1 /* 2 * PMac DBDMA lowlevel functions 3 * 4 * Copyright (c) by Takashi Iwai <tiwai@suse.de> 5 * code based on dmasound.c. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 23 #include <linux/io.h> 24 #include <asm/irq.h> 25 #include <linux/init.h> 26 #include <linux/delay.h> 27 #include <linux/slab.h> 28 #include <linux/interrupt.h> 29 #include <linux/pci.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/of_address.h> 32 #include <linux/of_irq.h> 33 #include <sound/core.h> 34 #include "pmac.h" 35 #include <sound/pcm_params.h> 36 #include <asm/pmac_feature.h> 37 38 39 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */ 40 static int awacs_freqs[8] = { 41 44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350 42 }; 43 /* fixed frequency table for tumbler */ 44 static int tumbler_freqs[1] = { 45 44100 46 }; 47 48 49 /* 50 * we will allocate a single 'emergency' dbdma cmd block to use if the 51 * tx status comes up "DEAD". This happens on some PowerComputing Pmac 52 * clones, either owing to a bug in dbdma or some interaction between 53 * IDE and sound. However, this measure would deal with DEAD status if 54 * it appeared elsewhere. 55 */ 56 static struct pmac_dbdma emergency_dbdma; 57 static int emergency_in_use; 58 59 60 /* 61 * allocate DBDMA command arrays 62 */ 63 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size) 64 { 65 unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1); 66 67 rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize, 68 &rec->dma_base, GFP_KERNEL); 69 if (rec->space == NULL) 70 return -ENOMEM; 71 rec->size = size; 72 memset(rec->space, 0, rsize); 73 rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space); 74 rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space); 75 76 return 0; 77 } 78 79 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec) 80 { 81 if (rec->space) { 82 unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1); 83 84 dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base); 85 } 86 } 87 88 89 /* 90 * pcm stuff 91 */ 92 93 /* 94 * look up frequency table 95 */ 96 97 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate) 98 { 99 int i, ok, found; 100 101 ok = rec->cur_freqs; 102 if (rate > chip->freq_table[0]) 103 return 0; 104 found = 0; 105 for (i = 0; i < chip->num_freqs; i++, ok >>= 1) { 106 if (! (ok & 1)) continue; 107 found = i; 108 if (rate >= chip->freq_table[i]) 109 break; 110 } 111 return found; 112 } 113 114 /* 115 * check whether another stream is active 116 */ 117 static inline int another_stream(int stream) 118 { 119 return (stream == SNDRV_PCM_STREAM_PLAYBACK) ? 120 SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; 121 } 122 123 /* 124 * allocate buffers 125 */ 126 static int snd_pmac_pcm_hw_params(struct snd_pcm_substream *subs, 127 struct snd_pcm_hw_params *hw_params) 128 { 129 return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params)); 130 } 131 132 /* 133 * release buffers 134 */ 135 static int snd_pmac_pcm_hw_free(struct snd_pcm_substream *subs) 136 { 137 snd_pcm_lib_free_pages(subs); 138 return 0; 139 } 140 141 /* 142 * get a stream of the opposite direction 143 */ 144 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream) 145 { 146 switch (stream) { 147 case SNDRV_PCM_STREAM_PLAYBACK: 148 return &chip->playback; 149 case SNDRV_PCM_STREAM_CAPTURE: 150 return &chip->capture; 151 default: 152 snd_BUG(); 153 return NULL; 154 } 155 } 156 157 /* 158 * wait while run status is on 159 */ 160 static inline void 161 snd_pmac_wait_ack(struct pmac_stream *rec) 162 { 163 int timeout = 50000; 164 while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0) 165 udelay(1); 166 } 167 168 /* 169 * set the format and rate to the chip. 170 * call the lowlevel function if defined (e.g. for AWACS). 171 */ 172 static void snd_pmac_pcm_set_format(struct snd_pmac *chip) 173 { 174 /* set up frequency and format */ 175 out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8)); 176 out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0); 177 if (chip->set_format) 178 chip->set_format(chip); 179 } 180 181 /* 182 * stop the DMA transfer 183 */ 184 static inline void snd_pmac_dma_stop(struct pmac_stream *rec) 185 { 186 out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16); 187 snd_pmac_wait_ack(rec); 188 } 189 190 /* 191 * set the command pointer address 192 */ 193 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd) 194 { 195 out_le32(&rec->dma->cmdptr, cmd->addr); 196 } 197 198 /* 199 * start the DMA 200 */ 201 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status) 202 { 203 out_le32(&rec->dma->control, status | (status << 16)); 204 } 205 206 207 /* 208 * prepare playback/capture stream 209 */ 210 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs) 211 { 212 int i; 213 volatile struct dbdma_cmd __iomem *cp; 214 struct snd_pcm_runtime *runtime = subs->runtime; 215 int rate_index; 216 long offset; 217 struct pmac_stream *astr; 218 219 rec->dma_size = snd_pcm_lib_buffer_bytes(subs); 220 rec->period_size = snd_pcm_lib_period_bytes(subs); 221 rec->nperiods = rec->dma_size / rec->period_size; 222 rec->cur_period = 0; 223 rate_index = snd_pmac_rate_index(chip, rec, runtime->rate); 224 225 /* set up constraints */ 226 astr = snd_pmac_get_stream(chip, another_stream(rec->stream)); 227 if (! astr) 228 return -EINVAL; 229 astr->cur_freqs = 1 << rate_index; 230 astr->cur_formats = 1 << runtime->format; 231 chip->rate_index = rate_index; 232 chip->format = runtime->format; 233 234 /* We really want to execute a DMA stop command, after the AWACS 235 * is initialized. 