xref: /openbmc/linux/sound/ppc/pmac.c (revision 8e9356c6)
1 /*
2  * PMac DBDMA lowlevel functions
3  *
4  * Copyright (c) by Takashi Iwai <tiwai@suse.de>
5  * code based on dmasound.c.
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21 
22 
23 #include <asm/io.h>
24 #include <asm/irq.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <sound/core.h>
34 #include "pmac.h"
35 #include <sound/pcm_params.h>
36 #include <asm/pmac_feature.h>
37 #include <asm/pci-bridge.h>
38 
39 
40 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
41 static int awacs_freqs[8] = {
42 	44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
43 };
44 /* fixed frequency table for tumbler */
45 static int tumbler_freqs[1] = {
46 	44100
47 };
48 
49 
50 /*
51  * we will allocate a single 'emergency' dbdma cmd block to use if the
52  * tx status comes up "DEAD".  This happens on some PowerComputing Pmac
53  * clones, either owing to a bug in dbdma or some interaction between
54  * IDE and sound.  However, this measure would deal with DEAD status if
55  * it appeared elsewhere.
56  */
57 static struct pmac_dbdma emergency_dbdma;
58 static int emergency_in_use;
59 
60 
61 /*
62  * allocate DBDMA command arrays
63  */
64 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
65 {
66 	unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
67 
68 	rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
69 					&rec->dma_base, GFP_KERNEL);
70 	if (rec->space == NULL)
71 		return -ENOMEM;
72 	rec->size = size;
73 	memset(rec->space, 0, rsize);
74 	rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
75 	rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
76 
77 	return 0;
78 }
79 
80 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
81 {
82 	if (rec->space) {
83 		unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
84 
85 		dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
86 	}
87 }
88 
89 
90 /*
91  * pcm stuff
92  */
93 
94 /*
95  * look up frequency table
96  */
97 
98 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
99 {
100 	int i, ok, found;
101 
102 	ok = rec->cur_freqs;
103 	if (rate > chip->freq_table[0])
104 		return 0;
105 	found = 0;
106 	for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
107 		if (! (ok & 1)) continue;
108 		found = i;
109 		if (rate >= chip->freq_table[i])
110 			break;
111 	}
112 	return found;
113 }
114 
115 /*
116  * check whether another stream is active
117  */
118 static inline int another_stream(int stream)
119 {
120 	return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
121 		SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
122 }
123 
124 /*
125  * allocate buffers
126  */
127 static int snd_pmac_pcm_hw_params(struct snd_pcm_substream *subs,
128 				  struct snd_pcm_hw_params *hw_params)
129 {
130 	return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params));
131 }
132 
133 /*
134  * release buffers
135  */
136 static int snd_pmac_pcm_hw_free(struct snd_pcm_substream *subs)
137 {
138 	snd_pcm_lib_free_pages(subs);
139 	return 0;
140 }
141 
142 /*
143  * get a stream of the opposite direction
144  */
145 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
146 {
147 	switch (stream) {
148 	case SNDRV_PCM_STREAM_PLAYBACK:
149 		return &chip->playback;
150 	case SNDRV_PCM_STREAM_CAPTURE:
151 		return &chip->capture;
152 	default:
153 		snd_BUG();
154 		return NULL;
155 	}
156 }
157 
158 /*
159  * wait while run status is on
160  */
161 static inline void
162 snd_pmac_wait_ack(struct pmac_stream *rec)
163 {
164 	int timeout = 50000;
165 	while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
166 		udelay(1);
167 }
168 
169 /*
170  * set the format and rate to the chip.
171  * call the lowlevel function if defined (e.g. for AWACS).
172  */
173 static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
174 {
175 	/* set up frequency and format */
176 	out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
177 	out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
178 	if (chip->set_format)
179 		chip->set_format(chip);
180 }
181 
182 /*
183  * stop the DMA transfer
184  */
185 static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
186 {
187 	out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
188 	snd_pmac_wait_ack(rec);
189 }
190 
191 /*
192  * set the command pointer address
193  */
194 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
195 {
196 	out_le32(&rec->dma->cmdptr, cmd->addr);
197 }
198 
199 /*
200  * start the DMA
201  */
202 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
203 {
204 	out_le32(&rec->dma->control, status | (status << 16));
205 }
206 
207 
208 /*
209  * prepare playback/capture stream
210  */
211 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
212 {
213 	int i;
214 	volatile struct dbdma_cmd __iomem *cp;
215 	struct snd_pcm_runtime *runtime = subs->runtime;
216 	int rate_index;
217 	long offset;
218 	struct pmac_stream *astr;
219 
220 	rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
221 	rec->period_size = snd_pcm_lib_period_bytes(subs);
222 	rec->nperiods = rec->dma_size / rec->period_size;
223 	rec->cur_period = 0;
224 	rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
225 
226 	/* set up constraints */
227 	astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
228 	if (! astr)
229 		return -EINVAL;
230 	astr->cur_freqs = 1 << rate_index;
231 	astr->cur_formats = 1 << runtime->format;
232 	chip->rate_index = rate_index;
233 	chip->format = runtime->format;
234 
235 	/* We really want to execute a DMA stop command, after the AWACS
236 	 * is initialized.
237 	 * For reasons I don't understand, it stops the hissing noise
238 	 * common to many PowerBook G3 systems and random noise otherwise
239 	 * captured on iBook2's about every third time. -ReneR
240 	 */
241 	spin_lock_irq(&chip->reg_lock);
242 	snd_pmac_dma_stop(rec);
243 	st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
244 	snd_pmac_dma_set_command(rec, &chip->extra_dma);
245 	snd_pmac_dma_run(rec, RUN);
246 	spin_unlock_irq(&chip->reg_lock);
247 	mdelay(5);
248 	spin_lock_irq(&chip->reg_lock);
249 	/* continuous DMA memory type doesn't provide the physical address,
250 	 * so we need to resolve the address here...
