xref: /openbmc/linux/sound/ppc/pmac.c (revision 83c51056)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PMac DBDMA lowlevel functions
4  *
5  * Copyright (c) by Takashi Iwai <tiwai@suse.de>
6  * code based on dmasound.c.
7  */
8 
9 
10 #include <linux/io.h>
11 #include <asm/irq.h>
12 #include <linux/init.h>
13 #include <linux/delay.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/pci.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <sound/core.h>
21 #include "pmac.h"
22 #include <sound/pcm_params.h>
23 #include <asm/pmac_feature.h>
24 
25 
26 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
27 static const int awacs_freqs[8] = {
28 	44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
29 };
30 /* fixed frequency table for tumbler */
31 static const int tumbler_freqs[1] = {
32 	44100
33 };
34 
35 
36 /*
37  * we will allocate a single 'emergency' dbdma cmd block to use if the
38  * tx status comes up "DEAD".  This happens on some PowerComputing Pmac
39  * clones, either owing to a bug in dbdma or some interaction between
40  * IDE and sound.  However, this measure would deal with DEAD status if
41  * it appeared elsewhere.
42  */
43 static struct pmac_dbdma emergency_dbdma;
44 static int emergency_in_use;
45 
46 
47 /*
48  * allocate DBDMA command arrays
49  */
50 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
51 {
52 	unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
53 
54 	rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
55 					&rec->dma_base, GFP_KERNEL);
56 	if (rec->space == NULL)
57 		return -ENOMEM;
58 	rec->size = size;
59 	memset(rec->space, 0, rsize);
60 	rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
61 	rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
62 
63 	return 0;
64 }
65 
66 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
67 {
68 	if (rec->space) {
69 		unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
70 
71 		dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
72 	}
73 }
74 
75 
76 /*
77  * pcm stuff
78  */
79 
80 /*
81  * look up frequency table
82  */
83 
84 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
85 {
86 	int i, ok, found;
87 
88 	ok = rec->cur_freqs;
89 	if (rate > chip->freq_table[0])
90 		return 0;
91 	found = 0;
92 	for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
93 		if (! (ok & 1)) continue;
94 		found = i;
95 		if (rate >= chip->freq_table[i])
96 			break;
97 	}
98 	return found;
99 }
100 
101 /*
102  * check whether another stream is active
103  */
104 static inline int another_stream(int stream)
105 {
106 	return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
107 		SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
108 }
109 
110 /*
111  * get a stream of the opposite direction
112  */
113 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
114 {
115 	switch (stream) {
116 	case SNDRV_PCM_STREAM_PLAYBACK:
117 		return &chip->playback;
118 	case SNDRV_PCM_STREAM_CAPTURE:
119 		return &chip->capture;
120 	default:
121 		snd_BUG();
122 		return NULL;
123 	}
124 }
125 
126 /*
127  * wait while run status is on
128  */
129 static inline void
130 snd_pmac_wait_ack(struct pmac_stream *rec)
131 {
132 	int timeout = 50000;
133 	while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
134 		udelay(1);
135 }
136 
137 /*
138  * set the format and rate to the chip.
139  * call the lowlevel function if defined (e.g. for AWACS).
140  */
141 static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
142 {
143 	/* set up frequency and format */
144 	out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
145 	out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
146 	if (chip->set_format)
147 		chip->set_format(chip);
148 }
149 
150 /*
151  * stop the DMA transfer
152  */
153 static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
154 {
155 	out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
156 	snd_pmac_wait_ack(rec);
157 }
158 
159 /*
160  * set the command pointer address
161  */
162 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
163 {
164 	out_le32(&rec->dma->cmdptr, cmd->addr);
165 }
166 
167 /*
168  * start the DMA
169  */
170 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
171 {
172 	out_le32(&rec->dma->control, status | (status << 16));
173 }
174 
175 
176 /*
177  * prepare playback/capture stream
178  */
179 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
180 {
181 	int i;
182 	volatile struct dbdma_cmd __iomem *cp;
183 	struct snd_pcm_runtime *runtime = subs->runtime;
184 	int rate_index;
185 	long offset;
186 	struct pmac_stream *astr;
187 
188 	rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
189 	rec->period_size = snd_pcm_lib_period_bytes(subs);
190 	rec->nperiods = rec->dma_size / rec->period_size;
191 	rec->cur_period = 0;
192 	rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
193 
194 	/* set up constraints */
195 	astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
196 	if (! astr)
197 		return -EINVAL;
198 	astr->cur_freqs = 1 << rate_index;
199 	astr->cur_formats = 1 << runtime->format;
200 	chip->rate_index = rate_index;
201 	chip->format = runtime->format;
202 
203 	/* We really want to execute a DMA stop command, after the AWACS
204 	 * is initialized.
205 	 * For reasons I don't understand, it stops the hissing noise
206 	 * common to many PowerBook G3 systems and random noise otherwise
207 	 * captured on iBook2's about every third time. -ReneR
208 	 */
209 	spin_lock_irq(&chip->reg_lock);
210 	snd_pmac_dma_stop(rec);
211 	chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
212 	snd_pmac_dma_set_command(rec, &chip->extra_dma);
213 	snd_pmac_dma_run(rec, RUN);
214 	spin_unlock_irq(&chip->reg_lock);
215 	mdelay(5);
216 	spin_lock_irq(&chip->reg_lock);
217 	/* continuous DMA memory type doesn't provide the physical address,
218 	 * so we need to resolve the address here...
