1 /* 2 * PMac DBDMA lowlevel functions 3 * 4 * Copyright (c) by Takashi Iwai <tiwai@suse.de> 5 * code based on dmasound.c. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 23 #include <linux/io.h> 24 #include <asm/irq.h> 25 #include <linux/init.h> 26 #include <linux/delay.h> 27 #include <linux/slab.h> 28 #include <linux/interrupt.h> 29 #include <linux/pci.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/of_address.h> 32 #include <linux/of_irq.h> 33 #include <sound/core.h> 34 #include "pmac.h" 35 #include <sound/pcm_params.h> 36 #include <asm/pmac_feature.h> 37 #include <asm/pci-bridge.h> 38 39 40 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */ 41 static int awacs_freqs[8] = { 42 44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350 43 }; 44 /* fixed frequency table for tumbler */ 45 static int tumbler_freqs[1] = { 46 44100 47 }; 48 49 50 /* 51 * we will allocate a single 'emergency' dbdma cmd block to use if the 52 * tx status comes up "DEAD". This happens on some PowerComputing Pmac 53 * clones, either owing to a bug in dbdma or some interaction between 54 * IDE and sound. However, this measure would deal with DEAD status if 55 * it appeared elsewhere. 56 */ 57 static struct pmac_dbdma emergency_dbdma; 58 static int emergency_in_use; 59 60 61 /* 62 * allocate DBDMA command arrays 63 */ 64 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size) 65 { 66 unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1); 67 68 rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize, 69 &rec->dma_base, GFP_KERNEL); 70 if (rec->space == NULL) 71 return -ENOMEM; 72 rec->size = size; 73 memset(rec->space, 0, rsize); 74 rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space); 75 rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space); 76 77 return 0; 78 } 79 80 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec) 81 { 82 if (rec->space) { 83 unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1); 84 85 dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base); 86 } 87 } 88 89 90 /* 91 * pcm stuff 92 */ 93 94 /* 95 * look up frequency table 96 */ 97 98 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate) 99 { 100 int i, ok, found; 101 102 ok = rec->cur_freqs; 103 if (rate > chip->freq_table[0]) 104 return 0; 105 found = 0; 106 for (i = 0; i < chip->num_freqs; i++, ok >>= 1) { 107 if (! (ok & 1)) continue; 108 found = i; 109 if (rate >= chip->freq_table[i]) 110 break; 111 } 112 return found; 113 } 114 115 /* 116 * check whether another stream is active 117 */ 118 static inline int another_stream(int stream) 119 { 120 return (stream == SNDRV_PCM_STREAM_PLAYBACK) ? 121 SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; 122 } 123 124 /* 125 * allocate buffers 126 */ 127 static int snd_pmac_pcm_hw_params(struct snd_pcm_substream *subs, 128 struct snd_pcm_hw_params *hw_params) 129 { 130 return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params)); 131 } 132 133 /* 134 * release buffers 135 */ 136 static int snd_pmac_pcm_hw_free(struct snd_pcm_substream *subs) 137 { 138 snd_pcm_lib_free_pages(subs); 139 return 0; 140 } 141 142 /* 143 * get a stream of the opposite direction 144 */ 145 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream) 146 { 147 switch (stream) { 148 case SNDRV_PCM_STREAM_PLAYBACK: 149 return &chip->playback; 150 case SNDRV_PCM_STREAM_CAPTURE: 151 return &chip->capture; 152 default: 153 snd_BUG(); 154 return NULL; 155 } 156 } 157 158 /* 159 * wait while run status is on 160 */ 161 static inline void 162 snd_pmac_wait_ack(struct pmac_stream *rec) 163 { 164 int timeout = 50000; 165 while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0) 166 udelay(1); 167 } 168 169 /* 170 * set the format and rate to the chip. 171 * call the lowlevel function if defined (e.g. for AWACS). 172 */ 173 static void snd_pmac_pcm_set_format(struct snd_pmac *chip) 174 { 175 /* set up frequency and format */ 176 out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8)); 177 out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0); 178 if (chip->set_format) 179 chip->set_format(chip); 180 } 181 182 /* 183 * stop the DMA transfer 184 */ 185 static inline void snd_pmac_dma_stop(struct pmac_stream *rec) 186 { 187 out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16); 188 snd_pmac_wait_ack(rec); 189 } 190 191 /* 192 * set the command pointer address 193 */ 194 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd) 195 { 196 out_le32(&rec->dma->cmdptr, cmd->addr); 197 } 198 199 /* 200 * start the DMA 201 */ 202 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status) 203 { 204 out_le32(&rec->dma->control, status | (status << 16)); 205 } 206 207 208 /* 209 * prepare playback/capture stream 210 */ 211 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs) 212 { 213 int i; 214 volatile struct dbdma_cmd __iomem *cp; 215 struct snd_pcm_runtime *runtime = subs->runtime; 216 int rate_index; 217 long offset; 218 struct pmac_stream *astr; 219 220 rec->dma_size = snd_pcm_lib_buffer_bytes(subs); 221 rec->period_size = snd_pcm_lib_period_bytes(subs); 222 rec->nperiods = rec->dma_size / rec->period_size; 223 rec->cur_period = 0; 224 rate_index = snd_pmac_rate_index(chip, rec, runtime->rate); 225 226 /* set up constraints */ 227 astr = snd_pmac_get_stream(chip, another_stream(rec->stream)); 228 if (! astr) 229 return -EINVAL; 230 astr->cur_freqs = 1 << rate_index; 231 astr->cur_formats = 1 << runtime->format; 232 chip->rate_index = rate_index; 233 chip->format = runtime->format; 234 235 /* We really want to execute a DMA stop command, after the AWACS 236 * is initialized. 