xref: /openbmc/linux/sound/pci/ymfpci/ymfpci_main.c (revision c83eeec79ff64f777cbd59a8bd15d0a3fe1f92c0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *  Routines for control of YMF724/740/744/754 chips
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/firmware.h>
9 #include <linux/init.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/sched.h>
13 #include <linux/slab.h>
14 #include <linux/mutex.h>
15 #include <linux/module.h>
16 #include <linux/io.h>
17 
18 #include <sound/core.h>
19 #include <sound/control.h>
20 #include <sound/info.h>
21 #include <sound/tlv.h>
22 #include "ymfpci.h"
23 #include <sound/asoundef.h>
24 #include <sound/mpu401.h>
25 
26 #include <asm/byteorder.h>
27 
28 /*
29  *  common I/O routines
30  */
31 
32 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
33 
34 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
35 {
36 	return readb(chip->reg_area_virt + offset);
37 }
38 
39 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
40 {
41 	writeb(val, chip->reg_area_virt + offset);
42 }
43 
44 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
45 {
46 	return readw(chip->reg_area_virt + offset);
47 }
48 
49 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
50 {
51 	writew(val, chip->reg_area_virt + offset);
52 }
53 
54 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
55 {
56 	return readl(chip->reg_area_virt + offset);
57 }
58 
59 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
60 {
61 	writel(val, chip->reg_area_virt + offset);
62 }
63 
64 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
65 {
66 	unsigned long end_time;
67 	u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
68 
69 	end_time = jiffies + msecs_to_jiffies(750);
70 	do {
71 		if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
72 			return 0;
73 		schedule_timeout_uninterruptible(1);
74 	} while (time_before(jiffies, end_time));
75 	dev_err(chip->card->dev,
76 		"codec_ready: codec %i is not ready [0x%x]\n",
77 		secondary, snd_ymfpci_readw(chip, reg));
78 	return -EBUSY;
79 }
80 
81 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
82 {
83 	struct snd_ymfpci *chip = ac97->private_data;
84 	u32 cmd;
85 
86 	snd_ymfpci_codec_ready(chip, 0);
87 	cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
88 	snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
89 }
90 
91 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
92 {
93 	struct snd_ymfpci *chip = ac97->private_data;
94 
95 	if (snd_ymfpci_codec_ready(chip, 0))
96 		return ~0;
97 	snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
98 	if (snd_ymfpci_codec_ready(chip, 0))
99 		return ~0;
100 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
101 		int i;
102 		for (i = 0; i < 600; i++)
103 			snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
104 	}
105 	return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
106 }
107 
108 /*
109  *  Misc routines
110  */
111 
112 static u32 snd_ymfpci_calc_delta(u32 rate)
113 {
114 	switch (rate) {
115 	case 8000:	return 0x02aaab00;
116 	case 11025:	return 0x03accd00;
117 	case 16000:	return 0x05555500;
118 	case 22050:	return 0x07599a00;
119 	case 32000:	return 0x0aaaab00;
120 	case 44100:	return 0x0eb33300;
121 	default:	return ((rate << 16) / 375) << 5;
122 	}
123 }
124 
125 static const u32 def_rate[8] = {
126 	100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
127 };
128 
129 static u32 snd_ymfpci_calc_lpfK(u32 rate)
130 {
131 	u32 i;
132 	static const u32 val[8] = {
133 		0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
134 		0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
135 	};
136 
137 	if (rate == 44100)
138 		return 0x40000000;	/* FIXME: What's the right value? */
139 	for (i = 0; i < 8; i++)
140 		if (rate <= def_rate[i])
141 			return val[i];
142 	return val[0];
143 }
144 
145 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
146 {
147 	u32 i;
148 	static const u32 val[8] = {
149 		0x35280000, 0x34A70000, 0x32020000, 0x31770000,
150 		0x31390000, 0x31C90000, 0x33D00000, 0x40000000
151 	};
152 
153 	if (rate == 44100)
154 		return 0x370A0000;
155 	for (i = 0; i < 8; i++)
156 		if (rate <= def_rate[i])
157 			return val[i];
158 	return val[0];
159 }
160 
161 /*
162  *  Hardware start management
163  */
164 
165 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
166 {
167 	unsigned long flags;
168 
169 	spin_lock_irqsave(&chip->reg_lock, flags);
170 	if (chip->start_count++ > 0)
171 		goto __end;
172 	snd_ymfpci_writel(chip, YDSXGR_MODE,
173 			  snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
174 	chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
175       __end:
176       	spin_unlock_irqrestore(&chip->reg_lock, flags);
177 }
178 
179 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
180 {
181 	unsigned long flags;
182 	long timeout = 1000;
183 
184 	spin_lock_irqsave(&chip->reg_lock, flags);
185 	if (--chip->start_count > 0)
186 		goto __end;
187 	snd_ymfpci_writel(chip, YDSXGR_MODE,
188 			  snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
189 	while (timeout-- > 0) {
190 		if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
191 			break;
192 	}
193 	if (atomic_read(&chip->interrupt_sleep_count)) {
194 		atomic_set(&chip->interrupt_sleep_count, 0);
195 		wake_up(&chip->interrupt_sleep);
196 	}
197       __end:
198       	spin_unlock_irqrestore(&chip->reg_lock, flags);
199 }
200 
201 /*
202  *  Playback voice management
203  */
204 
205 static int voice_alloc(struct snd_ymfpci *chip,
206 		       enum snd_ymfpci_voice_type type, int pair,
207 		       struct snd_ymfpci_voice **rvoice)
208 {
209 	struct snd_ymfpci_voice *voice, *voice2;
210 	int idx;
211 
212 	*rvoice = NULL;
213 	for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