251 	 */
252 	offset = runtime->dma_addr;
253 	for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
254 		st_le32(&cp->phy_addr, offset);
255 		st_le16(&cp->req_count, rec->period_size);
256 		/*st_le16(&cp->res_count, 0);*/
257 		st_le16(&cp->xfer_status, 0);
258 		offset += rec->period_size;
259 	}
260 	/* make loop */
261 	st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
262 	st_le32(&cp->cmd_dep, rec->cmd.addr);
263 
264 	snd_pmac_dma_stop(rec);
265 	snd_pmac_dma_set_command(rec, &rec->cmd);
266 	spin_unlock_irq(&chip->reg_lock);
267 
268 	return 0;
269 }
270 
271 
272 /*
273  * PCM trigger/stop
274  */
275 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
276 				struct snd_pcm_substream *subs, int cmd)
277 {
278 	volatile struct dbdma_cmd __iomem *cp;
279 	int i, command;
280 
281 	switch (cmd) {
282 	case SNDRV_PCM_TRIGGER_START:
283 	case SNDRV_PCM_TRIGGER_RESUME:
284 		if (rec->running)
285 			return -EBUSY;
286 		command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
287 			   OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
288 		spin_lock(&chip->reg_lock);
289 		snd_pmac_beep_stop(chip);
290 		snd_pmac_pcm_set_format(chip);
291 		for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
292 			out_le16(&cp->command, command);
293 		snd_pmac_dma_set_command(rec, &rec->cmd);
294 		(void)in_le32(&rec->dma->status);
295 		snd_pmac_dma_run(rec, RUN|WAKE);
296 		rec->running = 1;
297 		spin_unlock(&chip->reg_lock);
298 		break;
299 
300 	case SNDRV_PCM_TRIGGER_STOP:
301 	case SNDRV_PCM_TRIGGER_SUSPEND:
302 		spin_lock(&chip->reg_lock);
303 		rec->running = 0;
304 		/*printk(KERN_DEBUG "stopped!!\n");*/
305 		snd_pmac_dma_stop(rec);
306 		for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
307 			out_le16(&cp->command, DBDMA_STOP);
308 		spin_unlock(&chip->reg_lock);
309 		break;
310 
311 	default:
312 		return -EINVAL;
313 	}
314 
315 	return 0;
316 }
317 
318 /*
319  * return the current pointer
320  */
321 inline
322 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
323 					      struct pmac_stream *rec,
324 					      struct snd_pcm_substream *subs)
325 {
326 	int count = 0;
327 
328 #if 1 /* hmm.. how can we get the current dma pointer?? */
329 	int stat;
330 	volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
331 	stat = ld_le16(&cp->xfer_status);
332 	if (stat & (ACTIVE|DEAD)) {
333 		count = in_le16(&cp->res_count);
334 		if (count)
335 			count = rec->period_size - count;
336 	}
337 #endif
338 	count += rec->cur_period * rec->period_size;
339 	/*printk(KERN_DEBUG "pointer=%d\n", count);*/
340 	return bytes_to_frames(subs->runtime, count);
341 }
342 
343 /*
344  * playback
345  */
346 
347 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
348 {
349 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
350 	return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
351 }
352 
353 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
354 				     int cmd)
355 {
356 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
357 	return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
358 }
359 
360 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
361 {
362 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
363 	return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
364 }
365 
366 
367 /*
368  * capture
369  */
370 
371 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
372 {
373 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
374 	return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
375 }
376 
377 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
378 				    int cmd)
379 {
380 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
381 	return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
382 }
383 
384 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
385 {
386 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
387 	return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
388 }
389 
390 
391 /*
392  * Handle DEAD DMA transfers:
393  * if the TX status comes up "DEAD" - reported on some Power Computing machines
394  * we need to re-start the dbdma - but from a different physical start address
395  * and with a different transfer length.  It would get very messy to do this
396  * with the normal dbdma_cmd blocks - we would have to re-write the buffer start
397  * addresses each time.  So, we will keep a single dbdma_cmd block which can be
398  * fiddled with.
399  * When DEAD status is first reported the content of the faulted dbdma block is
400  * copied into the emergency buffer and we note that the buffer is in use.
401  * we then bump the start physical address by the amount that was successfully
402  * output before it died.
403  * On any subsequent DEAD result we just do the bump-ups (we know that we are
404  * already using the emergency dbdma_cmd).
405  * CHECK: this just tries to "do it".  It is possible that we should abandon
406  * xfers when the number of residual bytes gets below a certain value - I can
407  * see that this might cause a loop-forever if a too small transfer causes
408  * DEAD status.  However this is a TODO for now - we'll see what gets reported.
409  * When we get a successful transfer result with the emergency buffer we just
410  * pretend that it completed using the original dmdma_cmd and carry on.  The
411  * 'next_cmd' field will already point back to the original loop of blocks.
