xref: /openbmc/linux/sound/pci/ymfpci/ymfpci_main.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *  Routines for control of YMF724/740/744/754 chips
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/firmware.h>
9 #include <linux/init.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/sched.h>
13 #include <linux/slab.h>
14 #include <linux/mutex.h>
15 #include <linux/module.h>
16 #include <linux/io.h>
17 
18 #include <sound/core.h>
19 #include <sound/control.h>
20 #include <sound/info.h>
21 #include <sound/tlv.h>
22 #include "ymfpci.h"
23 #include <sound/asoundef.h>
24 #include <sound/mpu401.h>
25 
26 #include <asm/byteorder.h>
27 
28 /*
29  *  common I/O routines
30  */
31 
32 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
33 
34 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
35 {
36 	return readb(chip->reg_area_virt + offset);
37 }
38 
39 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
40 {
41 	writeb(val, chip->reg_area_virt + offset);
42 }
43 
44 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
45 {
46 	return readw(chip->reg_area_virt + offset);
47 }
48 
49 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
50 {
51 	writew(val, chip->reg_area_virt + offset);
52 }
53 
54 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
55 {
56 	return readl(chip->reg_area_virt + offset);
57 }
58 
59 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
60 {
61 	writel(val, chip->reg_area_virt + offset);
62 }
63 
64 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
65 {
66 	unsigned long end_time;
67 	u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
68 
69 	end_time = jiffies + msecs_to_jiffies(750);
70 	do {
71 		if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
72 			return 0;
73 		schedule_timeout_uninterruptible(1);
74 	} while (time_before(jiffies, end_time));
75 	dev_err(chip->card->dev,
76 		"codec_ready: codec %i is not ready [0x%x]\n",
77 		secondary, snd_ymfpci_readw(chip, reg));
78 	return -EBUSY;
79 }
80 
81 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
82 {
83 	struct snd_ymfpci *chip = ac97->private_data;
84 	u32 cmd;
85 
86 	snd_ymfpci_codec_ready(chip, 0);
87 	cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
88 	snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
89 }
90 
91 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
92 {
93 	struct snd_ymfpci *chip = ac97->private_data;
94 
95 	if (snd_ymfpci_codec_ready(chip, 0))
96 		return ~0;
97 	snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
98 	if (snd_ymfpci_codec_ready(chip, 0))
99 		return ~0;
100 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
101 		int i;
102 		for (i = 0; i < 600; i++)
103 			snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
104 	}
105 	return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
106 }
107 
108 /*
109  *  Misc routines
110  */
111 
112 static u32 snd_ymfpci_calc_delta(u32 rate)
113 {
114 	switch (rate) {
115 	case 8000:	return 0x02aaab00;
116 	case 11025:	return 0x03accd00;
117 	case 16000:	return 0x05555500;
118 	case 22050:	return 0x07599a00;
119 	case 32000:	return 0x0aaaab00;
120 	case 44100:	return 0x0eb33300;
121 	default:	return ((rate << 16) / 375) << 5;
122 	}
123 }
124 
125 static const u32 def_rate[8] = {
126 	100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
127 };
128 
129 static u32 snd_ymfpci_calc_lpfK(u32 rate)
130 {
131 	u32 i;
132 	static const u32 val[8] = {
133 		0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
134 		0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
135 	};
136 
137 	if (rate == 44100)
138 		return 0x40000000;	/* FIXME: What's the right value? */
139 	for (i = 0; i < 8; i++)
140 		if (rate <= def_rate[i])
141 			return val[i];
142 	return val[0];
143 }
144 
145 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
146 {
147 	u32 i;
148 	static const u32 val[8] = {
149 		0x35280000, 0x34A70000, 0x32020000, 0x31770000,
150 		0x31390000, 0x31C90000, 0x33D00000, 0x40000000
151 	};
152 
153 	if (rate == 44100)
154 		return 0x370A0000;
155 	for (i = 0; i < 8; i++)
156 		if (rate <= def_rate[i])
157 			return val[i];
158 	return val[0];
159 }
160 
161 /*
162  *  Hardware start management
163  */
164 
165 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
166 {
167 	unsigned long flags;
168 
169 	spin_lock_irqsave(&chip->reg_lock, flags);
170 	if (chip->start_count++ > 0)
171 		goto __end;
172 	snd_ymfpci_writel(chip, YDSXGR_MODE,
173 			  snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
174 	chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
175       __end:
176       	spin_unlock_irqrestore(&chip->reg_lock, flags);
177 }
178 
179 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
180 {
181 	unsigned long flags;
182 	long timeout = 1000;
183 
184 	spin_lock_irqsave(&chip->reg_lock, flags);
185 	if (--chip->start_count > 0)
186 		goto __end;
187 	snd_ymfpci_writel(chip, YDSXGR_MODE,
188 			  snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
189 	while (timeout-- > 0) {
190 		if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
191 			break;
192 	}
193 	if (atomic_read(&chip->interrupt_sleep_count)) {
194 		atomic_set(&chip->interrupt_sleep_count, 0);
195 		wake_up(&chip->interrupt_sleep);
196 	}
197       __end:
198       	spin_unlock_irqrestore(&chip->reg_lock, flags);
199 }
200 
201 /*
202  *  Playback voice management
203  */
204 
205 static int voice_alloc(struct snd_ymfpci *chip,
206 		       enum snd_ymfpci_voice_type type, int pair,
207 		       struct snd_ymfpci_voice **rvoice)
208 {
209 	struct snd_ymfpci_voice *voice, *voice2;
210 	int idx;
211 
212 	*rvoice = NULL;
213 	for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
214 		voice = &chip->voices[idx];
215 		voice2 = pair ? &chip->voices[idx+1] : NULL;
216 		if (voice->use || (voice2 && voice2->use))
217 			continue;
218 		voice->use = 1;
219 		if (voice2)
220 			voice2->use = 1;
221 		switch (type) {
222 		case YMFPCI_PCM:
223 			voice->pcm = 1;
224 			if (voice2)
225 				voice2->pcm = 1;
226 			break;
227 		case YMFPCI_SYNTH:
228 			voice->synth = 1;
229 			break;
230 		case YMFPCI_MIDI:
231 			voice->midi = 1;
232 			break;
233 		}
234 		snd_ymfpci_hw_start(chip);
235 		if (voice2)
236 			snd_ymfpci_hw_start(chip);
237 		*rvoice = voice;
238 		return 0;
239 	}
240 	return -ENOMEM;
241 }
242 
243 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
244 				  enum snd_ymfpci_voice_type type, int pair,
245 				  struct snd_ymfpci_voice **rvoice)
246 {
247 	unsigned long flags;
248 	int result;
249 
250 	if (snd_BUG_ON(!rvoice))
251 		return -EINVAL;
252 	if (snd_BUG_ON(pair && type != YMFPCI_PCM))
253 		return -EINVAL;
254 
255 	spin_lock_irqsave(&chip->voice_lock, flags);
256 	for (;;) {
257 		result = voice_alloc(chip, type, pair, rvoice);
258 		if (result == 0 || type != YMFPCI_PCM)
259 			break;
260 		/* TODO: synth/midi voice deallocation */
261 		break;
262 	}
263 	spin_unlock_irqrestore(&chip->voice_lock, flags);
264 	return result;
265 }
266 
267 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
268 {
269 	unsigned long flags;
270 
271 	if (snd_BUG_ON(!pvoice))
272 		return -EINVAL;
273 	snd_ymfpci_hw_stop(chip);
274 	spin_lock_irqsave(&chip->voice_lock, flags);
275 	if (pvoice->number == chip->src441_used) {
276 		chip->src441_used = -1;
277 		pvoice->ypcm->use_441_slot = 0;
278 	}
279 	pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
280 	pvoice->ypcm = NULL;
281 	pvoice->interrupt = NULL;
282 	spin_unlock_irqrestore(&chip->voice_lock, flags);
283 	return 0;
284 }
285 
286 /*
287  *  PCM part
288  */
289 
290 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
291 {
292 	struct snd_ymfpci_pcm *ypcm;
293 	u32 pos, delta;
294 
295 	if ((ypcm = voice->ypcm) == NULL)
296 		return;
297 	if (ypcm->substream == NULL)
298 		return;
299 	spin_lock(&chip->reg_lock);
300 	if (ypcm->running) {
301 		pos = le32_to_cpu(voice->bank[chip->active_bank].start);
302 		if (pos < ypcm->last_pos)
303 			delta = pos + (ypcm->buffer_size - ypcm->last_pos);
304 		else
305 			delta = pos - ypcm->last_pos;
306 		ypcm->period_pos += delta;
307 		ypcm->last_pos = pos;
308 		if (ypcm->period_pos >= ypcm->period_size) {
309 			/*
310 			dev_dbg(chip->card->dev,
311 			       "done - active_bank = 0x%x, start = 0x%x\n",
312 			       chip->active_bank,
313 			       voice->bank[chip->active_bank].start);
314 			*/
315 			ypcm->period_pos %= ypcm->period_size;
316 			spin_unlock(&chip->reg_lock);
317 			snd_pcm_period_elapsed(ypcm->substream);
318 			spin_lock(&chip->reg_lock);
319 		}
320 