214 		voice = &chip->voices[idx];
215 		voice2 = pair ? &chip->voices[idx+1] : NULL;
216 		if (voice->use || (voice2 && voice2->use))
217 			continue;
218 		voice->use = 1;
219 		if (voice2)
220 			voice2->use = 1;
221 		switch (type) {
222 		case YMFPCI_PCM:
223 			voice->pcm = 1;
224 			if (voice2)
225 				voice2->pcm = 1;
226 			break;
227 		case YMFPCI_SYNTH:
228 			voice->synth = 1;
229 			break;
230 		case YMFPCI_MIDI:
231 			voice->midi = 1;
232 			break;
233 		}
234 		snd_ymfpci_hw_start(chip);
235 		if (voice2)
236 			snd_ymfpci_hw_start(chip);
237 		*rvoice = voice;
238 		return 0;
239 	}
240 	return -ENOMEM;
241 }
242 
243 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
244 				  enum snd_ymfpci_voice_type type, int pair,
245 				  struct snd_ymfpci_voice **rvoice)
246 {
247 	unsigned long flags;
248 	int result;
249 
250 	if (snd_BUG_ON(!rvoice))
251 		return -EINVAL;
252 	if (snd_BUG_ON(pair && type != YMFPCI_PCM))
253 		return -EINVAL;
254 
255 	spin_lock_irqsave(&chip->voice_lock, flags);
256 	for (;;) {
257 		result = voice_alloc(chip, type, pair, rvoice);
258 		if (result == 0 || type != YMFPCI_PCM)
259 			break;
260 		/* TODO: synth/midi voice deallocation */
261 		break;
262 	}
263 	spin_unlock_irqrestore(&chip->voice_lock, flags);
264 	return result;
265 }
266 
267 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
268 {
269 	unsigned long flags;
270 
271 	if (snd_BUG_ON(!pvoice))
272 		return -EINVAL;
273 	snd_ymfpci_hw_stop(chip);
274 	spin_lock_irqsave(&chip->voice_lock, flags);
275 	if (pvoice->number == chip->src441_used) {
276 		chip->src441_used = -1;
277 		pvoice->ypcm->use_441_slot = 0;
278 	}
279 	pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
280 	pvoice->ypcm = NULL;
281 	pvoice->interrupt = NULL;
282 	spin_unlock_irqrestore(&chip->voice_lock, flags);
283 	return 0;
284 }
285 
286 /*
287  *  PCM part
288  */
289 
290 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
291 {
292 	struct snd_ymfpci_pcm *ypcm;
293 	u32 pos, delta;
294 
295 	ypcm = voice->ypcm;
296 	if (!ypcm)
297 		return;
298 	if (ypcm->substream == NULL)
299 		return;
300 	spin_lock(&chip->reg_lock);
301 	if (ypcm->running) {
302 		pos = le32_to_cpu(voice->bank[chip->active_bank].start);
303 		if (pos < ypcm->last_pos)
304 			delta = pos + (ypcm->buffer_size - ypcm->last_pos);
305 		else
306 			delta = pos - ypcm->last_pos;
307 		ypcm->period_pos += delta;
308 		ypcm->last_pos = pos;
309 		if (ypcm->period_pos >= ypcm->period_size) {
310 			/*
311 			dev_dbg(chip->card->dev,
312 			       "done - active_bank = 0x%x, start = 0x%x\n",
313 			       chip->active_bank,
314 			       voice->bank[chip->active_bank].start);
315 			*/
316 			ypcm->period_pos %= ypcm->period_size;
317 			spin_unlock(&chip->reg_lock);
318 			snd_pcm_period_elapsed(ypcm->substream);
319 			spin_lock(&chip->reg_lock);
320 		}
321 
322 		if (unlikely(ypcm->update_pcm_vol)) {
323 			unsigned int subs = ypcm->substream->number;
324 			unsigned int next_bank = 1 - chip->active_bank;
325 			struct snd_ymfpci_playback_bank *bank;
326 			__le32 volume;
327 
328 			bank = &voice->bank[next_bank];
329 			volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
330 			bank->left_gain_end = volume;
331 			if (ypcm->output_rear)
332 				bank->eff2_gain_end = volume;
333 			if (ypcm->voices[1])
334 				bank = &ypcm->voices[1]->bank[next_bank];
335 			volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
336 			bank->right_gain_end = volume;
337 			if (ypcm->output_rear)
338 				bank->eff3_gain_end = volume;
339 			ypcm->update_pcm_vol--;
340 		}
341 	}
342 	spin_unlock(&chip->reg_lock);
343 }
344 
345 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
346 {
347 	struct snd_pcm_runtime *runtime = substream->runtime;
348 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
349 	struct snd_ymfpci *chip = ypcm->chip;
350 	u32 pos, delta;
351 
352 	spin_lock(&chip->reg_lock);
353 	if (ypcm->running) {
354 		pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
355 		if (pos < ypcm->last_pos)
356 			delta = pos + (ypcm->buffer_size - ypcm->last_pos);
357 		else
358 			delta = pos - ypcm->last_pos;
359 		ypcm->period_pos += delta;
360 		ypcm->last_pos = pos;
361 		if (ypcm->period_pos >= ypcm->period_size) {
362 			ypcm->period_pos %= ypcm->period_size;
363 			/*
364 			dev_dbg(chip->card->dev,
365 			       "done - active_bank = 0x%x, start = 0x%x\n",
366 			       chip->active_bank,
367 			       voice->bank[chip->active_bank].start);
368 			*/
369 			spin_unlock(&chip->reg_lock);
370 			snd_pcm_period_elapsed(substream);
371 			spin_lock(&chip->reg_lock);
372 		}
373 	}
374 	spin_unlock(&chip->reg_lock);
375 }
376 
377 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
378 				       int cmd)
379 {
380 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
381 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
382 	struct snd_kcontrol *kctl = NULL;
383 	int result = 0;
384 
385 	spin_lock(&chip->reg_lock);
386 	if (ypcm->voices[0] == NULL) {
387 		result = -EINVAL;
388 		goto __unlock;
389 	}
390 	switch (cmd) {
391 	case SNDRV_PCM_TRIGGER_START:
392 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
393 	case SNDRV_PCM_TRIGGER_RESUME:
394 		chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
395 		if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
396 			chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
397 		ypcm->running = 1;
398 		break;
399 	case SNDRV_PCM_TRIGGER_STOP:
400 		if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
401 			kctl = chip->pcm_mixer[substream->number].ctl;
402 			kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
403 		}
404 		fallthrough;
405 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
