xref: /openbmc/linux/sound/ppc/pmac.c (revision 5e12bea0)
1 /*
2  * PMac DBDMA lowlevel functions
3  *
4  * Copyright (c) by Takashi Iwai <tiwai@suse.de>
5  * code based on dmasound.c.
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21 
22 
23 #include <sound/driver.h>
24 #include <asm/io.h>
25 #include <asm/irq.h>
26 #include <linux/init.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/dma-mapping.h>
32 #include <sound/core.h>
33 #include "pmac.h"
34 #include <sound/pcm_params.h>
35 #include <asm/pmac_feature.h>
36 #include <asm/pci-bridge.h>
37 
38 
39 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
40 static int awacs_freqs[8] = {
41 	44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
42 };
43 /* fixed frequency table for tumbler */
44 static int tumbler_freqs[1] = {
45 	44100
46 };
47 
48 /*
49  * allocate DBDMA command arrays
50  */
51 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
52 {
53 	unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
54 
55 	rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
56 					&rec->dma_base, GFP_KERNEL);
57 	if (rec->space == NULL)
58 		return -ENOMEM;
59 	rec->size = size;
60 	memset(rec->space, 0, rsize);
61 	rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
62 	rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
63 
64 	return 0;
65 }
66 
67 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
68 {
69 	if (rec) {
70 		unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
71 
72 		dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
73 	}
74 }
75 
76 
77 /*
78  * pcm stuff
79  */
80 
81 /*
82  * look up frequency table
83  */
84 
85 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
86 {
87 	int i, ok, found;
88 
89 	ok = rec->cur_freqs;
90 	if (rate > chip->freq_table[0])
91 		return 0;
92 	found = 0;
93 	for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
94 		if (! (ok & 1)) continue;
95 		found = i;
96 		if (rate >= chip->freq_table[i])
97 			break;
98 	}
99 	return found;
100 }
101 
102 /*
103  * check whether another stream is active
104  */
105 static inline int another_stream(int stream)
106 {
107 	return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
108 		SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
109 }
110 
111 /*
112  * allocate buffers
113  */
114 static int snd_pmac_pcm_hw_params(struct snd_pcm_substream *subs,
115 				  struct snd_pcm_hw_params *hw_params)
116 {
117 	return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params));
118 }
119 
120 /*
121  * release buffers
122  */
123 static int snd_pmac_pcm_hw_free(struct snd_pcm_substream *subs)
124 {
125 	snd_pcm_lib_free_pages(subs);
126 	return 0;
127 }
128 
129 /*
130  * get a stream of the opposite direction
131  */
132 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
133 {
134 	switch (stream) {
135 	case SNDRV_PCM_STREAM_PLAYBACK:
136 		return &chip->playback;
137 	case SNDRV_PCM_STREAM_CAPTURE:
138 		return &chip->capture;
139 	default:
140 		snd_BUG();
141 		return NULL;
142 	}
143 }
144 
145 /*
146  * wait while run status is on
147  */
148 static inline void
149 snd_pmac_wait_ack(struct pmac_stream *rec)
150 {
151 	int timeout = 50000;
152 	while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
153 		udelay(1);
154 }
155 
156 /*
157  * set the format and rate to the chip.
158  * call the lowlevel function if defined (e.g. for AWACS).
159  */
160 static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
161 {
162 	/* set up frequency and format */
163 	out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
164 	out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
165 	if (chip->set_format)
166 		chip->set_format(chip);
167 }
168 
169 /*
170  * stop the DMA transfer
171  */
172 static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
173 {
174 	out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
175 	snd_pmac_wait_ack(rec);
176 }
177 
178 /*
179  * set the command pointer address
180  */
181 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
182 {
183 	out_le32(&rec->dma->cmdptr, cmd->addr);
184 }
185 
186 /*
187  * start the DMA
188  */
189 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
190 {
191 	out_le32(&rec->dma->control, status | (status << 16));
192 }
193 
194 
195 /*
196  * prepare playback/capture stream
197  */
198 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
199 {
200 	int i;
201 	volatile struct dbdma_cmd __iomem *cp;
202 	struct snd_pcm_runtime *runtime = subs->runtime;
203 	int rate_index;
204 	long offset;
205 	struct pmac_stream *astr;
206 
207 	rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
208 	rec->period_size = snd_pcm_lib_period_bytes(subs);
209 	rec->nperiods = rec->dma_size / rec->period_size;
210 	rec->cur_period = 0;
211 	rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
212 
213 	/* set up constraints */
214 	astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
215 	if (! astr)
216 		return -EINVAL;
217 	astr->cur_freqs = 1 << rate_index;
218 	astr->cur_formats = 1 << runtime->format;
219 	chip->rate_index = rate_index;
220 	chip->format = runtime->format;
221 
222 	/* We really want to execute a DMA stop command, after the AWACS
223 	 * is initialized.
224 	 * For reasons I don't understand, it stops the hissing noise
225 	 * common to many PowerBook G3 systems and random noise otherwise
226 	 * captured on iBook2's about every third time. -ReneR
227 	 */
228 	spin_lock_irq(&chip->reg_lock);
229 	snd_pmac_dma_stop(rec);
230 	st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
231 	snd_pmac_dma_set_command(rec, &chip->extra_dma);
232 	snd_pmac_dma_run(rec, RUN);
233 	spin_unlock_irq(&chip->reg_lock);
234 	mdelay(5);
235 	spin_lock_irq(&chip->reg_lock);
236 	/* continuous DMA memory type doesn't provide the physical address,
237 	 * so we need to resolve the address here...