321 		if (unlikely(ypcm->update_pcm_vol)) {
322 			unsigned int subs = ypcm->substream->number;
323 			unsigned int next_bank = 1 - chip->active_bank;
324 			struct snd_ymfpci_playback_bank *bank;
325 			__le32 volume;
326 
327 			bank = &voice->bank[next_bank];
328 			volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
329 			bank->left_gain_end = volume;
330 			if (ypcm->output_rear)
331 				bank->eff2_gain_end = volume;
332 			if (ypcm->voices[1])
333 				bank = &ypcm->voices[1]->bank[next_bank];
334 			volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
335 			bank->right_gain_end = volume;
336 			if (ypcm->output_rear)
337 				bank->eff3_gain_end = volume;
338 			ypcm->update_pcm_vol--;
339 		}
340 	}
341 	spin_unlock(&chip->reg_lock);
342 }
343 
344 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
345 {
346 	struct snd_pcm_runtime *runtime = substream->runtime;
347 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
348 	struct snd_ymfpci *chip = ypcm->chip;
349 	u32 pos, delta;
350 
351 	spin_lock(&chip->reg_lock);
352 	if (ypcm->running) {
353 		pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
354 		if (pos < ypcm->last_pos)
355 			delta = pos + (ypcm->buffer_size - ypcm->last_pos);
356 		else
357 			delta = pos - ypcm->last_pos;
358 		ypcm->period_pos += delta;
359 		ypcm->last_pos = pos;
360 		if (ypcm->period_pos >= ypcm->period_size) {
361 			ypcm->period_pos %= ypcm->period_size;
362 			/*
363 			dev_dbg(chip->card->dev,
364 			       "done - active_bank = 0x%x, start = 0x%x\n",
365 			       chip->active_bank,
366 			       voice->bank[chip->active_bank].start);
367 			*/
368 			spin_unlock(&chip->reg_lock);
369 			snd_pcm_period_elapsed(substream);
370 			spin_lock(&chip->reg_lock);
371 		}
372 	}
373 	spin_unlock(&chip->reg_lock);
374 }
375 
376 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
377 				       int cmd)
378 {
379 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
380 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
381 	struct snd_kcontrol *kctl = NULL;
382 	int result = 0;
383 
384 	spin_lock(&chip->reg_lock);
385 	if (ypcm->voices[0] == NULL) {
386 		result = -EINVAL;
387 		goto __unlock;
388 	}
389 	switch (cmd) {
390 	case SNDRV_PCM_TRIGGER_START:
391 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
392 	case SNDRV_PCM_TRIGGER_RESUME:
393 		chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
394 		if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
395 			chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
396 		ypcm->running = 1;
397 		break;
398 	case SNDRV_PCM_TRIGGER_STOP:
399 		if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
400 			kctl = chip->pcm_mixer[substream->number].ctl;
401 			kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
402 		}
403 		/* fall through */
404 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
405 	case SNDRV_PCM_TRIGGER_SUSPEND:
406 		chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
407 		if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
408 			chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
409 		ypcm->running = 0;
410 		break;
411 	default:
412 		result = -EINVAL;
413 		break;
414 	}
415       __unlock:
416 	spin_unlock(&chip->reg_lock);
417 	if (kctl)
418 		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
419 	return result;
420 }
421 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
422 				      int cmd)
423 {
424 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
425 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
426 	int result = 0;
427 	u32 tmp;
428 
429 	spin_lock(&chip->reg_lock);
430 	switch (cmd) {
431 	case SNDRV_PCM_TRIGGER_START:
432 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
433 	case SNDRV_PCM_TRIGGER_RESUME:
434 		tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
435 		snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
436 		ypcm->running = 1;
437 		break;
438 	case SNDRV_PCM_TRIGGER_STOP:
439 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
440 	case SNDRV_PCM_TRIGGER_SUSPEND:
441 		tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
442 		snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
443 		ypcm->running = 0;
444 		break;
445 	default:
446 		result = -EINVAL;
447 		break;
448 	}
449 	spin_unlock(&chip->reg_lock);
450 	return result;
451 }
452 
453 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
454 {
455 	int err;
456 
457 	if (ypcm->voices[1] != NULL && voices < 2) {
458 		snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
459 		ypcm->voices[1] = NULL;
460 	}
461 	if (voices == 1 && ypcm->voices[0] != NULL)
462 		return 0;		/* already allocated */
463 	if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
464 		return 0;		/* already allocated */
465 	if (voices > 1) {
466 		if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
467 			snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
468 			ypcm->voices[0] = NULL;
469 		}
470 	}
471 	err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
472 	if (err < 0)
473 		return err;
474 	ypcm->voices[0]->ypcm = ypcm;
475 	ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
476 	if (voices > 1) {
477 		ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
478 		ypcm->voices[1]->ypcm = ypcm;
479 	}
480 	return 0;
481 }
482 
483 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
484 				      struct snd_pcm_runtime *runtime,
485 				      int has_pcm_volume)
486 {
487 	struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
488 	u32 format;
489 	u32 delta = snd_ymfpci_calc_delta(runtime->rate);
490 	u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
491 	u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
492 	struct snd_ymfpci_playback_bank *bank;
493 	unsigned int nbank;
494 	__le32 vol_left, vol_right;
495 	u8 use_left, use_right;
496 	unsigned long flags;
497 
498 	if (snd_BUG_ON(!voice))
499 		return;
500 	if (runtime->channels == 1) {
501 		use_left = 1;
502 		use_right = 1;
503 	} else {
504 		use_left = (voiceidx & 1) == 0;
505 		use_right = !use_left;
506 	}
507 	if (has_pcm_volume) {
508 		vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
509 				       [ypcm->substream->number].left << 15);
510 		vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
511 					[ypcm->substream->number].right << 15);
512 	} else {
513 		vol_left = cpu_to_le32(0x40000000);
514 		vol_right = cpu_to_le32(0x40000000);
515 	}
516 	spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
517 	format = runtime->channels == 2 ? 0x00010000 : 0;
518 	if (snd_pcm_format_width(runtime->format) == 8)
519 		format |= 0x80000000;
520 	else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
521 		 runtime->rate == 44100 && runtime->channels == 2 &&
522 		 voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
523 				   ypcm->chip->src441_used == voice->number)) {
524 		ypcm->chip->src441_used = voice->number;
525 		ypcm->use_441_slot = 1;
526 		format |= 0x10000000;
527 	}
528 	if (ypcm->chip->src441_used == voice->number &&
529 	    (format & 0x10000000) == 0) {
530 		ypcm->chip->src441_used = -1;
531 		ypcm->use_441_slot = 0;
532 	}
533 	if (runtime->channels == 2 && (voiceidx & 1) != 0)
534 		format |= 1;
535 	spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
536 	for (nbank = 0; nbank < 2; nbank++) {
537 		bank = &voice->bank[nbank];
538 		memset(bank, 0, sizeof(*bank));
539 		bank->format = cpu_to_le32(format);
540 		bank->base = cpu_to_le32(runtime->dma_addr);
541 		bank->loop_end = cpu_to_le32(ypcm->buffer_size);
542 		bank->lpfQ = cpu_to_le32(lpfQ);
543 		bank->delta =
544 		bank->delta_end = cpu_to_le32(delta);
545 		bank->lpfK =
546 		bank->lpfK_end = cpu_to_le32(lpfK);
547 		bank->eg_gain =
548 		bank->eg_gain_end = cpu_to_le32(0x40000000);
549 
550 		if (ypcm->output_front) {
551 			if (use_left) {
552 				bank->left_gain =
553 				bank->left_gain_end = vol_left;
554 			}
555 			if (use_right) {
556 				bank->right_gain =
557 				bank->right_gain_end = vol_right;
558 			}
559 		}
560 		if (ypcm->output_rear) {
561 		        if (!ypcm->swap_rear) {
562         			if (use_left) {
563         				bank->eff2_gain =
564         				bank->eff2_gain_end = vol_left;
565         			}
566         			if (use_right) {
567         				bank->eff3_gain =
568         				bank->eff3_gain_end = vol_right;
569         			}
570 		        } else {
571         			/* The SPDIF out channels seem to be swapped, so we have
572         			 * to swap them here, too.  The rear analog out channels
573         			 * will be wrong, but otherwise AC3 would not work.