219 	 */
220 	offset = runtime->dma_addr;
221 	for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
222 		cp->phy_addr = cpu_to_le32(offset);
223 		cp->req_count = cpu_to_le16(rec->period_size);
224 		/*cp->res_count = cpu_to_le16(0);*/
225 		cp->xfer_status = cpu_to_le16(0);
226 		offset += rec->period_size;
227 	}
228 	/* make loop */
229 	cp->command = cpu_to_le16(DBDMA_NOP | BR_ALWAYS);
230 	cp->cmd_dep = cpu_to_le32(rec->cmd.addr);
231 
232 	snd_pmac_dma_stop(rec);
233 	snd_pmac_dma_set_command(rec, &rec->cmd);
234 	spin_unlock_irq(&chip->reg_lock);
235 
236 	return 0;
237 }
238 
239 
240 /*
241  * PCM trigger/stop
242  */
243 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
244 				struct snd_pcm_substream *subs, int cmd)
245 {
246 	volatile struct dbdma_cmd __iomem *cp;
247 	int i, command;
248 
249 	switch (cmd) {
250 	case SNDRV_PCM_TRIGGER_START:
251 	case SNDRV_PCM_TRIGGER_RESUME:
252 		if (rec->running)
253 			return -EBUSY;
254 		command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
255 			   OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
256 		spin_lock(&chip->reg_lock);
257 		snd_pmac_beep_stop(chip);
258 		snd_pmac_pcm_set_format(chip);
259 		for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
260 			out_le16(&cp->command, command);
261 		snd_pmac_dma_set_command(rec, &rec->cmd);
262 		(void)in_le32(&rec->dma->status);
263 		snd_pmac_dma_run(rec, RUN|WAKE);
264 		rec->running = 1;
265 		spin_unlock(&chip->reg_lock);
266 		break;
267 
268 	case SNDRV_PCM_TRIGGER_STOP:
269 	case SNDRV_PCM_TRIGGER_SUSPEND:
270 		spin_lock(&chip->reg_lock);
271 		rec->running = 0;
272 		/*printk(KERN_DEBUG "stopped!!\n");*/
273 		snd_pmac_dma_stop(rec);
274 		for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
275 			out_le16(&cp->command, DBDMA_STOP);
276 		spin_unlock(&chip->reg_lock);
277 		break;
278 
279 	default:
280 		return -EINVAL;
281 	}
282 
283 	return 0;
284 }
285 
286 /*
287  * return the current pointer
288  */
289 inline
290 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
291 					      struct pmac_stream *rec,
292 					      struct snd_pcm_substream *subs)
293 {
294 	int count = 0;
295 
296 #if 1 /* hmm.. how can we get the current dma pointer?? */
297 	int stat;
298 	volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
299 	stat = le16_to_cpu(cp->xfer_status);
300 	if (stat & (ACTIVE|DEAD)) {
301 		count = in_le16(&cp->res_count);
302 		if (count)
303 			count = rec->period_size - count;
304 	}
305 #endif
306 	count += rec->cur_period * rec->period_size;
307 	/*printk(KERN_DEBUG "pointer=%d\n", count);*/
308 	return bytes_to_frames(subs->runtime, count);
309 }
310 
311 /*
312  * playback
313  */
314 
315 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
316 {
317 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
318 	return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
319 }
320 
321 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
322 				     int cmd)
323 {
324 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
325 	return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
326 }
327 
328 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
329 {
330 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
331 	return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
332 }
333 
334 
335 /*
336  * capture
337  */
338 
339 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
340 {
341 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
342 	return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
343 }
344 
345 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
346 				    int cmd)
347 {
348 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
349 	return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
350 }
351 
352 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
353 {
354 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
355 	return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
356 }
357 
358 
359 /*
360  * Handle DEAD DMA transfers:
361  * if the TX status comes up "DEAD" - reported on some Power Computing machines
362  * we need to re-start the dbdma - but from a different physical start address
363  * and with a different transfer length.  It would get very messy to do this
364  * with the normal dbdma_cmd blocks - we would have to re-write the buffer start
365  * addresses each time.  So, we will keep a single dbdma_cmd block which can be
366  * fiddled with.
367  * When DEAD status is first reported the content of the faulted dbdma block is
368  * copied into the emergency buffer and we note that the buffer is in use.
369  * we then bump the start physical address by the amount that was successfully
370  * output before it died.
371  * On any subsequent DEAD result we just do the bump-ups (we know that we are
372  * already using the emergency dbdma_cmd).
373  * CHECK: this just tries to "do it".  It is possible that we should abandon
374  * xfers when the number of residual bytes gets below a certain value - I can
375  * see that this might cause a loop-forever if a too small transfer causes
376  * DEAD status.  However this is a TODO for now - we'll see what gets reported.
377  * When we get a successful transfer result with the emergency buffer we just
378  * pretend that it completed using the original dmdma_cmd and carry on.  The
379  * 'next_cmd' field will already point back to the original loop of blocks.