238 	 */
239 	offset = runtime->dma_addr;
240 	for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
241 		st_le32(&cp->phy_addr, offset);
242 		st_le16(&cp->req_count, rec->period_size);
243 		/*st_le16(&cp->res_count, 0);*/
244 		st_le16(&cp->xfer_status, 0);
245 		offset += rec->period_size;
246 	}
247 	/* make loop */
248 	st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
249 	st_le32(&cp->cmd_dep, rec->cmd.addr);
250 
251 	snd_pmac_dma_stop(rec);
252 	snd_pmac_dma_set_command(rec, &rec->cmd);
253 	spin_unlock_irq(&chip->reg_lock);
254 
255 	return 0;
256 }
257 
258 
259 /*
260  * PCM trigger/stop
261  */
262 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
263 				struct snd_pcm_substream *subs, int cmd)
264 {
265 	volatile struct dbdma_cmd __iomem *cp;
266 	int i, command;
267 
268 	switch (cmd) {
269 	case SNDRV_PCM_TRIGGER_START:
270 	case SNDRV_PCM_TRIGGER_RESUME:
271 		if (rec->running)
272 			return -EBUSY;
273 		command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
274 			   OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
275 		spin_lock(&chip->reg_lock);
276 		snd_pmac_beep_stop(chip);
277 		snd_pmac_pcm_set_format(chip);
278 		for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
279 			out_le16(&cp->command, command);
280 		snd_pmac_dma_set_command(rec, &rec->cmd);
281 		(void)in_le32(&rec->dma->status);
282 		snd_pmac_dma_run(rec, RUN|WAKE);
283 		rec->running = 1;
284 		spin_unlock(&chip->reg_lock);
285 		break;
286 
287 	case SNDRV_PCM_TRIGGER_STOP:
288 	case SNDRV_PCM_TRIGGER_SUSPEND:
289 		spin_lock(&chip->reg_lock);
290 		rec->running = 0;
291 		/*printk("stopped!!\n");*/
292 		snd_pmac_dma_stop(rec);
293 		for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
294 			out_le16(&cp->command, DBDMA_STOP);
295 		spin_unlock(&chip->reg_lock);
296 		break;
297 
298 	default:
299 		return -EINVAL;
300 	}
301 
302 	return 0;
303 }
304 
305 /*
306  * return the current pointer
307  */
308 inline
309 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
310 					      struct pmac_stream *rec,
311 					      struct snd_pcm_substream *subs)
312 {
313 	int count = 0;
314 
315 #if 1 /* hmm.. how can we get the current dma pointer?? */
316 	int stat;
317 	volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
318 	stat = ld_le16(&cp->xfer_status);
319 	if (stat & (ACTIVE|DEAD)) {
320 		count = in_le16(&cp->res_count);
321 		if (count)
322 			count = rec->period_size - count;
323 	}
324 #endif
325 	count += rec->cur_period * rec->period_size;
326 	/*printk("pointer=%d\n", count);*/
327 	return bytes_to_frames(subs->runtime, count);
328 }
329 
330 /*
331  * playback
332  */
333 
334 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
335 {
336 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
337 	return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
338 }
339 
340 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
341 				     int cmd)
342 {
343 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
344 	return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
345 }
346 
347 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
348 {
349 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
350 	return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
351 }
352 
353 
354 /*
355  * capture
356  */
357 
358 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
359 {
360 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
361 	return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
362 }
363 
364 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
365 				    int cmd)
366 {
367 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
368 	return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
369 }
370 
371 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
372 {
373 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
374 	return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
375 }
376 
377 
378 /*
379  * update playback/capture pointer from interrupts
380  */
381 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
382 {
383 	volatile struct dbdma_cmd __iomem *cp;
384 	int c;
385 	int stat;
386 
387 	spin_lock(&chip->reg_lock);
388 	if (rec->running) {
389 		cp = &rec->cmd.cmds[rec->cur_period];
390 		for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
391 			stat = ld_le16(&cp->xfer_status);
392 			if (! (stat & ACTIVE))
393 				break;
394 			/*printk("update frag %d\n", rec->cur_period);*/
395 			st_le16(&cp->xfer_status, 0);
396 			st_le16(&cp->req_count, rec->period_size);
397 			/*st_le16(&cp->res_count, 0);*/
398 			rec->cur_period++;
399 			if (rec->cur_period >= rec->nperiods) {
400 				rec->cur_period = 0;
401 				cp = rec->cmd.cmds;
402 			} else
403 				cp++;