574         			 */
575         			if (use_left) {
576         				bank->eff3_gain =
577         				bank->eff3_gain_end = vol_left;
578         			}
579         			if (use_right) {
580         				bank->eff2_gain =
581         				bank->eff2_gain_end = vol_right;
582         			}
583         		}
584                 }
585 	}
586 }
587 
588 static int snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
589 {
590 	if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &chip->pci->dev,
591 				4096, &chip->ac3_tmp_base) < 0)
592 		return -ENOMEM;
593 
594 	chip->bank_effect[3][0]->base =
595 	chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
596 	chip->bank_effect[3][0]->loop_end =
597 	chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
598 	chip->bank_effect[4][0]->base =
599 	chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
600 	chip->bank_effect[4][0]->loop_end =
601 	chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
602 
603 	spin_lock_irq(&chip->reg_lock);
604 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
605 			  snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
606 	spin_unlock_irq(&chip->reg_lock);
607 	return 0;
608 }
609 
610 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
611 {
612 	spin_lock_irq(&chip->reg_lock);
613 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
614 			  snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
615 	spin_unlock_irq(&chip->reg_lock);
616 	// snd_ymfpci_irq_wait(chip);
617 	if (chip->ac3_tmp_base.area) {
618 		snd_dma_free_pages(&chip->ac3_tmp_base);
619 		chip->ac3_tmp_base.area = NULL;
620 	}
621 	return 0;
622 }
623 
624 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
625 					 struct snd_pcm_hw_params *hw_params)
626 {
627 	struct snd_pcm_runtime *runtime = substream->runtime;
628 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
629 	int err;
630 
631 	if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
632 		return err;
633 	return 0;
634 }
635 
636 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
637 {
638 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
639 	struct snd_pcm_runtime *runtime = substream->runtime;
640 	struct snd_ymfpci_pcm *ypcm;
641 
642 	if (runtime->private_data == NULL)
643 		return 0;
644 	ypcm = runtime->private_data;
645 
646 	/* wait, until the PCI operations are not finished */
647 	snd_ymfpci_irq_wait(chip);
648 	if (ypcm->voices[1]) {
649 		snd_ymfpci_voice_free(chip, ypcm->voices[1]);
650 		ypcm->voices[1] = NULL;
651 	}
652 	if (ypcm->voices[0]) {
653 		snd_ymfpci_voice_free(chip, ypcm->voices[0]);
654 		ypcm->voices[0] = NULL;
655 	}
656 	return 0;
657 }
658 
659 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
660 {
661 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
662 	struct snd_pcm_runtime *runtime = substream->runtime;
663 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
664 	struct snd_kcontrol *kctl;
665 	unsigned int nvoice;
666 
667 	ypcm->period_size = runtime->period_size;
668 	ypcm->buffer_size = runtime->buffer_size;
669 	ypcm->period_pos = 0;
670 	ypcm->last_pos = 0;
671 	for (nvoice = 0; nvoice < runtime->channels; nvoice++)
672 		snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
673 					  substream->pcm == chip->pcm);
674 
675 	if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
676 		kctl = chip->pcm_mixer[substream->number].ctl;
677 		kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
678 		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
679 	}
680 	return 0;
681 }
682 
683 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
684 {
685 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
686 
687 	/* wait, until the PCI operations are not finished */
688 	snd_ymfpci_irq_wait(chip);
689 	return 0;
690 }
691 
692 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
693 {
694 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
695 	struct snd_pcm_runtime *runtime = substream->runtime;
696 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
697 	struct snd_ymfpci_capture_bank * bank;
698 	int nbank;
699 	u32 rate, format;
700 
701 	ypcm->period_size = runtime->period_size;
702 	ypcm->buffer_size = runtime->buffer_size;
703 	ypcm->period_pos = 0;
704 	ypcm->last_pos = 0;
705 	ypcm->shift = 0;
706 	rate = ((48000 * 4096) / runtime->rate) - 1;
707 	format = 0;
708 	if (runtime->channels == 2) {
709 		format |= 2;
710 		ypcm->shift++;
711 	}
712 	if (snd_pcm_format_width(runtime->format) == 8)
713 		format |= 1;
714 	else
715 		ypcm->shift++;
716 	switch (ypcm->capture_bank_number) {
717 	case 0:
718 		snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
719 		snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
720 		break;
721 	case 1:
722 		snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
723 		snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
724 		break;
725 	}
726 	for (nbank = 0; nbank < 2; nbank++) {
727 		bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
728 		bank->base = cpu_to_le32(runtime->dma_addr);
729 		bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
730 		bank->start = 0;
731 		bank->num_of_loops = 0;
732 	}
733 	return 0;
734 }
735 
736 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
737 {
738 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
739 	struct snd_pcm_runtime *runtime = substream->runtime;
740 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
741 	struct snd_ymfpci_voice *voice = ypcm->voices[0];
742 
743 	if (!(ypcm->running && voice))
744 		return 0;
745 	return le32_to_cpu(voice->bank[chip->active_bank].start);
746 }
747 
748 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
749 {
750 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
751 	struct snd_pcm_runtime *runtime = substream->runtime;
752 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
753 
754 	if (!ypcm->running)
755 		return 0;
756 	return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
757 }
758 
759 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
760 {
761 	wait_queue_entry_t wait;
762 	int loops = 4;
763 
764 	while (loops-- > 0) {
765 		if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
766 		 	continue;
767 		init_waitqueue_entry(&wait, current);
768 		add_wait_queue(&chip->interrupt_sleep, &wait);
769 		atomic_inc(&chip->interrupt_sleep_count);
770 		schedule_timeout_uninterruptible(msecs_to_jiffies(50));
771 		remove_wait_queue(&chip->interrupt_sleep, &wait);
772 	}
773 }
774 
775 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
776 {
777 	struct snd_ymfpci *chip = dev_id;
778 	u32 status, nvoice, mode;
779 	struct snd_ymfpci_voice *voice;
780 
781 	status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
782 	if (status & 0x80000000) {
783 		chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
784 		spin_lock(&chip->voice_lock);
785 		for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
786 			voice = &chip->voices[nvoice];
787 			if (voice->interrupt)
788 				voice->interrupt(chip, voice);
789 		}
790 		for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
791 			if (chip->capture_substream[nvoice])
792 				snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
793 		}
794 #if 0
795 		for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
796 			if (chip->effect_substream[nvoice])
797 				snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
798 		}
799 #endif
800 		spin_unlock(&chip->voice_lock);
801 		spin_lock(&chip->reg_lock);
802 		snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
803 		mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
804 		snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
805 		spin_unlock(&chip->reg_lock);
806 
807 		if (atomic_read(&chip->interrupt_sleep_count)) {
808 			atomic_set(&chip->interrupt_sleep_count, 0);
809 			wake_up(&chip->interrupt_sleep);
810 		}
811 	}
812 
813 	status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
814 	if (status & 1) {
815 		if (chip->timer)
816 			snd_timer_interrupt(chip->timer, chip->timer_ticks);
817 	}
818 	snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
819 
820 	if (chip->rawmidi)
821 		snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
822 	return IRQ_HANDLED;
823 }
824 
825 static const struct snd_pcm_hardware snd_ymfpci_playback =
826 {
827 	.info =			(SNDRV_PCM_INFO_MMAP |
828 				 SNDRV_PCM_INFO_MMAP_VALID |
829 				 SNDRV_PCM_INFO_INTERLEAVED |
830 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
831 				 SNDRV_PCM_INFO_PAUSE |
832 				 SNDRV_PCM_INFO_RESUME),
833 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
834 	.rates =		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
835 	.rate_min =		8000,
836 	.rate_max =		48000,
837 	.channels_min =		1,
838 	.channels_max =		2,
839 	.buffer_bytes_max =	256 * 1024, /* FIXME: enough? */
840 	.period_bytes_min =	64,
841 	.period_bytes_max =	256 * 1024, /* FIXME: enough? */
842 	.periods_min =		3,
843 	.periods_max =		1024,
844 	.fifo_size =		0,
845 };
846 
847 static const struct snd_pcm_hardware snd_ymfpci_capture =
848 {
849 	.info =			(SNDRV_PCM_INFO_MMAP |
850 				 SNDRV_PCM_INFO_MMAP_VALID |
851 				 SNDRV_PCM_INFO_INTERLEAVED |
852 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
853 				 SNDRV_PCM_INFO_PAUSE |
854 				 SNDRV_PCM_INFO_RESUME),
855 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
856 	.rates =		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
857 	.rate_min =		8000,
858 	.rate_max =		48000,
859 	.channels_min =		1,
860 	.channels_max =		2,
861 	.buffer_bytes_max =	256 * 1024, /* FIXME: enough? */
862 	.period_bytes_min =	64,
863 	.period_bytes_max =	256 * 1024, /* FIXME: enough? */
864 	.periods_min =		3,
865 	.periods_max =		1024,
866 	.fifo_size =		0,
867 };
868 
869 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
870 {
871 	kfree(runtime->private_data);
872 }
873 
874 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
875 {
876 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
877 	struct snd_pcm_runtime *runtime = substream->runtime;
878 	struct snd_ymfpci_pcm *ypcm;
879 	int err;
880 
881 	runtime->hw = snd_ymfpci_playback;
882 	/* FIXME? True value is 256/48 = 5.33333 ms */
883 	err = snd_pcm_hw_constraint_minmax(runtime,
884 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
885 					   5334, UINT_MAX);
886 	if (err < 0)
887 		return err;
888 	err = snd_pcm_hw_rule_noresample(runtime, 48000);
889 	if (err < 0)
890 		return err;
891 
892 	ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
893 	if (ypcm == NULL)
894 		return -ENOMEM;
895 	ypcm->chip = chip;
896 	ypcm->type = PLAYBACK_VOICE;
897 	ypcm->substream = substream;
898 	runtime->private_data = ypcm;
899 	runtime->private_free = snd_ymfpci_pcm_free_substream;
900 	return 0;
901 }
902 
903 /* call with spinlock held */
904 static void ymfpci_open_extension(struct snd_ymfpci *chip)