406 	case SNDRV_PCM_TRIGGER_SUSPEND:
407 		chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
408 		if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
409 			chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
410 		ypcm->running = 0;
411 		break;
412 	default:
413 		result = -EINVAL;
414 		break;
415 	}
416       __unlock:
417 	spin_unlock(&chip->reg_lock);
418 	if (kctl)
419 		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
420 	return result;
421 }
422 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
423 				      int cmd)
424 {
425 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
426 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
427 	int result = 0;
428 	u32 tmp;
429 
430 	spin_lock(&chip->reg_lock);
431 	switch (cmd) {
432 	case SNDRV_PCM_TRIGGER_START:
433 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
434 	case SNDRV_PCM_TRIGGER_RESUME:
435 		tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
436 		snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
437 		ypcm->running = 1;
438 		break;
439 	case SNDRV_PCM_TRIGGER_STOP:
440 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
441 	case SNDRV_PCM_TRIGGER_SUSPEND:
442 		tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
443 		snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
444 		ypcm->running = 0;
445 		break;
446 	default:
447 		result = -EINVAL;
448 		break;
449 	}
450 	spin_unlock(&chip->reg_lock);
451 	return result;
452 }
453 
454 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
455 {
456 	int err;
457 
458 	if (ypcm->voices[1] != NULL && voices < 2) {
459 		snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
460 		ypcm->voices[1] = NULL;
461 	}
462 	if (voices == 1 && ypcm->voices[0] != NULL)
463 		return 0;		/* already allocated */
464 	if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
465 		return 0;		/* already allocated */
466 	if (voices > 1) {
467 		if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
468 			snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
469 			ypcm->voices[0] = NULL;
470 		}
471 	}
472 	err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
473 	if (err < 0)
474 		return err;
475 	ypcm->voices[0]->ypcm = ypcm;
476 	ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
477 	if (voices > 1) {
478 		ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
479 		ypcm->voices[1]->ypcm = ypcm;
480 	}
481 	return 0;
482 }
483 
484 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
485 				      struct snd_pcm_runtime *runtime,
486 				      int has_pcm_volume)
487 {
488 	struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
489 	u32 format;
490 	u32 delta = snd_ymfpci_calc_delta(runtime->rate);
491 	u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
492 	u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
493 	struct snd_ymfpci_playback_bank *bank;
494 	unsigned int nbank;
495 	__le32 vol_left, vol_right;
496 	u8 use_left, use_right;
497 	unsigned long flags;
498 
499 	if (snd_BUG_ON(!voice))
500 		return;
501 	if (runtime->channels == 1) {
502 		use_left = 1;
503 		use_right = 1;
504 	} else {
505 		use_left = (voiceidx & 1) == 0;
506 		use_right = !use_left;
507 	}
508 	if (has_pcm_volume) {
509 		vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
510 				       [ypcm->substream->number].left << 15);
511 		vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
512 					[ypcm->substream->number].right << 15);
513 	} else {
514 		vol_left = cpu_to_le32(0x40000000);
515 		vol_right = cpu_to_le32(0x40000000);
516 	}
517 	spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
518 	format = runtime->channels == 2 ? 0x00010000 : 0;
519 	if (snd_pcm_format_width(runtime->format) == 8)
520 		format |= 0x80000000;
521 	else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
522 		 runtime->rate == 44100 && runtime->channels == 2 &&
523 		 voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
524 				   ypcm->chip->src441_used == voice->number)) {
525 		ypcm->chip->src441_used = voice->number;
526 		ypcm->use_441_slot = 1;
527 		format |= 0x10000000;
528 	}
529 	if (ypcm->chip->src441_used == voice->number &&
530 	    (format & 0x10000000) == 0) {
531 		ypcm->chip->src441_used = -1;
532 		ypcm->use_441_slot = 0;
533 	}
534 	if (runtime->channels == 2 && (voiceidx & 1) != 0)
535 		format |= 1;
536 	spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
537 	for (nbank = 0; nbank < 2; nbank++) {
538 		bank = &voice->bank[nbank];
539 		memset(bank, 0, sizeof(*bank));
540 		bank->format = cpu_to_le32(format);
541 		bank->base = cpu_to_le32(runtime->dma_addr);
542 		bank->loop_end = cpu_to_le32(ypcm->buffer_size);
543 		bank->lpfQ = cpu_to_le32(lpfQ);
544 		bank->delta =
545 		bank->delta_end = cpu_to_le32(delta);
546 		bank->lpfK =
547 		bank->lpfK_end = cpu_to_le32(lpfK);
548 		bank->eg_gain =
549 		bank->eg_gain_end = cpu_to_le32(0x40000000);
550 
551 		if (ypcm->output_front) {
552 			if (use_left) {
553 				bank->left_gain =
554 				bank->left_gain_end = vol_left;
555 			}
556 			if (use_right) {
557 				bank->right_gain =
558 				bank->right_gain_end = vol_right;
559 			}
560 		}
561 		if (ypcm->output_rear) {
562 		        if (!ypcm->swap_rear) {
563         			if (use_left) {
564         				bank->eff2_gain =
565         				bank->eff2_gain_end = vol_left;
566         			}
567         			if (use_right) {
568         				bank->eff3_gain =
569         				bank->eff3_gain_end = vol_right;
570         			}
571 		        } else {
572         			/* The SPDIF out channels seem to be swapped, so we have
573         			 * to swap them here, too.  The rear analog out channels
574         			 * will be wrong, but otherwise AC3 would not work.