236 * For reasons I don't understand, it stops the hissing noise 237 * common to many PowerBook G3 systems and random noise otherwise 238 * captured on iBook2's about every third time. -ReneR 239 */ 240 spin_lock_irq(&chip->reg_lock); 241 snd_pmac_dma_stop(rec); 242 chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP); 243 snd_pmac_dma_set_command(rec, &chip->extra_dma); 244 snd_pmac_dma_run(rec, RUN); 245 spin_unlock_irq(&chip->reg_lock); 246 mdelay(5); 247 spin_lock_irq(&chip->reg_lock); 248 /* continuous DMA memory type doesn't provide the physical address, 249 * so we need to resolve the address here... 250 */ 251 offset = runtime->dma_addr; 252 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) { 253 cp->phy_addr = cpu_to_le32(offset); 254 cp->req_count = cpu_to_le16(rec->period_size); 255 /*cp->res_count = cpu_to_le16(0);*/ 256 cp->xfer_status = cpu_to_le16(0); 257 offset += rec->period_size; 258 } 259 /* make loop */ 260 cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS); 261 cp->cmd_dep = cpu_to_le32(rec->cmd.addr); 262 263 snd_pmac_dma_stop(rec); 264 snd_pmac_dma_set_command(rec, &rec->cmd); 265 spin_unlock_irq(&chip->reg_lock); 266 267 return 0; 268 } 269 270 271 /* 272 * PCM trigger/stop 273 */ 274 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec, 275 struct snd_pcm_substream *subs, int cmd) 276 { 277 volatile struct dbdma_cmd __iomem *cp; 278 int i, command; 279 280 switch (cmd) { 281 case SNDRV_PCM_TRIGGER_START: 282 case SNDRV_PCM_TRIGGER_RESUME: 283 if (rec->running) 284 return -EBUSY; 285 command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ? 286 OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS; 287 spin_lock(&chip->reg_lock); 288 snd_pmac_beep_stop(chip); 289 snd_pmac_pcm_set_format(chip); 290 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) 291 out_le16(&cp->command, command); 292 snd_pmac_dma_set_command(rec, &rec->cmd); 293 (void)in_le32(&rec->dma->status); 294 snd_pmac_dma_run(rec, RUN|WAKE); 295 rec->running = 1; 296 spin_unlock(&chip->reg_lock); 297 break; 298 299 case SNDRV_PCM_TRIGGER_STOP: 300 case SNDRV_PCM_TRIGGER_SUSPEND: 301 spin_lock(&chip->reg_lock); 302 rec->running = 0; 303 /*printk(KERN_DEBUG "stopped!!\n");*/ 304 snd_pmac_dma_stop(rec); 305 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) 306 out_le16(&cp->command, DBDMA_STOP); 307 spin_unlock(&chip->reg_lock); 308 break; 309 310 default: 311 return -EINVAL; 312 } 313 314 return 0; 315 } 316 317 /* 318 * return the current pointer 319 */ 320 inline 321 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip, 322 struct pmac_stream *rec, 323 struct snd_pcm_substream *subs) 324 { 325 int count = 0; 326 327 #if 1 /* hmm.. how can we get the current dma pointer?? */ 328 int stat; 329 volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period]; 330 stat = le16_to_cpu(cp->xfer_status); 331 if (stat & (ACTIVE|DEAD)) { 332 count = in_le16(&cp->res_count); 333 if (count) 334 count = rec->period_size - count; 335 } 336 #endif 337 count += rec->cur_period * rec->period_size; 338 /*printk(KERN_DEBUG "pointer=%d\n", count);*/ 339 return bytes_to_frames(subs->runtime, count); 340 } 341 342 /* 343 * playback 344 */ 345 346 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs) 347 { 348 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 349 return snd_pmac_pcm_prepare(chip, &chip->playback, subs); 350 } 351 352 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs, 353 int cmd) 354 { 355 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 356 return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd); 357 } 358 359 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs) 360 { 361 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 362 return snd_pmac_pcm_pointer(chip, &chip->playback, subs); 363 } 364 365 366 /* 367 * capture 368 */ 369 370 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs) 371 { 372 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 373 return snd_pmac_pcm_prepare(chip, &chip->capture, subs); 374 } 375 376 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs, 377 int cmd) 378 { 379 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 380 return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd); 381 } 382 383 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs) 384 { 385 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 386 return snd_pmac_pcm_pointer(chip, &chip->capture, subs); 387 } 388 389 390 /* 391 * Handle DEAD DMA transfers: 392 * if the TX status comes up "DEAD" - reported