404 			spin_unlock(&chip->reg_lock);
405 			snd_pcm_period_elapsed(rec->substream);
406 			spin_lock(&chip->reg_lock);
407 		}
408 	}
409 	spin_unlock(&chip->reg_lock);
410 }
411 
412 
413 /*
414  * hw info
415  */
416 
417 static struct snd_pcm_hardware snd_pmac_playback =
418 {
419 	.info =			(SNDRV_PCM_INFO_INTERLEAVED |
420 				 SNDRV_PCM_INFO_MMAP |
421 				 SNDRV_PCM_INFO_MMAP_VALID |
422 				 SNDRV_PCM_INFO_RESUME),
423 	.formats =		SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
424 	.rates =		SNDRV_PCM_RATE_8000_44100,
425 	.rate_min =		7350,
426 	.rate_max =		44100,
427 	.channels_min =		2,
428 	.channels_max =		2,
429 	.buffer_bytes_max =	131072,
430 	.period_bytes_min =	256,
431 	.period_bytes_max =	16384,
432 	.periods_min =		3,
433 	.periods_max =		PMAC_MAX_FRAGS,
434 };
435 
436 static struct snd_pcm_hardware snd_pmac_capture =
437 {
438 	.info =			(SNDRV_PCM_INFO_INTERLEAVED |
439 				 SNDRV_PCM_INFO_MMAP |
440 				 SNDRV_PCM_INFO_MMAP_VALID |
441 				 SNDRV_PCM_INFO_RESUME),
442 	.formats =		SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
443 	.rates =		SNDRV_PCM_RATE_8000_44100,
444 	.rate_min =		7350,
445 	.rate_max =		44100,
446 	.channels_min =		2,
447 	.channels_max =		2,
448 	.buffer_bytes_max =	131072,
449 	.period_bytes_min =	256,
450 	.period_bytes_max =	16384,
451 	.periods_min =		3,
452 	.periods_max =		PMAC_MAX_FRAGS,
453 };
454 
455 
456 #if 0 // NYI
457 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
458 				 struct snd_pcm_hw_rule *rule)
459 {
460 	struct snd_pmac *chip = rule->private;
461 	struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
462 	int i, freq_table[8], num_freqs;
463 
464 	if (! rec)
465 		return -EINVAL;
466 	num_freqs = 0;
467 	for (i = chip->num_freqs - 1; i >= 0; i--) {
468 		if (rec->cur_freqs & (1 << i))
469 			freq_table[num_freqs++] = chip->freq_table[i];
470 	}
471 
472 	return snd_interval_list(hw_param_interval(params, rule->var),
473 				 num_freqs, freq_table, 0);
474 }
475 
476 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
477 				   struct snd_pcm_hw_rule *rule)
478 {
479 	struct snd_pmac *chip = rule->private;
480 	struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
481 
482 	if (! rec)
483 		return -EINVAL;
484 	return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
485 				   rec->cur_formats);
486 }
487 #endif // NYI
488 
489 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
490 			     struct snd_pcm_substream *subs)
491 {
492 	struct snd_pcm_runtime *runtime = subs->runtime;
493 	int i, j, fflags;
494 	static int typical_freqs[] = {
495 		44100,
496 		22050,
497 		11025,
498 		0,
499 	};
500 	static int typical_freq_flags[] = {
501 		SNDRV_PCM_RATE_44100,
502 		SNDRV_PCM_RATE_22050,
503 		SNDRV_PCM_RATE_11025,
504 		0,
505 	};
506 
507 	/* look up frequency table and fill bit mask */
508 	runtime->hw.rates = 0;
509 	fflags = chip->freqs_ok;
510 	for (i = 0; typical_freqs[i]; i++) {
511 		for (j = 0; j < chip->num_freqs; j++) {
512 			if ((chip->freqs_ok & (1 << j)) &&
513 			    chip->freq_table[j] == typical_freqs[i]) {
514 				runtime->hw.rates |= typical_freq_flags[i];
515 				fflags &= ~(1 << j);
516 				break;
517 			}
518 		}
519 	}
520 	if (fflags) /* rest */
521 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
522 
523 	/* check for minimum and maximum rates */
524 	for (i = 0; i < chip->num_freqs; i++) {
525 		if (chip->freqs_ok & (1 << i)) {
526 			runtime->hw.rate_max = chip->freq_table[i];
527 			break;
528 		}
529 	}
530 	for (i = chip->num_freqs - 1; i >= 0; i--) {
531 		if (chip->freqs_ok & (1 << i)) {
532 			runtime->hw.rate_min = chip->freq_table[i];
533 			break;
534 		}
535 	}
536 	runtime->hw.formats = chip->formats_ok;
537 	if (chip->can_capture) {
538 		if (! chip->can_duplex)
539 			runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
540 		runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
541 	}
542 	runtime->private_data = rec;
543 	rec->substream = subs;
544 
545 #if 0 /* FIXME: still under development.. */
546 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
547 			    snd_pmac_hw_rule_rate, chip, rec->stream, -1);
548 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
549 			    snd_pmac_hw_rule_format, chip, rec->stream, -1);
550 #endif
551 
552 	runtime->hw.periods_max = rec->cmd.size - 1;
553 
554 	if (chip->can_duplex)
555 		snd_pcm_set_sync(subs);
556 
557 	/* constraints to fix choppy sound */
558 	snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
559 	return 0;
560 }
561 
562 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
563 			      struct snd_pcm_substream *subs)
564 {
565 	struct pmac_stream *astr;
566 
567 	snd_pmac_dma_stop(rec);
568 
569 	astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