412  */
413 static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec,
414 					  volatile struct dbdma_cmd __iomem *cp)
415 {
416 	unsigned short req, res ;
417 	unsigned int phy ;
418 
419 	/* printk(KERN_WARNING "snd-powermac: DMA died - patching it up!\n"); */
420 
421 	/* to clear DEAD status we must first clear RUN
422 	   set it to quiescent to be on the safe side */
423 	(void)in_le32(&rec->dma->status);
424 	out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
425 
426 	if (!emergency_in_use) { /* new problem */
427 		memcpy((void *)emergency_dbdma.cmds, (void *)cp,
428 		       sizeof(struct dbdma_cmd));
429 		emergency_in_use = 1;
430 		st_le16(&cp->xfer_status, 0);
431 		st_le16(&cp->req_count, rec->period_size);
432 		cp = emergency_dbdma.cmds;
433 	}
434 
435 	/* now bump the values to reflect the amount
436 	   we haven't yet shifted */
437 	req = ld_le16(&cp->req_count);
438 	res = ld_le16(&cp->res_count);
439 	phy = ld_le32(&cp->phy_addr);
440 	phy += (req - res);
441 	st_le16(&cp->req_count, res);
442 	st_le16(&cp->res_count, 0);
443 	st_le16(&cp->xfer_status, 0);
444 	st_le32(&cp->phy_addr, phy);
445 
446 	st_le32(&cp->cmd_dep, rec->cmd.addr
447 		+ sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods));
448 
449 	st_le16(&cp->command, OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS);
450 
451 	/* point at our patched up command block */
452 	out_le32(&rec->dma->cmdptr, emergency_dbdma.addr);
453 
454 	/* we must re-start the controller */
455 	(void)in_le32(&rec->dma->status);
456 	/* should complete clearing the DEAD status */
457 	out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
458 }
459 
460 /*
461  * update playback/capture pointer from interrupts
462  */
463 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
464 {
465 	volatile struct dbdma_cmd __iomem *cp;
466 	int c;
467 	int stat;
468 
469 	spin_lock(&chip->reg_lock);
470 	if (rec->running) {
471 		for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
472 
473 			if (emergency_in_use)   /* already using DEAD xfer? */
474 				cp = emergency_dbdma.cmds;
475 			else
476 				cp = &rec->cmd.cmds[rec->cur_period];
477 
478 			stat = ld_le16(&cp->xfer_status);
479 
480 			if (stat & DEAD) {
481 				snd_pmac_pcm_dead_xfer(rec, cp);
482 				break; /* this block is still going */
483 			}
484 
485 			if (emergency_in_use)
486 				emergency_in_use = 0 ; /* done that */
487 
488 			if (! (stat & ACTIVE))
489 				break;
490 
491 			/*printk(KERN_DEBUG "update frag %d\n", rec->cur_period);*/
492 			st_le16(&cp->xfer_status, 0);
493 			st_le16(&cp->req_count, rec->period_size);
494 			/*st_le16(&cp->res_count, 0);*/
495 			rec->cur_period++;
496 			if (rec->cur_period >= rec->nperiods) {
497 				rec->cur_period = 0;
498 			}
499 
500 			spin_unlock(&chip->reg_lock);
501 			snd_pcm_period_elapsed(rec->substream);
502 			spin_lock(&chip->reg_lock);
503 		}
504 	}
505 	spin_unlock(&chip->reg_lock);
506 }
507 
508 
509 /*
510  * hw info
511  */
512 
513 static struct snd_pcm_hardware snd_pmac_playback =
514 {
515 	.info =			(SNDRV_PCM_INFO_INTERLEAVED |
516 				 SNDRV_PCM_INFO_MMAP |
517 				 SNDRV_PCM_INFO_MMAP_VALID |
518 				 SNDRV_PCM_INFO_RESUME),
519 	.formats =		SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
520 	.rates =		SNDRV_PCM_RATE_8000_44100,
521 	.rate_min =		7350,
522 	.rate_max =		44100,
523 	.channels_min =		2,
524 	.channels_max =		2,
525 	.buffer_bytes_max =	131072,
526 	.period_bytes_min =	256,
527 	.period_bytes_max =	16384,
528 	.periods_min =		3,
529 	.periods_max =		PMAC_MAX_FRAGS,
530 };
531 
532 static struct snd_pcm_hardware snd_pmac_capture =
533 {
534 	.info =			(SNDRV_PCM_INFO_INTERLEAVED |
535 				 SNDRV_PCM_INFO_MMAP |
536 				 SNDRV_PCM_INFO_MMAP_VALID |
537 				 SNDRV_PCM_INFO_RESUME),
538 	.formats =		SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
539 	.rates =		SNDRV_PCM_RATE_8000_44100,
540 	.rate_min =		7350,
541 	.rate_max =		44100,
542 	.channels_min =		2,
543 	.channels_max =		2,
544 	.buffer_bytes_max =	131072,
545 	.period_bytes_min =	256,
546 	.period_bytes_max =	16384,
547 	.periods_min =		3,
548 	.periods_max =		PMAC_MAX_FRAGS,
549 };
550 
551 
552 #if 0 // NYI
553 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
554 				 struct snd_pcm_hw_rule *rule)
555 {
556 	struct snd_pmac *chip = rule->private;
557 	struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
558 	int i, freq_table[8], num_freqs;
559 
560 	if (! rec)
561 		return -EINVAL;
562 	num_freqs = 0;
563 	for (i = chip->num_freqs - 1; i >= 0; i--) {
564 		if (rec->cur_freqs & (1 << i))
565 			freq_table[num_freqs++] = chip->freq_table[i];
566 	}
567 
568 	return snd_interval_list(hw_param_interval(params, rule->var),
569 				 num_freqs, freq_table, 0);
570 }
571 
572 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
573 				   struct snd_pcm_hw_rule *rule)
574 {
575 	struct snd_pmac *chip = rule->private;
576 	struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
577 
578 	if (! rec)
579 		return -EINVAL;
580 	return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
581 				   rec->cur_formats);
582 }
583 #endif // NYI
584 
585 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
586 			     struct snd_pcm_substream *subs)
587 {
588 	struct snd_pcm_runtime *runtime = subs->runtime;
589 	int i;
590 
591 	/* look up frequency table and fill bit mask */
592 	runtime->hw.rates = 0;
593 	for (i = 0; i < chip->num_freqs; i++)
594 		if (chip->freqs_ok & (1 << i))
