1 /* 2 * PMac DBDMA lowlevel functions 3 * 4 * Copyright (c) by Takashi Iwai <tiwai@suse.de> 5 * code based on dmasound.c. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 23 #include <asm/io.h> 24 #include <asm/irq.h> 25 #include <linux/init.h> 26 #include <linux/delay.h> 27 #include <linux/slab.h> 28 #include <linux/interrupt.h> 29 #include <linux/pci.h> 30 #include <linux/dma-mapping.h> 31 #include <sound/core.h> 32 #include "pmac.h" 33 #include <sound/pcm_params.h> 34 #include <asm/pmac_feature.h> 35 #include <asm/pci-bridge.h> 36 37 38 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */ 39 static int awacs_freqs[8] = { 40 44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350 41 }; 42 /* fixed frequency table for tumbler */ 43 static int tumbler_freqs[1] = { 44 44100 45 }; 46 47 48 /* 49 * we will allocate a single 'emergency' dbdma cmd block to use if the 50 * tx status comes up "DEAD". This happens on some PowerComputing Pmac 51 * clones, either owing to a bug in dbdma or some interaction between 52 * IDE and sound. However, this measure would deal with DEAD status if 53 * it appeared elsewhere. 54 */ 55 static struct pmac_dbdma emergency_dbdma; 56 static int emergency_in_use; 57 58 59 /* 60 * allocate DBDMA command arrays 61 */ 62 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size) 63 { 64 unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1); 65 66 rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize, 67 &rec->dma_base, GFP_KERNEL); 68 if (rec->space == NULL) 69 return -ENOMEM; 70 rec->size = size; 71 memset(rec->space, 0, rsize); 72 rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space); 73 rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space); 74 75 return 0; 76 } 77 78 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec) 79 { 80 if (rec->space) { 81 unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1); 82 83 dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base); 84 } 85 } 86 87 88 /* 89 * pcm stuff 90 */ 91 92 /* 93 * look up frequency table 94 */ 95 96 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate) 97 { 98 int i, ok, found; 99 100 ok = rec->cur_freqs; 101 if (rate > chip->freq_table[0]) 102 return 0; 103 found = 0; 104 for (i = 0; i < chip->num_freqs; i++, ok >>= 1) { 105 if (! (ok & 1)) continue; 106 found = i; 107 if (rate >= chip->freq_table[i]) 108 break; 109 } 110 return found; 111 } 112 113 /* 114 * check whether another stream is active 115 */ 116 static inline int another_stream(int stream) 117 { 118 return (stream == SNDRV_PCM_STREAM_PLAYBACK) ? 119 SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; 120 } 121 122 /* 123 * allocate buffers 124 */ 125 static int snd_pmac_pcm_hw_params(struct snd_pcm_substream *subs, 126 struct snd_pcm_hw_params *hw_params) 127 { 128 return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params)); 129 } 130 131 /* 132 * release buffers 133 */ 134 static int snd_pmac_pcm_hw_free(struct snd_pcm_substream *subs) 135 { 136 snd_pcm_lib_free_pages(subs); 137 return 0; 138 } 139 140 /* 141 * get a stream of the opposite direction 142 */ 143 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream) 144 { 145 switch (stream) { 146 case SNDRV_PCM_STREAM_PLAYBACK: 147 return &chip->playback; 148 case SNDRV_PCM_STREAM_CAPTURE: 149 return &chip->capture; 150 default: 151 snd_BUG(); 152 return NULL; 153 } 154 } 155 156 /* 157 * wait while run status is on 158 */ 159 static inline void 160 snd_pmac_wait_ack(struct pmac_stream *rec) 161 { 162 int timeout = 50000; 163 while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0) 164 udelay(1); 165 } 166 167 /* 168 * set the format and rate to the chip. 169 * call the lowlevel function if defined (e.g. for AWACS). 170 */ 171 static void snd_pmac_pcm_set_format(struct snd_pmac *chip) 172 { 173 /* set up frequency and format */ 174 out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8)); 175 out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0); 176 if (chip->set_format) 177 chip->set_format(chip); 178 } 179 180 /* 181 * stop the DMA transfer 182 */ 183 static inline void snd_pmac_dma_stop(struct pmac_stream *rec) 184 { 185 out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16); 186 snd_pmac_wait_ack(rec); 187 } 188 189 /* 190 * set the command pointer address 191 */ 192 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd) 193 { 194 out_le32(&rec->dma->cmdptr, cmd->addr); 195 } 196 197 /* 198 * start the DMA 199 */ 200 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status) 201 { 202 out_le32(&rec->dma->control, status | (status << 16)); 203 } 204 205 206 /* 207 * prepare playback/capture stream 208 */ 209 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs) 210 { 211 int i; 212 volatile struct dbdma_cmd __iomem *cp; 213 struct snd_pcm_runtime *runtime = subs->runtime; 214 int rate_index; 215 long offset; 216 struct pmac_stream *astr; 217 218 rec->dma_size = snd_pcm_lib_buffer_bytes(subs); 219 rec->period_size = snd_pcm_lib_period_bytes(subs); 220 rec->nperiods = rec->dma_size / rec->period_size; 221 rec->cur_period = 0; 222 rate_index = snd_pmac_rate_index(chip, rec, runtime->rate); 223 224 /* set up constraints */ 225 astr = snd_pmac_get_stream(chip, another_stream(rec->stream)); 226 if (! astr) 227 return -EINVAL; 228 astr->cur_freqs = 1 << rate_index; 229 astr->cur_formats = 1 << runtime->format; 230 chip->rate_index = rate_index; 231 chip->format = runtime->format; 232 233 /* We really want to execute a DMA stop command, after the AWACS 234 * is initialized. 