570 	if (! astr)
571 		return -EINVAL;
572 
573 	/* reset constraints */
574 	astr->cur_freqs = chip->freqs_ok;
575 	astr->cur_formats = chip->formats_ok;
576 
577 	return 0;
578 }
579 
580 static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
581 {
582 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
583 
584 	subs->runtime->hw = snd_pmac_playback;
585 	return snd_pmac_pcm_open(chip, &chip->playback, subs);
586 }
587 
588 static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
589 {
590 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
591 
592 	subs->runtime->hw = snd_pmac_capture;
593 	return snd_pmac_pcm_open(chip, &chip->capture, subs);
594 }
595 
596 static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
597 {
598 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
599 
600 	return snd_pmac_pcm_close(chip, &chip->playback, subs);
601 }
602 
603 static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
604 {
605 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
606 
607 	return snd_pmac_pcm_close(chip, &chip->capture, subs);
608 }
609 
610 /*
611  */
612 
613 static struct snd_pcm_ops snd_pmac_playback_ops = {
614 	.open =		snd_pmac_playback_open,
615 	.close =	snd_pmac_playback_close,
616 	.ioctl =	snd_pcm_lib_ioctl,
617 	.hw_params =	snd_pmac_pcm_hw_params,
618 	.hw_free =	snd_pmac_pcm_hw_free,
619 	.prepare =	snd_pmac_playback_prepare,
620 	.trigger =	snd_pmac_playback_trigger,
621 	.pointer =	snd_pmac_playback_pointer,
622 };
623 
624 static struct snd_pcm_ops snd_pmac_capture_ops = {
625 	.open =		snd_pmac_capture_open,
626 	.close =	snd_pmac_capture_close,
627 	.ioctl =	snd_pcm_lib_ioctl,
628 	.hw_params =	snd_pmac_pcm_hw_params,
629 	.hw_free =	snd_pmac_pcm_hw_free,
630 	.prepare =	snd_pmac_capture_prepare,
631 	.trigger =	snd_pmac_capture_trigger,
632 	.pointer =	snd_pmac_capture_pointer,
633 };
634 
635 int __init snd_pmac_pcm_new(struct snd_pmac *chip)
636 {
637 	struct snd_pcm *pcm;
638 	int err;
639 	int num_captures = 1;
640 
641 	if (! chip->can_capture)
642 		num_captures = 0;
643 	err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
644 	if (err < 0)
645 		return err;
646 
647 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
648 	if (chip->can_capture)
649 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
650 
651 	pcm->private_data = chip;
652 	pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
653 	strcpy(pcm->name, chip->card->shortname);
654 	chip->pcm = pcm;
655 
656 	chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
657 	if (chip->can_byte_swap)
658 		chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
659 
660 	chip->playback.cur_formats = chip->formats_ok;
661 	chip->capture.cur_formats = chip->formats_ok;
662 	chip->playback.cur_freqs = chip->freqs_ok;
663 	chip->capture.cur_freqs = chip->freqs_ok;
664 
665 	/* preallocate 64k buffer */
666 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
667 					      &chip->pdev->dev,
668 					      64 * 1024, 64 * 1024);
669 
670 	return 0;
671 }
672 
673 
674 static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
675 {
676 	out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
677 	snd_pmac_wait_ack(&chip->playback);
678 	out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
679 	snd_pmac_wait_ack(&chip->capture);
680 }
681 
682 
683 /*
684  * handling beep
685  */
686 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
687 {
688 	struct pmac_stream *rec = &chip->playback;
689 
690 	snd_pmac_dma_stop(rec);
691 	st_le16(&chip->extra_dma.cmds->req_count, bytes);
692 	st_le16(&chip->extra_dma.cmds->xfer_status, 0);
693 	st_le32(&chip->extra_dma.cmds->cmd_dep, chip->extra_dma.addr);
694 	st_le32(&chip->extra_dma.cmds->phy_addr, addr);
695 	st_le16(&chip->extra_dma.cmds->command, OUTPUT_MORE + BR_ALWAYS);
696 	out_le32(&chip->awacs->control,
697 		 (in_le32(&chip->awacs->control) & ~0x1f00)
698 		 | (speed << 8));
699 	out_le32(&chip->awacs->byteswap, 0);
700 	snd_pmac_dma_set_command(rec, &chip->extra_dma);
701 	snd_pmac_dma_run(rec, RUN);
702 }
703 
704 void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
705 {
706 	snd_pmac_dma_stop(&chip->playback);
707 	st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
708 	snd_pmac_pcm_set_format(chip); /* reset format */
709 }
710 
711 
712 /*
713  * interrupt handlers
714  */
715 static irqreturn_t
716 snd_pmac_tx_intr(int irq, void *devid, struct pt_regs *regs)
717 {
718 	struct snd_pmac *chip = devid;
719 	snd_pmac_pcm_update(chip, &chip->playback);
720 	return IRQ_HANDLED;
721 }
722 
723 
724 static irqreturn_t
725 snd_pmac_rx_intr(int irq, void *devid, struct pt_regs *regs)
726 {
727 	struct snd_pmac *chip = devid;
728 	snd_pmac_pcm_update(chip, &chip->capture);