380  */
381 static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec,
382 					  volatile struct dbdma_cmd __iomem *cp)
383 {
384 	unsigned short req, res ;
385 	unsigned int phy ;
386 
387 	/* printk(KERN_WARNING "snd-powermac: DMA died - patching it up!\n"); */
388 
389 	/* to clear DEAD status we must first clear RUN
390 	   set it to quiescent to be on the safe side */
391 	(void)in_le32(&rec->dma->status);
392 	out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
393 
394 	if (!emergency_in_use) { /* new problem */
395 		memcpy((void *)emergency_dbdma.cmds, (void *)cp,
396 		       sizeof(struct dbdma_cmd));
397 		emergency_in_use = 1;
398 		cp->xfer_status = cpu_to_le16(0);
399 		cp->req_count = cpu_to_le16(rec->period_size);
400 		cp = emergency_dbdma.cmds;
401 	}
402 
403 	/* now bump the values to reflect the amount
404 	   we haven't yet shifted */
405 	req = le16_to_cpu(cp->req_count);
406 	res = le16_to_cpu(cp->res_count);
407 	phy = le32_to_cpu(cp->phy_addr);
408 	phy += (req - res);
409 	cp->req_count = cpu_to_le16(res);
410 	cp->res_count = cpu_to_le16(0);
411 	cp->xfer_status = cpu_to_le16(0);
412 	cp->phy_addr = cpu_to_le32(phy);
413 
414 	cp->cmd_dep = cpu_to_le32(rec->cmd.addr
415 		+ sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods));
416 
417 	cp->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS);
418 
419 	/* point at our patched up command block */
420 	out_le32(&rec->dma->cmdptr, emergency_dbdma.addr);
421 
422 	/* we must re-start the controller */
423 	(void)in_le32(&rec->dma->status);
424 	/* should complete clearing the DEAD status */
425 	out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
426 }
427 
428 /*
429  * update playback/capture pointer from interrupts
430  */
431 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
432 {
433 	volatile struct dbdma_cmd __iomem *cp;
434 	int c;
435 	int stat;
436 
437 	spin_lock(&chip->reg_lock);
438 	if (rec->running) {
439 		for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
440 
441 			if (emergency_in_use)   /* already using DEAD xfer? */
442 				cp = emergency_dbdma.cmds;
443 			else
444 				cp = &rec->cmd.cmds[rec->cur_period];
445 
446 			stat = le16_to_cpu(cp->xfer_status);
447 
448 			if (stat & DEAD) {
449 				snd_pmac_pcm_dead_xfer(rec, cp);
450 				break; /* this block is still going */
451 			}
452 
453 			if (emergency_in_use)
454 				emergency_in_use = 0 ; /* done that */
455 
456 			if (! (stat & ACTIVE))
457 				break;
458 
459 			/*printk(KERN_DEBUG "update frag %d\n", rec->cur_period);*/
460 			cp->xfer_status = cpu_to_le16(0);
461 			cp->req_count = cpu_to_le16(rec->period_size);
462 			/*cp->res_count = cpu_to_le16(0);*/
463 			rec->cur_period++;
464 			if (rec->cur_period >= rec->nperiods) {
465 				rec->cur_period = 0;
466 			}
467 
468 			spin_unlock(&chip->reg_lock);
469 			snd_pcm_period_elapsed(rec->substream);
470 			spin_lock(&chip->reg_lock);
471 		}
472 	}
473 	spin_unlock(&chip->reg_lock);
474 }
475 
476 
477 /*
478  * hw info
479  */
480 
481 static const struct snd_pcm_hardware snd_pmac_playback =
482 {
483 	.info =			(SNDRV_PCM_INFO_INTERLEAVED |
484 				 SNDRV_PCM_INFO_MMAP |
485 				 SNDRV_PCM_INFO_MMAP_VALID |
486 				 SNDRV_PCM_INFO_RESUME),
487 	.formats =		SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
488 	.rates =		SNDRV_PCM_RATE_8000_44100,
489 	.rate_min =		7350,
490 	.rate_max =		44100,
491 	.channels_min =		2,
492 	.channels_max =		2,
493 	.buffer_bytes_max =	131072,
494 	.period_bytes_min =	256,
495 	.period_bytes_max =	16384,
496 	.periods_min =		3,
497 	.periods_max =		PMAC_MAX_FRAGS,
498 };
499 
500 static const struct snd_pcm_hardware snd_pmac_capture =
501 {
502 	.info =			(SNDRV_PCM_INFO_INTERLEAVED |
503 				 SNDRV_PCM_INFO_MMAP |
504 				 SNDRV_PCM_INFO_MMAP_VALID |
505 				 SNDRV_PCM_INFO_RESUME),
506 	.formats =		SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
507 	.rates =		SNDRV_PCM_RATE_8000_44100,
508 	.rate_min =		7350,
509 	.rate_max =		44100,
510 	.channels_min =		2,
511 	.channels_max =		2,
512 	.buffer_bytes_max =	131072,
513 	.period_bytes_min =	256,
514 	.period_bytes_max =	16384,
515 	.periods_min =		3,
516 	.periods_max =		PMAC_MAX_FRAGS,
517 };
518 
519 
520 #if 0 // NYI
521 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
522 				 struct snd_pcm_hw_rule *rule)
523 {
524 	struct snd_pmac *chip = rule->private;
525 	struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
526 	int i, freq_table[8], num_freqs;
527 
528 	if (! rec)
529 		return -EINVAL;
530 	num_freqs = 0;
531 	for (i = chip->num_freqs - 1; i >= 0; i--) {
532 		if (rec->cur_freqs & (1 << i))
533 			freq_table[num_freqs++] = chip->freq_table[i];
534 	}
535 
536 	return snd_interval_list(hw_param_interval(params, rule->var),
537 				 num_freqs, freq_table, 0);
538 }
539 
540 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
541 				   struct snd_pcm_hw_rule *rule)
542 {
543 	struct snd_pmac *chip = rule->private;
544 	struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
545 
546 	if (! rec)
547 		return -EINVAL;
548 	return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
549 				   rec->cur_formats);
550 }
551 #endif // NYI
552 
553 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
554 			     struct snd_pcm_substream *subs)
555 {
556 	struct snd_pcm_runtime *runtime = subs->runtime;
557 	int i;
558 