235 * For reasons I don't understand, it stops the hissing noise 236 * common to many PowerBook G3 systems and random noise otherwise 237 * captured on iBook2's about every third time. -ReneR 238 */ 239 spin_lock_irq(&chip->reg_lock); 240 snd_pmac_dma_stop(rec); 241 st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP); 242 snd_pmac_dma_set_command(rec, &chip->extra_dma); 243 snd_pmac_dma_run(rec, RUN); 244 spin_unlock_irq(&chip->reg_lock); 245 mdelay(5); 246 spin_lock_irq(&chip->reg_lock); 247 /* continuous DMA memory type doesn't provide the physical address, 248 * so we need to resolve the address here... 249 */ 250 offset = runtime->dma_addr; 251 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) { 252 st_le32(&cp->phy_addr, offset); 253 st_le16(&cp->req_count, rec->period_size); 254 /*st_le16(&cp->res_count, 0);*/ 255 st_le16(&cp->xfer_status, 0); 256 offset += rec->period_size; 257 } 258 /* make loop */ 259 st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS); 260 st_le32(&cp->cmd_dep, rec->cmd.addr); 261 262 snd_pmac_dma_stop(rec); 263 snd_pmac_dma_set_command(rec, &rec->cmd); 264 spin_unlock_irq(&chip->reg_lock); 265 266 return 0; 267 } 268 269 270 /* 271 * PCM trigger/stop 272 */ 273 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec, 274 struct snd_pcm_substream *subs, int cmd) 275 { 276 volatile struct dbdma_cmd __iomem *cp; 277 int i, command; 278 279 switch (cmd) { 280 case SNDRV_PCM_TRIGGER_START: 281 case SNDRV_PCM_TRIGGER_RESUME: 282 if (rec->running) 283 return -EBUSY; 284 command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ? 285 OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS; 286 spin_lock(&chip->reg_lock); 287 snd_pmac_beep_stop(chip); 288 snd_pmac_pcm_set_format(chip); 289 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) 290 out_le16(&cp->command, command); 291 snd_pmac_dma_set_command(rec, &rec->cmd); 292 (void)in_le32(&rec->dma->status); 293 snd_pmac_dma_run(rec, RUN|WAKE); 294 rec->running = 1; 295 spin_unlock(&chip->reg_lock); 296 break; 297 298 case SNDRV_PCM_TRIGGER_STOP: 299 case SNDRV_PCM_TRIGGER_SUSPEND: 300 spin_lock(&chip->reg_lock); 301 rec->running = 0; 302 /*printk(KERN_DEBUG "stopped!!\n");*/ 303 snd_pmac_dma_stop(rec); 304 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) 305 out_le16(&cp->command, DBDMA_STOP); 306 spin_unlock(&chip->reg_lock); 307 break; 308 309 default: 310 return -EINVAL; 311 } 312 313 return 0; 314 } 315 316 /* 317 * return the current pointer 318 */ 319 inline 320 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip, 321 struct pmac_stream *rec, 322 struct snd_pcm_substream *subs) 323 { 324 int count = 0; 325 326 #if 1 /* hmm.. how can we get the current dma pointer?? */ 327 int stat; 328 volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period]; 329 stat = ld_le16(&cp->xfer_status); 330 if (stat & (ACTIVE|DEAD)) { 331 count = in_le16(&cp->res_count); 332 if (count) 333 count = rec->period_size - count; 334 } 335 #endif 336 count += rec->cur_period * rec->period_size; 337 /*printk(KERN_DEBUG "pointer=%d\n", count);*/ 338 return bytes_to_frames(subs->runtime, count); 339 } 340 341 /* 342 * playback 343 */ 344 345 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs) 346 { 347 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 348 return snd_pmac_pcm_prepare(chip, &chip->playback, subs); 349 } 350 351 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs, 352 int cmd) 353 { 354 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 355 return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd); 356 } 357 358 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs) 359 { 360 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 361 return snd_pmac_pcm_pointer(chip, &chip->playback, subs); 362 } 363 364 365 /* 366 * capture 367 */ 368 369 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs) 370 { 371 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 372 return snd_pmac_pcm_prepare(chip, &chip->capture, subs); 373 } 374 375 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs, 376 int cmd) 377 { 378 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 379 return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd); 380 } 381 382 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs) 383 { 384 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 385 return snd_pmac_pcm_pointer(chip, &chip->capture, subs); 386 } 387 388 389 /* 390 * Handle DEAD DMA transfers: 391 * if the TX status comes up "DEAD" - reported on some Power Computing machines 392 * we need to re-start the dbdma - but from a different physical start address 393 * and with a different transfer length. It would get very messy to do this 394 * with the normal dbdma_cmd blocks - we would have to re-write the buffer start 395 * addresses each time. So, we will keep a single dbdma_cmd block which can be 396 * fiddled with. 397 * When DEAD status is first reported the content of the faulted dbdma block is 398 * copied into the emergency buffer and we note that the buffer is in use. 399 * we then bump the start physical address by the amount that was successfully 400 * output before it died. 401 * On any subsequent DEAD result we just do the bump-ups (we know that we are 402 * already using the emergency dbdma_cmd). 