729 	return IRQ_HANDLED;
730 }
731 
732 
733 static irqreturn_t
734 snd_pmac_ctrl_intr(int irq, void *devid, struct pt_regs *regs)
735 {
736 	struct snd_pmac *chip = devid;
737 	int ctrl = in_le32(&chip->awacs->control);
738 
739 	/*printk("pmac: control interrupt.. 0x%x\n", ctrl);*/
740 	if (ctrl & MASK_PORTCHG) {
741 		/* do something when headphone is plugged/unplugged? */
742 		if (chip->update_automute)
743 			chip->update_automute(chip, 1);
744 	}
745 	if (ctrl & MASK_CNTLERR) {
746 		int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
747 		if (err && chip->model <= PMAC_SCREAMER)
748 			snd_printk(KERN_DEBUG "error %x\n", err);
749 	}
750 	/* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
751 	out_le32(&chip->awacs->control, ctrl);
752 	return IRQ_HANDLED;
753 }
754 
755 
756 /*
757  * a wrapper to feature call for compatibility
758  */
759 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
760 {
761 	if (ppc_md.feature_call)
762 		ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
763 }
764 
765 /*
766  * release resources
767  */
768 
769 static int snd_pmac_free(struct snd_pmac *chip)
770 {
771 	/* stop sounds */
772 	if (chip->initialized) {
773 		snd_pmac_dbdma_reset(chip);
774 		/* disable interrupts from awacs interface */
775 		out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
776 	}
777 
778 	snd_pmac_sound_feature(chip, 0);
779 
780 	/* clean up mixer if any */
781 	if (chip->mixer_free)
782 		chip->mixer_free(chip);
783 
784 	snd_pmac_detach_beep(chip);
785 
786 	/* release resources */
787 	if (chip->irq >= 0)
788 		free_irq(chip->irq, (void*)chip);
789 	if (chip->tx_irq >= 0)
790 		free_irq(chip->tx_irq, (void*)chip);
791 	if (chip->rx_irq >= 0)
792 		free_irq(chip->rx_irq, (void*)chip);
793 	snd_pmac_dbdma_free(chip, &chip->playback.cmd);
794 	snd_pmac_dbdma_free(chip, &chip->capture.cmd);
795 	snd_pmac_dbdma_free(chip, &chip->extra_dma);
796 	if (chip->macio_base)
797 		iounmap(chip->macio_base);
798 	if (chip->latch_base)
799 		iounmap(chip->latch_base);
800 	if (chip->awacs)
801 		iounmap(chip->awacs);
802 	if (chip->playback.dma)
803 		iounmap(chip->playback.dma);
804 	if (chip->capture.dma)
805 		iounmap(chip->capture.dma);
806 #ifndef CONFIG_PPC64
807 	if (chip->node) {
808 		int i;
809 
810 		for (i = 0; i < 3; i++) {
811 			if (chip->of_requested & (1 << i)) {
812 				if (chip->is_k2)
813 					release_OF_resource(chip->node->parent,
814 							    i);
815 				else
816 					release_OF_resource(chip->node, i);
817 			}
818 		}
819 	}
820 #endif /* CONFIG_PPC64 */
821 	if (chip->pdev)
822 		pci_dev_put(chip->pdev);
823 	kfree(chip);
824 	return 0;
825 }
826 
827 
828 /*
829  * free the device
830  */
831 static int snd_pmac_dev_free(struct snd_device *device)
832 {
833 	struct snd_pmac *chip = device->device_data;
834 	return snd_pmac_free(chip);
835 }
836 
837 
838 /*
839  * check the machine support byteswap (little-endian)
840  */
841 
842 static void __init detect_byte_swap(struct snd_pmac *chip)
843 {
844 	struct device_node *mio;
845 
846 	/* if seems that Keylargo can't byte-swap  */
847 	for (mio = chip->node->parent; mio; mio = mio->parent) {
848 		if (strcmp(mio->name, "mac-io") == 0) {
849 			if (device_is_compatible(mio, "Keylargo"))
850 				chip->can_byte_swap = 0;
851 			break;
852 		}
853 	}
854 
855 	/* it seems the Pismo & iBook can't byte-swap in hardware. */
856 	if (machine_is_compatible("PowerBook3,1") ||
857 	    machine_is_compatible("PowerBook2,1"))
858 		chip->can_byte_swap = 0 ;
859 
860 	if (machine_is_compatible("PowerBook2,1"))
861 		chip->can_duplex = 0;
862 }
863 
864 
865 /*
866  * detect a sound chip
867  */
868 static int __init snd_pmac_detect(struct snd_pmac *chip)
869 {
870 	struct device_node *sound = NULL;
871 	unsigned int *prop, l;
872 	struct macio_chip* macio;
873 
874 	u32 layout_id = 0;
875 
876 	if (_machine != _MACH_Pmac)
877 		return -ENODEV;
878 
879 	chip->subframe = 0;
880 	chip->revision = 0;
881 	chip->freqs_ok = 0xff; /* all ok */
882 	chip->model = PMAC_AWACS;
883 	chip->can_byte_swap = 1;
884 	chip->can_duplex = 1;
885 	chip->can_capture = 1;
886 	chip->num_freqs = ARRAY_SIZE(awacs_freqs);
887 	chip->freq_table = awacs_freqs;
888 
889 	chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
890 
891 	/* check machine type */
892 	if (machine_is_compatible("AAPL,3400/2400")
893 	    || machine_is_compatible("AAPL,3500"))
894 		chip->is_pbook_3400 = 1;
895 	else if (machine_is_compatible("PowerBook1,1")
896 		 || machine_is_compatible("AAPL,PowerBook1998"))
897 		chip->is_pbook_G3 = 1;
898 	chip->node = find_devices("awacs");
899 	if (chip->node)
900 		sound = chip->node;
901 
902 	/*
903 	 * powermac G3 models have a node called "davbus"
904 	 * with a child called "sound".