905 {
906 	if (! chip->rear_opened) {
907 		if (! chip->spdif_opened) /* set AC3 */
908 			snd_ymfpci_writel(chip, YDSXGR_MODE,
909 					  snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
910 		/* enable second codec (4CHEN) */
911 		snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
912 				  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
913 	}
914 }
915 
916 /* call with spinlock held */
917 static void ymfpci_close_extension(struct snd_ymfpci *chip)
918 {
919 	if (! chip->rear_opened) {
920 		if (! chip->spdif_opened)
921 			snd_ymfpci_writel(chip, YDSXGR_MODE,
922 					  snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
923 		snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
924 				  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
925 	}
926 }
927 
928 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
929 {
930 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
931 	struct snd_pcm_runtime *runtime = substream->runtime;
932 	struct snd_ymfpci_pcm *ypcm;
933 	int err;
934 
935 	if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
936 		return err;
937 	ypcm = runtime->private_data;
938 	ypcm->output_front = 1;
939 	ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
940 	ypcm->swap_rear = 0;
941 	spin_lock_irq(&chip->reg_lock);
942 	if (ypcm->output_rear) {
943 		ymfpci_open_extension(chip);
944 		chip->rear_opened++;
945 	}
946 	spin_unlock_irq(&chip->reg_lock);
947 	return 0;
948 }
949 
950 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
951 {
952 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
953 	struct snd_pcm_runtime *runtime = substream->runtime;
954 	struct snd_ymfpci_pcm *ypcm;
955 	int err;
956 
957 	if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
958 		return err;
959 	ypcm = runtime->private_data;
960 	ypcm->output_front = 0;
961 	ypcm->output_rear = 1;
962 	ypcm->swap_rear = 1;
963 	spin_lock_irq(&chip->reg_lock);
964 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
965 			  snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
966 	ymfpci_open_extension(chip);
967 	chip->spdif_pcm_bits = chip->spdif_bits;
968 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
969 	chip->spdif_opened++;
970 	spin_unlock_irq(&chip->reg_lock);
971 
972 	chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
973 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
974 		       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
975 	return 0;
976 }
977 
978 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
979 {
980 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
981 	struct snd_pcm_runtime *runtime = substream->runtime;
982 	struct snd_ymfpci_pcm *ypcm;
983 	int err;
984 
985 	if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
986 		return err;
987 	ypcm = runtime->private_data;
988 	ypcm->output_front = 0;
989 	ypcm->output_rear = 1;
990 	ypcm->swap_rear = 0;
991 	spin_lock_irq(&chip->reg_lock);
992 	ymfpci_open_extension(chip);
993 	chip->rear_opened++;
994 	spin_unlock_irq(&chip->reg_lock);
995 	return 0;
996 }
997 
998 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
999 				   u32 capture_bank_number)
1000 {
1001 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1002 	struct snd_pcm_runtime *runtime = substream->runtime;
1003 	struct snd_ymfpci_pcm *ypcm;
1004 	int err;
1005 
1006 	runtime->hw = snd_ymfpci_capture;
1007 	/* FIXME? True value is 256/48 = 5.33333 ms */
1008 	err = snd_pcm_hw_constraint_minmax(runtime,
1009 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1010 					   5334, UINT_MAX);
1011 	if (err < 0)
1012 		return err;
1013 	err = snd_pcm_hw_rule_noresample(runtime, 48000);
1014 	if (err < 0)
1015 		return err;
1016 
1017 	ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1018 	if (ypcm == NULL)
1019 		return -ENOMEM;
1020 	ypcm->chip = chip;
1021 	ypcm->type = capture_bank_number + CAPTURE_REC;
1022 	ypcm->substream = substream;
1023 	ypcm->capture_bank_number = capture_bank_number;
1024 	chip->capture_substream[capture_bank_number] = substream;
1025 	runtime->private_data = ypcm;
1026 	runtime->private_free = snd_ymfpci_pcm_free_substream;
1027 	snd_ymfpci_hw_start(chip);
1028 	return 0;
1029 }
1030 
1031 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1032 {
1033 	return snd_ymfpci_capture_open(substream, 0);
1034 }
1035 
1036 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1037 {
1038 	return snd_ymfpci_capture_open(substream, 1);
1039 }
1040 
1041 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1042 {
1043 	return 0;
1044 }
1045 
1046 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1047 {
1048 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1049 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1050 
1051 	spin_lock_irq(&chip->reg_lock);
1052 	if (ypcm->output_rear && chip->rear_opened > 0) {
1053 		chip->rear_opened--;
1054 		ymfpci_close_extension(chip);
1055 	}
1056 	spin_unlock_irq(&chip->reg_lock);
1057 	return snd_ymfpci_playback_close_1(substream);
1058 }
1059 
1060 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1061 {
1062 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1063 
1064 	spin_lock_irq(&chip->reg_lock);
1065 	chip->spdif_opened = 0;
1066 	ymfpci_close_extension(chip);
1067 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1068 			  snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1069 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1070 	spin_unlock_irq(&chip->reg_lock);
1071 	chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1072 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1073 		       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1074 	return snd_ymfpci_playback_close_1(substream);
1075 }
1076 
1077 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1078 {
1079 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1080 
1081 	spin_lock_irq(&chip->reg_lock);
1082 	if (chip->rear_opened > 0) {
1083 		chip->rear_opened--;
1084 		ymfpci_close_extension(chip);
1085 	}
1086 	spin_unlock_irq(&chip->reg_lock);
1087 	return snd_ymfpci_playback_close_1(substream);
1088 }
1089 
1090 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1091 {
1092 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1093 	struct snd_pcm_runtime *runtime = substream->runtime;
1094 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1095 
1096 	if (ypcm != NULL) {
1097 		chip->capture_substream[ypcm->capture_bank_number] = NULL;
1098 		snd_ymfpci_hw_stop(chip);
1099 	}
1100 	return 0;
1101 }
1102 
1103 static const struct snd_pcm_ops snd_ymfpci_playback_ops = {
1104 	.open =			snd_ymfpci_playback_open,
1105 	.close =		snd_ymfpci_playback_close,
1106 	.hw_params =		snd_ymfpci_playback_hw_params,
1107 	.hw_free =		snd_ymfpci_playback_hw_free,
1108 	.prepare =		snd_ymfpci_playback_prepare,
1109 	.trigger =		snd_ymfpci_playback_trigger,
1110 	.pointer =		snd_ymfpci_playback_pointer,
1111 };
1112 
1113 static const struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1114 	.open =			snd_ymfpci_capture_rec_open,
1115 	.close =		snd_ymfpci_capture_close,
1116 	.hw_free =		snd_ymfpci_capture_hw_free,
1117 	.prepare =		snd_ymfpci_capture_prepare,
1118 	.trigger =		snd_ymfpci_capture_trigger,
1119 	.pointer =		snd_ymfpci_capture_pointer,
1120 };
1121 
1122 int snd_ymfpci_pcm(struct snd_ymfpci *chip, int device)
1123 {
1124 	struct snd_pcm *pcm;
1125 	int err;
1126 
1127 	if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1128 		return err;
1129 	pcm->private_data = chip;
1130 
1131 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1132 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1133 
1134 	/* global setup */
1135 	pcm->info_flags = 0;
1136 	strcpy(pcm->name, "YMFPCI");
1137 	chip->pcm = pcm;
1138 
1139 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1140 				       &chip->pci->dev, 64*1024, 256*1024);
1141 
1142 	return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1143 				     snd_pcm_std_chmaps, 2, 0, NULL);
1144 }
1145 
1146 static const struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1147 	.open =			snd_ymfpci_capture_ac97_open,
1148 	.close =		snd_ymfpci_capture_close,
1149 	.hw_free =		snd_ymfpci_capture_hw_free,
1150 	.prepare =		snd_ymfpci_capture_prepare,
1151 	.trigger =		snd_ymfpci_capture_trigger,
1152 	.pointer =		snd_ymfpci_capture_pointer,
1153 };
1154 
1155 int snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device)
1156 {
1157 	struct snd_pcm *pcm;
1158 	int err;
1159 
1160 	if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1161 		return err;
1162 	pcm->private_data = chip;
1163 
1164 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1165 
1166 	/* global setup */
1167 	pcm->info_flags = 0;
1168 	sprintf(pcm->name, "YMFPCI - %s",
1169 		chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1170 	chip->pcm2 = pcm;
1171 
1172 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1173 				       &chip->pci->dev, 64*1024, 256*1024);
1174 
1175 	return 0;
1176 }
1177 
1178 static const struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1179 	.open =			snd_ymfpci_playback_spdif_open,
1180 	.close =		snd_ymfpci_playback_spdif_close,
1181 	.hw_params =		snd_ymfpci_playback_hw_params,
1182 	.hw_free =		snd_ymfpci_playback_hw_free,
1183 	.prepare =		snd_ymfpci_playback_prepare,
1184 	.trigger =		snd_ymfpci_playback_trigger,
1185 	.pointer =		snd_ymfpci_playback_pointer,
1186 };
1187 
1188 int snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device)
1189 {
1190 	struct snd_pcm *pcm;
1191 	int err;
1192 
1193 	if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1194 		return err;
1195 	pcm->private_data = chip;
1196 
1197 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1198 
1199 	/* global setup */
1200 	pcm->info_flags = 0;
1201 	strcpy(pcm->name, "YMFPCI - IEC958");
1202 	chip->pcm_spdif = pcm;
1203 
1204 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1205 				       &chip->pci->dev, 64*1024, 256*1024);
1206 
1207 	return 0;
1208 }
1209 
1210 static const struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1211 	.open =			snd_ymfpci_playback_4ch_open,
1212 	.close =		snd_ymfpci_playback_4ch_close,
1213 	.hw_params =		snd_ymfpci_playback_hw_params,
1214 	.hw_free =		snd_ymfpci_playback_hw_free,
1215 	.prepare =		snd_ymfpci_playback_prepare,
1216 	.trigger =		snd_ymfpci_playback_trigger,
1217 	.pointer =		snd_ymfpci_playback_pointer,
1218 };
1219 
1220 static const struct snd_pcm_chmap_elem surround_map[] = {
1221 	{ .channels = 1,
1222 	  .map = { SNDRV_CHMAP_MONO } },
1223 	{ .channels = 2,
1224 	  .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
1225 	{ }
1226 };
1227 
1228 int snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device)
1229 {
1230 	struct snd_pcm *pcm;
1231 	int err;
1232 
1233 	if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1234 		return err;