403 * CHECK: this just tries to "do it". It is possible that we should abandon 404 * xfers when the number of residual bytes gets below a certain value - I can 405 * see that this might cause a loop-forever if a too small transfer causes 406 * DEAD status. However this is a TODO for now - we'll see what gets reported. 407 * When we get a successful transfer result with the emergency buffer we just 408 * pretend that it completed using the original dmdma_cmd and carry on. The 409 * 'next_cmd' field will already point back to the original loop of blocks. 410 */ 411 static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec, 412 volatile struct dbdma_cmd __iomem *cp) 413 { 414 unsigned short req, res ; 415 unsigned int phy ; 416 417 /* printk(KERN_WARNING "snd-powermac: DMA died - patching it up!\n"); */ 418 419 /* to clear DEAD status we must first clear RUN 420 set it to quiescent to be on the safe side */ 421 (void)in_le32(&rec->dma->status); 422 out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16); 423 424 if (!emergency_in_use) { /* new problem */ 425 memcpy((void *)emergency_dbdma.cmds, (void *)cp, 426 sizeof(struct dbdma_cmd)); 427 emergency_in_use = 1; 428 st_le16(&cp->xfer_status, 0); 429 st_le16(&cp->req_count, rec->period_size); 430 cp = emergency_dbdma.cmds; 431 } 432 433 /* now bump the values to reflect the amount 434 we haven't yet shifted */ 435 req = ld_le16(&cp->req_count); 436 res = ld_le16(&cp->res_count); 437 phy = ld_le32(&cp->phy_addr); 438 phy += (req - res); 439 st_le16(&cp->req_count, res); 440 st_le16(&cp->res_count, 0); 441 st_le16(&cp->xfer_status, 0); 442 st_le32(&cp->phy_addr, phy); 443 444 st_le32(&cp->cmd_dep, rec->cmd.addr 445 + sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods)); 446 447 st_le16(&cp->command, OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS); 448 449 /* point at our patched up command block */ 450 out_le32(&rec->dma->cmdptr, emergency_dbdma.addr); 451 452 /* we must re-start the controller */ 453 (void)in_le32(&rec->dma->status); 454 /* should complete clearing the DEAD status */ 455 out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE)); 456 } 457 458 /* 459 * update playback/capture pointer from interrupts 460 */ 461 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec) 462 { 463 volatile struct dbdma_cmd __iomem *cp; 464 int c; 465 int stat; 466 467 spin_lock(&chip->reg_lock); 468 if (rec->running) { 469 for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */ 470 471 if (emergency_in_use) /* already using DEAD xfer? */ 472 cp = emergency_dbdma.cmds; 473 else 474 cp = &rec->cmd.cmds[rec->cur_period]; 475 476 stat = ld_le16(&cp->xfer_status); 477 478 if (stat & DEAD) { 479 snd_pmac_pcm_dead_xfer(rec, cp); 480 break; /* this block is still going */ 481 } 482 483 if (emergency_in_use) 484 emergency_in_use = 0 ; /* done that */ 485 486 if (! (stat & ACTIVE)) 487 break; 488 489 /*printk(KERN_DEBUG "update frag %d\n", rec->cur_period);*/ 490 st_le16(&cp->xfer_status, 0); 491 st_le16(&cp->req_count, rec->period_size); 492 /*st_le16(&cp->res_count, 0);*/ 493 rec->cur_period++; 494 if (rec->cur_period >= rec->nperiods) { 495 rec->cur_period = 0; 496 } 497 498 spin_unlock(&chip->reg_lock); 499 snd_pcm_period_elapsed(rec->substream); 500 spin_lock(&chip->reg_lock); 501 } 502 } 503 spin_unlock(&chip->reg_lock); 504 } 505 506 507 /* 508 * hw info 509 */ 510 511 static struct snd_pcm_hardware snd_pmac_playback = 512 { 513 .info = (SNDRV_PCM_INFO_INTERLEAVED | 514 SNDRV_PCM_INFO_MMAP | 515 SNDRV_PCM_INFO_MMAP_VALID | 516 SNDRV_PCM_INFO_RESUME), 517 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE, 518 .rates = SNDRV_PCM_RATE_8000_44100, 519 .rate_min = 7350, 520 .rate_max = 44100, 521 .channels_min = 2, 522 .channels_max = 2, 523 .buffer_bytes_max = 131072, 524 .period_bytes_min = 256, 525 .period_bytes_max = 16384, 526 .periods_min = 3, 527 .periods_max = PMAC_MAX_FRAGS, 528 }; 529 530 static struct snd_pcm_hardware snd_pmac_capture = 531 { 532 .info = (SNDRV_PCM_INFO_INTERLEAVED | 533 SNDRV_PCM_INFO_MMAP | 534 SNDRV_PCM_INFO_MMAP_VALID | 535 SNDRV_PCM_INFO_RESUME), 536 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE, 537 .rates = SNDRV_PCM_RATE_8000_44100, 538 .rate_min = 7350, 539 .rate_max = 44100, 540 .channels_min = 2, 541 .channels_max = 2, 542 .buffer_bytes_max = 131072, 543 .period_bytes_min = 256, 544 .period_bytes_max = 16384, 545 .periods_min = 3, 546 .periods_max = PMAC_MAX_FRAGS, 547 }; 548 549 550 #if 0 // NYI 551 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params, 552 struct snd_pcm_hw_rule *rule) 553 { 554 struct snd_pmac *chip = rule->private; 555 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]); 556 int i, freq_table[8], num_freqs; 557 558 if (! rec) 559 return -EINVAL; 560 num_freqs = 0; 561 for (i = chip->num_freqs - 1; i >= 0; i--) { 562 if (rec->cur_freqs & (1 << i)) 563 freq_table[num_freqs++] = chip->freq_table[i]; 564 } 565 566 return snd_interval_list(hw_param_interval(params, rule->var), 567 num_freqs, freq_table, 0); 568 } 569 570 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params, 571 struct snd_pcm_hw_rule *rule) 572 { 573 struct snd_pmac *chip = rule->private; 574 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]); 575 576 if (! rec) 577 return -EINVAL; 578 return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT), 579 rec->cur_formats); 580 } 581 #endif // NYI 582 583 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec, 584 struct snd_pcm_substream *subs) 585 { 586 struct snd_pcm_runtime *runtime = subs->runtime; 587 int i; 588 589 /* look up frequency table and fill bit mask */ 590 runtime->hw.rates = 0; 591 for (i = 0; i < chip->num_freqs; i++) 592 if (chip->freqs_ok & (1 << i)) 593 runtime->hw.rates |= 594 snd_pcm_rate_to_rate_bit(chip->freq_table[i]); 595 596 /* check for minimum and maximum rates */ 597 for (i = 0; i < chip->num_freqs; i++) { 598 if (chip->freqs_ok & (1 << i)) { 599 runtime->hw.rate_max = chip->freq_table[i]; 600 break; 601 } 602 } 603 for (i = chip->num_freqs - 1; i >= 0; i--) { 604 if (chip->freqs_ok & (1 << i)) { 605 runtime->hw.rate_min = chip->freq_table[i]; 606 break; 607 } 608 } 609 runtime->hw.formats = chip->formats_ok; 610 if (chip->can_capture) { 611 if (! chip->can_duplex) 612 runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX; 613 runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX; 614 } 615 runtime->private_data = rec; 616 rec->substream = subs; 617 618 #if 0 /* FIXME: still under development.. */ 619 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 620 snd_pmac_hw_rule_rate, chip, rec->stream, -1); 621 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, 622 snd_pmac_hw_rule_format, chip, rec->stream, -1); 623 #endif 624 625 runtime->hw.periods_max = rec->cmd.size - 1; 626 627 /* constraints to fix choppy sound */ 628 snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); 629 return 0; 630 } 631 632 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec, 633 struct snd_pcm_substream *subs) 634 { 635 struct pmac_stream *astr; 636 637 snd_pmac_dma_stop(rec); 638 639 astr = snd_pmac_get_stream(chip, another_stream(rec->stream)); 640 if (! astr) 641 return -EINVAL; 642 643 /* reset constraints */ 644 astr->cur_freqs = chip->freqs_ok; 645 astr->cur_formats = chip->formats_ok; 646 647 return 0; 648 } 649 650 static int snd_pmac_playback_open(struct snd_pcm_substream *subs) 651 { 652 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 653 654 subs->runtime->hw = snd_pmac_playback; 655 return snd_pmac_pcm_open(chip, &chip->playback, subs); 656 } 657 658 static int snd_pmac_capture_open(struct snd_pcm_substream *subs) 659 { 660 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 661 662 subs->runtime->hw = snd_pmac_capture; 663 return snd_pmac_pcm_open(chip, &chip->capture, subs); 664 } 665 666 static int snd_pmac_playback_close(struct snd_pcm_substream *subs) 667 { 668 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 669 670 return snd_pmac_pcm_close(chip, &chip->playback, subs); 671 } 672 673 static int snd_pmac_capture_close(struct snd_pcm_substream *subs) 674 { 675 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 676 677 return snd_pmac_pcm_close(chip, &chip->capture, subs); 678 } 679 680 /* 681 */ 682 683 static struct snd_pcm_ops snd_pmac_playback_ops = { 684 .open = snd_pmac_playback_open, 685 .close = snd_pmac_playback_close, 686 .ioctl = snd_pcm_lib_ioctl, 687 .hw_params = snd_pmac_pcm_hw_params, 688 .hw_free = snd_pmac_pcm_hw_free, 689 .prepare = snd_pmac_playback_prepare, 690 .trigger = snd_pmac_playback_trigger, 691 .pointer = snd_pmac_playback_pointer, 692 }; 693 694 static struct snd_pcm_ops snd_pmac_capture_ops = { 695 .open = snd_pmac_capture_open, 696 .close = snd_pmac_capture_close, 697 .ioctl = snd_pcm_lib_ioctl, 698 .hw_params = snd_pmac_pcm_hw_params, 699 .hw_free = snd_pmac_pcm_hw_free, 700 .prepare = snd_pmac_capture_prepare, 701 .trigger = snd_pmac_capture_trigger, 702 .pointer = snd_pmac_capture_pointer, 703 }; 704 705 int __devinit snd_pmac_pcm_new(struct snd_pmac *chip) 706 { 707 struct snd_pcm *pcm; 708 int err; 709 int num_captures = 1; 710 711 if (! chip->can_capture) 712 num_captures = 0; 713 err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm); 714 if (err < 0) 715 return err; 716 717 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops); 718 if (chip->can_capture) 719 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops); 