595 			runtime->hw.rates |=
596 				snd_pcm_rate_to_rate_bit(chip->freq_table[i]);
597 
598 	/* check for minimum and maximum rates */
599 	for (i = 0; i < chip->num_freqs; i++) {
600 		if (chip->freqs_ok & (1 << i)) {
601 			runtime->hw.rate_max = chip->freq_table[i];
602 			break;
603 		}
604 	}
605 	for (i = chip->num_freqs - 1; i >= 0; i--) {
606 		if (chip->freqs_ok & (1 << i)) {
607 			runtime->hw.rate_min = chip->freq_table[i];
608 			break;
609 		}
610 	}
611 	runtime->hw.formats = chip->formats_ok;
612 	if (chip->can_capture) {
613 		if (! chip->can_duplex)
614 			runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
615 		runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
616 	}
617 	runtime->private_data = rec;
618 	rec->substream = subs;
619 
620 #if 0 /* FIXME: still under development.. */
621 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
622 			    snd_pmac_hw_rule_rate, chip, rec->stream, -1);
623 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
624 			    snd_pmac_hw_rule_format, chip, rec->stream, -1);
625 #endif
626 
627 	runtime->hw.periods_max = rec->cmd.size - 1;
628 
629 	/* constraints to fix choppy sound */
630 	snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
631 	return 0;
632 }
633 
634 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
635 			      struct snd_pcm_substream *subs)
636 {
637 	struct pmac_stream *astr;
638 
639 	snd_pmac_dma_stop(rec);
640 
641 	astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
642 	if (! astr)
643 		return -EINVAL;
644 
645 	/* reset constraints */
646 	astr->cur_freqs = chip->freqs_ok;
647 	astr->cur_formats = chip->formats_ok;
648 
649 	return 0;
650 }
651 
652 static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
653 {
654 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
655 
656 	subs->runtime->hw = snd_pmac_playback;
657 	return snd_pmac_pcm_open(chip, &chip->playback, subs);
658 }
659 
660 static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
661 {
662 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
663 
664 	subs->runtime->hw = snd_pmac_capture;
665 	return snd_pmac_pcm_open(chip, &chip->capture, subs);
666 }
667 
668 static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
669 {
670 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
671 
672 	return snd_pmac_pcm_close(chip, &chip->playback, subs);
673 }
674 
675 static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
676 {
677 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
678 
679 	return snd_pmac_pcm_close(chip, &chip->capture, subs);
680 }
681 
682 /*
683  */
684 
685 static struct snd_pcm_ops snd_pmac_playback_ops = {
686 	.open =		snd_pmac_playback_open,
687 	.close =	snd_pmac_playback_close,
688 	.ioctl =	snd_pcm_lib_ioctl,
689 	.hw_params =	snd_pmac_pcm_hw_params,
690 	.hw_free =	snd_pmac_pcm_hw_free,
691 	.prepare =	snd_pmac_playback_prepare,
692 	.trigger =	snd_pmac_playback_trigger,
693 	.pointer =	snd_pmac_playback_pointer,
694 };
695 
696 static struct snd_pcm_ops snd_pmac_capture_ops = {
697 	.open =		snd_pmac_capture_open,
698 	.close =	snd_pmac_capture_close,
699 	.ioctl =	snd_pcm_lib_ioctl,
700 	.hw_params =	snd_pmac_pcm_hw_params,
701 	.hw_free =	snd_pmac_pcm_hw_free,
702 	.prepare =	snd_pmac_capture_prepare,
703 	.trigger =	snd_pmac_capture_trigger,
704 	.pointer =	snd_pmac_capture_pointer,
705 };
706 
707 int snd_pmac_pcm_new(struct snd_pmac *chip)
708 {
709 	struct snd_pcm *pcm;
710 	int err;
711 	int num_captures = 1;
712 
713 	if (! chip->can_capture)
714 		num_captures = 0;
715 	err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
716 	if (err < 0)
717 		return err;
718 
719 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
720 	if (chip->can_capture)
721 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
722 
723 	pcm->private_data = chip;
724 	pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
725 	strcpy(pcm->name, chip->card->shortname);
726 	chip->pcm = pcm;
727 
728 	chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
729 	if (chip->can_byte_swap)
730 		chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
731 
732 	chip->playback.cur_formats = chip->formats_ok;
733 	chip->capture.cur_formats = chip->formats_ok;
734 	chip->playback.cur_freqs = chip->freqs_ok;
735 	chip->capture.cur_freqs = chip->freqs_ok;
736 
737 	/* preallocate 64k buffer */
738 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
739 					      &chip->pdev->dev,
740 					      64 * 1024, 64 * 1024);
741 
742 	return 0;
743 }
744 
745 
746 static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
747 {
748 	out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
749 	snd_pmac_wait_ack(&chip->playback);
750 	out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
751 	snd_pmac_wait_ack(&chip->capture);
752 }
753 
754 
755 /*
756  * handling beep
757  */
758 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
759 {
760 	struct pmac_stream *rec = &chip->playback;
761 
762 	snd_pmac_dma_stop(rec);
763 	st_le16(&chip->extra_dma.cmds->req_count, bytes);
764 	st_le16(&chip->extra_dma.cmds->xfer_status, 0);
765 	st_le32(&chip->extra_dma.cmds->cmd_dep, chip->extra_dma.addr);
766 	st_le32(&chip->extra_dma.cmds->phy_addr, addr);
767 	st_le16(&chip->extra_dma.cmds->command, OUTPUT_MORE + BR_ALWAYS);
768 	out_le32(&chip->awacs->control,
769 		 (in_le32(&chip->awacs->control) & ~0x1f00)
770 		 | (speed << 8));
771 	out_le32(&chip->awacs->byteswap, 0);
772 	snd_pmac_dma_set_command(rec, &chip->extra_dma);