575         			 */
576         			if (use_left) {
577         				bank->eff3_gain =
578         				bank->eff3_gain_end = vol_left;
579         			}
580         			if (use_right) {
581         				bank->eff2_gain =
582         				bank->eff2_gain_end = vol_right;
583         			}
584         		}
585                 }
586 	}
587 }
588 
589 static int snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
590 {
591 	if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &chip->pci->dev,
592 				4096, &chip->ac3_tmp_base) < 0)
593 		return -ENOMEM;
594 
595 	chip->bank_effect[3][0]->base =
596 	chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
597 	chip->bank_effect[3][0]->loop_end =
598 	chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
599 	chip->bank_effect[4][0]->base =
600 	chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
601 	chip->bank_effect[4][0]->loop_end =
602 	chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
603 
604 	spin_lock_irq(&chip->reg_lock);
605 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
606 			  snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
607 	spin_unlock_irq(&chip->reg_lock);
608 	return 0;
609 }
610 
611 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
612 {
613 	spin_lock_irq(&chip->reg_lock);
614 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
615 			  snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
616 	spin_unlock_irq(&chip->reg_lock);
617 	// snd_ymfpci_irq_wait(chip);
618 	if (chip->ac3_tmp_base.area) {
619 		snd_dma_free_pages(&chip->ac3_tmp_base);
620 		chip->ac3_tmp_base.area = NULL;
621 	}
622 	return 0;
623 }
624 
625 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
626 					 struct snd_pcm_hw_params *hw_params)
627 {
628 	struct snd_pcm_runtime *runtime = substream->runtime;
629 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
630 	int err;
631 
632 	err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params));
633 	if (err < 0)
634 		return err;
635 	return 0;
636 }
637 
638 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
639 {
640 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
641 	struct snd_pcm_runtime *runtime = substream->runtime;
642 	struct snd_ymfpci_pcm *ypcm;
643 
644 	if (runtime->private_data == NULL)
645 		return 0;
646 	ypcm = runtime->private_data;
647 
648 	/* wait, until the PCI operations are not finished */
649 	snd_ymfpci_irq_wait(chip);
650 	if (ypcm->voices[1]) {
651 		snd_ymfpci_voice_free(chip, ypcm->voices[1]);
652 		ypcm->voices[1] = NULL;
653 	}
654 	if (ypcm->voices[0]) {
655 		snd_ymfpci_voice_free(chip, ypcm->voices[0]);
656 		ypcm->voices[0] = NULL;
657 	}
658 	return 0;
659 }
660 
661 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
662 {
663 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
664 	struct snd_pcm_runtime *runtime = substream->runtime;
665 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
666 	struct snd_kcontrol *kctl;
667 	unsigned int nvoice;
668 
669 	ypcm->period_size = runtime->period_size;
670 	ypcm->buffer_size = runtime->buffer_size;
671 	ypcm->period_pos = 0;
672 	ypcm->last_pos = 0;
673 	for (nvoice = 0; nvoice < runtime->channels; nvoice++)
674 		snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
675 					  substream->pcm == chip->pcm);
676 
677 	if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
678 		kctl = chip->pcm_mixer[substream->number].ctl;
679 		kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
680 		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
681 	}
682 	return 0;
683 }
684 
685 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
686 {
687 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
688 
689 	/* wait, until the PCI operations are not finished */
690 	snd_ymfpci_irq_wait(chip);
691 	return 0;
692 }
693 
694 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
695 {
696 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
697 	struct snd_pcm_runtime *runtime = substream->runtime;
698 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
699 	struct snd_ymfpci_capture_bank * bank;
700 	int nbank;
701 	u32 rate, format;
702 
703 	ypcm->period_size = runtime->period_size;
704 	ypcm->buffer_size = runtime->buffer_size;
705 	ypcm->period_pos = 0;
706 	ypcm->last_pos = 0;
707 	ypcm->shift = 0;
708 	rate = ((48000 * 4096) / runtime->rate) - 1;
709 	format = 0;
710 	if (runtime->channels == 2) {
711 		format |= 2;
712 		ypcm->shift++;
713 	}
714 	if (snd_pcm_format_width(runtime->format) == 8)
715 		format |= 1;
716 	else
717 		ypcm->shift++;
718 	switch (ypcm->capture_bank_number) {
719 	case 0:
720 		snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
721 		snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
722 		break;
723 	case 1:
724 		snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
725 		snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
726 		break;
727 	}
728 	for (nbank = 0; nbank < 2; nbank++) {
729 		bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
730 		bank->base = cpu_to_le32(runtime->dma_addr);
731 		bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
732 		bank->start = 0;
733 		bank->num_of_loops = 0;
734 	}
735 	return 0;
736 }
737 
738 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
739 {
740 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
741 	struct snd_pcm_runtime *runtime = substream->runtime;
742 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
743 	struct snd_ymfpci_voice *voice = ypcm->voices[0];
744 
745 	if (!(ypcm->running && voice))
746 		return 0;
747 	return le32_to_cpu(voice->bank[chip->active_bank].start);
748 }
749 
750 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
751 {
752 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
753 	struct snd_pcm_runtime *runtime = substream->runtime;
754 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
755 
756 	if (!ypcm->running)
757 		return 0;
758 	return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
759 }
760 
761 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
762 {
763 	wait_queue_entry_t wait;
764 	int loops = 4;
765 
766 	while (loops-- > 0) {
767 		if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
768 		 	continue;
769 		init_waitqueue_entry(&wait, current);
770 		add_wait_queue(&chip->interrupt_sleep, &wait);
771 		atomic_inc(&chip->interrupt_sleep_count);
772 		schedule_timeout_uninterruptible(msecs_to_jiffies(50));
773 		remove_wait_queue(&chip->interrupt_sleep, &wait);
774 	}
775 }
776 
777 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
778 {
779 	struct snd_ymfpci *chip = dev_id;
780 	u32 status, nvoice, mode;
781 	struct snd_ymfpci_voice *voice;
782 
783 	status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
784 	if (status & 0x80000000) {
785 		chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
786 		spin_lock(&chip->voice_lock);
787 		for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
788 			voice = &chip->voices[nvoice];
789 			if (voice->interrupt)
790 				voice->interrupt(chip, voice);