720 721 pcm->private_data = chip; 722 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 723 strcpy(pcm->name, chip->card->shortname); 724 chip->pcm = pcm; 725 726 chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE; 727 if (chip->can_byte_swap) 728 chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE; 729 730 chip->playback.cur_formats = chip->formats_ok; 731 chip->capture.cur_formats = chip->formats_ok; 732 chip->playback.cur_freqs = chip->freqs_ok; 733 chip->capture.cur_freqs = chip->freqs_ok; 734 735 /* preallocate 64k buffer */ 736 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 737 &chip->pdev->dev, 738 64 * 1024, 64 * 1024); 739 740 return 0; 741 } 742 743 744 static void snd_pmac_dbdma_reset(struct snd_pmac *chip) 745 { 746 out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16); 747 snd_pmac_wait_ack(&chip->playback); 748 out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16); 749 snd_pmac_wait_ack(&chip->capture); 750 } 751 752 753 /* 754 * handling beep 755 */ 756 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed) 757 { 758 struct pmac_stream *rec = &chip->playback; 759 760 snd_pmac_dma_stop(rec); 761 st_le16(&chip->extra_dma.cmds->req_count, bytes); 762 st_le16(&chip->extra_dma.cmds->xfer_status, 0); 763 st_le32(&chip->extra_dma.cmds->cmd_dep, chip->extra_dma.addr); 764 st_le32(&chip->extra_dma.cmds->phy_addr, addr); 765 st_le16(&chip->extra_dma.cmds->command, OUTPUT_MORE + BR_ALWAYS); 766 out_le32(&chip->awacs->control, 767 (in_le32(&chip->awacs->control) & ~0x1f00) 768 | (speed << 8)); 769 out_le32(&chip->awacs->byteswap, 0); 770 snd_pmac_dma_set_command(rec, &chip->extra_dma); 771 snd_pmac_dma_run(rec, RUN); 772 } 773 774 void snd_pmac_beep_dma_stop(struct snd_pmac *chip) 775 { 776 snd_pmac_dma_stop(&chip->playback); 777 st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP); 778 snd_pmac_pcm_set_format(chip); /* reset format */ 779 } 780 781 782 /* 783 * interrupt handlers 784 */ 785 static irqreturn_t 786 snd_pmac_tx_intr(int irq, void *devid) 787 { 788 struct snd_pmac *chip = devid; 789 snd_pmac_pcm_update(chip, &chip->playback); 790 return IRQ_HANDLED; 791 } 792 793 794 static irqreturn_t 795 snd_pmac_rx_intr(int irq, void *devid) 796 { 797 struct snd_pmac *chip = devid; 798 snd_pmac_pcm_update(chip, &chip->capture); 799 return IRQ_HANDLED; 800 } 801 802 803 static irqreturn_t 804 snd_pmac_ctrl_intr(int irq, void *devid) 805 { 806 struct snd_pmac *chip = devid; 807 int ctrl = in_le32(&chip->awacs->control); 808 809 /*printk(KERN_DEBUG "pmac: control interrupt.. 0x%x\n", ctrl);*/ 810 if (ctrl & MASK_PORTCHG) { 811 /* do something when headphone is plugged/unplugged? */ 812 if (chip->update_automute) 813 chip->update_automute(chip, 1); 814 } 815 if (ctrl & MASK_CNTLERR) { 816 int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16; 817 if (err && chip->model <= PMAC_SCREAMER) 818 snd_printk(KERN_DEBUG "error %x\n", err); 819 } 820 /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */ 821 out_le32(&chip->awacs->control, ctrl); 822 return IRQ_HANDLED; 823 } 824 825 826 /* 827 * a wrapper to feature call for compatibility 828 */ 829 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable) 830 { 831 if (ppc_md.feature_call) 832 ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable); 833 } 834 835 /* 836 * release resources 837 */ 838 839 static int snd_pmac_free(struct snd_pmac *chip) 840 { 841 /* stop sounds */ 842 if (chip->initialized) { 843 snd_pmac_dbdma_reset(chip); 844 /* disable interrupts from awacs interface */ 845 out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff); 846 } 847 848 if (chip->node) 849 snd_pmac_sound_feature(chip, 0); 850 851 /* clean up mixer if any */ 852 if (chip->mixer_free) 853 chip->mixer_free(chip); 854 855 snd_pmac_detach_beep(chip); 856 857 /* release resources */ 858 if (chip->irq >= 0) 859 free_irq(chip->irq, (void*)chip); 860 if (chip->tx_irq >= 0) 861 free_irq(chip->tx_irq, (void*)chip); 862 if (chip->rx_irq >= 0) 863 free_irq(chip->rx_irq, (void*)chip); 864 snd_pmac_dbdma_free(chip, &chip->playback.cmd); 865 snd_pmac_dbdma_free(chip, &chip->capture.cmd); 866 snd_pmac_dbdma_free(chip, &chip->extra_dma); 867 snd_pmac_dbdma_free(chip, &emergency_dbdma); 868 if (chip->macio_base) 869 iounmap(chip->macio_base); 870 if (chip->latch_base) 871 iounmap(chip->latch_base); 872 if (chip->awacs) 873 iounmap(chip->awacs); 874 if (chip->playback.dma) 875 iounmap(chip->playback.dma); 876 if (chip->capture.dma) 877 iounmap(chip->capture.dma); 878 879 if (chip->node) { 880 int i; 881 for (i = 0; i < 3; i++) { 882 if (chip->requested & (1 << i)) 883 release_mem_region(chip->rsrc[i].start, 884 resource_size(&chip->rsrc[i])); 885 } 886 } 887 888 if (chip->pdev) 889 pci_dev_put(chip->pdev); 890 of_node_put(chip->node); 891 kfree(chip); 892 return 0; 893 } 894 895 896 /* 897 * free the device 898 */ 899 static int snd_pmac_dev_free(struct snd_device *device) 900 { 901 struct snd_pmac *chip = device->device_data; 902 return snd_pmac_free(chip); 903 } 904 905 906 /* 907 * check the machine