559 	/* look up frequency table and fill bit mask */
560 	runtime->hw.rates = 0;
561 	for (i = 0; i < chip->num_freqs; i++)
562 		if (chip->freqs_ok & (1 << i))
563 			runtime->hw.rates |=
564 				snd_pcm_rate_to_rate_bit(chip->freq_table[i]);
565 
566 	/* check for minimum and maximum rates */
567 	for (i = 0; i < chip->num_freqs; i++) {
568 		if (chip->freqs_ok & (1 << i)) {
569 			runtime->hw.rate_max = chip->freq_table[i];
570 			break;
571 		}
572 	}
573 	for (i = chip->num_freqs - 1; i >= 0; i--) {
574 		if (chip->freqs_ok & (1 << i)) {
575 			runtime->hw.rate_min = chip->freq_table[i];
576 			break;
577 		}
578 	}
579 	runtime->hw.formats = chip->formats_ok;
580 	if (chip->can_capture) {
581 		if (! chip->can_duplex)
582 			runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
583 		runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
584 	}
585 	runtime->private_data = rec;
586 	rec->substream = subs;
587 
588 #if 0 /* FIXME: still under development.. */
589 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
590 			    snd_pmac_hw_rule_rate, chip, rec->stream, -1);
591 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
592 			    snd_pmac_hw_rule_format, chip, rec->stream, -1);
593 #endif
594 
595 	runtime->hw.periods_max = rec->cmd.size - 1;
596 
597 	/* constraints to fix choppy sound */
598 	snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
599 	return 0;
600 }
601 
602 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
603 			      struct snd_pcm_substream *subs)
604 {
605 	struct pmac_stream *astr;
606 
607 	snd_pmac_dma_stop(rec);
608 
609 	astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
610 	if (! astr)
611 		return -EINVAL;
612 
613 	/* reset constraints */
614 	astr->cur_freqs = chip->freqs_ok;
615 	astr->cur_formats = chip->formats_ok;
616 
617 	return 0;
618 }
619 
620 static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
621 {
622 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
623 
624 	subs->runtime->hw = snd_pmac_playback;
625 	return snd_pmac_pcm_open(chip, &chip->playback, subs);
626 }
627 
628 static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
629 {
630 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
631 
632 	subs->runtime->hw = snd_pmac_capture;
633 	return snd_pmac_pcm_open(chip, &chip->capture, subs);
634 }
635 
636 static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
637 {
638 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
639 
640 	return snd_pmac_pcm_close(chip, &chip->playback, subs);
641 }
642 
643 static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
644 {
645 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
646 
647 	return snd_pmac_pcm_close(chip, &chip->capture, subs);
648 }
649 
650 /*
651  */
652 
653 static const struct snd_pcm_ops snd_pmac_playback_ops = {
654 	.open =		snd_pmac_playback_open,
655 	.close =	snd_pmac_playback_close,
656 	.prepare =	snd_pmac_playback_prepare,
657 	.trigger =	snd_pmac_playback_trigger,
658 	.pointer =	snd_pmac_playback_pointer,
659 };
660 
661 static const struct snd_pcm_ops snd_pmac_capture_ops = {
662 	.open =		snd_pmac_capture_open,
663 	.close =	snd_pmac_capture_close,
664 	.prepare =	snd_pmac_capture_prepare,
665 	.trigger =	snd_pmac_capture_trigger,
666 	.pointer =	snd_pmac_capture_pointer,
667 };
668 
669 int snd_pmac_pcm_new(struct snd_pmac *chip)
670 {
671 	struct snd_pcm *pcm;
672 	int err;
673 	int num_captures = 1;
674 
675 	if (! chip->can_capture)
676 		num_captures = 0;
677 	err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
678 	if (err < 0)
679 		return err;
680 
681 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
682 	if (chip->can_capture)
683 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
684 
685 	pcm->private_data = chip;
686 	pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
687 	strcpy(pcm->name, chip->card->shortname);
688 	chip->pcm = pcm;
689 
690 	chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
691 	if (chip->can_byte_swap)
692 		chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
693 
694 	chip->playback.cur_formats = chip->formats_ok;
695 	chip->capture.cur_formats = chip->formats_ok;
696 	chip->playback.cur_freqs = chip->freqs_ok;
697 	chip->capture.cur_freqs = chip->freqs_ok;
698 
699 	/* preallocate 64k buffer */
700 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
701 				       &chip->pdev->dev,
702 				       64 * 1024, 64 * 1024);
703 
704 	return 0;
705 }
706 
707 
708 static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
709 {
710 	out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
711 	snd_pmac_wait_ack(&chip->playback);
712 	out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
713 	snd_pmac_wait_ack(&chip->capture);
714 }
715 
716 
717 /*
718  * handling beep
719  */
720 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
721 {
722 	struct pmac_stream *rec = &chip->playback;
723 
724 	snd_pmac_dma_stop(rec);
725 	chip->extra_dma.cmds->req_count = cpu_to_le16(bytes);
726 	chip->extra_dma.cmds->xfer_status = cpu_to_le16(0);
727 	chip->extra_dma.cmds->cmd_dep = cpu_to_le32(chip->extra_dma.addr);
728 	chip->extra_dma.cmds->phy_addr = cpu_to_le32(addr);
729 	chip->extra_dma.cmds->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS);
730 	out_le32(&chip->awacs->control,
731 		 (in_le32(&chip->awacs->control) & ~0x1f00)
732 		 | (speed << 8));