on some Power Computing machines 393 * we need to re-start the dbdma - but from a different physical start address 394 * and with a different transfer length. It would get very messy to do this 395 * with the normal dbdma_cmd blocks - we would have to re-write the buffer start 396 * addresses each time. So, we will keep a single dbdma_cmd block which can be 397 * fiddled with. 398 * When DEAD status is first reported the content of the faulted dbdma block is 399 * copied into the emergency buffer and we note that the buffer is in use. 400 * we then bump the start physical address by the amount that was successfully 401 * output before it died. 402 * On any subsequent DEAD result we just do the bump-ups (we know that we are 403 * already using the emergency dbdma_cmd). 404 * CHECK: this just tries to "do it". It is possible that we should abandon 405 * xfers when the number of residual bytes gets below a certain value - I can 406 * see that this might cause a loop-forever if a too small transfer causes 407 * DEAD status. However this is a TODO for now - we'll see what gets reported. 408 * When we get a successful transfer result with the emergency buffer we just 409 * pretend that it completed using the original dmdma_cmd and carry on. The 410 * 'next_cmd' field will already point back to the original loop of blocks. 411 */ 412 static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec, 413 volatile struct dbdma_cmd __iomem *cp) 414 { 415 unsigned short req, res ; 416 unsigned int phy ; 417 418 /* printk(KERN_WARNING "snd-powermac: DMA died - patching it up!\n"); */ 419 420 /* to clear DEAD status we must first clear RUN 421 set it to quiescent to be on the safe side */ 422 (void)in_le32(&rec->dma->status); 423 out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16); 424 425 if (!emergency_in_use) { /* new problem */ 426 memcpy((void *)emergency_dbdma.cmds, (void *)cp, 427 sizeof(struct dbdma_cmd)); 428 emergency_in_use = 1; 429 cp->xfer_status = cpu_to_le16(0); 430 cp->req_count = cpu_to_le16(rec->period_size); 431 cp = emergency_dbdma.cmds; 432 } 433 434 /* now bump the values to reflect the amount 435 we haven't yet shifted */ 436 req = le16_to_cpu(cp->req_count); 437 res = le16_to_cpu(cp->res_count); 438 phy = le32_to_cpu(cp->phy_addr); 439 phy += (req - res); 440 cp->req_count = cpu_to_le16(res); 441 cp->res_count = cpu_to_le16(0); 442 cp->xfer_status = cpu_to_le16(0); 443 cp->phy_addr = cpu_to_le32(phy); 444 445 cp->cmd_dep = cpu_to_le32(rec->cmd.addr 446 + sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods)); 447 448 cp->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS); 449 450 /* point at our patched up command block */ 451 out_le32(&rec->dma->cmdptr, emergency_dbdma.addr); 452 453 /* we must re-start the controller */ 454 (void)in_le32(&rec->dma->status); 455 /* should complete clearing the DEAD status */ 456 out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE)); 457 } 458 459 /* 460 * update playback/capture pointer from interrupts 461 */ 462 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec) 463 { 464 volatile struct dbdma_cmd __iomem *cp; 465 int c; 466 int stat; 467 468 spin_lock(&chip->reg_lock); 469 if (rec->running) { 470 for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */ 471 472 if (emergency_in_use) /* already using DEAD xfer? */ 473 cp = emergency_dbdma.cmds; 474 else 475 cp = &rec->cmd.cmds[rec->cur_period]; 476 477 stat = le16_to_cpu(cp->xfer_status); 478 479 if (stat & DEAD) { 480 snd_pmac_pcm_dead_xfer(rec, cp); 481 break; /* this block is still going */ 482 } 483 484 if (emergency_in_use) 485 emergency_in_use = 0 ; /* done that */ 486 487 if (! (stat & ACTIVE)) 488 break; 489 490 /*printk(KERN_DEBUG "update frag %d\n", rec->cur_period);*/ 491 cp->xfer_status = cpu_to_le16(0); 492 cp->req_count = cpu_to_le16(rec->period_size); 493 /*cp->res_count = cpu_to_le16(0);*/ 494 rec->cur_period++; 495 if (rec->cur_period >= rec->nperiods) { 496 rec->cur_period = 0; 497 } 498 499 spin_unlock(&chip->reg_lock); 500 snd_pcm_period_elapsed(rec->substream); 501 spin_lock(&chip->reg_lock); 502 } 503 } 504 spin_unlock(&chip->reg_lock); 505 } 506 507 508 /* 509 * hw info 510 */ 511 512 static const struct snd_pcm_hardware snd_pmac_playback = 513 { 514 .info = (SNDRV_PCM_INFO_INTERLEAVED | 515 SNDRV_PCM_INFO_MMAP | 516 SNDRV_PCM_INFO_MMAP_VALID | 517 SNDRV_PCM_INFO_RESUME), 518 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE, 519 .rates = SNDRV_PCM_RATE_8000_44100, 520 .rate_min = 7350, 521 .rate_max = 44100, 522 .channels_min = 2, 523 .channels_max = 2, 524 .buffer_bytes_max = 131072, 525 .period_bytes_min = 256, 526 .period_bytes_max = 16384, 527 .periods_min = 3, 528 .periods_max = PMAC_MAX_FRAGS, 529 }; 530 531 static const struct snd_pcm_hardware snd_pmac_capture = 532 { 533 .info = (SNDRV_PCM_INFO_INTERLEAVED | 534 SNDRV_PCM_INFO_MMAP | 535 SNDRV_PCM_INFO_MMAP_VALID | 536 SNDRV_PCM_INFO_RESUME), 537 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE, 538 .rates = SNDRV_PCM_RATE_8000_44100, 539 .rate_min = 7350, 540 .rate_max = 44100, 541 .channels_min = 2, 542 .channels_max = 2, 543 .buffer_bytes_max = 131072, 544 .period_bytes_min = 256, 545 .period_bytes_max = 16384, 546 .periods_min = 3, 547 .periods_max = PMAC_MAX_FRAGS, 548 }; 549 550 551 #if 0 // NYI 552 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params, 553 struct snd_pcm_hw_rule *rule) 554 { 555 struct snd_pmac *chip = rule->private; 556 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]); 557 int i, freq_table[8], num_freqs; 558 559 if (! rec) 560 return -EINVAL; 561 num_freqs = 0; 562 for (i = chip->num_freqs - 1; i >= 0; i--) { 563 if (rec->cur_freqs & (1 << i)) 564 freq_table[num_freqs++] = chip->freq_table[i]; 565 } 566 567 return snd_interval_list(hw_param_interval(params, rule->var), 568 num_freqs, freq_table, 0); 569 } 570 571 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params, 572 struct snd_pcm_hw_rule *rule) 573 { 574 struct snd_pmac *chip = rule->private; 575 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]); 576 577 if (! rec) 578 return -EINVAL; 579 return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT), 580 rec->cur_formats); 581 } 582 #endif // NYI 583 584 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec, 585 struct snd_pcm_substream *subs) 586 { 587 struct snd_pcm_runtime *runtime = subs->runtime; 588 int i; 589 590 /* look up frequency table and fill bit mask */ 591 runtime->hw.rates = 0; 592 for (i = 0; i < chip->num_freqs; i++) 593 if (chip->freqs_ok & (1 << i)) 594 runtime->hw.rates |= 595 snd_pcm_rate_to_rate_bit(chip->freq_table[i]); 596 597 /* check for minimum and maximum rates */ 598 for (i = 0; i < chip->num_freqs; i++) { 599 if (chip->freqs_ok & (1 << i)) { 600 runtime->hw.rate_max = chip->freq_table[i]; 601 break; 602 } 603 } 604 for (i = chip->num_freqs - 1; i >= 0; i--) { 605 if (chip->freqs_ok & (1 << i)) { 606 runtime->hw.rate_min = chip->freq_table[i]; 607 break; 608 } 609 } 610 runtime->hw.formats = chip->formats_ok; 611 if (chip->can_capture) { 612 if (! chip->can_duplex) 613 runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX; 614 runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX; 615 } 616 runtime->private_data = rec; 617 rec->substream = subs; 618 619 #if 0 /* FIXME: still under development.. */ 620 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 621 snd_pmac_hw_rule_rate, chip, rec->stream, -1); 622 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, 623 snd_pmac_hw_rule_format, chip, rec->stream, -1); 624 #endif 625 626 runtime->hw.periods_max = rec->cmd.size - 1; 627 628 /* constraints to fix choppy sound */ 629 snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); 630 return 0; 631 } 632 633 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec, 634 struct snd_pcm_substream *subs) 635 { 636 struct pmac_stream *astr; 637 638 snd_pmac_dma_stop(rec); 639 640 astr = snd_pmac_get_stream(chip, another_stream(rec->stream)); 641 if (! astr) 642 return -EINVAL; 643 644 /* reset constraints */ 645 astr->cur_freqs = chip->freqs_ok; 646 astr->cur_formats = chip->formats_ok; 647 648 return 0; 649 } 650 651 static int snd_pmac_playback_open(struct snd_pcm_substream *subs) 652 { 653 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 654 655 subs->runtime->hw = snd_pmac_playback; 656 return snd_pmac_pcm_open(chip, &chip->playback, subs); 657 } 658 659 static int snd_pmac_capture_open(struct snd_pcm_substream *subs) 660 { 661 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 662 663 subs->runtime->hw = snd_pmac_capture; 664 return snd_pmac_pcm_open(chip, &chip->capture, subs); 665 } 666 667 static int snd_pmac_playback_close(struct snd_pcm_substream *subs) 668 { 669 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 670 671 return snd_pmac_pcm_close(chip, &chip->playback, subs); 672 } 673 674 static int snd_pmac_capture_close(struct snd_pcm_substream *subs) 675 { 676 struct snd_pmac *chip = snd_pcm_substream_chip(subs); 677 678 return snd_pmac_pcm_close(chip, &chip->capture, subs); 679 } 680 681 /* 682 */ 683 684 static const struct snd_pcm_ops snd_pmac_playback_ops = { 685 .open = snd_pmac_playback_open, 686 .close = snd_pmac_playback_close, 687 .ioctl = snd_pcm_lib_ioctl, 688 .hw_params = snd_pmac_pcm_hw_params, 689 .hw_free = snd_pmac_pcm_hw_free, 690 .prepare = snd_pmac_playback_prepare, 691 .trigger = snd_pmac_playback_trigger, 692 .pointer = snd_pmac_playback_pointer, 693 }; 694 695 static const struct snd_pcm_ops snd_pmac_capture_ops = { 696 .open = snd_pmac_capture_open, 697 .close = snd_pmac_capture_close, 698 .ioctl = snd_pcm_lib_ioctl, 699 .hw_params = snd_pmac_pcm_hw_params, 700 .hw_free = snd_pmac_pcm_hw_free, 701 .prepare = snd_pmac_capture_prepare, 702 .trigger = snd_pmac_capture_trigger, 703 .pointer = snd_pmac_capture_pointer, 704 }; 705 706 int snd_pmac_pcm_new(struct snd_pmac *chip) 707 { 708 struct snd_pcm *pcm; 709 int err; 710 int num_captures = 1; 711 712 if (! chip->can_capture) 713 num_captures = 0; 714 err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm); 715 