237 * For reasons I don't understand, it stops the hissing noise 238 * common to many PowerBook G3 systems and random noise otherwise 239 * captured on iBook2's about every third time. -ReneR 240 */ 241 spin_lock_irq(&chip->reg_lock); 242 snd_pmac_dma_stop(rec); 243 chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP); 244 snd_pmac_dma_set_command(rec, &chip->extra_dma); 245 snd_pmac_dma_run(rec, RUN); 246 spin_unlock_irq(&chip->reg_lock); 247 mdelay(5); 248 spin_lock_irq(&chip->reg_lock); 249 /* continuous DMA memory type doesn't provide the physical address, 250 * so we need to resolve the address here... 251 */ 252 offset = runtime->dma_addr; 253 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) { 254 cp->phy_addr = cpu_to_le32(offset); 255 cp->req_count = cpu_to_le16(rec->period_size); 256 /*cp->res_count = cpu_to_le16(0);*/ 257 cp->xfer_status = cpu_to_le16(0); 258 offset += rec->period_size; 259 } 260 /* make loop */ 261 cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS); 262 cp->cmd_dep = cpu_to_le32(rec->cmd.addr); 263 264 snd_pmac_dma_stop(rec); 265 snd_pmac_dma_set_command(rec, &rec->cmd); 266 spin_unlock_irq(&chip->reg_lock); 267 268 return 0; 269 } 270 271 272 /* 273 * PCM trigger/stop 274 */ 275 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec, 276 struct snd_pcm_substream *subs, int cmd) 277 { 278 volatile struct dbdma_cmd __iomem *cp; 279 int i, command; 280 281 switch (cmd) { 282 case SNDRV_PCM_TRIGGER_START: 283 case SNDRV_PCM_TRIGGER_RESUME: 284 if (rec->running) 285 return -EBUSY; 286 command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ? 287 OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS; 288 spin_lock(&chip->reg_lock); 289 snd_pmac_beep_stop(chip); 290 snd_pmac_pcm_set_format(chip); 291 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) 292 out_le16(&cp->command, command); 293 snd_pmac_dma_set_command(rec, &rec->cmd); 294 (void)in_le32(&rec->dma->status); 295 snd_pmac_dma_run(rec, RUN|WAKE); 296 rec->running = 1; 297 spin_unlock(&chip->reg_lock); 298 break; 299 300 case SNDRV_PCM_TRIGGER_STOP: 301 case SNDRV_PCM_TRIGGER_SUSPEND: 302 spin_lock(&chip->reg_lock); 303 rec->running = 0; 304 /*printk(KERN_DEBUG "stopped!!\n");*/ 305 snd_pmac_dma_stop(rec); 306 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) 307 out_le16(&cp->command, DBDMA_STOP); 308 spin_unlock(&chip->reg_lock); 309 break; 310 311 default: 312 return -EINVAL; 313 } 314 315 return 0; 316 } 317 318 /* 319 * return the current pointer 320 */ 321 inline 322 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip, 323 struct pmac_stream *rec, 324 struct snd_pcm_substream *subs) 325 { 326 int count = 0; 327 328 #if 1 /* hmm.. how can we get the current dma pointer?? */ 329 int stat; 330 volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period]; 331 stat = le16_to_cpu(cp->xfer_status); 332 if (stat & (ACTIVE|DEAD)) { 333 count = in_le16(&cp->res_count); 334 if (count) 335 count = rec->period_size - count; 336 } 337 #endif 338 count += rec->cur_period * rec->period_size; 339 /*printk(KERN_DEBUG "pointer=%d\n", count);*/ 340 return bytes_to_frames(subs->runtime, count); 341 } 342 343 /* 344 * playback 345 */ 346 347 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs) 348 { 349 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 350 return snd_pmac_pcm_prepare(chip, &chip->playback, subs); 351 } 352 353 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs, 354 int cmd) 355 { 356 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 357 return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd); 358 } 359 360 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs) 361 { 362 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 363 return snd_pmac_pcm_pointer(chip, &chip->playback, subs); 364 } 365 366 367 /* 368 * capture 369 */ 370 371 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs) 372 { 373 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 374 return snd_pmac_pcm_prepare(chip, &chip->capture, subs); 375 } 376 377 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs, 378 int cmd) 379 { 380 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 381 return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd); 382 } 383 384 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs) 385 { 386 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 387 return snd_pmac_pcm_pointer(chip, &chip->capture, subs); 388 } 389 390 391 /* 392 * Handle DEAD DMA transfers: 393 * if the