1235 	pcm->private_data = chip;
1236 
1237 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1238 
1239 	/* global setup */
1240 	pcm->info_flags = 0;
1241 	strcpy(pcm->name, "YMFPCI - Rear PCM");
1242 	chip->pcm_4ch = pcm;
1243 
1244 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1245 				       &chip->pci->dev, 64*1024, 256*1024);
1246 
1247 	return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1248 				     surround_map, 2, 0, NULL);
1249 }
1250 
1251 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1252 {
1253 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1254 	uinfo->count = 1;
1255 	return 0;
1256 }
1257 
1258 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1259 					struct snd_ctl_elem_value *ucontrol)
1260 {
1261 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1262 
1263 	spin_lock_irq(&chip->reg_lock);
1264 	ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1265 	ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1266 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1267 	spin_unlock_irq(&chip->reg_lock);
1268 	return 0;
1269 }
1270 
1271 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1272 					 struct snd_ctl_elem_value *ucontrol)
1273 {
1274 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1275 	unsigned int val;
1276 	int change;
1277 
1278 	val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1279 	      (ucontrol->value.iec958.status[1] << 8);
1280 	spin_lock_irq(&chip->reg_lock);
1281 	change = chip->spdif_bits != val;
1282 	chip->spdif_bits = val;
1283 	if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1284 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1285 	spin_unlock_irq(&chip->reg_lock);
1286 	return change;
1287 }
1288 
1289 static const struct snd_kcontrol_new snd_ymfpci_spdif_default =
1290 {
1291 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1292 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1293 	.info =		snd_ymfpci_spdif_default_info,
1294 	.get =		snd_ymfpci_spdif_default_get,
1295 	.put =		snd_ymfpci_spdif_default_put
1296 };
1297 
1298 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1299 {
1300 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1301 	uinfo->count = 1;
1302 	return 0;
1303 }
1304 
1305 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1306 				      struct snd_ctl_elem_value *ucontrol)
1307 {
1308 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1309 
1310 	spin_lock_irq(&chip->reg_lock);
1311 	ucontrol->value.iec958.status[0] = 0x3e;
1312 	ucontrol->value.iec958.status[1] = 0xff;
1313 	spin_unlock_irq(&chip->reg_lock);
1314 	return 0;
1315 }
1316 
1317 static const struct snd_kcontrol_new snd_ymfpci_spdif_mask =
1318 {
1319 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1320 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1321 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1322 	.info =		snd_ymfpci_spdif_mask_info,
1323 	.get =		snd_ymfpci_spdif_mask_get,
1324 };
1325 
1326 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1327 {
1328 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1329 	uinfo->count = 1;
1330 	return 0;
1331 }
1332 
1333 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1334 					struct snd_ctl_elem_value *ucontrol)
1335 {
1336 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1337 
1338 	spin_lock_irq(&chip->reg_lock);
1339 	ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1340 	ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1341 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1342 	spin_unlock_irq(&chip->reg_lock);
1343 	return 0;
1344 }
1345 
1346 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1347 					struct snd_ctl_elem_value *ucontrol)
1348 {
1349 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1350 	unsigned int val;
1351 	int change;
1352 
1353 	val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1354 	      (ucontrol->value.iec958.status[1] << 8);
1355 	spin_lock_irq(&chip->reg_lock);
1356 	change = chip->spdif_pcm_bits != val;
1357 	chip->spdif_pcm_bits = val;
1358 	if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1359 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1360 	spin_unlock_irq(&chip->reg_lock);
1361 	return change;
1362 }
1363 
1364 static const struct snd_kcontrol_new snd_ymfpci_spdif_stream =
1365 {
1366 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1367 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1368 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1369 	.info =		snd_ymfpci_spdif_stream_info,
1370 	.get =		snd_ymfpci_spdif_stream_get,
1371 	.put =		snd_ymfpci_spdif_stream_put
1372 };
1373 
1374 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1375 {
1376 	static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"};
1377 
1378 	return snd_ctl_enum_info(info, 1, 3, texts);
1379 }
1380 
1381 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1382 {
1383 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1384 	u16 reg;
1385 
1386 	spin_lock_irq(&chip->reg_lock);
1387 	reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1388 	spin_unlock_irq(&chip->reg_lock);
1389 	if (!(reg & 0x100))
1390 		value->value.enumerated.item[0] = 0;
1391 	else
1392 		value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1393 	return 0;
1394 }
1395 
1396 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1397 {
1398 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1399 	u16 reg, old_reg;
1400 
1401 	spin_lock_irq(&chip->reg_lock);
1402 	old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1403 	if (value->value.enumerated.item[0] == 0)
1404 		reg = old_reg & ~0x100;
1405 	else
1406 		reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1407 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1408 	spin_unlock_irq(&chip->reg_lock);
1409 	return reg != old_reg;
1410 }
1411 
1412 static const struct snd_kcontrol_new snd_ymfpci_drec_source = {
1413 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE,
1414 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
1415 	.name =		"Direct Recording Source",
1416 	.info =		snd_ymfpci_drec_source_info,
1417 	.get =		snd_ymfpci_drec_source_get,
1418 	.put =		snd_ymfpci_drec_source_put
1419 };
1420 
1421 /*
1422  *  Mixer controls
1423  */
1424 
1425 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1426 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1427   .info = snd_ymfpci_info_single, \
1428   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1429   .private_value = ((reg) | ((shift) << 16)) }
1430 
1431 #define snd_ymfpci_info_single		snd_ctl_boolean_mono_info
1432 
1433 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1434 				 struct snd_ctl_elem_value *ucontrol)
1435 {
1436 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1437 	int reg = kcontrol->private_value & 0xffff;
1438 	unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1439 	unsigned int mask = 1;
1440 
1441 	switch (reg) {
1442 	case YDSXGR_SPDIFOUTCTRL: break;
1443 	case YDSXGR_SPDIFINCTRL: break;
1444 	default: return -EINVAL;
1445 	}
1446 	ucontrol->value.integer.value[0] =
1447 		(snd_ymfpci_readl(chip, reg) >> shift) & mask;
1448 	return 0;
1449 }
1450 
1451 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1452 				 struct snd_ctl_elem_value *ucontrol)
1453 {
1454 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1455 	int reg = kcontrol->private_value & 0xffff;
1456 	unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1457  	unsigned int mask = 1;
1458 	int change;
1459 	unsigned int val, oval;
1460 
1461 	switch (reg) {
1462 	case YDSXGR_SPDIFOUTCTRL: break;
1463 	case YDSXGR_SPDIFINCTRL: break;
1464 	default: return -EINVAL;
1465 	}
1466 	val = (ucontrol->value.integer.value[0] & mask);
1467 	val <<= shift;
1468 	spin_lock_irq(&chip->reg_lock);
1469 	oval = snd_ymfpci_readl(chip, reg);
1470 	val = (oval & ~(mask << shift)) | val;
1471 	change = val != oval;
1472 	snd_ymfpci_writel(chip, reg, val);
1473 	spin_unlock_irq(&chip->reg_lock);
1474 	return change;
1475 }
1476 
1477 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1478 
1479 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1480 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1481   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1482   .info = snd_ymfpci_info_double, \
1483   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1484   .private_value = reg, \
1485   .tlv = { .p = db_scale_native } }
1486 
1487 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1488 {
1489 	unsigned int reg = kcontrol->private_value;
1490 
1491 	if (reg < 0x80 || reg >= 0xc0)
1492 		return -EINVAL;
1493 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1494 	uinfo->count = 2;
1495 	uinfo->value.integer.min = 0;
1496 	uinfo->value.integer.max = 16383;
1497 	return 0;
1498 }
1499 
1500 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1501 {
1502 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1503 	unsigned int reg = kcontrol->private_value;
1504 	unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1505 	unsigned int val;
1506 
1507 	if (reg < 0x80 || reg >= 0xc0)
1508 		return -EINVAL;
1509 	spin_lock_irq(&chip->reg_lock);
1510 	val = snd_ymfpci_readl(chip, reg);
1511 	spin_unlock_irq(&chip->reg_lock);
1512 	ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1513 	ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1514 	return 0;
1515 }
1516 
1517 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1518 {
1519 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1520 	unsigned int reg = kcontrol->private_value;
1521 	unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1522 	int change;
1523 	unsigned int val1, val2, oval;
1524 
1525 	if (reg < 0x80 || reg >= 0xc0)
1526 		return -EINVAL;
1527 	val1 = ucontrol->value.integer.value[0] & mask;
1528 	val2 = ucontrol->value.integer.value[1] & mask;
1529 	val1 <<= shift_left;
1530 	val2 <<= shift_right;
1531 	spin_lock_irq(&chip->reg_lock);
1532 	oval = snd_ymfpci_readl(chip, reg);
1533 	val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1534 	change = val1 != oval;
1535 	snd_ymfpci_writel(chip, reg, val1);
1536 	spin_unlock_irq(&chip->reg_lock);
1537 	return change;
1538 }
1539 
1540 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
1541 				       struct snd_ctl_elem_value *ucontrol)
1542 {
1543 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1544 	unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
1545 	unsigned int reg2 = YDSXGR_BUF441OUTVOL;
1546 	int change;
1547 	unsigned int value, oval;
1548 
1549 	value = ucontrol->value.integer.value[0] & 0x3fff;
1550 	value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
1551 	spin_lock_irq(&chip->reg_lock);
1552 	oval = snd_ymfpci_readl(chip, reg);
1553 	change = value != oval;
1554 	snd_ymfpci_writel(chip, reg, value);
1555 	snd_ymfpci_writel(chip, reg2, value);