if (err < 0) 716 return err; 717 718 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops); 719 if (chip->can_capture) 720 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops); 721 722 pcm->private_data = chip; 723 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 724 strcpy(pcm->name, chip->card->shortname); 725 chip->pcm = pcm; 726 727 chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE; 728 if (chip->can_byte_swap) 729 chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE; 730 731 chip->playback.cur_formats = chip->formats_ok; 732 chip->capture.cur_formats = chip->formats_ok; 733 chip->playback.cur_freqs = chip->freqs_ok; 734 chip->capture.cur_freqs = chip->freqs_ok; 735 736 /* preallocate 64k buffer */ 737 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 738 &chip->pdev->dev, 739 64 * 1024, 64 * 1024); 740 741 return 0; 742 } 743 744 745 static void snd_pmac_dbdma_reset(struct snd_pmac *chip) 746 { 747 out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16); 748 snd_pmac_wait_ack(&chip->playback); 749 out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16); 750 snd_pmac_wait_ack(&chip->capture); 751 } 752 753 754 /* 755 * handling beep 756 */ 757 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed) 758 { 759 struct pmac_stream *rec = &chip->playback; 760 761 snd_pmac_dma_stop(rec); 762 chip->extra_dma.cmds->req_count = cpu_to_le16(bytes); 763 chip->extra_dma.cmds->xfer_status = cpu_to_le16(0); 764 chip->extra_dma.cmds->cmd_dep = cpu_to_le32(chip->extra_dma.addr); 765 chip->extra_dma.cmds->phy_addr = cpu_to_le32(addr); 766 chip->extra_dma.cmds->command = cpu_to_le16(OUTPUT_MORE + BR_ALWAYS); 767 out_le32(&chip->awacs->control, 768 (in_le32(&chip->awacs->control) & ~0x1f00) 769 | (speed << 8)); 770 out_le32(&chip->awacs->byteswap, 0); 771 snd_pmac_dma_set_command(rec, &chip->extra_dma); 772 snd_pmac_dma_run(rec, RUN); 773 } 774 775 void snd_pmac_beep_dma_stop(struct snd_pmac *chip) 776 { 777 snd_pmac_dma_stop(&chip->playback); 778 chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP); 779 snd_pmac_pcm_set_format(chip); /* reset format */ 780 } 781 782 783 /* 784 * interrupt handlers 785 */ 786 static irqreturn_t 787 snd_pmac_tx_intr(int irq, void *devid) 788 { 789 struct snd_pmac *chip = devid; 790 snd_pmac_pcm_update(chip, &chip->playback); 791 return IRQ_HANDLED; 792 } 793 794 795 static irqreturn_t 796 snd_pmac_rx_intr(int irq, void *devid) 797 { 798 struct snd_pmac *chip = devid; 799 snd_pmac_pcm_update(chip, &chip->capture); 800 return IRQ_HANDLED; 801 } 802 803 804 static irqreturn_t 805 snd_pmac_ctrl_intr(int irq, void *devid) 806 { 807 struct snd_pmac *chip = devid; 808 int ctrl = in_le32(&chip->awacs->control); 809 810 /*printk(KERN_DEBUG "pmac: control interrupt.. 0x%x\n", ctrl);*/ 811 if (ctrl & MASK_PORTCHG) { 812 /* do something when headphone is plugged/unplugged? */ 813 if (chip->update_automute) 814 chip->update_automute(chip, 1); 815 } 816 if (ctrl & MASK_CNTLERR) { 817 int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16; 818 if (err && chip->model <= PMAC_SCREAMER) 819 snd_printk(KERN_DEBUG "error %x\n", err); 820 } 821 /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */ 822 out_le32(&chip->awacs->control, ctrl); 823 return IRQ_HANDLED; 824 } 825 826 827 /* 828 * a wrapper to feature call for compatibility 829 */ 830 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable) 831 { 832 if (ppc_md.feature_call) 833 ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable); 834 } 835 836 /* 837 * release resources 838 */ 839 840 static int snd_pmac_free(struct snd_pmac *chip) 841 { 842 /* stop sounds */ 843 if (chip->initialized) { 844 snd_pmac_dbdma_reset(chip); 845 /* disable interrupts from awacs interface */ 846 out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff); 847 } 848 849 if (chip->node) 850 snd_pmac_sound_feature(chip, 0); 851 852 /* clean up mixer if any */ 853 if (chip->mixer_free) 854 chip->mixer_free(chip); 855 856 snd_pmac_detach_beep(chip); 857 858 /* release resources */ 859 if (chip->irq >= 0) 860 free_irq(chip->irq, (void*)chip); 861 if (chip->tx_irq >= 0) 862 free_irq(chip->tx_irq, (void*)chip); 863 if (chip->rx_irq >= 0) 864 free_irq(chip->rx_irq, (void*)chip); 865 snd_pmac_dbdma_free(chip, &chip->playback.cmd); 866 snd_pmac_dbdma_free(chip, &chip->capture.cmd); 867 snd_pmac_dbdma_free(chip, &chip->extra_dma); 868 snd_pmac_dbdma_free(chip, &emergency_dbdma); 869 iounmap(chip->macio_base); 870 iounmap(chip->latch_base); 871 iounmap(chip->awacs); 872 iounmap(chip->playback.dma); 873 iounmap(chip->capture.dma); 874 875 if (chip->node) { 876 int i; 877 for (i = 0; i < 3; i++) { 878 if (chip->requested & (1 << i)) 879 release_mem_region(chip->rsrc[i].start, 880 resource_size(&chip->rsrc[i])); 881 } 882 } 883 884 pci_dev_put(chip->pdev); 885 of_node_put(chip->node); 886 kfree(chip); 887 return 0; 888 } 889 890 891 /* 892 * free the device 893 */ 894 static int snd_pmac_dev_free(struct snd_device *device) 895 { 896 struct snd_pmac *chip = device->device_data; 897 return