TX status comes up "DEAD" - reported on some Power Computing machines 394 * we need to re-start the dbdma - but from a different physical start address 395 * and with a different transfer length. It would get very messy to do this 396 * with the normal dbdma_cmd blocks - we would have to re-write the buffer start 397 * addresses each time. So, we will keep a single dbdma_cmd block which can be 398 * fiddled with. 399 * When DEAD status is first reported the content of the faulted dbdma block is 400 * copied into the emergency buffer and we note that the buffer is in use. 401 * we then bump the start physical address by the amount that was successfully 402 * output before it died. 403 * On any subsequent DEAD result we just do the bump-ups (we know that we are 404 * already using the emergency dbdma_cmd). 405 * CHECK: this just tries to "do it". It is possible that we should abandon 406 * xfers when the number of residual bytes gets below a certain value - I can 407 * see that this might cause a loop-forever if a too small transfer causes 408 * DEAD status. However this is a TODO for now - we'll see what gets reported. 409 * When we get a successful transfer result with the emergency buffer we just 410 * pretend that it completed using the original dmdma_cmd and carry on. The 411 * 'next_cmd' field will already point back to the original loop of blocks. 412 */ 413 static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec, 414 volatile struct dbdma_cmd __iomem *cp) 415 { 416 unsigned short req, res ; 417 unsigned int phy ; 418 419 /* printk(KERN_WARNING "snd-powermac: DMA died - patching it up!\n"); */ 420 421 /* to clear DEAD status we must first clear RUN 422 set it to quiescent to be on the safe side */ 423 (void)in_le32(&rec->dma->status); 424 out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16); 425 426 if (!emergency_in_use) { /* new problem */ 427 memcpy((void *)emergency_dbdma.cmds, (void *)cp, 428 sizeof(struct dbdma_cmd)); 429 emergency_in_use = 1; 430 cp->xfer_status = cpu_to_le16(0); 431 cp->req_count = cpu_to_le16(rec->period_size); 432 cp = emergency_dbdma.cmds; 433 } 434 435 /* now bump the values to reflect the amount 436 we haven't yet shifted */ 437 req = le16_to_cpu(cp->req_count); 438 res = le16_to_cpu(cp->res_count); 439 phy = le32_to_cpu(cp->phy_addr); 440 phy += (req - res); 441 cp->req_count = cpu_to_le16(res); 442 cp->res_count = cpu_to_le16(0); 443 cp->xfer_status = cpu_to_le16(0); 444 cp->phy_addr = cpu_to_le32(phy); 445 446 cp->cmd_dep = cpu_to_le32(rec->cmd.addr 447 + sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods)); 448 449 cp->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS); 450 451 /* point at our patched up command block */ 452 out_le32(&rec->dma->cmdptr, emergency_dbdma.addr); 453 454 /* we must re-start the controller */ 455 (void)in_le32(&rec->dma->status); 456 /* should complete clearing the DEAD status */ 457 out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE)); 458 } 459 460 /* 461 * update playback/capture pointer from interrupts 462 */ 463 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec) 464 { 465 volatile struct dbdma_cmd __iomem *cp; 466 int c; 467 int stat; 468 469 spin_lock(&chip->reg_lock); 470 if (rec->running) { 471 for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */ 472 473 if (emergency_in_use) /* already using DEAD xfer? */ 474 cp = emergency_dbdma.cmds; 475 else 476 cp = &rec->cmd.cmds[rec->cur_period]; 477 478 stat = le16_to_cpu(cp->xfer_status); 479 480 if (stat & DEAD) { 481 snd_pmac_pcm_dead_xfer(rec, cp); 482 break; /* this block is still going */ 483 } 484 485 if (emergency_in_use) 486 emergency_in_use = 0 ; /* done that */ 487 488 if (! (stat & ACTIVE)) 489 break; 490 491 /*printk(KERN_DEBUG "update frag %d\n", rec->cur_period);*/ 492 cp->xfer_status = cpu_to_le16(0); 493 cp->req_count = cpu_to_le16(rec->period_size); 494 /*cp->res_count = cpu_to_le16(0);*/ 495 rec->cur_period++; 496 if (rec->cur_period >= rec->nperiods) { 497 rec->cur_period = 0; 498 } 499 500 spin_unlock(&chip->reg_lock); 501 snd_pcm_period_elapsed(rec->substream); 502 spin_lock(&chip->reg_lock); 503 } 504 } 505 spin_unlock(&chip->reg_lock); 506 } 507 508 509 /* 510 * hw info 511 */ 512 513 static struct snd_pcm_hardware snd_pmac_playback = 514 { 515 .info = (SNDRV_PCM_INFO_INTERLEAVED | 516 SNDRV_PCM_INFO_MMAP | 517 SNDRV_PCM_INFO_MMAP_VALID | 518 SNDRV_PCM_INFO_RESUME), 519 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE, 520 .rates = SNDRV_PCM_RATE_8000_44100, 521 .rate_min = 7350, 522 .rate_max = 44100, 523 .channels_min = 2, 524 .channels_max = 2, 525 .buffer_bytes_max = 131072, 526 .period_bytes_min = 256, 527 .period_bytes_max = 16384, 528 .periods_min = 3, 529 .periods_max = PMAC_MAX_FRAGS, 530 }; 531 532 static struct snd_pcm_hardware snd_pmac_capture = 533 { 534 .info = (SNDRV_PCM_INFO_INTERLEAVED | 535 SNDRV_PCM_INFO_MMAP | 536 SNDRV_PCM_INFO_MMAP_VALID | 537 SNDRV_PCM_INFO_RESUME), 538 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE, 539 .rates = SNDRV_PCM_RATE_8000_44100, 