733 	out_le32(&chip->awacs->byteswap, 0);
734 	snd_pmac_dma_set_command(rec, &chip->extra_dma);
735 	snd_pmac_dma_run(rec, RUN);
736 }
737 
738 void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
739 {
740 	snd_pmac_dma_stop(&chip->playback);
741 	chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
742 	snd_pmac_pcm_set_format(chip); /* reset format */
743 }
744 
745 
746 /*
747  * interrupt handlers
748  */
749 static irqreturn_t
750 snd_pmac_tx_intr(int irq, void *devid)
751 {
752 	struct snd_pmac *chip = devid;
753 	snd_pmac_pcm_update(chip, &chip->playback);
754 	return IRQ_HANDLED;
755 }
756 
757 
758 static irqreturn_t
759 snd_pmac_rx_intr(int irq, void *devid)
760 {
761 	struct snd_pmac *chip = devid;
762 	snd_pmac_pcm_update(chip, &chip->capture);
763 	return IRQ_HANDLED;
764 }
765 
766 
767 static irqreturn_t
768 snd_pmac_ctrl_intr(int irq, void *devid)
769 {
770 	struct snd_pmac *chip = devid;
771 	int ctrl = in_le32(&chip->awacs->control);
772 
773 	/*printk(KERN_DEBUG "pmac: control interrupt.. 0x%x\n", ctrl);*/
774 	if (ctrl & MASK_PORTCHG) {
775 		/* do something when headphone is plugged/unplugged? */
776 		if (chip->update_automute)
777 			chip->update_automute(chip, 1);
778 	}
779 	if (ctrl & MASK_CNTLERR) {
780 		int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
781 		if (err && chip->model <= PMAC_SCREAMER)
782 			snd_printk(KERN_DEBUG "error %x\n", err);
783 	}
784 	/* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
785 	out_le32(&chip->awacs->control, ctrl);
786 	return IRQ_HANDLED;
787 }
788 
789 
790 /*
791  * a wrapper to feature call for compatibility
792  */
793 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
794 {
795 	if (ppc_md.feature_call)
796 		ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
797 }
798 
799 /*
800  * release resources
801  */
802 
803 static int snd_pmac_free(struct snd_pmac *chip)
804 {
805 	/* stop sounds */
806 	if (chip->initialized) {
807 		snd_pmac_dbdma_reset(chip);
808 		/* disable interrupts from awacs interface */
809 		out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
810 	}
811 
812 	if (chip->node)
813 		snd_pmac_sound_feature(chip, 0);
814 
815 	/* clean up mixer if any */
816 	if (chip->mixer_free)
817 		chip->mixer_free(chip);
818 
819 	snd_pmac_detach_beep(chip);
820 
821 	/* release resources */
822 	if (chip->irq >= 0)
823 		free_irq(chip->irq, (void*)chip);
824 	if (chip->tx_irq >= 0)
825 		free_irq(chip->tx_irq, (void*)chip);
826 	if (chip->rx_irq >= 0)
827 		free_irq(chip->rx_irq, (void*)chip);
828 	snd_pmac_dbdma_free(chip, &chip->playback.cmd);
829 	snd_pmac_dbdma_free(chip, &chip->capture.cmd);
830 	snd_pmac_dbdma_free(chip, &chip->extra_dma);
831 	snd_pmac_dbdma_free(chip, &emergency_dbdma);
832 	iounmap(chip->macio_base);
833 	iounmap(chip->latch_base);
834 	iounmap(chip->awacs);
835 	iounmap(chip->playback.dma);
836 	iounmap(chip->capture.dma);
837 
838 	if (chip->node) {
839 		int i;
840 		for (i = 0; i < 3; i++) {
841 			if (chip->requested & (1 << i))
842 				release_mem_region(chip->rsrc[i].start,
843 						   resource_size(&chip->rsrc[i]));
844 		}
845 	}
846 
847 	pci_dev_put(chip->pdev);
848 	of_node_put(chip->node);
849 	kfree(chip);
850 	return 0;
851 }
852 
853 
854 /*
855  * free the device
856  */
857 static int snd_pmac_dev_free(struct snd_device *device)
858 {
859 	struct snd_pmac *chip = device->device_data;
860 	return snd_pmac_free(chip);
861 }
862 
863 
864 /*
865  * check the machine support byteswap (little-endian)
866  */
867 
868 static void detect_byte_swap(struct snd_pmac *chip)
869 {
870 	struct device_node *mio;
871 
872 	/* if seems that Keylargo can't byte-swap  */
873 	for (mio = chip->node->parent; mio; mio = mio->parent) {
874 		if (of_node_name_eq(mio, "mac-io")) {
875 			if (of_device_is_compatible(mio, "Keylargo"))
876 				chip->can_byte_swap = 0;
877 			break;
878 		}
879 	}
880 
881 	/* it seems the Pismo & iBook can't byte-swap in hardware. */
882 	if (of_machine_is_compatible("PowerBook3,1") ||
883 	    of_machine_is_compatible("PowerBook2,1"))
884 		chip->can_byte_swap = 0 ;
885 
886 	if (of_machine_is_compatible("PowerBook2,1"))
887 		chip->can_duplex = 0;
888 }
889 
890 
891 /*
892  * detect a sound chip
893  */
894 static int snd_pmac_detect(struct snd_pmac *chip)
895 {
896 	struct device_node *sound;
897 	struct device_node *dn;
898 	const unsigned int *prop;
899 	unsigned int l;
900 	struct macio_chip* macio;
901 
902 	if (!machine_is(powermac))
903 		return -ENODEV;
904 
905 	chip->subframe = 0;
906 	chip->revision = 0;
907 	chip->freqs_ok = 0xff; /* all ok */
908 	chip->model = PMAC_AWACS;
909 	chip->can_byte_swap = 1;
910 	chip->can_duplex = 1;
911 	chip->can_capture = 1;
912 	chip->num_freqs = ARRAY_SIZE(awacs_freqs);
913 	chip->freq_table = awacs_freqs;
914 	chip->pdev = NULL;
915 
916 	chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
917 
918 	/* check machine type */
919 	if (of_machine_is_compatible("AAPL,3400/2400")
920 	    || of_machine_is_compatible("AAPL,3500"))
921 		chip->is_pbook_3400 = 1;
922 	else if (of_machine_is_compatible("PowerBook1,1")
923 		 || of_machine_is_compatible("AAPL,PowerBook1998"))
924 		chip->is_pbook_G3 = 1;
925 	chip->node = of_find_node_by_name(NULL, "awacs");
926 	sound = of_node_get(chip->node);
927 
928 	/*
929 	 * powermac G3 models have a node called "davbus"
930 	 * with a child called "sound".