773 	snd_pmac_dma_run(rec, RUN);
774 }
775 
776 void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
777 {
778 	snd_pmac_dma_stop(&chip->playback);
779 	st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
780 	snd_pmac_pcm_set_format(chip); /* reset format */
781 }
782 
783 
784 /*
785  * interrupt handlers
786  */
787 static irqreturn_t
788 snd_pmac_tx_intr(int irq, void *devid)
789 {
790 	struct snd_pmac *chip = devid;
791 	snd_pmac_pcm_update(chip, &chip->playback);
792 	return IRQ_HANDLED;
793 }
794 
795 
796 static irqreturn_t
797 snd_pmac_rx_intr(int irq, void *devid)
798 {
799 	struct snd_pmac *chip = devid;
800 	snd_pmac_pcm_update(chip, &chip->capture);
801 	return IRQ_HANDLED;
802 }
803 
804 
805 static irqreturn_t
806 snd_pmac_ctrl_intr(int irq, void *devid)
807 {
808 	struct snd_pmac *chip = devid;
809 	int ctrl = in_le32(&chip->awacs->control);
810 
811 	/*printk(KERN_DEBUG "pmac: control interrupt.. 0x%x\n", ctrl);*/
812 	if (ctrl & MASK_PORTCHG) {
813 		/* do something when headphone is plugged/unplugged? */
814 		if (chip->update_automute)
815 			chip->update_automute(chip, 1);
816 	}
817 	if (ctrl & MASK_CNTLERR) {
818 		int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
819 		if (err && chip->model <= PMAC_SCREAMER)
820 			snd_printk(KERN_DEBUG "error %x\n", err);
821 	}
822 	/* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
823 	out_le32(&chip->awacs->control, ctrl);
824 	return IRQ_HANDLED;
825 }
826 
827 
828 /*
829  * a wrapper to feature call for compatibility
830  */
831 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
832 {
833 	if (ppc_md.feature_call)
834 		ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
835 }
836 
837 /*
838  * release resources
839  */
840 
841 static int snd_pmac_free(struct snd_pmac *chip)
842 {
843 	/* stop sounds */
844 	if (chip->initialized) {
845 		snd_pmac_dbdma_reset(chip);
846 		/* disable interrupts from awacs interface */
847 		out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
848 	}
849 
850 	if (chip->node)
851 		snd_pmac_sound_feature(chip, 0);
852 
853 	/* clean up mixer if any */
854 	if (chip->mixer_free)
855 		chip->mixer_free(chip);
856 
857 	snd_pmac_detach_beep(chip);
858 
859 	/* release resources */
860 	if (chip->irq >= 0)
861 		free_irq(chip->irq, (void*)chip);
862 	if (chip->tx_irq >= 0)
863 		free_irq(chip->tx_irq, (void*)chip);
864 	if (chip->rx_irq >= 0)
865 		free_irq(chip->rx_irq, (void*)chip);
866 	snd_pmac_dbdma_free(chip, &chip->playback.cmd);
867 	snd_pmac_dbdma_free(chip, &chip->capture.cmd);
868 	snd_pmac_dbdma_free(chip, &chip->extra_dma);
869 	snd_pmac_dbdma_free(chip, &emergency_dbdma);
870 	if (chip->macio_base)
871 		iounmap(chip->macio_base);
872 	if (chip->latch_base)
873 		iounmap(chip->latch_base);
874 	if (chip->awacs)
875 		iounmap(chip->awacs);
876 	if (chip->playback.dma)
877 		iounmap(chip->playback.dma);
878 	if (chip->capture.dma)
879 		iounmap(chip->capture.dma);
880 
881 	if (chip->node) {
882 		int i;
883 		for (i = 0; i < 3; i++) {
884 			if (chip->requested & (1 << i))
885 				release_mem_region(chip->rsrc[i].start,
886 						   resource_size(&chip->rsrc[i]));
887 		}
888 	}
889 
890 	if (chip->pdev)
891 		pci_dev_put(chip->pdev);
892 	of_node_put(chip->node);
893 	kfree(chip);
894 	return 0;
895 }
896 
897 
898 /*
899  * free the device
900  */
901 static int snd_pmac_dev_free(struct snd_device *device)
902 {
903 	struct snd_pmac *chip = device->device_data;
904 	return snd_pmac_free(chip);
905 }
906 
907 
908 /*
909  * check the machine support byteswap (little-endian)
910  */
911 
912 static void detect_byte_swap(struct snd_pmac *chip)
913 {
914 	struct device_node *mio;
915 
916 	/* if seems that Keylargo can't byte-swap  */
917 	for (mio = chip->node->parent; mio; mio = mio->parent) {
918 		if (strcmp(mio->name, "mac-io") == 0) {
919 			if (of_device_is_compatible(mio, "Keylargo"))
920 				chip->can_byte_swap = 0;
921 			break;
922 		}
923 	}
924 
925 	/* it seems the Pismo & iBook can't byte-swap in hardware. */
926 	if (of_machine_is_compatible("PowerBook3,1") ||
927 	    of_machine_is_compatible("PowerBook2,1"))
928 		chip->can_byte_swap = 0 ;
929 
930 	if (of_machine_is_compatible("PowerBook2,1"))
931 		chip->can_duplex = 0;
932 }
933 
934 
935 /*
936  * detect a sound chip
937  */
938 static int snd_pmac_detect(struct snd_pmac *chip)
939 {
940 	struct device_node *sound;
941 	struct device_node *dn;
942 	const unsigned int *prop;
943 	unsigned int l;
944 	struct macio_chip* macio;
945 
946 	if (!machine_is(powermac))
947 		return -ENODEV;
948 
949 	chip->subframe = 0;
950 	chip->revision = 0;
951 	chip->freqs_ok = 0xff; /* all ok */
952 	chip->model = PMAC_AWACS;
953 	chip->can_byte_swap = 1;
954 	chip->can_duplex = 1;
955 	chip->can_capture = 1;
956 	chip->num_freqs = ARRAY_SIZE(awacs_freqs);
957 	chip->freq_table = awacs_freqs;
958 	chip->pdev = NULL;
959 
960 	chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
961 
962 	/* check machine type */
963 	if (of_machine_is_compatible("AAPL,3400/2400")
964 	    || of_machine_is_compatible("AAPL,3500"))
965 		chip->is_pbook_3400 = 1;
966 	else if (of_machine_is_compatible("PowerBook1,1")
967 		 || of_machine_is_compatible("AAPL,PowerBook1998"))
968 		chip->is_pbook_G3 = 1;
969 	chip->node = of_find_node_by_name(NULL, "awacs");
970 	sound = of_node_get(chip->node);
971 
972 	/*
973 	 * powermac G3 models have a node called "davbus"
974 	 * with a child called "sound".