1556 	spin_unlock_irq(&chip->reg_lock);
1557 	return change;
1558 }
1559 
1560 /*
1561  * 4ch duplication
1562  */
1563 #define snd_ymfpci_info_dup4ch		snd_ctl_boolean_mono_info
1564 
1565 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1566 {
1567 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1568 	ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1569 	return 0;
1570 }
1571 
1572 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1573 {
1574 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1575 	int change;
1576 	change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1577 	if (change)
1578 		chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1579 	return change;
1580 }
1581 
1582 static const struct snd_kcontrol_new snd_ymfpci_dup4ch = {
1583 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1584 	.name = "4ch Duplication",
1585 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1586 	.info = snd_ymfpci_info_dup4ch,
1587 	.get = snd_ymfpci_get_dup4ch,
1588 	.put = snd_ymfpci_put_dup4ch,
1589 };
1590 
1591 static const struct snd_kcontrol_new snd_ymfpci_controls[] = {
1592 {
1593 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1594 	.name = "Wave Playback Volume",
1595 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1596 		  SNDRV_CTL_ELEM_ACCESS_TLV_READ,
1597 	.info = snd_ymfpci_info_double,
1598 	.get = snd_ymfpci_get_double,
1599 	.put = snd_ymfpci_put_nativedacvol,
1600 	.private_value = YDSXGR_NATIVEDACOUTVOL,
1601 	.tlv = { .p = db_scale_native },
1602 },
1603 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1604 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1605 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1606 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1607 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1608 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1609 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1610 YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL),
1611 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1612 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1613 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1614 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1615 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1616 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1617 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1618 };
1619 
1620 
1621 /*
1622  * GPIO
1623  */
1624 
1625 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1626 {
1627 	u16 reg, mode;
1628 	unsigned long flags;
1629 
1630 	spin_lock_irqsave(&chip->reg_lock, flags);
1631 	reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1632 	reg &= ~(1 << (pin + 8));
1633 	reg |= (1 << pin);
1634 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1635 	/* set the level mode for input line */
1636 	mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1637 	mode &= ~(3 << (pin * 2));
1638 	snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1639 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1640 	mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1641 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1642 	return (mode >> pin) & 1;
1643 }
1644 
1645 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1646 {
1647 	u16 reg;
1648 	unsigned long flags;
1649 
1650 	spin_lock_irqsave(&chip->reg_lock, flags);
1651 	reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1652 	reg &= ~(1 << pin);
1653 	reg &= ~(1 << (pin + 8));
1654 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1655 	snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1656 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1657 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1658 
1659 	return 0;
1660 }
1661 
1662 #define snd_ymfpci_gpio_sw_info		snd_ctl_boolean_mono_info
1663 
1664 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1665 {
1666 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1667 	int pin = (int)kcontrol->private_value;
1668 	ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1669 	return 0;
1670 }
1671 
1672 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1673 {
1674 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1675 	int pin = (int)kcontrol->private_value;
1676 
1677 	if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1678 		snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1679 		ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1680 		return 1;
1681 	}
1682 	return 0;
1683 }
1684 
1685 static const struct snd_kcontrol_new snd_ymfpci_rear_shared = {
1686 	.name = "Shared Rear/Line-In Switch",
1687 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1688 	.info = snd_ymfpci_gpio_sw_info,
1689 	.get = snd_ymfpci_gpio_sw_get,
1690 	.put = snd_ymfpci_gpio_sw_put,
1691 	.private_value = 2,
1692 };
1693 
1694 /*
1695  * PCM voice volume
1696  */
1697 
1698 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1699 				   struct snd_ctl_elem_info *uinfo)
1700 {
1701 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1702 	uinfo->count = 2;
1703 	uinfo->value.integer.min = 0;
1704 	uinfo->value.integer.max = 0x8000;
1705 	return 0;
1706 }
1707 
1708 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1709 				  struct snd_ctl_elem_value *ucontrol)
1710 {
1711 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1712 	unsigned int subs = kcontrol->id.subdevice;
1713 
1714 	ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1715 	ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1716 	return 0;
1717 }
1718 
1719 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1720 				  struct snd_ctl_elem_value *ucontrol)
1721 {
1722 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1723 	unsigned int subs = kcontrol->id.subdevice;
1724 	struct snd_pcm_substream *substream;
1725 	unsigned long flags;
1726 
1727 	if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1728 	    ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1729 		chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1730 		chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1731 		if (chip->pcm_mixer[subs].left > 0x8000)
1732 			chip->pcm_mixer[subs].left = 0x8000;
1733 		if (chip->pcm_mixer[subs].right > 0x8000)
1734 			chip->pcm_mixer[subs].right = 0x8000;
1735 
1736 		substream = (struct snd_pcm_substream *)kcontrol->private_value;
1737 		spin_lock_irqsave(&chip->voice_lock, flags);
1738 		if (substream->runtime && substream->runtime->private_data) {
1739 			struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1740 			if (!ypcm->use_441_slot)
1741 				ypcm->update_pcm_vol = 2;
1742 		}
1743 		spin_unlock_irqrestore(&chip->voice_lock, flags);
1744 		return 1;
1745 	}
1746 	return 0;
1747 }
1748 
1749 static const struct snd_kcontrol_new snd_ymfpci_pcm_volume = {
1750 	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1751 	.name = "PCM Playback Volume",
1752 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1753 		SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1754 	.info = snd_ymfpci_pcm_vol_info,
1755 	.get = snd_ymfpci_pcm_vol_get,
1756 	.put = snd_ymfpci_pcm_vol_put,
1757 };
1758 
1759 
1760 /*
1761  *  Mixer routines
1762  */
1763 
1764 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1765 {
1766 	struct snd_ymfpci *chip = bus->private_data;
1767 	chip->ac97_bus = NULL;
1768 }
1769 
1770 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1771 {
1772 	struct snd_ymfpci *chip = ac97->private_data;
1773 	chip->ac97 = NULL;
1774 }
1775 
1776 int snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1777 {
1778 	struct snd_ac97_template ac97;
1779 	struct snd_kcontrol *kctl;
1780 	struct snd_pcm_substream *substream;
1781 	unsigned int idx;
1782 	int err;
1783 	static const struct snd_ac97_bus_ops ops = {
1784 		.write = snd_ymfpci_codec_write,
1785 		.read = snd_ymfpci_codec_read,
1786 	};
1787 
1788 	if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1789 		return err;
1790 	chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1791 	chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1792 
1793 	memset(&ac97, 0, sizeof(ac97));
1794 	ac97.private_data = chip;
1795 	ac97.private_free = snd_ymfpci_mixer_free_ac97;
1796 	if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1797 		return err;
1798 
1799 	/* to be sure */
1800 	snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1801 			     AC97_EA_VRA|AC97_EA_VRM, 0);
1802 
1803 	for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1804 		if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1805 			return err;
1806 	}
1807 	if (chip->ac97->ext_id & AC97_EI_SDAC) {
1808 		kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip);
1809 		err = snd_ctl_add(chip->card, kctl);
1810 		if (err < 0)
1811 			return err;
1812 	}
1813 
1814 	/* add S/PDIF control */
1815 	if (snd_BUG_ON(!chip->pcm_spdif))
1816 		return -ENXIO;
1817 	if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1818 		return err;
1819 	kctl->id.device = chip->pcm_spdif->device;
1820 	if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1821 		return err;
1822 	kctl->id.device = chip->pcm_spdif->device;
1823 	if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1824 		return err;
1825 	kctl->id.device = chip->pcm_spdif->device;
1826 	chip->spdif_pcm_ctl = kctl;
1827 
1828 	/* direct recording source */
1829 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1830 	    (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1831 		return err;
1832 
1833 	/*
1834 	 * shared rear/line-in
1835 	 */
1836 	if (rear_switch) {
1837 		if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1838 			return err;
1839 	}
1840 
1841 	/* per-voice volume */
1842 	substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1843 	for (idx = 0; idx < 32; ++idx) {
1844 		kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1845 		if (!kctl)
1846 			return -ENOMEM;
1847 		kctl->id.device = chip->pcm->device;
1848 		kctl->id.subdevice = idx;
1849 		kctl->private_value = (unsigned long)substream;
1850 		if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1851 			return err;
1852 		chip->pcm_mixer[idx].left = 0x8000;
1853 		chip->pcm_mixer[idx].right = 0x8000;
1854 		chip->pcm_mixer[idx].ctl = kctl;
1855 		substream = substream->next;
1856 	}
1857 
1858 	return 0;
1859 }
1860 
1861 
1862 /*
1863  * timer
1864  */
1865 
1866 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1867 {
1868 	struct snd_ymfpci *chip;
1869 	unsigned long flags;
1870 	unsigned int count;
1871 
1872 	chip = snd_timer_chip(timer);
1873 	spin_lock_irqsave(&chip->reg_lock, flags);
1874 	if (timer->sticks > 1) {
1875 		chip->timer_ticks = timer->sticks;
1876 		count = timer->sticks - 1;
1877 	} else {
1878 		/*
1879 		 * Divisor 1 is not allowed; fake it by using divisor 2 and
1880 		 * counting two ticks for each interrupt.