931 	 */
932 	if (!chip->node)
933 		chip->node = of_find_node_by_name(NULL, "davbus");
934 	/*
935 	 * if we didn't find a davbus device, try 'i2s-a' since
936 	 * this seems to be what iBooks have
937 	 */
938 	if (! chip->node) {
939 		chip->node = of_find_node_by_name(NULL, "i2s-a");
940 		if (chip->node && chip->node->parent &&
941 		    chip->node->parent->parent) {
942 			if (of_device_is_compatible(chip->node->parent->parent,
943 						 "K2-Keylargo"))
944 				chip->is_k2 = 1;
945 		}
946 	}
947 	if (! chip->node)
948 		return -ENODEV;
949 
950 	if (!sound) {
951 		for_each_node_by_name(sound, "sound")
952 			if (sound->parent == chip->node)
953 				break;
954 	}
955 	if (! sound) {
956 		of_node_put(chip->node);
957 		chip->node = NULL;
958 		return -ENODEV;
959 	}
960 	prop = of_get_property(sound, "sub-frame", NULL);
961 	if (prop && *prop < 16)
962 		chip->subframe = *prop;
963 	prop = of_get_property(sound, "layout-id", NULL);
964 	if (prop) {
965 		/* partly deprecate snd-powermac, for those machines
966 		 * that have a layout-id property for now */
967 		printk(KERN_INFO "snd-powermac no longer handles any "
968 				 "machines with a layout-id property "
969 				 "in the device-tree, use snd-aoa.\n");
970 		of_node_put(sound);
971 		of_node_put(chip->node);
972 		chip->node = NULL;
973 		return -ENODEV;
974 	}
975 	/* This should be verified on older screamers */
976 	if (of_device_is_compatible(sound, "screamer")) {
977 		chip->model = PMAC_SCREAMER;
978 		// chip->can_byte_swap = 0; /* FIXME: check this */
979 	}
980 	if (of_device_is_compatible(sound, "burgundy")) {
981 		chip->model = PMAC_BURGUNDY;
982 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
983 	}
984 	if (of_device_is_compatible(sound, "daca")) {
985 		chip->model = PMAC_DACA;
986 		chip->can_capture = 0;  /* no capture */
987 		chip->can_duplex = 0;
988 		// chip->can_byte_swap = 0; /* FIXME: check this */
989 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
990 	}
991 	if (of_device_is_compatible(sound, "tumbler")) {
992 		chip->model = PMAC_TUMBLER;
993 		chip->can_capture = of_machine_is_compatible("PowerMac4,2")
994 				|| of_machine_is_compatible("PowerBook3,2")
995 				|| of_machine_is_compatible("PowerBook3,3")
996 				|| of_machine_is_compatible("PowerBook4,1")
997 				|| of_machine_is_compatible("PowerBook4,2")
998 				|| of_machine_is_compatible("PowerBook4,3");
999 		chip->can_duplex = 0;
1000 		// chip->can_byte_swap = 0; /* FIXME: check this */
1001 		chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1002 		chip->freq_table = tumbler_freqs;
1003 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1004 	}
1005 	if (of_device_is_compatible(sound, "snapper")) {
1006 		chip->model = PMAC_SNAPPER;
1007 		// chip->can_byte_swap = 0; /* FIXME: check this */
1008 		chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1009 		chip->freq_table = tumbler_freqs;
1010 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1011 	}
1012 	prop = of_get_property(sound, "device-id", NULL);
1013 	if (prop)
1014 		chip->device_id = *prop;
1015 	dn = of_find_node_by_name(NULL, "perch");
1016 	chip->has_iic = (dn != NULL);
1017 	of_node_put(dn);
1018 
1019 	/* We need the PCI device for DMA allocations, let's use a crude method
1020 	 * for now ...