791 		}
792 		for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
793 			if (chip->capture_substream[nvoice])
794 				snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
795 		}
796 #if 0
797 		for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
798 			if (chip->effect_substream[nvoice])
799 				snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
800 		}
801 #endif
802 		spin_unlock(&chip->voice_lock);
803 		spin_lock(&chip->reg_lock);
804 		snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
805 		mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
806 		snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
807 		spin_unlock(&chip->reg_lock);
808 
809 		if (atomic_read(&chip->interrupt_sleep_count)) {
810 			atomic_set(&chip->interrupt_sleep_count, 0);
811 			wake_up(&chip->interrupt_sleep);
812 		}
813 	}
814 
815 	status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
816 	if (status & 1) {
817 		if (chip->timer)
818 			snd_timer_interrupt(chip->timer, chip->timer_ticks);
819 	}
820 	snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
821 
822 	if (chip->rawmidi)
823 		snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
824 	return IRQ_HANDLED;
825 }
826 
827 static const struct snd_pcm_hardware snd_ymfpci_playback =
828 {
829 	.info =			(SNDRV_PCM_INFO_MMAP |
830 				 SNDRV_PCM_INFO_MMAP_VALID |
831 				 SNDRV_PCM_INFO_INTERLEAVED |
832 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
833 				 SNDRV_PCM_INFO_PAUSE |
834 				 SNDRV_PCM_INFO_RESUME),
835 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
836 	.rates =		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
837 	.rate_min =		8000,
838 	.rate_max =		48000,
839 	.channels_min =		1,
840 	.channels_max =		2,
841 	.buffer_bytes_max =	256 * 1024, /* FIXME: enough? */
842 	.period_bytes_min =	64,
843 	.period_bytes_max =	256 * 1024, /* FIXME: enough? */
844 	.periods_min =		3,
845 	.periods_max =		1024,
846 	.fifo_size =		0,
847 };
848 
849 static const struct snd_pcm_hardware snd_ymfpci_capture =
850 {
851 	.info =			(SNDRV_PCM_INFO_MMAP |
852 				 SNDRV_PCM_INFO_MMAP_VALID |
853 				 SNDRV_PCM_INFO_INTERLEAVED |
854 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
855 				 SNDRV_PCM_INFO_PAUSE |
856 				 SNDRV_PCM_INFO_RESUME),
857 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
858 	.rates =		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
859 	.rate_min =		8000,
860 	.rate_max =		48000,
861 	.channels_min =		1,
862 	.channels_max =		2,
863 	.buffer_bytes_max =	256 * 1024, /* FIXME: enough? */
864 	.period_bytes_min =	64,
865 	.period_bytes_max =	256 * 1024, /* FIXME: enough? */
866 	.periods_min =		3,
867 	.periods_max =		1024,
868 	.fifo_size =		0,
869 };
870 
871 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
872 {
873 	kfree(runtime->private_data);
874 }
875 
876 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
877 {
878 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
879 	struct snd_pcm_runtime *runtime = substream->runtime;
880 	struct snd_ymfpci_pcm *ypcm;
881 	int err;
882 
883 	runtime->hw = snd_ymfpci_playback;
884 	/* FIXME? True value is 256/48 = 5.33333 ms */
885 	err = snd_pcm_hw_constraint_minmax(runtime,
886 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
887 					   5334, UINT_MAX);
888 	if (err < 0)
889 		return err;
890 	err = snd_pcm_hw_rule_noresample(runtime, 48000);
891 	if (err < 0)
892 		return err;
893 
894 	ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
895 	if (ypcm == NULL)
896 		return -ENOMEM;
897 	ypcm->chip = chip;
898 	ypcm->type = PLAYBACK_VOICE;
899 	ypcm->substream = substream;
900 	runtime->private_data = ypcm;
901 	runtime->private_free = snd_ymfpci_pcm_free_substream;
902 	return 0;
903 }
904 
905 /* call with spinlock held */
906 static void ymfpci_open_extension(struct snd_ymfpci *chip)
907 {
908 	if (! chip->rear_opened) {
909 		if (! chip->spdif_opened) /* set AC3 */
910 			snd_ymfpci_writel(chip, YDSXGR_MODE,
911 					  snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
912 		/* enable second codec (4CHEN) */
913 		snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
914 				  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
915 	}
916 }
917 
918 /* call with spinlock held */
919 static void ymfpci_close_extension(struct snd_ymfpci *chip)
920 {
921 	if (! chip->rear_opened) {
922 		if (! chip->spdif_opened)
923 			snd_ymfpci_writel(chip, YDSXGR_MODE,
924 					  snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
925 		snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
926 				  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
927 	}
928 }
929 
930 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
931 {
932 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
933 	struct snd_pcm_runtime *runtime = substream->runtime;
934 	struct snd_ymfpci_pcm *ypcm;
935 	int err;
936 
937 	err = snd_ymfpci_playback_open_1(substream);
938 	if (err < 0)
939 		return err;
940 	ypcm = runtime->private_data;
941 	ypcm->output_front = 1;
942 	ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
943 	ypcm->swap_rear = 0;
944 	spin_lock_irq(&chip->reg_lock);
945 	if (ypcm->output_rear) {
946 		ymfpci_open_extension(chip);
947 		chip->rear_opened++;
948 	}
949 	spin_unlock_irq(&chip->reg_lock);
950 	return 0;
951 }
952 
953 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
954 {
955 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
956 	struct snd_pcm_runtime *runtime = substream->runtime;
957 	struct snd_ymfpci_pcm *ypcm;
958 	int err;
959 
960 	err = snd_ymfpci_playback_open_1(substream);
961 	if (err < 0)
962 		return err;
963 	ypcm = runtime->private_data;
964 	ypcm->output_front = 0;
965 	ypcm->output_rear = 1;
966 	ypcm->swap_rear = 1;
967 	spin_lock_irq(&chip->reg_lock);
968 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
969 			  snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
970 	ymfpci_open_extension(chip);
971 	chip->spdif_pcm_bits = chip->spdif_bits;
972 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
973 	chip->spdif_opened++;
974 	spin_unlock_irq(&chip->reg_lock);
975 
976 	chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
977 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
978 		       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
979 	return 0;
980 }
981 
982 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
983 {
984 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
985 	struct snd_pcm_runtime *runtime = substream->runtime;
986 	struct snd_ymfpci_pcm *ypcm;
987 	int err;
988 
989 	err = snd_ymfpci_playback_open_1(substream);
990 	if (err < 0)
991 		return err;
992 	ypcm = runtime->private_data;
993 	ypcm->output_front = 0;
994 	ypcm->output_rear = 1;
995 	ypcm->swap_rear = 0;
996 	spin_lock_irq(&chip->reg_lock);
997 	ymfpci_open_extension(chip);
998 	chip->rear_opened++;
999 	spin_unlock_irq(&chip->reg_lock);
1000 	return 0;
1001 }
1002 
1003 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
1004 				   u32 capture_bank_number)