905 	 */
906 	if (!chip->node)
907 		chip->node = find_devices("davbus");
908 	/*
909 	 * if we didn't find a davbus device, try 'i2s-a' since
910 	 * this seems to be what iBooks have
911 	 */
912 	if (! chip->node) {
913 		chip->node = find_devices("i2s-a");
914 		if (chip->node && chip->node->parent &&
915 		    chip->node->parent->parent) {
916 			if (device_is_compatible(chip->node->parent->parent,
917 						 "K2-Keylargo"))
918 				chip->is_k2 = 1;
919 		}
920 	}
921 	if (! chip->node)
922 		return -ENODEV;
923 
924 	if (!sound) {
925 		sound = find_devices("sound");
926 		while (sound && sound->parent != chip->node)
927 			sound = sound->next;
928 	}
929 	if (! sound)
930 		return -ENODEV;
931 	prop = (unsigned int *) get_property(sound, "sub-frame", NULL);
932 	if (prop && *prop < 16)
933 		chip->subframe = *prop;
934 	prop = (unsigned int *) get_property(sound, "layout-id", NULL);
935 	if (prop)
936 		layout_id = *prop;
937 	/* This should be verified on older screamers */
938 	if (device_is_compatible(sound, "screamer")) {
939 		chip->model = PMAC_SCREAMER;
940 		// chip->can_byte_swap = 0; /* FIXME: check this */
941 	}
942 	if (device_is_compatible(sound, "burgundy")) {
943 		chip->model = PMAC_BURGUNDY;
944 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
945 	}
946 	if (device_is_compatible(sound, "daca")) {
947 		chip->model = PMAC_DACA;
948 		chip->can_capture = 0;  /* no capture */
949 		chip->can_duplex = 0;
950 		// chip->can_byte_swap = 0; /* FIXME: check this */
951 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
952 	}
953 	if (device_is_compatible(sound, "tumbler")) {
954 		chip->model = PMAC_TUMBLER;
955 		chip->can_capture = 0;  /* no capture */
956 		chip->can_duplex = 0;
957 		// chip->can_byte_swap = 0; /* FIXME: check this */
958 		chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
959 		chip->freq_table = tumbler_freqs;
960 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
961 	}
962 	if (device_is_compatible(sound, "snapper")) {
963 		chip->model = PMAC_SNAPPER;
964 		// chip->can_byte_swap = 0; /* FIXME: check this */
965 		chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
966 		chip->freq_table = tumbler_freqs;
967 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
968 	}
969 	if (device_is_compatible(sound, "AOAKeylargo") ||
970 	    device_is_compatible(sound, "AOAbase") ||
971 	    device_is_compatible(sound, "AOAK2")) {
972 		/* For now, only support very basic TAS3004 based machines with
973 		 * single frequency until proper i2s control is implemented
974 		 */
975 		switch(layout_id) {
976 		case 0x48:
977 		case 0x46:
978 		case 0x33:
979 		case 0x29:
980 		case 0x24:
981 		case 0x50:
982 		case 0x5c:
983 			chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
984 			chip->model = PMAC_SNAPPER;
985 			chip->can_byte_swap = 0; /* FIXME: check this */
986 			chip->control_mask = MASK_IEPC | 0x11;/* disable IEE */
987 			break;
988 		case 0x3a:
989 			chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
990 			chip->model = PMAC_TOONIE;
991 			chip->can_byte_swap = 0; /* FIXME: check this */
992 			chip->control_mask = MASK_IEPC | 0x11;/* disable IEE */
993 			break;
994 		}
995 	}
996 	prop = (unsigned int *)get_property(sound, "device-id", NULL);
997 	if (prop)
998 		chip->device_id = *prop;
999 	chip->has_iic = (find_devices("perch") != NULL);
1000 
1001 	/* We need the PCI device for DMA allocations, let's use a crude method
1002 	 * for now ...
1003 	 */
1004 	macio = macio_find(chip->node, macio_unknown);
1005 	if (macio == NULL)
1006 		printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
1007 	else {
1008 		struct pci_dev *pdev = NULL;
1009 
1010 		for_each_pci_dev(pdev) {
1011 			struct device_node *np = pci_device_to_OF_node(pdev);
1012 			if (np && np == macio->of_node) {
1013 				chip->pdev = pdev;
1014 				break;
1015 			}
1016 		}
1017 	}
1018 	if (chip->pdev == NULL)
1019 		printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
1020 		       " device !\n");
1021 
1022 	detect_byte_swap(chip);
1023 
1024 	/* look for a property saying what sample rates
1025 	   are available */
1026 	prop = (unsigned int *) get_property(sound, "sample-rates", &l);
1027 	if (! prop)
1028 		prop = (unsigned int *) get_property(sound,
1029 						     "output-frame-rates", &l);
1030 	if (prop) {
1031 		int i;
1032 		chip->freqs_ok = 0;
1033 		for (l /= sizeof(int); l > 0; --l) {
1034 			unsigned int r = *prop++;
1035 			/* Apple 'Fixed' format */
1036 			if (r >= 0x10000)
1037 				r >>= 16;
1038 			for (i = 0; i < chip->num_freqs; ++i) {
1039 				if (r == chip->freq_table[i]) {
1040 					chip->freqs_ok |= (1 << i);
1041 					break;
1042 				}
1043 			}
1044 		}
1045 	} else {
1046 		/* assume only 44.1khz */
1047 		chip->freqs_ok = 1;