1021 	 */
1022 	macio = macio_find(chip->node, macio_unknown);
1023 	if (macio == NULL)
1024 		printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
1025 	else {
1026 		struct pci_dev *pdev = NULL;
1027 
1028 		for_each_pci_dev(pdev) {
1029 			struct device_node *np = pci_device_to_OF_node(pdev);
1030 			if (np && np == macio->of_node) {
1031 				chip->pdev = pdev;
1032 				break;
1033 			}
1034 		}
1035 	}
1036 	if (chip->pdev == NULL)
1037 		printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
1038 		       " device !\n");
1039 
1040 	detect_byte_swap(chip);
1041 
1042 	/* look for a property saying what sample rates
1043 	   are available */
1044 	prop = of_get_property(sound, "sample-rates", &l);
1045 	if (! prop)
1046 		prop = of_get_property(sound, "output-frame-rates", &l);
1047 	if (prop) {
1048 		int i;
1049 		chip->freqs_ok = 0;
1050 		for (l /= sizeof(int); l > 0; --l) {
1051 			unsigned int r = *prop++;
1052 			/* Apple 'Fixed' format */
1053 			if (r >= 0x10000)
1054 				r >>= 16;
1055 			for (i = 0; i < chip->num_freqs; ++i) {
1056 				if (r == chip->freq_table[i]) {
1057 					chip->freqs_ok |= (1 << i);
1058 					break;
1059 				}
1060 			}
1061 		}
1062 	} else {
1063 		/* assume only 44.1khz */
1064 		chip->freqs_ok = 1;
1065 	}
1066 
1067 	of_node_put(sound);
1068 	return 0;
1069 }
1070 
1071 #ifdef PMAC_SUPPORT_AUTOMUTE
1072 /*
1073  * auto-mute
1074  */
1075 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
1076 			      struct snd_ctl_elem_value *ucontrol)
1077 {
1078 	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1079 	ucontrol->value.integer.value[0] = chip->auto_mute;
1080 	return 0;
1081 }
1082 
1083 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
1084 			      struct snd_ctl_elem_value *ucontrol)
1085 {
1086 	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1087 	if (ucontrol->value.integer.value[0] != chip->auto_mute) {
1088 		chip->auto_mute = !!ucontrol->value.integer.value[0];
1089 		if (chip->update_automute)
1090 			chip->update_automute(chip, 1);
1091 		return 1;
1092 	}
1093 	return 0;
1094 }
1095 
1096 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
1097 			      struct snd_ctl_elem_value *ucontrol)
1098 {
1099 	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1100 	if (chip->detect_headphone)
1101 		ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
1102 	else
1103 		ucontrol->value.integer.value[0] = 0;
1104 	return 0;
1105 }
1106 
1107 static const struct snd_kcontrol_new auto_mute_controls[] = {
1108 	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1109 	  .name = "Auto Mute Switch",
1110 	  .info = snd_pmac_boolean_mono_info,
1111 	  .get = pmac_auto_mute_get,
1112 	  .put = pmac_auto_mute_put,
1113 	},
1114 	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1115 	  .name = "Headphone Detection",
1116 	  .access = SNDRV_CTL_ELEM_ACCESS_READ,
1117 	  .info = snd_pmac_boolean_mono_info,
1118 	  .get = pmac_hp_detect_get,
1119 	},
1120 };
1121 
1122 int snd_pmac_add_automute(struct snd_pmac *chip)
1123 {
1124 	int err;
1125 	chip->auto_mute = 1;
1126 	err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
1127 	if (err < 0) {
1128 		printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
1129 		return err;
1130 	}
1131 	chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
1132 	return snd_ctl_add(chip->card, chip->hp_detect_ctl);
1133 }
1134 #endif /* PMAC_SUPPORT_AUTOMUTE */
1135 
1136 /*
1137  * create and detect a pmac chip record
1138  */
1139 int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
1140 {
1141 	struct snd_pmac *chip;
1142 	struct device_node *np;
1143 	int i, err;
1144 	unsigned int irq;
1145 	unsigned long ctrl_addr, txdma_addr, rxdma_addr;
1146 	static const struct snd_device_ops ops = {
1147 		.dev_free =	snd_pmac_dev_free,
1148 	};
1149 
1150 	*chip_return = NULL;
1151 
1152 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1153 	if (chip == NULL)
1154 		return -ENOMEM;
1155 	chip->card = card;
1156 
1157 	spin_lock_init(&chip->reg_lock);
1158 	chip->irq = chip->tx_irq = chip->rx_irq = -1;
1159 
1160 	chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
1161 	chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
1162 
1163 	err = snd_pmac_detect(chip);
1164 	if (err < 0)
1165 		goto __error;
1166 
1167 	if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1168 	    snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1169 	    snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 ||
1170 	    snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) {
1171 		err = -ENOMEM;
1172 		goto __error;
1173 	}
1174 
1175 	np = chip->node;
1176 	chip->requested = 0;
1177 	if (chip->is_k2) {
1178 		static const char * const rnames[] = {
1179 			"Sound Control", "Sound DMA" };
1180 		for (i = 0; i < 2; i ++) {
1181 			if (of_address_to_resource(np->parent, i,
1182 						   &chip->rsrc[i])) {
1183 				printk(KERN_ERR "snd: can't translate rsrc "
1184 				       " %d (%s)\n", i, rnames[i]);
1185 				err = -ENODEV;
1186 				goto __error;
1187 			}
1188 			if (request_mem_region(chip->rsrc[i].start,
1189 					       resource_size(&chip->rsrc[i]),
1190 					       rnames[i]) == NULL) {
1191 				printk(KERN_ERR "snd: can't request rsrc "
1192 				       " %d (%s: %pR)\n",
1193 				       i, rnames[i], &chip->rsrc[i]);
1194 				err = -ENODEV;
1195 				goto __error;
1196 			}