975 	 */
976 	if (!chip->node)
977 		chip->node = of_find_node_by_name(NULL, "davbus");
978 	/*
979 	 * if we didn't find a davbus device, try 'i2s-a' since
980 	 * this seems to be what iBooks have
981 	 */
982 	if (! chip->node) {
983 		chip->node = of_find_node_by_name(NULL, "i2s-a");
984 		if (chip->node && chip->node->parent &&
985 		    chip->node->parent->parent) {
986 			if (of_device_is_compatible(chip->node->parent->parent,
987 						 "K2-Keylargo"))
988 				chip->is_k2 = 1;
989 		}
990 	}
991 	if (! chip->node)
992 		return -ENODEV;
993 
994 	if (!sound) {
995 		sound = of_find_node_by_name(NULL, "sound");
996 		while (sound && sound->parent != chip->node)
997 			sound = of_find_node_by_name(sound, "sound");
998 	}
999 	if (! sound) {
1000 		of_node_put(chip->node);
1001 		chip->node = NULL;
1002 		return -ENODEV;
1003 	}
1004 	prop = of_get_property(sound, "sub-frame", NULL);
1005 	if (prop && *prop < 16)
1006 		chip->subframe = *prop;
1007 	prop = of_get_property(sound, "layout-id", NULL);
1008 	if (prop) {
1009 		/* partly deprecate snd-powermac, for those machines
1010 		 * that have a layout-id property for now */
1011 		printk(KERN_INFO "snd-powermac no longer handles any "
1012 				 "machines with a layout-id property "
1013 				 "in the device-tree, use snd-aoa.\n");
1014 		of_node_put(sound);
1015 		of_node_put(chip->node);
1016 		chip->node = NULL;
1017 		return -ENODEV;
1018 	}
1019 	/* This should be verified on older screamers */
1020 	if (of_device_is_compatible(sound, "screamer")) {
1021 		chip->model = PMAC_SCREAMER;
1022 		// chip->can_byte_swap = 0; /* FIXME: check this */
1023 	}
1024 	if (of_device_is_compatible(sound, "burgundy")) {
1025 		chip->model = PMAC_BURGUNDY;
1026 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1027 	}
1028 	if (of_device_is_compatible(sound, "daca")) {
1029 		chip->model = PMAC_DACA;
1030 		chip->can_capture = 0;  /* no capture */
1031 		chip->can_duplex = 0;
1032 		// chip->can_byte_swap = 0; /* FIXME: check this */
1033 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1034 	}
1035 	if (of_device_is_compatible(sound, "tumbler")) {
1036 		chip->model = PMAC_TUMBLER;
1037 		chip->can_capture = of_machine_is_compatible("PowerMac4,2")
1038 				|| of_machine_is_compatible("PowerBook3,2")
1039 				|| of_machine_is_compatible("PowerBook3,3")
1040 				|| of_machine_is_compatible("PowerBook4,1")
1041 				|| of_machine_is_compatible("PowerBook4,2")
1042 				|| of_machine_is_compatible("PowerBook4,3");
1043 		chip->can_duplex = 0;
1044 		// chip->can_byte_swap = 0; /* FIXME: check this */
1045 		chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1046 		chip->freq_table = tumbler_freqs;
1047 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1048 	}
1049 	if (of_device_is_compatible(sound, "snapper")) {
1050 		chip->model = PMAC_SNAPPER;
1051 		// chip->can_byte_swap = 0; /* FIXME: check this */
1052 		chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1053 		chip->freq_table = tumbler_freqs;
1054 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1055 	}
1056 	prop = of_get_property(sound, "device-id", NULL);
1057 	if (prop)
1058 		chip->device_id = *prop;
1059 	dn = of_find_node_by_name(NULL, "perch");
1060 	chip->has_iic = (dn != NULL);
1061 	of_node_put(dn);
1062 
1063 	/* We need the PCI device for DMA allocations, let's use a crude method
1064 	 * for now ...