1005 {
1006 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1007 	struct snd_pcm_runtime *runtime = substream->runtime;
1008 	struct snd_ymfpci_pcm *ypcm;
1009 	int err;
1010 
1011 	runtime->hw = snd_ymfpci_capture;
1012 	/* FIXME? True value is 256/48 = 5.33333 ms */
1013 	err = snd_pcm_hw_constraint_minmax(runtime,
1014 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1015 					   5334, UINT_MAX);
1016 	if (err < 0)
1017 		return err;
1018 	err = snd_pcm_hw_rule_noresample(runtime, 48000);
1019 	if (err < 0)
1020 		return err;
1021 
1022 	ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1023 	if (ypcm == NULL)
1024 		return -ENOMEM;
1025 	ypcm->chip = chip;
1026 	ypcm->type = capture_bank_number + CAPTURE_REC;
1027 	ypcm->substream = substream;
1028 	ypcm->capture_bank_number = capture_bank_number;
1029 	chip->capture_substream[capture_bank_number] = substream;
1030 	runtime->private_data = ypcm;
1031 	runtime->private_free = snd_ymfpci_pcm_free_substream;
1032 	snd_ymfpci_hw_start(chip);
1033 	return 0;
1034 }
1035 
1036 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1037 {
1038 	return snd_ymfpci_capture_open(substream, 0);
1039 }
1040 
1041 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1042 {
1043 	return snd_ymfpci_capture_open(substream, 1);
1044 }
1045 
1046 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1047 {
1048 	return 0;
1049 }
1050 
1051 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1052 {
1053 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1054 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1055 
1056 	spin_lock_irq(&chip->reg_lock);
1057 	if (ypcm->output_rear && chip->rear_opened > 0) {
1058 		chip->rear_opened--;
1059 		ymfpci_close_extension(chip);
1060 	}
1061 	spin_unlock_irq(&chip->reg_lock);
1062 	return snd_ymfpci_playback_close_1(substream);
1063 }
1064 
1065 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1066 {
1067 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1068 
1069 	spin_lock_irq(&chip->reg_lock);
1070 	chip->spdif_opened = 0;
1071 	ymfpci_close_extension(chip);
1072 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1073 			  snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1074 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1075 	spin_unlock_irq(&chip->reg_lock);
1076 	chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1077 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1078 		       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1079 	return snd_ymfpci_playback_close_1(substream);
1080 }
1081 
1082 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1083 {
1084 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1085 
1086 	spin_lock_irq(&chip->reg_lock);
1087 	if (chip->rear_opened > 0) {
1088 		chip->rear_opened--;
1089 		ymfpci_close_extension(chip);
1090 	}
1091 	spin_unlock_irq(&chip->reg_lock);
1092 	return snd_ymfpci_playback_close_1(substream);
1093 }
1094 
1095 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1096 {
1097 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1098 	struct snd_pcm_runtime *runtime = substream->runtime;
1099 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1100 
1101 	if (ypcm != NULL) {
1102 		chip->capture_substream[ypcm->capture_bank_number] = NULL;
1103 		snd_ymfpci_hw_stop(chip);
1104 	}
1105 	return 0;
1106 }
1107 
1108 static const struct snd_pcm_ops snd_ymfpci_playback_ops = {
1109 	.open =			snd_ymfpci_playback_open,
1110 	.close =		snd_ymfpci_playback_close,
1111 	.hw_params =		snd_ymfpci_playback_hw_params,
1112 	.hw_free =		snd_ymfpci_playback_hw_free,
1113 	.prepare =		snd_ymfpci_playback_prepare,
1114 	.trigger =		snd_ymfpci_playback_trigger,
1115 	.pointer =		snd_ymfpci_playback_pointer,
1116 };
1117 
1118 static const struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1119 	.open =			snd_ymfpci_capture_rec_open,
1120 	.close =		snd_ymfpci_capture_close,
1121 	.hw_free =		snd_ymfpci_capture_hw_free,
1122 	.prepare =		snd_ymfpci_capture_prepare,
1123 	.trigger =		snd_ymfpci_capture_trigger,
1124 	.pointer =		snd_ymfpci_capture_pointer,
1125 };
1126 
1127 int snd_ymfpci_pcm(struct snd_ymfpci *chip, int device)
1128 {
1129 	struct snd_pcm *pcm;
1130 	int err;
1131 
1132 	err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm);
1133 	if (err < 0)
1134 		return err;
1135 	pcm->private_data = chip;
1136 
1137 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1138 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1139 
1140 	/* global setup */
1141 	pcm->info_flags = 0;
1142 	strcpy(pcm->name, "YMFPCI");
1143 	chip->pcm = pcm;
1144 
1145 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1146 				       &chip->pci->dev, 64*1024, 256*1024);
1147 
1148 	return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1149 				     snd_pcm_std_chmaps, 2, 0, NULL);
1150 }
1151 
1152 static const struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1153 	.open =			snd_ymfpci_capture_ac97_open,
1154 	.close =		snd_ymfpci_capture_close,
1155 	.hw_free =		snd_ymfpci_capture_hw_free,
1156 	.prepare =		snd_ymfpci_capture_prepare,
1157 	.trigger =		snd_ymfpci_capture_trigger,
1158 	.pointer =		snd_ymfpci_capture_pointer,
1159 };
1160 
1161 int snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device)
1162 {
1163 	struct snd_pcm *pcm;
1164 	int err;
1165 
1166 	err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm);
1167 	if (err < 0)
1168 		return err;
1169 	pcm->private_data = chip;
1170 
1171 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1172 
1173 	/* global setup */
1174 	pcm->info_flags = 0;
1175 	sprintf(pcm->name, "YMFPCI - %s",
1176 		chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1177 	chip->pcm2 = pcm;
1178 
1179 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1180 				       &chip->pci->dev, 64*1024, 256*1024);
1181 
1182 	return 0;
1183 }
1184 
1185 static const struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1186 	.open =			snd_ymfpci_playback_spdif_open,
1187 	.close =		snd_ymfpci_playback_spdif_close,
1188 	.hw_params =		snd_ymfpci_playback_hw_params,
1189 	.hw_free =		snd_ymfpci_playback_hw_free,
1190 	.prepare =		snd_ymfpci_playback_prepare,
1191 	.trigger =		snd_ymfpci_playback_trigger,
1192 	.pointer =		snd_ymfpci_playback_pointer,
1193 };
1194 
1195 int snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device)
1196 {
1197 	struct snd_pcm *pcm;
1198 	int err;
1199 
1200 	err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm);
1201 	if (err < 0)
1202 		return err;
1203 	pcm->private_data = chip;
1204 
1205 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1206 
1207 	/* global setup */
1208 	pcm->info_flags = 0;
1209 	strcpy(pcm->name, "YMFPCI - IEC958");
1210 	chip->pcm_spdif = pcm;
1211 
1212 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1213 				       &chip->pci->dev, 64*1024, 256*1024);
1214 
1215 	return 0;
1216 }
1217 
1218 static const struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1219 	.open =			snd_ymfpci_playback_4ch_open,