1197 			chip->requested |= (1 << i);
1198 		}
1199 		ctrl_addr = chip->rsrc[0].start;
1200 		txdma_addr = chip->rsrc[1].start;
1201 		rxdma_addr = txdma_addr + 0x100;
1202 	} else {
1203 		static const char * const rnames[] = {
1204 			"Sound Control", "Sound Tx DMA", "Sound Rx DMA" };
1205 		for (i = 0; i < 3; i ++) {
1206 			if (of_address_to_resource(np, i,
1207 						   &chip->rsrc[i])) {
1208 				printk(KERN_ERR "snd: can't translate rsrc "
1209 				       " %d (%s)\n", i, rnames[i]);
1210 				err = -ENODEV;
1211 				goto __error;
1212 			}
1213 			if (request_mem_region(chip->rsrc[i].start,
1214 					       resource_size(&chip->rsrc[i]),
1215 					       rnames[i]) == NULL) {
1216 				printk(KERN_ERR "snd: can't request rsrc "
1217 				       " %d (%s: %pR)\n",
1218 				       i, rnames[i], &chip->rsrc[i]);
1219 				err = -ENODEV;
1220 				goto __error;
1221 			}
1222 			chip->requested |= (1 << i);
1223 		}
1224 		ctrl_addr = chip->rsrc[0].start;
1225 		txdma_addr = chip->rsrc[1].start;
1226 		rxdma_addr = chip->rsrc[2].start;
1227 	}
1228 
1229 	chip->awacs = ioremap(ctrl_addr, 0x1000);
1230 	chip->playback.dma = ioremap(txdma_addr, 0x100);
1231 	chip->capture.dma = ioremap(rxdma_addr, 0x100);
1232 	if (chip->model <= PMAC_BURGUNDY) {
1233 		irq = irq_of_parse_and_map(np, 0);
1234 		if (request_irq(irq, snd_pmac_ctrl_intr, 0,
1235 				"PMac", (void*)chip)) {
1236 			snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n",
1237 				   irq);
1238 			err = -EBUSY;
1239 			goto __error;
1240 		}
1241 		chip->irq = irq;
1242 	}
1243 	irq = irq_of_parse_and_map(np, 1);
1244 	if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){
1245 		snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1246 		err = -EBUSY;
1247 		goto __error;
1248 	}
1249 	chip->tx_irq = irq;
1250 	irq = irq_of_parse_and_map(np, 2);
1251 	if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) {
1252 		snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1253 		err = -EBUSY;
1254 		goto __error;
1255 	}
1256 	chip->rx_irq = irq;
1257 
1258 	snd_pmac_sound_feature(chip, 1);
1259 
1260 	/* reset & enable interrupts */
1261 	if (chip->model <= PMAC_BURGUNDY)
1262 		out_le32(&chip->awacs->control, chip->control_mask);
1263 
1264 	/* Powerbooks have odd ways of enabling inputs such as
1265 	   an expansion-bay CD or sound from an internal modem
1266 	   or a PC-card modem. */
1267 	if (chip->is_pbook_3400) {
1268 		/* Enable CD and PC-card sound inputs. */
1269 		/* This is done by reading from address
1270 		 * f301a000, + 0x10 to enable the expansion-bay
1271 		 * CD sound input, + 0x80 to enable the PC-card
1272 		 * sound input.  The 0x100 enables the SCSI bus
1273 		 * terminator power.
1274 		 */
1275 		chip->latch_base = ioremap (0xf301a000, 0x1000);
1276 		in_8(chip->latch_base + 0x190);
1277 	} else if (chip->is_pbook_G3) {
1278 		struct device_node* mio;
1279 		for (mio = chip->node->parent; mio; mio = mio->parent) {
1280 			if (of_node_name_eq(mio, "mac-io")) {
1281 				struct resource r;
1282 				if (of_address_to_resource(mio, 0, &r) == 0)
1283 					chip->macio_base =
1284 						ioremap(r.start, 0x40);
1285 				break;
1286 			}
1287 		}
1288 		/* Enable CD sound input. */
1289 		/* The relevant bits for writing to this byte are 0x8f.
1290 		 * I haven't found out what the 0x80 bit does.
1291 		 * For the 0xf bits, writing 3 or 7 enables the CD
1292 		 * input, any other value disables it.  Values
1293 		 * 1, 3, 5, 7 enable the microphone.  Values 0, 2,
1294 		 * 4, 6, 8 - f enable the input from the modem.
1295 		 */
1296 		if (chip->macio_base)
1297 			out_8(chip->macio_base + 0x37, 3);
1298 	}
1299 
1300 	/* Reset dbdma channels */
1301 	snd_pmac_dbdma_reset(chip);
1302 
1303 	err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1304 	if (err < 0)
1305 		goto __error;
1306 
1307 	*chip_return = chip;
1308 	return 0;
1309 
1310  __error:
1311 	snd_pmac_free(chip);
1312 	return err;
1313 }
1314 
1315 
1316 /*
1317  * sleep notify for powerbook
1318  */
1319 
1320 #ifdef CONFIG_PM
1321 
1322 /*
1323  * Save state when going to sleep, restore it afterwards.
1324  */
1325 
1326 void snd_pmac_suspend(struct snd_pmac *chip)
1327 {
1328 	unsigned long flags;
1329 
1330 	snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
1331 	if (chip->suspend)
1332 		chip->suspend(chip);
1333 	spin_lock_irqsave(&chip->reg_lock, flags);
1334 	snd_pmac_beep_stop(chip);
1335 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1336 	if (chip->irq >= 0)
1337 		disable_irq(chip->irq);
1338 	if (chip->tx_irq >= 0)
1339 		disable_irq(chip->tx_irq);
1340 	if (chip->rx_irq >= 0)
1341 		disable_irq(chip->rx_irq);
1342 	snd_pmac_sound_feature(chip, 0);
1343 }
1344 
1345 void snd_pmac_resume(struct snd_pmac *chip)
1346 {
1347 	snd_pmac_sound_feature(chip, 1);
1348 	if (chip->resume)
1349 		chip->resume(chip);
1350 	/* enable CD sound input */
1351 	if (chip->macio_base && chip->is_pbook_G3)
1352 		out_8(chip->macio_base + 0x37, 3);
1353 	else if (chip->is_pbook_3400)
1354 		in_8(chip->latch_base + 0x190);
1355 
1356 	snd_pmac_pcm_set_format(chip);
1357 
1358 	if (chip->irq >= 0)
1359 		enable_irq(chip->irq);
1360 	if (chip->tx_irq >= 0)
1361 		enable_irq(chip->tx_irq);
1362 	if (chip->rx_irq >= 0)
1363 		enable_irq(chip->rx_irq);
1364 
1365 	snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
1366 }
1367 
1368 #endif /* CONFIG_PM */
1369 
1370