snd_pmac_free(chip); 898 } 899 900 901 /* 902 * check the machine support byteswap (little-endian) 903 */ 904 905 static void detect_byte_swap(struct snd_pmac *chip) 906 { 907 struct device_node *mio; 908 909 /* if seems that Keylargo can't byte-swap */ 910 for (mio = chip->node->parent; mio; mio = mio->parent) { 911 if (of_node_name_eq(mio, "mac-io")) { 912 if (of_device_is_compatible(mio, "Keylargo")) 913 chip->can_byte_swap = 0; 914 break; 915 } 916 } 917 918 /* it seems the Pismo & iBook can't byte-swap in hardware. */ 919 if (of_machine_is_compatible("PowerBook3,1") || 920 of_machine_is_compatible("PowerBook2,1")) 921 chip->can_byte_swap = 0 ; 922 923 if (of_machine_is_compatible("PowerBook2,1")) 924 chip->can_duplex = 0; 925 } 926 927 928 /* 929 * detect a sound chip 930 */ 931 static int snd_pmac_detect(struct snd_pmac *chip) 932 { 933 struct device_node *sound; 934 struct device_node *dn; 935 const unsigned int *prop; 936 unsigned int l; 937 struct macio_chip* macio; 938 939 if (!machine_is(powermac)) 940 return -ENODEV; 941 942 chip->subframe = 0; 943 chip->revision = 0; 944 chip->freqs_ok = 0xff; /* all ok */ 945 chip->model = PMAC_AWACS; 946 chip->can_byte_swap = 1; 947 chip->can_duplex = 1; 948 chip->can_capture = 1; 949 chip->num_freqs = ARRAY_SIZE(awacs_freqs); 950 chip->freq_table = awacs_freqs; 951 chip->pdev = NULL; 952 953 chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */ 954 955 /* check machine type */ 956 if (of_machine_is_compatible("AAPL,3400/2400") 957 || of_machine_is_compatible("AAPL,3500")) 958 chip->is_pbook_3400 = 1; 959 else if (of_machine_is_compatible("PowerBook1,1") 960 || of_machine_is_compatible("AAPL,PowerBook1998")) 961 chip->is_pbook_G3 = 1; 962 chip->node = of_find_node_by_name(NULL, "awacs"); 963 sound = of_node_get(chip->node); 964 965 /* 966 * powermac G3 models have a node called "davbus" 967 * with a child called "sound". 968 */ 969 if (!chip->node) 970 chip->node = of_find_node_by_name(NULL, "davbus"); 971 /* 972 * if we didn't find a davbus device, try 'i2s-a' since 973 * this seems to be what iBooks have 974 */ 975 if (! chip->node) { 976 chip->node = of_find_node_by_name(NULL, "i2s-a"); 977 if (chip->node && chip->node->parent && 978 chip->node->parent->parent) { 979 if (of_device_is_compatible(chip->node->parent->parent, 980 "K2-Keylargo")) 981 chip->is_k2 = 1; 982 } 983 } 984 if (! chip->node) 985 return -ENODEV; 986 987 if (!sound) { 988 for_each_node_by_name(sound, "sound") 989 if (sound->parent == chip->node) 990 break; 991 } 992 if (! sound) { 993 of_node_put(chip->node); 994 chip->node = NULL; 995 return -ENODEV; 996 } 997 prop = of_get_property(sound, "sub-frame", NULL); 998 if (prop && *prop < 16) 999 chip->subframe = *prop; 1000 prop = of_get_property(sound, "layout-id", NULL); 1001 if (prop) { 1002 /* partly deprecate snd-powermac, for those machines 1003 * that have a layout-id property for now */ 1004 printk(KERN_INFO "snd-powermac no longer handles any " 1005 "machines with a layout-id property " 1006 "in the device-tree, use snd-aoa.\n"); 1007 of_node_put(sound); 1008 of_node_put(chip->node); 1009 chip->node = NULL; 1010 return -ENODEV; 1011 } 1012 /* This should be verified on older screamers */ 1013 if (of_device_is_compatible(sound, "screamer")) { 1014 chip->model = PMAC_SCREAMER; 1015 // chip->can_byte_swap = 0; /* FIXME: check this */ 1016 } 1017 if (of_device_is_compatible(sound, "burgundy")) { 1018 chip->model = PMAC_BURGUNDY; 1019 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1020 } 1021 if (of_device_is_compatible(sound, "daca")) { 1022 chip->model = PMAC_DACA; 1023 chip->can_capture = 0; /* no capture */ 1024 chip->can_duplex = 0; 1025 // chip->can_byte_swap = 0; /* FIXME: check this */ 1026 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1027 } 1028 if (of_device_is_compatible(sound, "tumbler")) { 1029 chip->model = PMAC_TUMBLER; 1030 chip->can_capture = of_machine_is_compatible("PowerMac4,2") 1031 || of_machine_is_compatible("PowerBook3,2") 1032 || of_machine_is_compatible("PowerBook3,3") 1033 || of_machine_is_compatible("PowerBook4,1") 1034 || of_machine_is_compatible("PowerBook4,2") 1035 || of_machine_is_compatible("PowerBook4,3"); 1036 chip->can_duplex = 0; 1037 // chip->can_byte_swap = 0; /* FIXME: check this */ 1038 chip->num_freqs = ARRAY_SIZE(tumbler_freqs); 1039 chip->freq_table = tumbler_freqs; 1040 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1041 } 1042 if (of_device_is_compatible(sound, "snapper")) { 1043 chip->model = PMAC_SNAPPER; 1044 // chip->can_byte_swap = 0; /* FIXME: check this */ 1045 chip->num_freqs = ARRAY_SIZE(tumbler_freqs); 1046 chip->freq_table = tumbler_freqs; 1047 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */ 1048 } 1049 prop = of_get_property(sound, "device-id", NULL); 1050 if (prop) 1051 chip->device_id = *prop; 1052 dn = of_find_node_by_name(NULL, "perch"); 1053 chip->has_iic = (dn != NULL); 1054 of_node_put(dn); 1055 1056 /* We need the PCI device for DMA allocations, let's use a crude method 1057 * for now ... 