1220 	.close =		snd_ymfpci_playback_4ch_close,
1221 	.hw_params =		snd_ymfpci_playback_hw_params,
1222 	.hw_free =		snd_ymfpci_playback_hw_free,
1223 	.prepare =		snd_ymfpci_playback_prepare,
1224 	.trigger =		snd_ymfpci_playback_trigger,
1225 	.pointer =		snd_ymfpci_playback_pointer,
1226 };
1227 
1228 static const struct snd_pcm_chmap_elem surround_map[] = {
1229 	{ .channels = 1,
1230 	  .map = { SNDRV_CHMAP_MONO } },
1231 	{ .channels = 2,
1232 	  .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
1233 	{ }
1234 };
1235 
1236 int snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device)
1237 {
1238 	struct snd_pcm *pcm;
1239 	int err;
1240 
1241 	err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm);
1242 	if (err < 0)
1243 		return err;
1244 	pcm->private_data = chip;
1245 
1246 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1247 
1248 	/* global setup */
1249 	pcm->info_flags = 0;
1250 	strcpy(pcm->name, "YMFPCI - Rear PCM");
1251 	chip->pcm_4ch = pcm;
1252 
1253 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1254 				       &chip->pci->dev, 64*1024, 256*1024);
1255 
1256 	return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1257 				     surround_map, 2, 0, NULL);
1258 }
1259 
1260 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1261 {
1262 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1263 	uinfo->count = 1;
1264 	return 0;
1265 }
1266 
1267 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1268 					struct snd_ctl_elem_value *ucontrol)
1269 {
1270 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1271 
1272 	spin_lock_irq(&chip->reg_lock);
1273 	ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1274 	ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1275 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1276 	spin_unlock_irq(&chip->reg_lock);
1277 	return 0;
1278 }
1279 
1280 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1281 					 struct snd_ctl_elem_value *ucontrol)
1282 {
1283 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1284 	unsigned int val;
1285 	int change;
1286 
1287 	val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1288 	      (ucontrol->value.iec958.status[1] << 8);
1289 	spin_lock_irq(&chip->reg_lock);
1290 	change = chip->spdif_bits != val;
1291 	chip->spdif_bits = val;
1292 	if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1293 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1294 	spin_unlock_irq(&chip->reg_lock);
1295 	return change;
1296 }
1297 
1298 static const struct snd_kcontrol_new snd_ymfpci_spdif_default =
1299 {
1300 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1301 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1302 	.info =		snd_ymfpci_spdif_default_info,
1303 	.get =		snd_ymfpci_spdif_default_get,
1304 	.put =		snd_ymfpci_spdif_default_put
1305 };
1306 
1307 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1308 {
1309 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1310 	uinfo->count = 1;
1311 	return 0;
1312 }
1313 
1314 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1315 				      struct snd_ctl_elem_value *ucontrol)
1316 {
1317 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1318 
1319 	spin_lock_irq(&chip->reg_lock);
1320 	ucontrol->value.iec958.status[0] = 0x3e;
1321 	ucontrol->value.iec958.status[1] = 0xff;
1322 	spin_unlock_irq(&chip->reg_lock);
1323 	return 0;
1324 }
1325 
1326 static const struct snd_kcontrol_new snd_ymfpci_spdif_mask =
1327 {
1328 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1329 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1330 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1331 	.info =		snd_ymfpci_spdif_mask_info,
1332 	.get =		snd_ymfpci_spdif_mask_get,
1333 };
1334 
1335 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1336 {
1337 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1338 	uinfo->count = 1;
1339 	return 0;
1340 }
1341 
1342 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1343 					struct snd_ctl_elem_value *ucontrol)
1344 {
1345 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1346 
1347 	spin_lock_irq(&chip->reg_lock);
1348 	ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1349 	ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1350 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1351 	spin_unlock_irq(&chip->reg_lock);
1352 	return 0;
1353 }
1354 
1355 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1356 					struct snd_ctl_elem_value *ucontrol)
1357 {
1358 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1359 	unsigned int val;
1360 	int change;
1361 
1362 	val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1363 	      (ucontrol->value.iec958.status[1] << 8);
1364 	spin_lock_irq(&chip->reg_lock);
1365 	change = chip->spdif_pcm_bits != val;
1366 	chip->spdif_pcm_bits = val;
1367 	if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1368 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1369 	spin_unlock_irq(&chip->reg_lock);
1370 	return change;
1371 }
1372 
1373 static const struct snd_kcontrol_new snd_ymfpci_spdif_stream =
1374 {
1375 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1376 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1377 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1378 	.info =		snd_ymfpci_spdif_stream_info,
1379 	.get =		snd_ymfpci_spdif_stream_get,
1380 	.put =		snd_ymfpci_spdif_stream_put
1381 };
1382 
1383 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1384 {
1385 	static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"};
1386 
1387 	return snd_ctl_enum_info(info, 1, 3, texts);
1388 }
1389 
1390 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1391 {
1392 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1393 	u16 reg;
1394 
1395 	spin_lock_irq(&chip->reg_lock);
1396 	reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1397 	spin_unlock_irq(&chip->reg_lock);
1398 	if (!(reg & 0x100))
1399 		value->value.enumerated.item[0] = 0;
1400 	else
1401 		value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1402 	return 0;
1403 }
1404 
1405 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1406 {
1407 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1408 	u16 reg, old_reg;
1409 
1410 	spin_lock_irq(&chip->reg_lock);
1411 	old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1412 	if (value->value.enumerated.item[0] == 0)
1413 		reg = old_reg & ~0x100;
1414 	else
1415 		reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1416 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1417 	spin_unlock_irq(&chip->reg_lock);
1418 	return reg != old_reg;
1419 }
1420 
1421 static const struct snd_kcontrol_new snd_ymfpci_drec_source = {
1422 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE,
1423 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
1424 	.name =		"Direct Recording Source",
1425 	.info =		snd_ymfpci_drec_source_info,
1426 	.get =		snd_ymfpci_drec_source_get,
1427 	.put =		snd_ymfpci_drec_source_put
1428 };
1429 
1430 /*
1431  *  Mixer controls
1432  */