support byteswap (little-endian) 908 */ 909 910 static void __devinit detect_byte_swap(struct snd_pmac *chip) 911 { 912 struct device_node *mio; 913 914 /* if seems that Keylargo can't byte-swap */ 915 for (mio = chip->node->parent; mio; mio = mio->parent) { 916 if (strcmp(mio->name, "mac-io") == 0) { 917 if (of_device_is_compatible(mio, "Keylargo")) 918 chip->can_byte_swap = 0; 919 break; 920 } 921 } 922 923 /* it seems the Pismo & iBook can't byte-swap in hardware. */ 924 if (of_machine_is_compatible("PowerBook3,1") || 925 of_machine_is_compatible("PowerBook2,1")) 926 chip->can_byte_swap = 0 ; 927 928 if (of_machine_is_compatible("PowerBook2,1")) 929 chip->can_duplex = 0; 930 } 931 932 933 /* 934 * detect a sound chip 935 */ 936 static int __devinit snd_pmac_detect(struct snd_pmac *chip) 937 { 938 struct device_node *sound; 939 struct device_node *dn; 940 const unsigned int *prop; 941 unsigned int l; 942 struct macio_chip* macio; 943 944 if (!machine_is(powermac)) 945 return -ENODEV; 946 947 chip->subframe = 0; 948 chip->revision = 0; 949 chip->freqs_ok = 0xff; /* all ok */ 950 chip->model = PMAC_AWACS; 951 chip->can_byte_swap = 1; 952 chip->can_duplex = 1; 953 chip->can_capture = 1; 954 chip->num_freqs = ARRAY_SIZE(awacs_freqs); 955 chip->freq_table = awacs_freqs; 956 chip->pdev = NULL; 957 958 chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */ 959 960 /* check machine type */ 961 if (of_machine_is_compatible("AAPL,3400/2400") 962 || of_machine_is_compatible("AAPL,3500")) 963 chip->is_pbook_3400 = 1; 964 else if (of_machine_is_compatible("PowerBook1,1") 965 || of_machine_is_compatible("AAPL,PowerBook1998")) 966 chip->is_pbook_G3 = 1; 967 chip->node = of_find_node_by_name(NULL, "awacs"); 968 sound = of_node_get(chip->node); 969 970 /* 971 * powermac G3 models have a node called "davbus" 972 * with a child called "sound". 973 */ 974 if (!chip->node) 975 chip->node = of_find_node_by_name(NULL, "davbus"); 976 /* 977 * if we didn't find a davbus device, try 'i2s-a' since 978 * this seems to be what iBooks have 979 */ 980 if (! chip->node) { 981 chip->node = of_find_node_by_name(NULL, "i2s-a"); 982 if (chip->node && chip->node->parent && 983 chip->node->parent->parent) { 984 if (of_device_is_compatible(chip->node->parent->parent, 985 "K2-Keylargo")) 986 chip->is_k2 = 1; 987 } 988 } 989 if (! chip->node) 990 return -ENODEV; 991 992 if (!sound) { 993 sound = of_find_node_by_name(NULL, "sound"); 994 while (sound && sound->parent != chip->node) 995 sound = of_find_node_by_name(sound, "sound"); 996 } 997 if (! sound) { 998 of_node_put(chip->node); 999 chip->node = NULL; 1000 return -ENODEV; 1001 } 1002 prop = of_get_property(sound, "sub-frame", NULL); 1003 if (prop && *prop < 16) 1004 chip->subframe = *prop; 1005 prop = of_get_property(sound, "layout-id", NULL); 1006 if (prop) { 1007 /* partly deprecate snd-powermac, for those machines 1008 * that have a layout-id property for now */ 1009 printk(KERN_INFO "snd-powermac no longer handles any " 1010 "machines with a layout-id property " 1011 "in the device-tree, use snd-aoa.\n"); 1012 of_node_put(sound); 1013 of_node_put(chip->node); 1014 chip->node = NULL; 1015 return -ENODEV; 1016 } 1017 /* This should be verified on older screamers */ 1018 if (of_device_is_compatible(sound, "screamer")) { 1019 chip->model = PMAC_SCREAMER; 1020 // chip->can_byte_swap = 0; /* FIXME: check this */ 1021 } 1022 if (of_device_is_compatible(sound, "burgundy")) { 1023 chip->model = PMAC_BURGUNDY; 1024 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1025 } 1026 if (of_device_is_compatible(sound, "daca")) { 1027 chip->model = PMAC_DACA; 1028 chip->can_capture = 0; /* no capture */ 1029 chip->can_duplex = 0; 1030 // chip->can_byte_swap = 0; /* FIXME: check this */ 1031 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1032 } 1033 if (of_device_is_compatible(sound, "tumbler")) { 1034 chip->model = PMAC_TUMBLER; 1035 chip->can_capture = of_machine_is_compatible("PowerMac4,2") 1036 || of_machine_is_compatible("PowerBook3,2") 1037 || of_machine_is_compatible("PowerBook3,3") 1038 || of_machine_is_compatible("PowerBook4,1") 1039 || of_machine_is_compatible("PowerBook4,2") 1040 || of_machine_is_compatible("PowerBook4,3"); 1041 chip->can_duplex = 0; 1042 // chip->can_byte_swap = 0; /* FIXME: check this */ 1043 chip->num_freqs = ARRAY_SIZE(tumbler_freqs); 1044 chip->freq_table = tumbler_freqs; 1045 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1046 } 1047 if (of_device_is_compatible(sound, "snapper")) { 1048 chip->model = PMAC_SNAPPER; 1049 // chip->can_byte_swap = 0; /* FIXME: check this */ 1050 chip->num_freqs = ARRAY_SIZE(tumbler_freqs); 1051 chip->freq_table = tumbler_freqs; 1052 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1053 } 1054 prop = of_get_property(sound, "device-id", NULL); 1055 if (prop) 1056 chip->device_id = *prop; 1057 dn = of_find_node_by_name(NULL, "perch"); 1058 chip->has_iic = (dn != NULL); 1059 of_node_put(dn); 1060 1061 /* We need the PCI device for DMA allocations, let's use a crude method 1062 * for now ... 