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 /*
1054  * exported - boolean info callbacks for ease of programming
1055  */
1056 int snd_pmac_boolean_stereo_info(struct snd_kcontrol *kcontrol,
1057 				 struct snd_ctl_elem_info *uinfo)
1058 {
1059 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1060 	uinfo->count = 2;
1061 	uinfo->value.integer.min = 0;
1062 	uinfo->value.integer.max = 1;
1063 	return 0;
1064 }
1065 
1066 int snd_pmac_boolean_mono_info(struct snd_kcontrol *kcontrol,
1067 			       struct snd_ctl_elem_info *uinfo)
1068 {
1069 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1070 	uinfo->count = 1;
1071 	uinfo->value.integer.min = 0;
1072 	uinfo->value.integer.max = 1;
1073 	return 0;
1074 }
1075 
1076 #ifdef PMAC_SUPPORT_AUTOMUTE
1077 /*
1078  * auto-mute
1079  */
1080 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
1081 			      struct snd_ctl_elem_value *ucontrol)
1082 {
1083 	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1084 	ucontrol->value.integer.value[0] = chip->auto_mute;
1085 	return 0;
1086 }
1087 
1088 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
1089 			      struct snd_ctl_elem_value *ucontrol)
1090 {
1091 	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1092 	if (ucontrol->value.integer.value[0] != chip->auto_mute) {
1093 		chip->auto_mute = ucontrol->value.integer.value[0];
1094 		if (chip->update_automute)
1095 			chip->update_automute(chip, 1);
1096 		return 1;
1097 	}
1098 	return 0;
1099 }
1100 
1101 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
1102 			      struct snd_ctl_elem_value *ucontrol)
1103 {
1104 	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1105 	if (chip->detect_headphone)
1106 		ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
1107 	else
1108 		ucontrol->value.integer.value[0] = 0;
1109 	return 0;
1110 }
1111 
1112 static struct snd_kcontrol_new auto_mute_controls[] __initdata = {
1113 	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1114 	  .name = "Auto Mute Switch",
1115 	  .info = snd_pmac_boolean_mono_info,
1116 	  .get = pmac_auto_mute_get,
1117 	  .put = pmac_auto_mute_put,
1118 	},
1119 	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1120 	  .name = "Headphone Detection",
1121 	  .access = SNDRV_CTL_ELEM_ACCESS_READ,
1122 	  .info = snd_pmac_boolean_mono_info,
1123 	  .get = pmac_hp_detect_get,
1124 	},
1125 };
1126 
1127 int __init snd_pmac_add_automute(struct snd_pmac *chip)
1128 {
1129 	int err;
1130 	chip->auto_mute = 1;
1131 	err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
1132 	if (err < 0) {
1133 		printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
1134 		return err;
1135 	}
1136 	chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
1137 	return snd_ctl_add(chip->card, chip->hp_detect_ctl);
1138 }
1139 #endif /* PMAC_SUPPORT_AUTOMUTE */
1140 
1141 /*
1142  * create and detect a pmac chip record
1143  */
1144 int __init snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
1145 {
1146 	struct snd_pmac *chip;
1147 	struct device_node *np;
1148 	int i, err;
1149 	unsigned long ctrl_addr, txdma_addr, rxdma_addr;
1150 	static struct snd_device_ops ops = {
1151 		.dev_free =	snd_pmac_dev_free,
1152 	};
1153 
1154 	*chip_return = NULL;
1155 
1156 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1157 	if (chip == NULL)
1158 		return -ENOMEM;
1159 	chip->card = card;
1160 
1161 	spin_lock_init(&chip->reg_lock);
1162 	chip->irq = chip->tx_irq = chip->rx_irq = -1;
1163 
1164 	chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
1165 	chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
1166 
1167 	if ((err = snd_pmac_detect(chip)) < 0)
1168 		goto __error;
1169 
1170 	if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1171 	    snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1172 	    snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0) {
1173 		err = -ENOMEM;
1174 		goto __error;
1175 	}
1176 
1177 	np = chip->node;
1178 	if (chip->is_k2) {
1179 		if (np->parent->n_addrs < 2 || np->n_intrs < 3) {
1180 			err = -ENODEV;
1181 			goto __error;
1182 		}
1183 		for (i = 0; i < 2; i++) {
1184 #ifndef CONFIG_PPC64
1185 			static char *name[2] = { "- Control", "- DMA" };
1186 			if (! request_OF_resource(np->parent, i, name[i])) {
1187 				snd_printk(KERN_ERR "pmac: can't request resource %d!\n", i);
1188 				err = -ENODEV;
1189 				goto __error;
1190 			}
1191 			chip->of_requested |= (1 << i);
1192 #endif /* CONFIG_PPC64 */
1193 			ctrl_addr = np->parent->addrs[0].address;
1194 			txdma_addr = np->parent->addrs[1].address;
1195 			rxdma_addr = txdma_addr + 0x100;
1196 		}
1197 
1198 	} else {
1199 		if (np->n_addrs < 3 || np->n_intrs < 3) {
1200 			err = -ENODEV;
1201 			goto __error;
1202 		}
1203 
1204 		for (i = 0; i < 3; i++) {
1205 #ifndef CONFIG_PPC64