1065 	 */
1066 	macio = macio_find(chip->node, macio_unknown);
1067 	if (macio == NULL)
1068 		printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
1069 	else {
1070 		struct pci_dev *pdev = NULL;
1071 
1072 		for_each_pci_dev(pdev) {
1073 			struct device_node *np = pci_device_to_OF_node(pdev);
1074 			if (np && np == macio->of_node) {
1075 				chip->pdev = pdev;
1076 				break;
1077 			}
1078 		}
1079 	}
1080 	if (chip->pdev == NULL)
1081 		printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
1082 		       " device !\n");
1083 
1084 	detect_byte_swap(chip);
1085 
1086 	/* look for a property saying what sample rates
1087 	   are available */
1088 	prop = of_get_property(sound, "sample-rates", &l);
1089 	if (! prop)
1090 		prop = of_get_property(sound, "output-frame-rates", &l);
1091 	if (prop) {
1092 		int i;
1093 		chip->freqs_ok = 0;
1094 		for (l /= sizeof(int); l > 0; --l) {
1095 			unsigned int r = *prop++;
1096 			/* Apple 'Fixed' format */
1097 			if (r >= 0x10000)
1098 				r >>= 16;
1099 			for (i = 0; i < chip->num_freqs; ++i) {
1100 				if (r == chip->freq_table[i]) {
1101 					chip->freqs_ok |= (1 << i);
1102 					break;
1103 				}
1104 			}
1105 		}
1106 	} else {
1107 		/* assume only 44.1khz */
1108 		chip->freqs_ok = 1;
1109 	}
1110 
1111 	of_node_put(sound);
1112 	return 0;
1113 }
1114 
1115 #ifdef PMAC_SUPPORT_AUTOMUTE
1116 /*
1117  * auto-mute
1118  */
1119 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
1120 			      struct snd_ctl_elem_value *ucontrol)
1121 {
1122 	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1123 	ucontrol->value.integer.value[0] = chip->auto_mute;
1124 	return 0;
1125 }
1126 
1127 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
1128 			      struct snd_ctl_elem_value *ucontrol)
1129 {
1130 	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1131 	if (ucontrol->value.integer.value[0] != chip->auto_mute) {
1132 		chip->auto_mute = !!ucontrol->value.integer.value[0];
1133 		if (chip->update_automute)
1134 			chip->update_automute(chip, 1);
1135 		return 1;
1136 	}
1137 	return 0;
1138 }
1139 
1140 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
1141 			      struct snd_ctl_elem_value *ucontrol)
1142 {
1143 	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1144 	if (chip->detect_headphone)
1145 		ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
1146 	else
1147 		ucontrol->value.integer.value[0] = 0;
1148 	return 0;
1149 }
1150 
1151 static struct snd_kcontrol_new auto_mute_controls[] = {
1152 	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1153 	  .name = "Auto Mute Switch",
1154 	  .info = snd_pmac_boolean_mono_info,
1155 	  .get = pmac_auto_mute_get,
1156 	  .put = pmac_auto_mute_put,
1157 	},
1158 	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1159 	  .name = "Headphone Detection",
1160 	  .access = SNDRV_CTL_ELEM_ACCESS_READ,
1161 	  .info = snd_pmac_boolean_mono_info,
1162 	  .get = pmac_hp_detect_get,
1163 	},
1164 };
1165 
1166 int snd_pmac_add_automute(struct snd_pmac *chip)
1167 {
1168 	int err;
1169 	chip->auto_mute = 1;
1170 	err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
1171 	if (err < 0) {
1172 		printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
1173 		return err;
1174 	}
1175 	chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
1176 	return snd_ctl_add(chip->card, chip->hp_detect_ctl);
1177 }
1178 #endif /* PMAC_SUPPORT_AUTOMUTE */
1179 
1180 /*
1181  * create and detect a pmac chip record
1182  */
1183 int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
1184 {
1185 	struct snd_pmac *chip;
1186 	struct device_node *np;
1187 	int i, err;
1188 	unsigned int irq;
1189 	unsigned long ctrl_addr, txdma_addr, rxdma_addr;
1190 	static struct snd_device_ops ops = {
1191 		.dev_free =	snd_pmac_dev_free,
1192 	};
1193 
1194 	*chip_return = NULL;
1195 
1196 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1197 	if (chip == NULL)
1198 		return -ENOMEM;
1199 	chip->card = card;
1200 
1201 	spin_lock_init(&chip->reg_lock);
1202 	chip->irq = chip->tx_irq = chip->rx_irq = -1;
1203 
1204 	chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
1205 	chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
1206 
1207 	if ((err = snd_pmac_detect(chip)) < 0)
1208 		goto __error;
1209 
1210 	if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1211 	    snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1212 	    snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 ||
1213 	    snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) {
1214 		err = -ENOMEM;
1215 		goto __error;
1216 	}
1217 
1218 	np = chip->node;
1219 	chip->requested = 0;
1220 	if (chip->is_k2) {
1221 		static char *rnames[] = {
1222 			"Sound Control", "Sound DMA" };
1223 		for (i = 0; i < 2; i ++) {
1224 			if (of_address_to_resource(np->parent, i,
1225 						   &chip->rsrc[i])) {
1226 				printk(KERN_ERR "snd: can't translate rsrc "
1227 				       " %d (%s)\n", i, rnames[i]);
1228 				err = -ENODEV;
1229 				goto __error;
1230 			}
1231 			if (request_mem_region(chip->rsrc[i].start,
1232 					       resource_size(&chip->rsrc[i]),
1233 					       rnames[i]) == NULL) {
1234 				printk(KERN_ERR "snd: can't request rsrc "
1235 				       " %d (%s: %pR)\n",
1236 				       i, rnames[i], &chip->rsrc[i]);
1237 				err = -ENODEV;
1238 				goto __error;
1239 			}
1240 			chip->requested |= (1 << i);