1063 */ 1064 macio = macio_find(chip->node, macio_unknown); 1065 if (macio == NULL) 1066 printk(KERN_WARNING "snd-powermac: can't locate macio !\n"); 1067 else { 1068 struct pci_dev *pdev = NULL; 1069 1070 for_each_pci_dev(pdev) { 1071 struct device_node *np = pci_device_to_OF_node(pdev); 1072 if (np && np == macio->of_node) { 1073 chip->pdev = pdev; 1074 break; 1075 } 1076 } 1077 } 1078 if (chip->pdev == NULL) 1079 printk(KERN_WARNING "snd-powermac: can't locate macio PCI" 1080 " device !\n"); 1081 1082 detect_byte_swap(chip); 1083 1084 /* look for a property saying what sample rates 1085 are available */ 1086 prop = of_get_property(sound, "sample-rates", &l); 1087 if (! prop) 1088 prop = of_get_property(sound, "output-frame-rates", &l); 1089 if (prop) { 1090 int i; 1091 chip->freqs_ok = 0; 1092 for (l /= sizeof(int); l > 0; --l) { 1093 unsigned int r = *prop++; 1094 /* Apple 'Fixed' format */ 1095 if (r >= 0x10000) 1096 r >>= 16; 1097 for (i = 0; i < chip->num_freqs; ++i) { 1098 if (r == chip->freq_table[i]) { 1099 chip->freqs_ok |= (1 << i); 1100 break; 1101 } 1102 } 1103 } 1104 } else { 1105 /* assume only 44.1khz */ 1106 chip->freqs_ok = 1; 1107 } 1108 1109 of_node_put(sound); 1110 return 0; 1111 } 1112 1113 #ifdef PMAC_SUPPORT_AUTOMUTE 1114 /* 1115 * auto-mute 1116 */ 1117 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol, 1118 struct snd_ctl_elem_value *ucontrol) 1119 { 1120 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); 1121 ucontrol->value.integer.value[0] = chip->auto_mute; 1122 return 0; 1123 } 1124 1125 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol, 1126 struct snd_ctl_elem_value *ucontrol) 1127 { 1128 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); 1129 if (ucontrol->value.integer.value[0] != chip->auto_mute) { 1130 chip->auto_mute = !!ucontrol->value.integer.value[0]; 1131 if (chip->update_automute) 1132 chip->update_automute(chip, 1); 1133 return 1; 1134 } 1135 return 0; 1136 } 1137 1138 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol, 1139 struct snd_ctl_elem_value *ucontrol) 1140 { 1141 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); 1142 if (chip->detect_headphone) 1143 ucontrol->value.integer.value[0] = chip->detect_headphone(chip); 1144 else 1145 ucontrol->value.integer.value[0] = 0; 1146 return 0; 1147 } 1148 1149 static struct snd_kcontrol_new auto_mute_controls[] __devinitdata = { 1150 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1151 .name = "Auto Mute Switch", 1152 .info = snd_pmac_boolean_mono_info, 1153 .get = pmac_auto_mute_get, 1154 .put = pmac_auto_mute_put, 1155 }, 1156 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1157 .name = "Headphone Detection", 1158 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1159 .info = snd_pmac_boolean_mono_info, 1160 .get = pmac_hp_detect_get, 1161 }, 1162 }; 1163 1164 int __devinit snd_pmac_add_automute(struct snd_pmac *chip) 1165 { 1166 int err; 1167 chip->auto_mute = 1; 1168 err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip)); 1169 if (err < 0) { 1170 printk(KERN_ERR "snd-powermac: Failed to add automute control\n"); 1171 return err; 1172 } 1173 chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip); 1174 return snd_ctl_add(chip->card, chip->hp_detect_ctl); 1175 } 1176 #endif /* PMAC_SUPPORT_AUTOMUTE */ 1177 1178 /* 1179 * create and detect a pmac chip record 1180 */ 1181 int __devinit snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return) 1182 { 1183 struct snd_pmac *chip; 1184 struct device_node *np; 1185 int i, err; 1186 unsigned int irq; 1187 unsigned long ctrl_addr, txdma_addr, rxdma_addr; 1188 static struct snd_device_ops ops = { 1189 .dev_free = snd_pmac_dev_free, 1190 }; 1191 1192 *chip_return = NULL; 1193 1194 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 1195 if (chip == NULL) 1196 return -ENOMEM; 1197 chip->card = card; 1198 1199 spin_lock_init(&chip->reg_lock); 1200 chip->irq = chip->tx_irq = chip->rx_irq = -1; 1201 1202 chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK; 1203 chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE; 1204 1205 if ((err = snd_pmac_detect(chip)) < 0) 1206 goto __error; 1207 1208 if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 || 1209 snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 || 1210 snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 || 1211 snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) { 1212 err = -ENOMEM; 1213 goto __error; 1214 } 1215 1216 np = chip->node; 1217 chip->requested = 0; 1218 if (chip->is_k2) { 1219 static char *rnames[] = { 1220 "Sound Control", "Sound DMA" }; 1221 for (i = 0; i < 2; i ++) { 1222 if (of_address_to_resource(np->parent, i, 1223 &chip->rsrc[i])) { 1224 printk(KERN_ERR "snd: can't translate rsrc " 1225 " %d (%s)\n", i, rnames[i]); 1226 err = -ENODEV; 1227 goto __error; 1228 } 1229 if (request_mem_region(chip->rsrc[i].start, 1230 resource_size(&chip->rsrc[i]), 1231 rnames[i]) == NULL) { 1232 printk(KERN_ERR "snd: can't request rsrc " 1233 " %d (%s: %pR)\n", 1234 i, rnames[i], &chip->rsrc[i]); 1235 err = -ENODEV; 1236 