540 .rate_min = 7350, 541 .rate_max = 44100, 542 .channels_min = 2, 543 .channels_max = 2, 544 .buffer_bytes_max = 131072, 545 .period_bytes_min = 256, 546 .period_bytes_max = 16384, 547 .periods_min = 3, 548 .periods_max = PMAC_MAX_FRAGS, 549 }; 550 551 552 #if 0 // NYI 553 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params, 554 struct snd_pcm_hw_rule *rule) 555 { 556 struct snd_pmac *chip = rule->private; 557 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]); 558 int i, freq_table[8], num_freqs; 559 560 if (! rec) 561 return -EINVAL; 562 num_freqs = 0; 563 for (i = chip->num_freqs - 1; i >= 0; i--) { 564 if (rec->cur_freqs & (1 << i)) 565 freq_table[num_freqs++] = chip->freq_table[i]; 566 } 567 568 return snd_interval_list(hw_param_interval(params, rule->var), 569 num_freqs, freq_table, 0); 570 } 571 572 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params, 573 struct snd_pcm_hw_rule *rule) 574 { 575 struct snd_pmac *chip = rule->private; 576 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]); 577 578 if (! rec) 579 return -EINVAL; 580 return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT), 581 rec->cur_formats); 582 } 583 #endif // NYI 584 585 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec, 586 struct snd_pcm_substream *subs) 587 { 588 struct snd_pcm_runtime *runtime = subs->runtime; 589 int i; 590 591 /* look up frequency table and fill bit mask */ 592 runtime->hw.rates = 0; 593 for (i = 0; i < chip->num_freqs; i++) 594 if (chip->freqs_ok & (1 << i)) 595 runtime->hw.rates |= 596 snd_pcm_rate_to_rate_bit(chip->freq_table[i]); 597 598 /* check for minimum and maximum rates */ 599 for (i = 0; i < chip->num_freqs; i++) { 600 if (chip->freqs_ok & (1 << i)) { 601 runtime->hw.rate_max = chip->freq_table[i]; 602 break; 603 } 604 } 605 for (i = chip->num_freqs - 1; i >= 0; i--) { 606 if (chip->freqs_ok & (1 << i)) { 607 runtime->hw.rate_min = chip->freq_table[i]; 608 break; 609 } 610 } 611 runtime->hw.formats = chip->formats_ok; 612 if (chip->can_capture) { 613 if (! chip->can_duplex) 614 runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX; 615 runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX; 616 } 617 runtime->private_data = rec; 618 rec->substream = subs; 619 620 #if 0 /* FIXME: still under development.. */ 621 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 622 snd_pmac_hw_rule_rate, chip, rec->stream, -1); 623 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, 624 snd_pmac_hw_rule_format, chip, rec->stream, -1); 625 #endif 626 627 runtime->hw.periods_max = rec->cmd.size - 1; 628 629 /* constraints to fix choppy sound */ 630 snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); 631 return 0; 632 } 633 634 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec, 635 struct snd_pcm_substream *subs) 636 { 637 struct pmac_stream *astr; 638 639 snd_pmac_dma_stop(rec); 640 641 astr = snd_pmac_get_stream(chip, another_stream(rec->stream)); 642 if (! astr) 643 return -EINVAL; 644 645 /* reset constraints */ 646 astr->cur_freqs = chip->freqs_ok; 647 astr->cur_formats = chip->formats_ok; 648 649 return 0; 650 } 651 652 static int snd_pmac_playback_open(struct snd_pcm_substream *subs) 653 { 654 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 655 656 subs->runtime->hw = snd_pmac_playback; 657 return snd_pmac_pcm_open(chip, &chip->playback, subs); 658 } 659 660 static int snd_pmac_capture_open(struct snd_pcm_substream *subs) 661 { 662 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 663 664 subs->runtime->hw = snd_pmac_capture; 665 return snd_pmac_pcm_open(chip, &chip->capture, subs); 666 } 667 668 static int snd_pmac_playback_close(struct snd_pcm_substream *subs) 669 { 670 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 671 672 return snd_pmac_pcm_close(chip, &chip->playback, subs); 673 } 674 675 static int snd_pmac_capture_close(struct snd_pcm_substream *subs) 676 { 677 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 678 679 return snd_pmac_pcm_close(chip, &chip->capture, subs); 680 } 681 682 /* 683 */ 684 685 static struct snd_pcm_ops snd_pmac_playback_ops = { 686 .open = snd_pmac_playback_open, 687 .close = snd_pmac_playback_close, 688 .ioctl = snd_pcm_lib_ioctl, 689 .hw_params = snd_pmac_pcm_hw_params, 690 .hw_free = snd_pmac_pcm_hw_free, 691 .prepare = snd_pmac_playback_prepare, 692 .trigger = snd_pmac_playback_trigger, 693 .pointer = snd_pmac_playback_pointer, 694 }; 695 696 static struct snd_pcm_ops snd_pmac_capture_ops = { 697 .open = snd_pmac_capture_open, 698 .close = snd_pmac_capture_close, 699 .ioctl = snd_pcm_lib_ioctl, 700 .hw_params = snd_pmac_pcm_hw_params, 701 .hw_free = snd_pmac_pcm_hw_free, 702 .prepare = snd_pmac_capture_prepare, 703 .trigger = snd_pmac_capture_trigger, 704 .pointer = snd_pmac_capture_pointer, 705 }; 706 707 int snd_pmac_pcm_new(struct snd_pmac *chip) 708 { 709 struct snd_pcm *pcm; 710 int err; 711 int num_captures = 1; 712 713 if (! chip->can_capture) 714 num_captures = 0; 715 err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm); 