1206 			static char *name[3] = { "- Control", "- Tx DMA", "- Rx DMA" };
1207 			if (! request_OF_resource(np, i, name[i])) {
1208 				snd_printk(KERN_ERR "pmac: can't request resource %d!\n", i);
1209 				err = -ENODEV;
1210 				goto __error;
1211 			}
1212 			chip->of_requested |= (1 << i);
1213 #endif /* CONFIG_PPC64 */
1214 			ctrl_addr = np->addrs[0].address;
1215 			txdma_addr = np->addrs[1].address;
1216 			rxdma_addr = np->addrs[2].address;
1217 		}
1218 	}
1219 
1220 	chip->awacs = ioremap(ctrl_addr, 0x1000);
1221 	chip->playback.dma = ioremap(txdma_addr, 0x100);
1222 	chip->capture.dma = ioremap(rxdma_addr, 0x100);
1223 	if (chip->model <= PMAC_BURGUNDY) {
1224 		if (request_irq(np->intrs[0].line, snd_pmac_ctrl_intr, 0,
1225 				"PMac", (void*)chip)) {
1226 			snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[0].line);
1227 			err = -EBUSY;
1228 			goto __error;
1229 		}
1230 		chip->irq = np->intrs[0].line;
1231 	}
1232 	if (request_irq(np->intrs[1].line, snd_pmac_tx_intr, 0,
1233 			"PMac Output", (void*)chip)) {
1234 		snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[1].line);
1235 		err = -EBUSY;
1236 		goto __error;
1237 	}
1238 	chip->tx_irq = np->intrs[1].line;
1239 	if (request_irq(np->intrs[2].line, snd_pmac_rx_intr, 0,
1240 			"PMac Input", (void*)chip)) {
1241 		snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[2].line);
1242 		err = -EBUSY;
1243 		goto __error;
1244 	}
1245 	chip->rx_irq = np->intrs[2].line;
1246 
1247 	snd_pmac_sound_feature(chip, 1);
1248 
1249 	/* reset */
1250 	if (chip->model == PMAC_AWACS)
1251 		out_le32(&chip->awacs->control, 0x11);
1252 
1253 	/* Powerbooks have odd ways of enabling inputs such as
1254 	   an expansion-bay CD or sound from an internal modem
1255 	   or a PC-card modem. */
1256 	if (chip->is_pbook_3400) {
1257 		/* Enable CD and PC-card sound inputs. */
1258 		/* This is done by reading from address
1259 		 * f301a000, + 0x10 to enable the expansion-bay
1260 		 * CD sound input, + 0x80 to enable the PC-card
1261 		 * sound input.  The 0x100 enables the SCSI bus
1262 		 * terminator power.
1263 		 */
1264 		chip->latch_base = ioremap (0xf301a000, 0x1000);
1265 		in_8(chip->latch_base + 0x190);
1266 	} else if (chip->is_pbook_G3) {
1267 		struct device_node* mio;
1268 		for (mio = chip->node->parent; mio; mio = mio->parent) {
1269 			if (strcmp(mio->name, "mac-io") == 0
1270 			    && mio->n_addrs > 0) {
1271 				chip->macio_base = ioremap(mio->addrs[0].address, 0x40);
1272 				break;
1273 			}
1274 		}
1275 		/* Enable CD sound input. */
1276 		/* The relevant bits for writing to this byte are 0x8f.
1277 		 * I haven't found out what the 0x80 bit does.
1278 		 * For the 0xf bits, writing 3 or 7 enables the CD
1279 		 * input, any other value disables it.  Values
1280 		 * 1, 3, 5, 7 enable the microphone.  Values 0, 2,
1281 		 * 4, 6, 8 - f enable the input from the modem.
1282 		 */
1283 		if (chip->macio_base)
1284 			out_8(chip->macio_base + 0x37, 3);
1285 	}
1286 
1287 	/* Reset dbdma channels */
1288 	snd_pmac_dbdma_reset(chip);
1289 
1290 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
1291 		goto __error;
1292 
1293 	*chip_return = chip;
1294 	return 0;
1295 
1296  __error:
1297 	if (chip->pdev)
1298 		pci_dev_put(chip->pdev);
1299 	snd_pmac_free(chip);
1300 	return err;
1301 }
1302 
1303 
1304 /*
1305  * sleep notify for powerbook
1306  */
1307 
1308 #ifdef CONFIG_PM
1309 
1310 /*
1311  * Save state when going to sleep, restore it afterwards.
1312  */
1313 
1314 void snd_pmac_suspend(struct snd_pmac *chip)
1315 {
1316 	unsigned long flags;
1317 
1318 	snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
1319 	if (chip->suspend)
1320 		chip->suspend(chip);
1321 	snd_pcm_suspend_all(chip->pcm);
1322 	spin_lock_irqsave(&chip->reg_lock, flags);
1323 	snd_pmac_beep_stop(chip);
1324 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1325 	if (chip->irq >= 0)
1326 		disable_irq(chip->irq);
1327 	if (chip->tx_irq >= 0)
1328 		disable_irq(chip->tx_irq);
1329 	if (chip->rx_irq >= 0)
1330 		disable_irq(chip->rx_irq);
1331 	snd_pmac_sound_feature(chip, 0);
1332 }
1333 
1334 void snd_pmac_resume(struct snd_pmac *chip)
1335 {
1336 	snd_pmac_sound_feature(chip, 1);
1337 	if (chip->resume)
1338 		chip->resume(chip);
1339 	/* enable CD sound input */
1340 	if (chip->macio_base && chip->is_pbook_G3)
1341 		out_8(chip->macio_base + 0x37, 3);
1342 	else if (chip->is_pbook_3400)
1343 		in_8(chip->latch_base + 0x190);
1344 
1345 	snd_pmac_pcm_set_format(chip);
1346 
1347 	if (chip->irq >= 0)
1348 		enable_irq(chip->irq);
1349 	if (chip->tx_irq >= 0)
1350 		enable_irq(chip->tx_irq);
1351 	if (chip->rx_irq >= 0)
1352 		enable_irq(chip->rx_irq);
1353 
1354 	snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
1355 }
1356 
1357 #endif /* CONFIG_PM */
1358 
1359