goto __error; 1237 } 1238 chip->requested |= (1 << i); 1239 } 1240 ctrl_addr = chip->rsrc[0].start; 1241 txdma_addr = chip->rsrc[1].start; 1242 rxdma_addr = txdma_addr + 0x100; 1243 } else { 1244 static char *rnames[] = { 1245 "Sound Control", "Sound Tx DMA", "Sound Rx DMA" }; 1246 for (i = 0; i < 3; i ++) { 1247 if (of_address_to_resource(np, i, 1248 &chip->rsrc[i])) { 1249 printk(KERN_ERR "snd: can't translate rsrc " 1250 " %d (%s)\n", i, rnames[i]); 1251 err = -ENODEV; 1252 goto __error; 1253 } 1254 if (request_mem_region(chip->rsrc[i].start, 1255 resource_size(&chip->rsrc[i]), 1256 rnames[i]) == NULL) { 1257 printk(KERN_ERR "snd: can't request rsrc " 1258 " %d (%s: %pR)\n", 1259 i, rnames[i], &chip->rsrc[i]); 1260 err = -ENODEV; 1261 goto __error; 1262 } 1263 chip->requested |= (1 << i); 1264 } 1265 ctrl_addr = chip->rsrc[0].start; 1266 txdma_addr = chip->rsrc[1].start; 1267 rxdma_addr = chip->rsrc[2].start; 1268 } 1269 1270 chip->awacs = ioremap(ctrl_addr, 0x1000); 1271 chip->playback.dma = ioremap(txdma_addr, 0x100); 1272 chip->capture.dma = ioremap(rxdma_addr, 0x100); 1273 if (chip->model <= PMAC_BURGUNDY) { 1274 irq = irq_of_parse_and_map(np, 0); 1275 if (request_irq(irq, snd_pmac_ctrl_intr, 0, 1276 "PMac", (void*)chip)) { 1277 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", 1278 irq); 1279 err = -EBUSY; 1280 goto __error; 1281 } 1282 chip->irq = irq; 1283 } 1284 irq = irq_of_parse_and_map(np, 1); 1285 if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){ 1286 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq); 1287 err = -EBUSY; 1288 goto __error; 1289 } 1290 chip->tx_irq = irq; 1291 irq = irq_of_parse_and_map(np, 2); 1292 if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) { 1293 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq); 1294 err = -EBUSY; 1295 goto __error; 1296 } 1297 chip->rx_irq = irq; 1298 1299 snd_pmac_sound_feature(chip, 1); 1300 1301 /* reset & enable interrupts */ 1302 if (chip->model <= PMAC_BURGUNDY) 1303 out_le32(&chip->awacs->control, chip->control_mask); 1304 1305 /* Powerbooks have odd ways of enabling inputs such as 1306 an expansion-bay CD or sound from an internal modem 1307 or a PC-card modem. */ 1308 if (chip->is_pbook_3400) { 1309 /* Enable CD and PC-card sound inputs. */ 1310 /* This is done by reading from address 1311 * f301a000, + 0x10 to enable the expansion-bay 1312 * CD sound input, + 0x80 to enable the PC-card 1313 * sound input. The 0x100 enables the SCSI bus 1314 * terminator power. 1315 */ 1316 chip->latch_base = ioremap (0xf301a000, 0x1000); 1317 in_8(chip->latch_base + 0x190); 1318 } else if (chip->is_pbook_G3) { 1319 struct device_node* mio; 1320 for (mio = chip->node->parent; mio; mio = mio->parent) { 1321 if (strcmp(mio->name, "mac-io") == 0) { 1322 struct resource r; 1323 if (of_address_to_resource(mio, 0, &r) == 0) 1324 chip->macio_base = 1325 ioremap(r.start, 0x40); 1326 break; 1327 } 1328 } 1329 /* Enable CD sound input. */ 1330 /* The relevant bits for writing to this byte are 0x8f. 1331 * I haven't found out what the 0x80 bit does. 1332 * For the 0xf bits, writing 3 or 7 enables the CD 1333 * input, any other value disables it. Values 1334 * 1, 3, 5, 7 enable the microphone. Values 0, 2, 1335 * 4, 6, 8 - f enable the input from the modem. 1336 */ 1337 if (chip->macio_base) 1338 out_8(chip->macio_base + 0x37, 3); 1339 } 1340 1341 /* Reset dbdma channels */ 1342 snd_pmac_dbdma_reset(chip); 1343 1344 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) 1345 goto __error; 1346 1347 *chip_return = chip; 1348 return 0; 1349 1350 __error: 1351 snd_pmac_free(chip); 1352 return err; 1353 } 1354 1355 1356 /* 1357 * sleep notify for powerbook 1358 */ 1359 1360 #ifdef CONFIG_PM 1361 1362 /* 1363 * Save state when going to sleep, restore it afterwards. 1364 */ 1365 1366 void snd_pmac_suspend(struct snd_pmac *chip) 1367 { 1368 unsigned long flags; 1369 1370 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot); 1371 if (chip->suspend) 1372 chip->suspend(chip); 1373 snd_pcm_suspend_all(chip->pcm); 1374 spin_lock_irqsave(&chip->reg_lock, flags); 1375 snd_pmac_beep_stop(chip); 1376 spin_unlock_irqrestore(&chip->reg_lock, flags); 1377 if (chip->irq >= 0) 1378 disable_irq(chip->irq); 1379 if (chip->tx_irq >= 0) 1380 disable_irq(chip->tx_irq); 1381 if (chip->rx_irq >= 0) 1382 disable_irq(chip->rx_irq); 1383 snd_pmac_sound_feature(chip, 0); 1384 } 1385 1386 void snd_pmac_resume(struct snd_pmac *chip) 1387 { 1388 snd_pmac_sound_feature(chip, 1); 1389 if (chip->resume) 1390 chip->resume(chip); 1391 /* enable CD sound input */ 1392 if (chip->macio_base && chip->is_pbook_G3) 1393 out_8(chip->macio_base + 0x37, 3); 1394 else if (chip->is_pbook_3400) 1395 in_8(chip->latch_base + 0x190); 1396 1397 snd_pmac_pcm_set_format(chip); 1398 1399 if (chip->irq >= 0) 1400 enable_irq(chip->irq); 1401 if (chip->tx_irq >= 0) 1402 enable_irq(chip->tx_irq); 1403 if (chip->rx_irq >= 0) 1404 enable_irq(chip->rx_irq); 1405 1406 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0); 1407 } 1408 1409 #endif /* CONFIG_PM */ 1410 1411