1881 		 */
1882 		chip->timer_ticks = 2;
1883 		count = 2 - 1;
1884 	}
1885 	snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1886 	snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1887 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1888 	return 0;
1889 }
1890 
1891 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1892 {
1893 	struct snd_ymfpci *chip;
1894 	unsigned long flags;
1895 
1896 	chip = snd_timer_chip(timer);
1897 	spin_lock_irqsave(&chip->reg_lock, flags);
1898 	snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1899 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1900 	return 0;
1901 }
1902 
1903 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1904 					       unsigned long *num, unsigned long *den)
1905 {
1906 	*num = 1;
1907 	*den = 96000;
1908 	return 0;
1909 }
1910 
1911 static const struct snd_timer_hardware snd_ymfpci_timer_hw = {
1912 	.flags = SNDRV_TIMER_HW_AUTO,
1913 	.resolution = 10417, /* 1 / 96 kHz = 10.41666...us */
1914 	.ticks = 0x10000,
1915 	.start = snd_ymfpci_timer_start,
1916 	.stop = snd_ymfpci_timer_stop,
1917 	.precise_resolution = snd_ymfpci_timer_precise_resolution,
1918 };
1919 
1920 int snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1921 {
1922 	struct snd_timer *timer = NULL;
1923 	struct snd_timer_id tid;
1924 	int err;
1925 
1926 	tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1927 	tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1928 	tid.card = chip->card->number;
1929 	tid.device = device;
1930 	tid.subdevice = 0;
1931 	if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1932 		strcpy(timer->name, "YMFPCI timer");
1933 		timer->private_data = chip;
1934 		timer->hw = snd_ymfpci_timer_hw;
1935 	}
1936 	chip->timer = timer;
1937 	return err;
1938 }
1939 
1940 
1941 /*
1942  *  proc interface
1943  */
1944 
1945 static void snd_ymfpci_proc_read(struct snd_info_entry *entry,
1946 				 struct snd_info_buffer *buffer)
1947 {
1948 	struct snd_ymfpci *chip = entry->private_data;
1949 	int i;
1950 
1951 	snd_iprintf(buffer, "YMFPCI\n\n");
1952 	for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1953 		snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1954 }
1955 
1956 static int snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1957 {
1958 	return snd_card_ro_proc_new(card, "ymfpci", chip, snd_ymfpci_proc_read);
1959 }
1960 
1961 /*
1962  *  initialization routines
1963  */
1964 
1965 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1966 {
1967 	u8 cmd;
1968 
1969 	pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
1970 #if 0 // force to reset
1971 	if (cmd & 0x03) {
1972 #endif
1973 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1974 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
1975 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1976 		pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
1977 		pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
1978 #if 0
1979 	}
1980 #endif
1981 }
1982 
1983 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
1984 {
1985 	snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
1986 }
1987 
1988 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
1989 {
1990 	u32 val;
1991 	int timeout = 1000;
1992 
1993 	val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
1994 	if (val)
1995 		snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
1996 	while (timeout-- > 0) {
1997 		val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
1998 		if ((val & 0x00000002) == 0)
1999 			break;
2000 	}
2001 }
2002 
2003 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2004 {
2005 	int err, is_1e;
2006 	const char *name;
2007 
2008 	err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
2009 			       &chip->pci->dev);
2010 	if (err >= 0) {
2011 		if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) {
2012 			dev_err(chip->card->dev,
2013 				"DSP microcode has wrong size\n");
2014 			err = -EINVAL;
2015 		}
2016 	}
2017 	if (err < 0)
2018 		return err;
2019 	is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2020 		chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2021 		chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2022 		chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2023 	name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
2024 	err = request_firmware(&chip->controller_microcode, name,
2025 			       &chip->pci->dev);
2026 	if (err >= 0) {
2027 		if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) {
2028 			dev_err(chip->card->dev,
2029 				"controller microcode has wrong size\n");
2030 			err = -EINVAL;
2031 		}
2032 	}
2033 	if (err < 0)
2034 		return err;
2035 	return 0;
2036 }
2037 
2038 MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
2039 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
2040 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
2041 
2042 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2043 {
2044 	int i;
2045 	u16 ctrl;
2046 	const __le32 *inst;
2047 
2048 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2049 	snd_ymfpci_disable_dsp(chip);
2050 	snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2051 	snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2052 	snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2053 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2054 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2055 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2056 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2057 	ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2058 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2059 
2060 	/* setup DSP instruction code */
2061 	inst = (const __le32 *)chip->dsp_microcode->data;
2062 	for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2063 		snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2),
2064 				  le32_to_cpu(inst[i]));
2065 
2066 	/* setup control instruction code */
2067 	inst = (const __le32 *)chip->controller_microcode->data;
2068 	for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2069 		snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2),
2070 				  le32_to_cpu(inst[i]));
2071 
2072 	snd_ymfpci_enable_dsp(chip);
2073 }
2074 
2075 static int snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2076 {
2077 	long size, playback_ctrl_size;
2078 	int voice, bank, reg;
2079 	u8 *ptr;
2080 	dma_addr_t ptr_addr;
2081 
2082 	playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2083 	chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2084 	chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2085 	chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2086 	chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2087 
2088 	size = ALIGN(playback_ctrl_size, 0x100) +
2089 	       ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2090 	       ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2091 	       ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2092 	       chip->work_size;
2093 	/* work_ptr must be aligned to 256 bytes, but it's already
2094 	   covered with the kernel page allocation mechanism */
2095 	if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &chip->pci->dev,
2096 				size, &chip->work_ptr) < 0)
2097 		return -ENOMEM;
2098 	ptr = chip->work_ptr.area;
2099 	ptr_addr = chip->work_ptr.addr;
2100 	memset(ptr, 0, size);	/* for sure */
2101 
2102 	chip->bank_base_playback = ptr;
2103 	chip->bank_base_playback_addr = ptr_addr;
2104 	chip->ctrl_playback = (__le32 *)ptr;
2105 	chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2106 	ptr += ALIGN(playback_ctrl_size, 0x100);
2107 	ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2108 	for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2109 		chip->voices[voice].number = voice;
2110 		chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2111 		chip->voices[voice].bank_addr = ptr_addr;
2112 		for (bank = 0; bank < 2; bank++) {
2113 			chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2114 			ptr += chip->bank_size_playback;
2115 			ptr_addr += chip->bank_size_playback;
2116 		}
2117 	}
2118 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2119 	ptr_addr = ALIGN(ptr_addr, 0x100);
2120 	chip->bank_base_capture = ptr;
2121 	chip->bank_base_capture_addr = ptr_addr;
2122 	for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2123 		for (bank = 0; bank < 2; bank++) {
2124 			chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2125 			ptr += chip->bank_size_capture;
2126 			ptr_addr += chip->bank_size_capture;
2127 		}
2128 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2129 	ptr_addr = ALIGN(ptr_addr, 0x100);
2130 	chip->bank_base_effect = ptr;
2131 	chip->bank_base_effect_addr = ptr_addr;
2132 	for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2133 		for (bank = 0; bank < 2; bank++) {
2134 			chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2135 			ptr += chip->bank_size_effect;
2136 			ptr_addr += chip->bank_size_effect;
2137 		}
2138 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2139 	ptr_addr = ALIGN(ptr_addr, 0x100);
2140 	chip->work_base = ptr;
2141 	chip->work_base_addr = ptr_addr;
2142 
2143 	snd_BUG_ON(ptr + chip->work_size !=
2144 		   chip->work_ptr.area + chip->work_ptr.bytes);
2145 
2146 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2147 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2148 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2149 	snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2150 	snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2151 
2152 	/* S/PDIF output initialization */
2153 	chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2154 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2155 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2156 
2157 	/* S/PDIF input initialization */
2158 	snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2159 
2160 	/* digital mixer setup */
2161 	for (reg = 0x80; reg < 0xc0; reg += 4)
2162 		snd_ymfpci_writel(chip, reg, 0);
2163 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2164 	snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff);
2165 	snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2166 	snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2167 	snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2168 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2169 	snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2170 	snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2171 
2172 	return 0;
2173 }
2174 
2175 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2176 {
2177 	u16 ctrl;
2178 
2179 	if (snd_BUG_ON(!chip))
2180 		return -EINVAL;
2181 
2182 	if (chip->res_reg_area) {	/* don't touch busy hardware */
2183 		snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2184 		snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2185 		snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2186 		snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2187 		snd_ymfpci_disable_dsp(chip);
2188 		snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2189 		snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2190 		snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2191 		snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2192 		snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2193 		ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2194 		snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2195 	}
2196 
2197 	snd_ymfpci_ac3_done(chip);
2198 
2199 	/* Set PCI device to D3 state */
2200 #if 0
2201 	/* FIXME: temporarily disabled, otherwise we cannot fire up
2202 	 * the chip again unless reboot.  ACPI bug?