716 if (err < 0) 717 return err; 718 719 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops); 720 if (chip->can_capture) 721 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops); 722 723 pcm->private_data = chip; 724 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 725 strcpy(pcm->name, chip->card->shortname); 726 chip->pcm = pcm; 727 728 chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE; 729 if (chip->can_byte_swap) 730 chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE; 731 732 chip->playback.cur_formats = chip->formats_ok; 733 chip->capture.cur_formats = chip->formats_ok; 734 chip->playback.cur_freqs = chip->freqs_ok; 735 chip->capture.cur_freqs = chip->freqs_ok; 736 737 /* preallocate 64k buffer */ 738 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 739 &chip->pdev->dev, 740 64 * 1024, 64 * 1024); 741 742 return 0; 743 } 744 745 746 static void snd_pmac_dbdma_reset(struct snd_pmac *chip) 747 { 748 out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16); 749 snd_pmac_wait_ack(&chip->playback); 750 out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16); 751 snd_pmac_wait_ack(&chip->capture); 752 } 753 754 755 /* 756 * handling beep 757 */ 758 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed) 759 { 760 struct pmac_stream *rec = &chip->playback; 761 762 snd_pmac_dma_stop(rec); 763 chip->extra_dma.cmds->req_count = cpu_to_le16(bytes); 764 chip->extra_dma.cmds->xfer_status = cpu_to_le16(0); 765 chip->extra_dma.cmds->cmd_dep = cpu_to_le32(chip->extra_dma.addr); 766 chip->extra_dma.cmds->phy_addr = cpu_to_le32(addr); 767 chip->extra_dma.cmds->command = cpu_to_le16(OUTPUT_MORE + BR_ALWAYS); 768 out_le32(&chip->awacs->control, 769 (in_le32(&chip->awacs->control) & ~0x1f00) 770 | (speed << 8)); 771 out_le32(&chip->awacs->byteswap, 0); 772 snd_pmac_dma_set_command(rec, &chip->extra_dma); 773 snd_pmac_dma_run(rec, RUN); 774 } 775 776 void snd_pmac_beep_dma_stop(struct snd_pmac *chip) 777 { 778 snd_pmac_dma_stop(&chip->playback); 779 chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP); 780 snd_pmac_pcm_set_format(chip); /* reset format */ 781 } 782 783 784 /* 785 * interrupt handlers 786 */ 787 static irqreturn_t 788 snd_pmac_tx_intr(int irq, void *devid) 789 { 790 struct snd_pmac *chip = devid; 791 snd_pmac_pcm_update(chip, &chip->playback); 792 return IRQ_HANDLED; 793 } 794 795 796 static irqreturn_t 797 snd_pmac_rx_intr(int irq, void *devid) 798 { 799 struct snd_pmac *chip = devid; 800 snd_pmac_pcm_update(chip, &chip->capture); 801 return IRQ_HANDLED; 802 } 803 804 805 static irqreturn_t 806 snd_pmac_ctrl_intr(int irq, void *devid) 807 { 808 struct snd_pmac *chip = devid; 809 int ctrl = in_le32(&chip->awacs->control); 810 811 /*printk(KERN_DEBUG "pmac: control interrupt.. 0x%x\n", ctrl);*/ 812 if (ctrl & MASK_PORTCHG) { 813 /* do something when headphone is plugged/unplugged? */ 814 if (chip->update_automute) 815 chip->update_automute(chip, 1); 816 } 817 if (ctrl & MASK_CNTLERR) { 818 int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16; 819 if (err && chip->model <= PMAC_SCREAMER) 820 snd_printk(KERN_DEBUG "error %x\n", err); 821 } 822 /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */ 823 out_le32(&chip->awacs->control, ctrl); 824 return IRQ_HANDLED; 825 } 826 827 828 /* 829 * a wrapper to feature call for compatibility 830 */ 831 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable) 832 { 833 if (ppc_md.feature_call) 834 ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable); 835 } 836 837 /* 838 * release resources 839 */ 840 841 static int snd_pmac_free(struct snd_pmac *chip) 842 { 843 /* stop sounds */ 844 if (chip->initialized) { 845 snd_pmac_dbdma_reset(chip); 846 /* disable interrupts from awacs interface */ 847 out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff); 848 } 849 850 if (chip->node) 851 snd_pmac_sound_feature(chip, 0); 852 853 /* clean up mixer if any */ 854 if (chip->mixer_free) 855 chip->mixer_free(chip); 856 857 snd_pmac_detach_beep(chip); 858 859 /* release resources */ 860 if (chip->irq >= 0) 861 free_irq(chip->irq, (void*)chip); 862 if (chip->tx_irq >= 0) 863 free_irq(chip->tx_irq, (void*)chip); 864 if (chip->rx_irq >= 0) 865 free_irq(chip->rx_irq, (void*)chip); 866 snd_pmac_dbdma_free(chip, &chip->playback.cmd); 867 snd_pmac_dbdma_free(chip, &chip->capture.cmd); 868 snd_pmac_dbdma_free(chip, &chip->extra_dma); 869 snd_pmac_dbdma_free(chip, &emergency_dbdma); 870 iounmap(chip->macio_base); 871 iounmap(chip->latch_base); 872 iounmap(chip->awacs); 873 iounmap(chip->playback.dma); 874 iounmap(chip->capture.dma); 875 876 if (chip->node) { 877 int i; 878 for (i = 0; i < 3; i++) { 879 if (chip->requested & (1 << i)) 880 release_mem_region(chip->rsrc[i].start, 881 resource_size(&chip->rsrc[i])); 882 } 883 } 884 885 pci_dev_put(chip->pdev); 886 of_node_put(chip->node); 887 kfree(chip); 888 return 0; 889 } 890 891 892 /* 893 * free the device 894 */ 895 static int snd_pmac_dev_free(struct snd_device *device) 896 { 897 struct snd_pmac *chip = device->device_data; 898 return