1058 */ 1059 macio = macio_find(chip->node, macio_unknown); 1060 if (macio == NULL) 1061 printk(KERN_WARNING "snd-powermac: can't locate macio !\n"); 1062 else { 1063 struct pci_dev *pdev = NULL; 1064 1065 for_each_pci_dev(pdev) { 1066 struct device_node *np = pci_device_to_OF_node(pdev); 1067 if (np && np == macio->of_node) { 1068 chip->pdev = pdev; 1069 break; 1070 } 1071 } 1072 } 1073 if (chip->pdev == NULL) 1074 printk(KERN_WARNING "snd-powermac: can't locate macio PCI" 1075 " device !\n"); 1076 1077 detect_byte_swap(chip); 1078 1079 /* look for a property saying what sample rates 1080 are available */ 1081 prop = of_get_property(sound, "sample-rates", &l); 1082 if (! prop) 1083 prop = of_get_property(sound, "output-frame-rates", &l); 1084 if (prop) { 1085 int i; 1086 chip->freqs_ok = 0; 1087 for (l /= sizeof(int); l > 0; --l) { 1088 unsigned int r = *prop++; 1089 /* Apple 'Fixed' format */ 1090 if (r >= 0x10000) 1091 r >>= 16; 1092 for (i = 0; i < chip->num_freqs; ++i) { 1093 if (r == chip->freq_table[i]) { 1094 chip->freqs_ok |= (1 << i); 1095 break; 1096 } 1097 } 1098 } 1099 } else { 1100 /* assume only 44.1khz */ 1101 chip->freqs_ok = 1; 1102 } 1103 1104 of_node_put(sound); 1105 return 0; 1106 } 1107 1108 #ifdef PMAC_SUPPORT_AUTOMUTE 1109 /* 1110 * auto-mute 1111 */ 1112 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol, 1113 struct snd_ctl_elem_value *ucontrol) 1114 { 1115 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); 1116 ucontrol->value.integer.value[0] = chip->auto_mute; 1117 return 0; 1118 } 1119 1120 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol, 1121 struct snd_ctl_elem_value *ucontrol) 1122 { 1123 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); 1124 if (ucontrol->value.integer.value[0] != chip->auto_mute) { 1125 chip->auto_mute = !!ucontrol->value.integer.value[0]; 1126 if (chip->update_automute) 1127 chip->update_automute(chip, 1); 1128 return 1; 1129 } 1130 return 0; 1131 } 1132 1133 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol, 1134 struct snd_ctl_elem_value *ucontrol) 1135 { 1136 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol); 1137 if (chip->detect_headphone) 1138 ucontrol->value.integer.value[0] = chip->detect_headphone(chip); 1139 else 1140 ucontrol->value.integer.value[0] = 0; 1141 return 0; 1142 } 1143 1144 static struct snd_kcontrol_new auto_mute_controls[] = { 1145 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1146 .name = "Auto Mute Switch", 1147 .info = snd_pmac_boolean_mono_info, 1148 .get = pmac_auto_mute_get, 1149 .put = pmac_auto_mute_put, 1150 }, 1151 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1152 .name = "Headphone Detection", 1153 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1154 .info = snd_pmac_boolean_mono_info, 1155 .get = pmac_hp_detect_get, 1156 }, 1157 }; 1158 1159 int snd_pmac_add_automute(struct snd_pmac *chip) 1160 { 1161 int err; 1162 chip->auto_mute = 1; 1163 err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip)); 1164 if (err < 0) { 1165 printk(KERN_ERR "snd-powermac: Failed to add automute control\n"); 1166 return err; 1167 } 1168 chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip); 1169 return snd_ctl_add(chip->card, chip->hp_detect_ctl); 1170 } 1171 #endif /* PMAC_SUPPORT_AUTOMUTE */ 1172 1173 /* 1174 * create and detect a pmac chip record 1175 */ 1176 int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return) 1177 { 1178 struct snd_pmac *chip; 1179 struct device_node *np; 1180 int i, err; 1181 unsigned int irq; 1182 unsigned long ctrl_addr, txdma_addr, rxdma_addr; 1183 static struct snd_device_ops ops = { 1184 .dev_free = snd_pmac_dev_free, 1185 }; 1186 1187 *chip_return = NULL; 1188 1189 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 1190 if (chip == NULL) 1191 return -ENOMEM; 1192 chip->card = card; 1193 1194 spin_lock_init(&chip->reg_lock); 1195 chip->irq = chip->tx_irq = chip->rx_irq = -1; 1196 1197 chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK; 1198 chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE; 1199 1200 if ((err = snd_pmac_detect(chip)) < 0) 1201 goto __error; 1202 1203 if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 || 1204 snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 || 1205 snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 || 1206 snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) { 1207 err = -ENOMEM; 1208 goto __error; 1209 } 1210 1211 np = chip->node; 1212 chip->requested = 0; 1213 if (chip->is_k2) { 1214 static char *rnames[] = { 1215 "Sound Control", "Sound DMA" }; 1216 for (i = 0; i < 2; i ++) { 1217 if (of_address_to_resource(np->parent, i, 1218 &chip->rsrc[i])) { 1219 printk(KERN_ERR "snd: can't translate rsrc " 1220 " %d (%s)\n", i, rnames[i]); 1221 err = -ENODEV; 1222 goto __error; 1223 } 1224 if (request_mem_region(chip->rsrc[i].start, 1225 resource_size(&chip->rsrc[i]), 1226 rnames[i]) == NULL) { 1227 printk(KERN_ERR "snd: can't request rsrc " 1228 " %d (%s: %pR)\n", 1229 i, rnames[i], &chip->rsrc[i]); 1230 err = -ENODEV; 1231 goto __error; 