1241 		}
1242 		ctrl_addr = chip->rsrc[0].start;
1243 		txdma_addr = chip->rsrc[1].start;
1244 		rxdma_addr = txdma_addr + 0x100;
1245 	} else {
1246 		static char *rnames[] = {
1247 			"Sound Control", "Sound Tx DMA", "Sound Rx DMA" };
1248 		for (i = 0; i < 3; i ++) {
1249 			if (of_address_to_resource(np, i,
1250 						   &chip->rsrc[i])) {
1251 				printk(KERN_ERR "snd: can't translate rsrc "
1252 				       " %d (%s)\n", i, rnames[i]);
1253 				err = -ENODEV;
1254 				goto __error;
1255 			}
1256 			if (request_mem_region(chip->rsrc[i].start,
1257 					       resource_size(&chip->rsrc[i]),
1258 					       rnames[i]) == NULL) {
1259 				printk(KERN_ERR "snd: can't request rsrc "
1260 				       " %d (%s: %pR)\n",
1261 				       i, rnames[i], &chip->rsrc[i]);
1262 				err = -ENODEV;
1263 				goto __error;
1264 			}
1265 			chip->requested |= (1 << i);
1266 		}
1267 		ctrl_addr = chip->rsrc[0].start;
1268 		txdma_addr = chip->rsrc[1].start;
1269 		rxdma_addr = chip->rsrc[2].start;
1270 	}
1271 
1272 	chip->awacs = ioremap(ctrl_addr, 0x1000);
1273 	chip->playback.dma = ioremap(txdma_addr, 0x100);
1274 	chip->capture.dma = ioremap(rxdma_addr, 0x100);
1275 	if (chip->model <= PMAC_BURGUNDY) {
1276 		irq = irq_of_parse_and_map(np, 0);
1277 		if (request_irq(irq, snd_pmac_ctrl_intr, 0,
1278 				"PMac", (void*)chip)) {
1279 			snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n",
1280 				   irq);
1281 			err = -EBUSY;
1282 			goto __error;
1283 		}
1284 		chip->irq = irq;
1285 	}
1286 	irq = irq_of_parse_and_map(np, 1);
1287 	if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){
1288 		snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1289 		err = -EBUSY;
1290 		goto __error;
1291 	}
1292 	chip->tx_irq = irq;
1293 	irq = irq_of_parse_and_map(np, 2);
1294 	if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) {
1295 		snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1296 		err = -EBUSY;
1297 		goto __error;
1298 	}
1299 	chip->rx_irq = irq;
1300 
1301 	snd_pmac_sound_feature(chip, 1);
1302 
1303 	/* reset & enable interrupts */
1304 	if (chip->model <= PMAC_BURGUNDY)
1305 		out_le32(&chip->awacs->control, chip->control_mask);
1306 
1307 	/* Powerbooks have odd ways of enabling inputs such as
1308 	   an expansion-bay CD or sound from an internal modem
1309 	   or a PC-card modem. */
1310 	if (chip->is_pbook_3400) {
1311 		/* Enable CD and PC-card sound inputs. */
1312 		/* This is done by reading from address
1313 		 * f301a000, + 0x10 to enable the expansion-bay
1314 		 * CD sound input, + 0x80 to enable the PC-card
1315 		 * sound input.  The 0x100 enables the SCSI bus
1316 		 * terminator power.
1317 		 */
1318 		chip->latch_base = ioremap (0xf301a000, 0x1000);
1319 		in_8(chip->latch_base + 0x190);
1320 	} else if (chip->is_pbook_G3) {
1321 		struct device_node* mio;
1322 		for (mio = chip->node->parent; mio; mio = mio->parent) {
1323 			if (strcmp(mio->name, "mac-io") == 0) {
1324 				struct resource r;
1325 				if (of_address_to_resource(mio, 0, &r) == 0)
1326 					chip->macio_base =
1327 						ioremap(r.start, 0x40);
1328 				break;
1329 			}
1330 		}
1331 		/* Enable CD sound input. */
1332 		/* The relevant bits for writing to this byte are 0x8f.
1333 		 * I haven't found out what the 0x80 bit does.
1334 		 * For the 0xf bits, writing 3 or 7 enables the CD
1335 		 * input, any other value disables it.  Values
1336 		 * 1, 3, 5, 7 enable the microphone.  Values 0, 2,
1337 		 * 4, 6, 8 - f enable the input from the modem.
1338 		 */
1339 		if (chip->macio_base)
1340 			out_8(chip->macio_base + 0x37, 3);
1341 	}
1342 
1343 	/* Reset dbdma channels */
1344 	snd_pmac_dbdma_reset(chip);
1345 
1346 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
1347 		goto __error;
1348 
1349 	*chip_return = chip;
1350 	return 0;
1351 
1352  __error:
1353 	snd_pmac_free(chip);
1354 	return err;
1355 }
1356 
1357 
1358 /*
1359  * sleep notify for powerbook
1360  */
1361 
1362 #ifdef CONFIG_PM
1363 
1364 /*
1365  * Save state when going to sleep, restore it afterwards.
1366  */
1367 
1368 void snd_pmac_suspend(struct snd_pmac *chip)
1369 {
1370 	unsigned long flags;
1371 
1372 	snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
1373 	if (chip->suspend)
1374 		chip->suspend(chip);
1375 	snd_pcm_suspend_all(chip->pcm);
1376 	spin_lock_irqsave(&chip->reg_lock, flags);
1377 	snd_pmac_beep_stop(chip);
1378 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1379 	if (chip->irq >= 0)
1380 		disable_irq(chip->irq);
1381 	if (chip->tx_irq >= 0)
1382 		disable_irq(chip->tx_irq);
1383 	if (chip->rx_irq >= 0)
1384 		disable_irq(chip->rx_irq);
1385 	snd_pmac_sound_feature(chip, 0);
1386 }
1387 
1388 void snd_pmac_resume(struct snd_pmac *chip)
1389 {
1390 	snd_pmac_sound_feature(chip, 1);
1391 	if (chip->resume)
1392 		chip->resume(chip);
1393 	/* enable CD sound input */
1394 	if (chip->macio_base && chip->is_pbook_G3)
1395 		out_8(chip->macio_base + 0x37, 3);
1396 	else if (chip->is_pbook_3400)
1397 		in_8(chip->latch_base + 0x190);
1398 
1399 	snd_pmac_pcm_set_format(chip);
1400 
1401 	if (chip->irq >= 0)
1402 		enable_irq(chip->irq);
1403 	if (chip->tx_irq >= 0)
1404 		enable_irq(chip->tx_irq);
1405 	if (chip->rx_irq >= 0)
1406 		enable_irq(chip->rx_irq);
1407 
1408 	snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
1409 }
1410 
1411 #endif /* CONFIG_PM */
1412 
1413