2203 	 */
2204 	pci_set_power_state(chip->pci, PCI_D3hot);
2205 #endif
2206 
2207 #ifdef CONFIG_PM_SLEEP
2208 	kfree(chip->saved_regs);
2209 #endif
2210 	if (chip->irq >= 0)
2211 		free_irq(chip->irq, chip);
2212 	release_and_free_resource(chip->mpu_res);
2213 	release_and_free_resource(chip->fm_res);
2214 	snd_ymfpci_free_gameport(chip);
2215 	iounmap(chip->reg_area_virt);
2216 	if (chip->work_ptr.area)
2217 		snd_dma_free_pages(&chip->work_ptr);
2218 
2219 	release_and_free_resource(chip->res_reg_area);
2220 
2221 	pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2222 
2223 	pci_disable_device(chip->pci);
2224 	release_firmware(chip->dsp_microcode);
2225 	release_firmware(chip->controller_microcode);
2226 	kfree(chip);
2227 	return 0;
2228 }
2229 
2230 static int snd_ymfpci_dev_free(struct snd_device *device)
2231 {
2232 	struct snd_ymfpci *chip = device->device_data;
2233 	return snd_ymfpci_free(chip);
2234 }
2235 
2236 #ifdef CONFIG_PM_SLEEP
2237 static const int saved_regs_index[] = {
2238 	/* spdif */
2239 	YDSXGR_SPDIFOUTCTRL,
2240 	YDSXGR_SPDIFOUTSTATUS,
2241 	YDSXGR_SPDIFINCTRL,
2242 	/* volumes */
2243 	YDSXGR_PRIADCLOOPVOL,
2244 	YDSXGR_NATIVEDACINVOL,
2245 	YDSXGR_NATIVEDACOUTVOL,
2246 	YDSXGR_BUF441OUTVOL,
2247 	YDSXGR_NATIVEADCINVOL,
2248 	YDSXGR_SPDIFLOOPVOL,
2249 	YDSXGR_SPDIFOUTVOL,
2250 	YDSXGR_ZVOUTVOL,
2251 	YDSXGR_LEGACYOUTVOL,
2252 	/* address bases */
2253 	YDSXGR_PLAYCTRLBASE,
2254 	YDSXGR_RECCTRLBASE,
2255 	YDSXGR_EFFCTRLBASE,
2256 	YDSXGR_WORKBASE,
2257 	/* capture set up */
2258 	YDSXGR_MAPOFREC,
2259 	YDSXGR_RECFORMAT,
2260 	YDSXGR_RECSLOTSR,
2261 	YDSXGR_ADCFORMAT,
2262 	YDSXGR_ADCSLOTSR,
2263 };
2264 #define YDSXGR_NUM_SAVED_REGS	ARRAY_SIZE(saved_regs_index)
2265 
2266 static int snd_ymfpci_suspend(struct device *dev)
2267 {
2268 	struct snd_card *card = dev_get_drvdata(dev);
2269 	struct snd_ymfpci *chip = card->private_data;
2270 	unsigned int i;
2271 
2272 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2273 	snd_ac97_suspend(chip->ac97);
2274 	for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2275 		chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2276 	chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2277 	pci_read_config_word(chip->pci, PCIR_DSXG_LEGACY,
2278 			     &chip->saved_dsxg_legacy);
2279 	pci_read_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2280 			     &chip->saved_dsxg_elegacy);
2281 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2282 	snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2283 	snd_ymfpci_disable_dsp(chip);
2284 	return 0;
2285 }
2286 
2287 static int snd_ymfpci_resume(struct device *dev)
2288 {
2289 	struct pci_dev *pci = to_pci_dev(dev);
2290 	struct snd_card *card = dev_get_drvdata(dev);
2291 	struct snd_ymfpci *chip = card->private_data;
2292 	unsigned int i;
2293 
2294 	snd_ymfpci_aclink_reset(pci);
2295 	snd_ymfpci_codec_ready(chip, 0);
2296 	snd_ymfpci_download_image(chip);
2297 	udelay(100);
2298 
2299 	for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2300 		snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2301 
2302 	snd_ac97_resume(chip->ac97);
2303 
2304 	pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY,
2305 			      chip->saved_dsxg_legacy);
2306 	pci_write_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2307 			      chip->saved_dsxg_elegacy);
2308 
2309 	/* start hw again */
2310 	if (chip->start_count > 0) {
2311 		spin_lock_irq(&chip->reg_lock);
2312 		snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2313 		chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2314 		spin_unlock_irq(&chip->reg_lock);
2315 	}
2316 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2317 	return 0;
2318 }
2319 
2320 SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume);
2321 #endif /* CONFIG_PM_SLEEP */
2322 
2323 int snd_ymfpci_create(struct snd_card *card,
2324 		      struct pci_dev *pci,
2325 		      unsigned short old_legacy_ctrl,
2326 		      struct snd_ymfpci **rchip)
2327 {
2328 	struct snd_ymfpci *chip;
2329 	int err;
2330 	static const struct snd_device_ops ops = {
2331 		.dev_free =	snd_ymfpci_dev_free,
2332 	};
2333 
2334 	*rchip = NULL;
2335 
2336 	/* enable PCI device */
2337 	if ((err = pci_enable_device(pci)) < 0)
2338 		return err;
2339 
2340 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2341 	if (chip == NULL) {
2342 		pci_disable_device(pci);
2343 		return -ENOMEM;
2344 	}
2345 	chip->old_legacy_ctrl = old_legacy_ctrl;
2346 	spin_lock_init(&chip->reg_lock);
2347 	spin_lock_init(&chip->voice_lock);
2348 	init_waitqueue_head(&chip->interrupt_sleep);
2349 	atomic_set(&chip->interrupt_sleep_count, 0);
2350 	chip->card = card;
2351 	chip->pci = pci;
2352 	chip->irq = -1;
2353 	chip->device_id = pci->device;
2354 	chip->rev = pci->revision;
2355 	chip->reg_area_phys = pci_resource_start(pci, 0);
2356 	chip->reg_area_virt = ioremap(chip->reg_area_phys, 0x8000);
2357 	pci_set_master(pci);
2358 	chip->src441_used = -1;
2359 
2360 	if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2361 		dev_err(chip->card->dev,
2362 			"unable to grab memory region 0x%lx-0x%lx\n",
2363 			chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2364 		err = -EBUSY;
2365 		goto free_chip;
2366 	}
2367 	if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2368 			KBUILD_MODNAME, chip)) {
2369 		dev_err(chip->card->dev, "unable to grab IRQ %d\n", pci->irq);
2370 		err = -EBUSY;
2371 		goto free_chip;
2372 	}
2373 	chip->irq = pci->irq;
2374 	card->sync_irq = chip->irq;
2375 
2376 	snd_ymfpci_aclink_reset(pci);
2377 	if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2378 		err = -EIO;
2379 		goto free_chip;
2380 	}
2381 
2382 	err = snd_ymfpci_request_firmware(chip);
2383 	if (err < 0) {
2384 		dev_err(chip->card->dev, "firmware request failed: %d\n", err);
2385 		goto free_chip;
2386 	}
2387 	snd_ymfpci_download_image(chip);
2388 
2389 	udelay(100); /* seems we need a delay after downloading image.. */
2390 
2391 	if (snd_ymfpci_memalloc(chip) < 0) {
2392 		err = -EIO;
2393 		goto free_chip;
2394 	}
2395 
2396 	err = snd_ymfpci_ac3_init(chip);
2397 	if (err < 0)
2398 		goto free_chip;
2399 
2400 #ifdef CONFIG_PM_SLEEP
2401 	chip->saved_regs = kmalloc_array(YDSXGR_NUM_SAVED_REGS, sizeof(u32),
2402 					 GFP_KERNEL);
2403 	if (chip->saved_regs == NULL) {
2404 		err = -ENOMEM;
2405 		goto free_chip;
2406 	}
2407 #endif
2408 
2409 	err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
2410 	if (err < 0)
2411 		goto free_chip;
2412 
2413 	snd_ymfpci_proc_init(card, chip);
2414 
2415 	*rchip = chip;
2416 	return 0;
2417 
2418 free_chip:
2419 	snd_ymfpci_free(chip);
2420 	return err;
2421 }
2422