1232 } 1233 chip->requested |= (1 << i); 1234 } 1235 ctrl_addr = chip->rsrc[0].start; 1236 txdma_addr = chip->rsrc[1].start; 1237 rxdma_addr = txdma_addr + 0x100; 1238 } else { 1239 static char *rnames[] = { 1240 "Sound Control", "Sound Tx DMA", "Sound Rx DMA" }; 1241 for (i = 0; i < 3; i ++) { 1242 if (of_address_to_resource(np, i, 1243 &chip->rsrc[i])) { 1244 printk(KERN_ERR "snd: can't translate rsrc " 1245 " %d (%s)\n", i, rnames[i]); 1246 err = -ENODEV; 1247 goto __error; 1248 } 1249 if (request_mem_region(chip->rsrc[i].start, 1250 resource_size(&chip->rsrc[i]), 1251 rnames[i]) == NULL) { 1252 printk(KERN_ERR "snd: can't request rsrc " 1253 " %d (%s: %pR)\n", 1254 i, rnames[i], &chip->rsrc[i]); 1255 err = -ENODEV; 1256 goto __error; 1257 } 1258 chip->requested |= (1 << i); 1259 } 1260 ctrl_addr = chip->rsrc[0].start; 1261 txdma_addr = chip->rsrc[1].start; 1262 rxdma_addr = chip->rsrc[2].start; 1263 } 1264 1265 chip->awacs = ioremap(ctrl_addr, 0x1000); 1266 chip->playback.dma = ioremap(txdma_addr, 0x100); 1267 chip->capture.dma = ioremap(rxdma_addr, 0x100); 1268 if (chip->model <= PMAC_BURGUNDY) { 1269 irq = irq_of_parse_and_map(np, 0); 1270 if (request_irq(irq, snd_pmac_ctrl_intr, 0, 1271 "PMac", (void*)chip)) { 1272 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", 1273 irq); 1274 err = -EBUSY; 1275 goto __error; 1276 } 1277 chip->irq = irq; 1278 } 1279 irq = irq_of_parse_and_map(np, 1); 1280 if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){ 1281 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq); 1282 err = -EBUSY; 1283 goto __error; 1284 } 1285 chip->tx_irq = irq; 1286 irq = irq_of_parse_and_map(np, 2); 1287 if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) { 1288 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq); 1289 err = -EBUSY; 1290 goto __error; 1291 } 1292 chip->rx_irq = irq; 1293 1294 snd_pmac_sound_feature(chip, 1); 1295 1296 /* reset & enable interrupts */ 1297 if (chip->model <= PMAC_BURGUNDY) 1298 out_le32(&chip->awacs->control, chip->control_mask); 1299 1300 /* Powerbooks have odd ways of enabling inputs such as 1301 an expansion-bay CD or sound from an internal modem 1302 or a PC-card modem. */ 1303 if (chip->is_pbook_3400) { 1304 /* Enable CD and PC-card sound inputs. */ 1305 /* This is done by reading from address 1306 * f301a000, + 0x10 to enable the expansion-bay 1307 * CD sound input, + 0x80 to enable the PC-card 1308 * sound input. The 0x100 enables the SCSI bus 1309 * terminator power. 1310 */ 1311 chip->latch_base = ioremap (0xf301a000, 0x1000); 1312 in_8(chip->latch_base + 0x190); 1313 } else if (chip->is_pbook_G3) { 1314 struct device_node* mio; 1315 for (mio = chip->node->parent; mio; mio = mio->parent) { 1316 if (of_node_name_eq(mio, "mac-io")) { 1317 struct resource r; 1318 if (of_address_to_resource(mio, 0, &r) == 0) 1319 chip->macio_base = 1320 ioremap(r.start, 0x40); 1321 break; 1322 } 1323 } 1324 /* Enable CD sound input. */ 1325 /* The relevant bits for writing to this byte are 0x8f. 1326 * I haven't found out what the 0x80 bit does. 1327 * For the 0xf bits, writing 3 or 7 enables the CD 1328 * input, any other value disables it. Values 1329 * 1, 3, 5, 7 enable the microphone. Values 0, 2, 1330 * 4, 6, 8 - f enable the input from the modem. 1331 */ 1332 if (chip->macio_base) 1333 out_8(chip->macio_base + 0x37, 3); 1334 } 1335 1336 /* Reset dbdma channels */ 1337 snd_pmac_dbdma_reset(chip); 1338 1339 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) 1340 goto __error; 1341 1342 *chip_return = chip; 1343 return 0; 1344 1345 __error: 1346 snd_pmac_free(chip); 1347 return err; 1348 } 1349 1350 1351 /* 1352 * sleep notify for powerbook 1353 */ 1354 1355 #ifdef CONFIG_PM 1356 1357 /* 1358 * Save state when going to sleep, restore it afterwards. 1359 */ 1360 1361 void snd_pmac_suspend(struct snd_pmac *chip) 1362 { 1363 unsigned long flags; 1364 1365 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot); 1366 if (chip->suspend) 1367 chip->suspend(chip); 1368 snd_pcm_suspend_all(chip->pcm); 1369 spin_lock_irqsave(&chip->reg_lock, flags); 1370 snd_pmac_beep_stop(chip); 1371 spin_unlock_irqrestore(&chip->reg_lock, flags); 1372 if (chip->irq >= 0) 1373 disable_irq(chip->irq); 1374 if (chip->tx_irq >= 0) 1375 disable_irq(chip->tx_irq); 1376 if (chip->rx_irq >= 0) 1377 disable_irq(chip->rx_irq); 1378 snd_pmac_sound_feature(chip, 0); 1379 } 1380 1381 void snd_pmac_resume(struct snd_pmac *chip) 1382 { 1383 snd_pmac_sound_feature(chip, 1); 1384 if (chip->resume) 1385 chip->resume(chip); 1386 /* enable CD sound input */ 1387 if (chip->macio_base && chip->is_pbook_G3) 1388 out_8(chip->macio_base + 0x37, 3); 1389 else if (chip->is_pbook_3400) 1390 in_8(chip->latch_base + 0x190); 1391 1392 snd_pmac_pcm_set_format(chip); 1393 1394 if (chip->irq >= 0) 1395 enable_irq(chip->irq); 1396 if (chip->tx_irq >= 0) 1397 enable_irq(chip->tx_irq); 1398 if (chip->rx_irq >= 0) 1399 enable_irq(chip->rx_irq); 1400 1401 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0); 1402 } 1403 1404 #endif /* CONFIG_PM */ 1405 1406