snd_pmac_free(chip); 899 } 900 901 902 /* 903 * check the machine support byteswap (little-endian) 904 */ 905 906 static void detect_byte_swap(struct snd_pmac *chip) 907 { 908 struct device_node *mio; 909 910 /* if seems that Keylargo can't byte-swap */ 911 for (mio = chip->node->parent; mio; mio = mio->parent) { 912 if (strcmp(mio->name, "mac-io") == 0) { 913 if (of_device_is_compatible(mio, "Keylargo")) 914 chip->can_byte_swap = 0; 915 break; 916 } 917 } 918 919 /* it seems the Pismo & iBook can't byte-swap in hardware. */ 920 if (of_machine_is_compatible("PowerBook3,1") || 921 of_machine_is_compatible("PowerBook2,1")) 922 chip->can_byte_swap = 0 ; 923 924 if (of_machine_is_compatible("PowerBook2,1")) 925 chip->can_duplex = 0; 926 } 927 928 929 /* 930 * detect a sound chip 931 */ 932 static int snd_pmac_detect(struct snd_pmac *chip) 933 { 934 struct device_node *sound; 935 struct device_node *dn; 936 const unsigned int *prop; 937 unsigned int l; 938 struct macio_chip* macio; 939 940 if (!machine_is(powermac)) 941 return -ENODEV; 942 943 chip->subframe = 0; 944 chip->revision = 0; 945 chip->freqs_ok = 0xff; /* all ok */ 946 chip->model = PMAC_AWACS; 947 chip->can_byte_swap = 1; 948 chip->can_duplex = 1; 949 chip->can_capture = 1; 950 chip->num_freqs = ARRAY_SIZE(awacs_freqs); 951 chip->freq_table = awacs_freqs; 952 chip->pdev = NULL; 953 954 chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */ 955 956 /* check machine type */ 957 if (of_machine_is_compatible("AAPL,3400/2400") 958 || of_machine_is_compatible("AAPL,3500")) 959 chip->is_pbook_3400 = 1; 960 else if (of_machine_is_compatible("PowerBook1,1") 961 || of_machine_is_compatible("AAPL,PowerBook1998")) 962 chip->is_pbook_G3 = 1; 963 chip->node = of_find_node_by_name(NULL, "awacs"); 964 sound = of_node_get(chip->node); 965 966 /* 967 * powermac G3 models have a node called "davbus" 968 * with a child called "sound". 969 */ 970 if (!chip->node) 971 chip->node = of_find_node_by_name(NULL, "davbus"); 972 /* 973 * if we didn't find a davbus device, try 'i2s-a' since 974 * this seems to be what iBooks have 975 */ 976 if (! chip->node) { 977 chip->node = of_find_node_by_name(NULL, "i2s-a"); 978 if (chip->node && chip->node->parent && 979 chip->node->parent->parent) { 980 if (of_device_is_compatible(chip->node->parent->parent, 981 "K2-Keylargo")) 982 chip->is_k2 = 1; 983 } 984 } 985 if (! chip->node) 986 return -ENODEV; 987 988 if (!sound) { 989 for_each_node_by_name(sound, "sound") 990 if (sound->parent == chip->node) 991 break; 992 } 993 if (! sound) { 994 of_node_put(chip->node); 995 chip->node = NULL; 996 return -ENODEV; 997 } 998 prop = of_get_property(sound, "sub-frame", NULL); 999 if (prop && *prop < 16) 1000 chip->subframe = *prop; 1001 prop = of_get_property(sound, "layout-id", NULL); 1002 if (prop) { 1003 /* partly deprecate snd-powermac, for those machines 1004 * that have a layout-id property for now */ 1005 printk(KERN_INFO "snd-powermac no longer handles any " 1006 "machines with a layout-id property " 1007 "in the device-tree, use snd-aoa.\n"); 1008 of_node_put(sound); 1009 of_node_put(chip->node); 1010 chip->node = NULL; 1011 return -ENODEV; 1012 } 1013 /* This should be verified on older screamers */ 1014 if (of_device_is_compatible(sound, "screamer")) { 1015 chip->model = PMAC_SCREAMER; 1016 // chip->can_byte_swap = 0; /* FIXME: check this */ 1017 } 1018 if (of_device_is_compatible(sound, "burgundy")) { 1019 chip->model = PMAC_BURGUNDY; 1020 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1021 } 1022 if (of_device_is_compatible(sound, "daca")) { 1023 chip->model = PMAC_DACA; 1024 chip->can_capture = 0; /* no capture */ 1025 chip->can_duplex = 0; 1026 // chip->can_byte_swap = 0; /* FIXME: check this */ 1027 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1028 } 1029 if (of_device_is_compatible(sound, "tumbler")) { 1030 chip->model = PMAC_TUMBLER; 1031 chip->can_capture = of_machine_is_compatible("PowerMac4,2") 1032 || of_machine_is_compatible("PowerBook3,2") 1033 || of_machine_is_compatible("PowerBook3,3") 1034 || of_machine_is_compatible("PowerBook4,1") 1035 || of_machine_is_compatible("PowerBook4,2") 1036 || of_machine_is_compatible("PowerBook4,3"); 1037 chip->can_duplex = 0; 1038 // chip->can_byte_swap = 0; /* FIXME: check this */ 1039 chip->num_freqs = ARRAY_SIZE(tumbler_freqs); 1040 chip->freq_table = tumbler_freqs; 1041 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1042 } 1043 if (of_device_is_compatible(sound, "snapper")) { 1044 chip->model = PMAC_SNAPPER; 1045 // chip->can_byte_swap = 0; /* FIXME: check this */ 1046 chip->num_freqs = ARRAY_SIZE(tumbler_freqs); 1047 chip->freq_table = tumbler_freqs; 1048 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1049 } 1050 prop = of_get_property(sound, "device-id", NULL); 1051 if (prop) 1052 chip->device_id = *prop; 1053 dn = of_find_node_by_name(NULL, "perch"); 1054 chip->has_iic = (dn != NULL); 1055 of_node_put(dn); 1056 1057 /* We need the PCI device for DMA allocations, let's use a crude method 1058 * for now ... 