  				err = -ENODEV;
1218  				goto __error;
1219  			}
1220  			chip->requested |= (1 << i);
1221  		}
1222  		ctrl_addr = chip->rsrc[0].start;
1223  		txdma_addr = chip->rsrc[1].start;
1224  		rxdma_addr = txdma_addr + 0x100;
1225  	} else {
1226  		static char *rnames[] = {
1227  			"Sound Control", "Sound Tx DMA", "Sound Rx DMA" };
1228  		for (i = 0; i < 3; i ++) {
1229  			if (of_address_to_resource(np, i,
1230  						   &chip->rsrc[i])) {
1231  				printk(KERN_ERR "snd: can't translate rsrc "
1232  				       " %d (%s)\n", i, rnames[i]);
1233  				err = -ENODEV;
1234  				goto __error;
1235  			}
1236  			if (request_mem_region(chip->rsrc[i].start,
1237  					       resource_size(&chip->rsrc[i]),
1238  					       rnames[i]) == NULL) {
1239  				printk(KERN_ERR "snd: can't request rsrc "
1240  				       " %d (%s: %pR)\n",
1241  				       i, rnames[i], &chip->rsrc[i]);
1242  				err = -ENODEV;
1243  				goto __error;
1244  			}
1245  			chip->requested |= (1 << i);
1246  		}
1247  		ctrl_addr = chip->rsrc[0].start;
1248  		txdma_addr = chip->rsrc[1].start;
1249  		rxdma_addr = chip->rsrc[2].start;
1250  	}
1251  
1252  	chip->awacs = ioremap(ctrl_addr, 0x1000);
1253  	chip->playback.dma = ioremap(txdma_addr, 0x100);
1254  	chip->capture.dma = ioremap(rxdma_addr, 0x100);
1255  	if (chip->model <= PMAC_BURGUNDY) {
1256  		irq = irq_of_parse_and_map(np, 0);
1257  		if (request_irq(irq, snd_pmac_ctrl_intr, 0,
1258  				"PMac", (void*)chip)) {
1259  			snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n",
1260  				   irq);
1261  			err = -EBUSY;
1262  			goto __error;
1263  		}
1264  		chip->irq = irq;
1265  	}
1266  	irq = irq_of_parse_and_map(np, 1);
1267  	if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){
1268  		snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1269  		err = -EBUSY;
1270  		goto __error;
1271  	}
1272  	chip->tx_irq = irq;
1273  	irq = irq_of_parse_and_map(np, 2);
1274  	if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) {
1275  		snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1276  		err = -EBUSY;
1277  		goto __error;
1278  	}
1279  	chip->rx_irq = irq;
1280  
1281  	snd_pmac_sound_feature(chip, 1);
1282  
1283  	/* reset & enable interrupts */
1284  	if (chip->model <= PMAC_BURGUNDY)
1285  		out_le32(&chip->awacs->control, chip->control_mask);
1286  
1287  	/* Powerbooks have odd ways of enabling inputs such as
1288  	   an expansion-bay CD or sound from an internal modem
1289  	   or a PC-card modem. */
1290  	if (chip->is_pbook_3400) {
1291  		/* Enable CD and PC-card sound inputs. */
1292  		/* This is done by reading from address
1293  		 * f301a000, + 0x10 to enable the expansion-bay
1294  		 * CD sound input, + 0x80 to enable the PC-card
1295  		 * sound input.  The 0x100 enables the SCSI bus
1296  		 * terminator power.
1297  		 */
1298  		chip->latch_base = ioremap (0xf301a000, 0x1000);
1299  		in_8(chip->latch_base + 0x190);
1300  	} else if (chip->is_pbook_G3) {
1301  		struct device_node* mio;
1302  		for (mio = chip->node->parent; mio; mio = mio->parent) {
1303  			if (of_node_name_eq(mio, "mac-io")) {
1304  				struct resource r;
1305  				if (of_address_to_resource(mio, 0, &r) == 0)
1306  					chip->macio_base =
1307  						ioremap(r.start, 0x40);
1308  				break;
1309  			}
1310  		}
1311  		/* Enable CD sound input. */
1312  		/* The relevant bits for writing to this byte are 0x8f.
1313  		 * I haven't found out what the 0x80 bit does.
1314  		 * For the 0xf bits, writing 3 or 7 enables the CD
1315  		 * input, any other value disables it.  Values
1316  		 * 1, 3, 5, 7 enable the microphone.  Values 0, 2,
1317  		 * 4, 6, 8 - f enable the input from the modem.
1318  		 */
1319  		if (chip->macio_base)
1320  			out_8(chip->macio_base + 0x37, 3);
1321  	}
1322  
1323  	/* Reset dbdma channels */
1324  	snd_pmac_dbdma_reset(chip);
1325  
1326  	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
1327  		goto __error;
1328  
1329  	*chip_return = chip;
1330  	return 0;
1331  
1332   __error:
1333  	snd_pmac_free(chip);
1334  	return err;
1335  }
1336  
1337  
1338  /*
1339   * sleep notify for powerbook
1340   */
1341  
1342  #ifdef CONFIG_PM
1343  
1344  /*
1345   * Save state when going to sleep, restore it afterwards.
1346   */
1347  
1348  void snd_pmac_suspend(struct snd_pmac *chip)
1349  {
1350  	unsigned long flags;
1351  
1352  	snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
1353  	if (chip->suspend)
1354  		chip->suspend(chip);
1355  	spin_lock_irqsave(&chip->reg_lock, flags);
1356  	snd_pmac_beep_stop(chip);
1357  	spin_unlock_irqrestore(&chip->reg_lock, flags);
1358  	if (chip->irq >= 0)
1359  		disable_irq(chip->irq);
1360  	if (chip->tx_irq >= 0)
1361  		disable_irq(chip->tx_irq);
1362  	if (chip->rx_irq >= 0)
1363  		disable_irq(chip->rx_irq);
1364  	snd_pmac_sound_feature(chip, 0);
1365  }
1366  
1367  void snd_pmac_resume(struct snd_pmac *chip)
1368  {
1369  	snd_pmac_sound_feature(chip, 1);
1370  	if (chip->resume)
1371  		chip->resume(chip);
1372  	/* enable CD sound input */
1373  	if (chip->macio_base && chip->is_pbook_G3)
1374  		out_8(chip->macio_base + 0x37, 3);
1375  	else if (chip->is_pbook_3400)
1376  		in_8(chip->latch_base + 0x190);
1377  
1378  	snd_pmac_pcm_set_format(chip);
1379  
1380  	if (chip->irq >= 0)
1381  		enable_irq(chip->irq);
1382  	if (chip->tx_irq >= 0)
1383  		enable_irq(chip->tx_irq);
1384  	if (chip->rx_irq >= 0)
1385  		enable_irq(chip->rx_irq);
1386  
1387  	snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
1388  }
1389  
1390  #endif /* CONFIG_PM */
1391  
1392