1059 */ 1060 macio = macio_find(chip->node, macio_unknown); 1061 if (macio == NULL) 1062 printk(KERN_WARNING "snd-powermac: can't locate macio !\n"); 1063 else { 1064 struct pci_dev *pdev = NULL; 1065 1066 for_each_pci_dev(pdev) { 1067 struct device_node *np = pci_device_to_OF_node(pdev); 1068 if (np && np == macio->of_node) { 1069 chip->pdev = pdev; 1070 break; 1071 } 1072 } 1073 } 1074 if (chip->pdev == NULL) 1075 printk(KERN_WARNING "snd-powermac: can't locate macio PCI" 1076 " device !\n"); 1077 1078 detect_byte_swap(chip); 1079 1080 /* look for a property saying what sample rates 1081 are available */ 1082 prop = of_get_property(sound, "sample-rates", &l); 1083 if (! prop) 1084 prop = of_get_property(sound, "output-frame-rates", &l); 1085 if (prop) { 1086 int i; 1087 chip->freqs_ok = 0; 1088 for (l /= sizeof(int); l > 0; --l) { 1089 unsigned int r = *prop++; 1090 /* Apple 'Fixed' format */ 1091 if (r >= 0x10000) 1092 r >>= 16; 1093 for (i = 0; i < chip->num_freqs; ++i) { 1094 if (r == chip->freq_table[i]) { 1095 chip->freqs_ok |= (1 << i); 1096 break; 1097 } 1098 } 1099 } 1100 } else { 1101 /* assume only 44.1khz */ 1102 chip->freqs_ok = 1; 1103 } 1104 1105 of_node_put(sound); 1106 return 0; 1107 } 1108 1109 #ifdef PMAC_SUPPORT_AUTOMUTE 1110 /* 1111 * auto-mute 1112 */ 1113 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol, 1114 struct snd_ctl_elem_value *ucontrol) 1115 { 1116 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); 1117 ucontrol->value.integer.value[0] = chip->auto_mute; 1118 return 0; 1119 } 1120 1121 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol, 1122 struct snd_ctl_elem_value *ucontrol) 1123 { 1124 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); 1125 if (ucontrol->value.integer.value[0] != chip->auto_mute) { 1126 chip->auto_mute = !!ucontrol->value.integer.value[0]; 1127 if (chip->update_automute) 1128 chip->update_automute(chip, 1); 1129 return 1; 1130 } 1131 return 0; 1132 } 1133 1134 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol, 1135 struct snd_ctl_elem_value *ucontrol) 1136 { 1137 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); 1138 if (chip->detect_headphone) 1139 ucontrol->value.integer.value[0] = chip->detect_headphone(chip); 1140 else 1141 ucontrol->value.integer.value[0] = 0; 1142 return 0; 1143 } 1144 1145 static struct snd_kcontrol_new auto_mute_controls[] = { 1146 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1147 .name = "Auto Mute Switch", 1148 .info = snd_pmac_boolean_mono_info, 1149 .get = pmac_auto_mute_get, 1150 .put = pmac_auto_mute_put, 1151 }, 1152 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1153 .name = "Headphone Detection", 1154 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1155 .info = snd_pmac_boolean_mono_info, 1156 .get = pmac_hp_detect_get, 1157 }, 1158 }; 1159 1160 int snd_pmac_add_automute(struct snd_pmac *chip) 1161 { 1162 int err; 1163 chip->auto_mute = 1; 1164 err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip)); 1165 if (err < 0) { 1166 printk(KERN_ERR "snd-powermac: Failed to add automute control\n"); 1167 return err; 1168 } 1169 chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip); 1170 return snd_ctl_add(chip->card, chip->hp_detect_ctl); 1171 } 1172 #endif /* PMAC_SUPPORT_AUTOMUTE */ 1173 1174 /* 1175 * create and detect a pmac chip record 1176 */ 1177 int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return) 1178 { 1179 struct snd_pmac *chip; 1180 struct device_node *np; 1181 int i, err; 1182 unsigned int irq; 1183 unsigned long ctrl_addr, txdma_addr, rxdma_addr; 1184 static struct snd_device_ops ops = { 1185 .dev_free = snd_pmac_dev_free, 1186 }; 1187 1188 *chip_return = NULL; 1189 1190 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 1191 if (chip == NULL) 1192 return -ENOMEM; 1193 chip->card = card; 1194 1195 spin_lock_init(&chip->reg_lock); 1196 chip->irq = chip->tx_irq = chip->rx_irq = -1; 1197 1198 chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK; 1199 chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE; 1200 1201 if ((err = snd_pmac_detect(chip)) < 0) 1202 goto __error; 1203 1204 if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 || 1205 snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 || 1206 snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 || 1207 snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) { 1208 err = -ENOMEM; 1209 goto __error; 1210 } 1211 1212 np = chip->node; 1213 chip->requested = 0; 1214 if (chip->is_k2) { 1215 static char *rnames[] = { 1216 "Sound Control", "Sound DMA" }; 1217 for (i = 0; i < 2; i ++) { 1218 if (of_address_to_resource(np->parent, i, 1219 &chip->rsrc[i])) { 1220 printk(KERN_ERR "snd: can't translate rsrc " 1221 " %d (%s)\n", i, rnames[i]); 1222 err = -ENODEV; 1223 goto __error; 1224 } 1225 if (request_mem_region(chip->rsrc[i].start, 1226 resource_size(&chip->rsrc[i]), 1227 rnames[i]) == NULL) { 1228 printk(KERN_ERR "snd: can't request rsrc " 1229 " %d (%s: %pR)\n", 1230 i, rnames[i], &chip->rsrc[i]); 1231 err = -ENODEV; 1232 goto __error; 1233 } 1234 chip->requested |= (1 << i); 1235 } 1236 ctrl_addr = chip->rsrc[0].start; 1237 txdma_addr = chip->rsrc[1].start; 1238 rxdma_addr = txdma_addr + 0x100; 1239 } else { 1240 static char *rnames[] = { 1241 "Sound Control", "Sound Tx DMA", "Sound Rx DMA" }; 1242 for (i = 0; i < 3; i ++) { 1243 if (of_address_to_resource(np, i, 1244 &chip->rsrc[i])) { 1245 printk(KERN_ERR "snd: can't translate rsrc " 1246 " %d (%s)\n", i, rnames[i]); 1247 err = -ENODEV; 1248 goto __error; 1249 } 1250 if (request_mem_region(chip->rsrc[i].start, 1251 resource_size(&chip->rsrc[i]), 1252 rnames[i]) == NULL) { 1253 printk(KERN_ERR "snd: can't request rsrc " 1254 " %d (%s: %pR)\n", 1255 i, rnames[i], &chip->rsrc[i]); 1256 err = -ENODEV; 1257 goto __error; 1258 } 1259 chip->requested |= (1 << i); 1260 } 1261 ctrl_addr = chip->rsrc[0].start; 1262 txdma_addr = chip->rsrc[1].start; 1263 rxdma_addr = chip->rsrc[2].start; 1264 } 1265 1266 chip->awacs = ioremap(ctrl_addr, 0x1000); 1267 chip->playback.dma = ioremap(txdma_addr, 0x100); 1268 chip->capture.dma = ioremap(rxdma_addr, 0x100); 1269 if (chip->model <= PMAC_BURGUNDY) { 1270 irq = irq_of_parse_and_map(np, 0); 1271 if (request_irq(irq, snd_pmac_ctrl_intr, 0, 1272 "PMac", (void*)chip)) { 1273 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", 1274 irq); 1275 err = -EBUSY; 1276 goto __error; 1277 } 1278 chip->irq = irq; 1279 } 1280 irq = irq_of_parse_and_map(np, 1); 1281 if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){ 1282 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq); 1283 err = -EBUSY; 1284 goto __error; 1285 } 1286 chip->tx_irq = irq; 1287 irq = irq_of_parse_and_map(np, 2); 1288 if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) { 1289 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq); 1290 err = -EBUSY; 1291 goto __error; 1292 } 1293 chip->rx_irq = irq; 1294 1295 snd_pmac_sound_feature(chip, 1); 1296 1297 /* reset & enable interrupts */ 1298 if (chip->model <= PMAC_BURGUNDY) 1299 out_le32(&chip->awacs->control, chip->control_mask); 1300 1301 /* Powerbooks have odd ways of enabling inputs such as 1302 an expansion-bay CD or sound from an internal modem 1303 or a PC-card modem. */ 1304 if (chip->is_pbook_3400) { 1305 /* Enable CD and PC-card sound inputs. */ 1306 /* This is done by reading from address 1307 * f301a000, + 0x10 to enable the expansion-bay 1308 * CD sound input, + 0x80 to enable the PC-card 1309 * sound input. The 0x100 enables the SCSI bus 1310 * terminator power. 1311 */ 1312 chip->latch_base = ioremap (0xf301a000, 0x1000); 1313 in_8(chip->latch_base + 0x190); 1314 } else if (chip->is_pbook_G3) { 1315 struct device_node* mio; 1316 for (mio = chip->node->parent; mio; mio = mio->parent) { 1317 if (strcmp(mio->name, "mac-io") == 0) { 1318 struct resource r; 1319 if (of_address_to_resource(mio, 0, &r) == 0) 1320 chip->macio_base = 1321 ioremap(r.start, 0x40); 1322 break; 1323 } 1324 } 1325 /* Enable CD sound input. */ 1326 /* The relevant bits for writing to this byte are 0x8f. 1327 * I haven't found out what the 0x80 bit does. 1328 * For the 0xf bits, writing 3 or 7 enables the CD 1329 * input, any other value disables it. Values 1330 * 1, 3, 5, 7 enable the microphone. Values 0, 2, 1331 * 4, 6, 8 - f enable the input from the modem. 1332 */ 1333 if (chip->macio_base) 1334 out_8(chip->macio_base + 0x37, 3); 1335 } 1336 1337 /* Reset dbdma channels */ 1338 snd_pmac_dbdma_reset(chip); 1339 1340 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) 1341 goto __error; 1342 1343 *chip_return = chip; 1344 return 0; 1345 1346 __error: 1347 snd_pmac_free(chip); 1348 return err; 1349 } 1350 1351 1352 /* 1353 * sleep notify for powerbook 1354 */ 1355 1356 #ifdef CONFIG_PM 1357 1358 /* 1359 * Save state when going to sleep, restore it afterwards. 1360 */ 1361 1362 void snd_pmac_suspend(struct snd_pmac *chip) 1363 { 1364 unsigned long flags; 1365 1366 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot); 1367 if (chip->suspend) 1368 chip->suspend(chip); 1369 snd_pcm_suspend_all(chip->pcm); 1370 spin_lock_irqsave(&chip->reg_lock, flags); 1371 snd_pmac_beep_stop(chip); 1372 spin_unlock_irqrestore(&chip->reg_lock, flags); 1373 if (chip->irq >= 0) 1374 disable_irq(chip->irq); 1375 if (chip->tx_irq >= 0) 1376 disable_irq(chip->tx_irq); 1377 if (chip->rx_irq >= 0) 1378 disable_irq(chip->rx_irq); 1379 snd_pmac_sound_feature(chip, 0); 1380 } 1381 1382 void snd_pmac_resume(struct snd_pmac *chip) 1383 { 1384 snd_pmac_sound_feature(chip, 1); 1385 if (chip->resume) 1386 chip->resume(chip); 1387 /* enable CD sound input */ 1388 if (chip->macio_base && chip->is_pbook_G3) 1389 out_8(chip->macio_base + 0x37, 3); 1390 else if (chip->is_pbook_3400) 1391 in_8(chip->latch_base + 0x190); 1392 1393 snd_pmac_pcm_set_format(chip); 1394 1395 if (chip->irq >= 0) 1396 enable_irq(chip->irq); 1397 if (chip->tx_irq >= 0) 1398 enable_irq(chip->tx_irq); 1399 if (chip->rx_irq >= 0) 1400 enable_irq(chip->rx_irq); 1401 1402 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0); 1403 } 1404 1405 #endif /* CONFIG_PM */ 1406 1407