1433 
1434 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1435 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1436   .info = snd_ymfpci_info_single, \
1437   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1438   .private_value = ((reg) | ((shift) << 16)) }
1439 
1440 #define snd_ymfpci_info_single		snd_ctl_boolean_mono_info
1441 
1442 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1443 				 struct snd_ctl_elem_value *ucontrol)
1444 {
1445 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1446 	int reg = kcontrol->private_value & 0xffff;
1447 	unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1448 	unsigned int mask = 1;
1449 
1450 	switch (reg) {
1451 	case YDSXGR_SPDIFOUTCTRL: break;
1452 	case YDSXGR_SPDIFINCTRL: break;
1453 	default: return -EINVAL;
1454 	}
1455 	ucontrol->value.integer.value[0] =
1456 		(snd_ymfpci_readl(chip, reg) >> shift) & mask;
1457 	return 0;
1458 }
1459 
1460 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1461 				 struct snd_ctl_elem_value *ucontrol)
1462 {
1463 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1464 	int reg = kcontrol->private_value & 0xffff;
1465 	unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1466  	unsigned int mask = 1;
1467 	int change;
1468 	unsigned int val, oval;
1469 
1470 	switch (reg) {
1471 	case YDSXGR_SPDIFOUTCTRL: break;
1472 	case YDSXGR_SPDIFINCTRL: break;
1473 	default: return -EINVAL;
1474 	}
1475 	val = (ucontrol->value.integer.value[0] & mask);
1476 	val <<= shift;
1477 	spin_lock_irq(&chip->reg_lock);
1478 	oval = snd_ymfpci_readl(chip, reg);
1479 	val = (oval & ~(mask << shift)) | val;
1480 	change = val != oval;
1481 	snd_ymfpci_writel(chip, reg, val);
1482 	spin_unlock_irq(&chip->reg_lock);
1483 	return change;
1484 }
1485 
1486 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1487 
1488 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1489 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1490   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1491   .info = snd_ymfpci_info_double, \
1492   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1493   .private_value = reg, \
1494   .tlv = { .p = db_scale_native } }
1495 
1496 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1497 {
1498 	unsigned int reg = kcontrol->private_value;
1499 
1500 	if (reg < 0x80 || reg >= 0xc0)
1501 		return -EINVAL;
1502 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1503 	uinfo->count = 2;
1504 	uinfo->value.integer.min = 0;
1505 	uinfo->value.integer.max = 16383;
1506 	return 0;
1507 }
1508 
1509 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1510 {
1511 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1512 	unsigned int reg = kcontrol->private_value;
1513 	unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1514 	unsigned int val;
1515 
1516 	if (reg < 0x80 || reg >= 0xc0)
1517 		return -EINVAL;
1518 	spin_lock_irq(&chip->reg_lock);
1519 	val = snd_ymfpci_readl(chip, reg);
1520 	spin_unlock_irq(&chip->reg_lock);
1521 	ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1522 	ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1523 	return 0;
1524 }
1525 
1526 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1527 {
1528 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1529 	unsigned int reg = kcontrol->private_value;
1530 	unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1531 	int change;
1532 	unsigned int val1, val2, oval;
1533 
1534 	if (reg < 0x80 || reg >= 0xc0)
1535 		return -EINVAL;
1536 	val1 = ucontrol->value.integer.value[0] & mask;
1537 	val2 = ucontrol->value.integer.value[1] & mask;
1538 	val1 <<= shift_left;
1539 	val2 <<= shift_right;
1540 	spin_lock_irq(&chip->reg_lock);
1541 	oval = snd_ymfpci_readl(chip, reg);
1542 	val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1543 	change = val1 != oval;
1544 	snd_ymfpci_writel(chip, reg, val1);
1545 	spin_unlock_irq(&chip->reg_lock);
1546 	return change;
1547 }
1548 
1549 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
1550 				       struct snd_ctl_elem_value *ucontrol)
1551 {
1552 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1553 	unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
1554 	unsigned int reg2 = YDSXGR_BUF441OUTVOL;
1555 	int change;
1556 	unsigned int value, oval;
1557 
1558 	value = ucontrol->value.integer.value[0] & 0x3fff;
1559 	value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
1560 	spin_lock_irq(&chip->reg_lock);
1561 	oval = snd_ymfpci_readl(chip, reg);
1562 	change = value != oval;
1563 	snd_ymfpci_writel(chip, reg, value);
1564 	snd_ymfpci_writel(chip, reg2, value);
1565 	spin_unlock_irq(&chip->reg_lock);
1566 	return change;
1567 }
1568 
1569 /*
1570  * 4ch duplication
1571  */
1572 #define snd_ymfpci_info_dup4ch		snd_ctl_boolean_mono_info
1573 
1574 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1575 {
1576 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1577 	ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1578 	return 0;
1579 }
1580 
1581 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1582 {
1583 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1584 	int change;
1585 	change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1586 	if (change)
1587 		chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1588 	return change;
1589 }
1590 
1591 static const struct snd_kcontrol_new snd_ymfpci_dup4ch = {
1592 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1593 	.name = "4ch Duplication",
1594 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1595 	.info = snd_ymfpci_info_dup4ch,
1596 	.get = snd_ymfpci_get_dup4ch,
1597 	.put = snd_ymfpci_put_dup4ch,
1598 };
1599 
1600 static const struct snd_kcontrol_new snd_ymfpci_controls[] = {
1601 {
1602 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1603 	.name = "Wave Playback Volume",
1604 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1605 		  SNDRV_CTL_ELEM_ACCESS_TLV_READ,
1606 	.info = snd_ymfpci_info_double,
1607 	.get = snd_ymfpci_get_double,
1608 	.put = snd_ymfpci_put_nativedacvol,
1609 	.private_value = YDSXGR_NATIVEDACOUTVOL,
1610 	.tlv = { .p = db_scale_native },
1611 },
1612 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1613 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1614 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1615 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1616 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1617 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1618 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1619 YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL),
1620 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1621 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1622 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1623 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1624 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1625 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1626 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1627 };
1628 
1629 
1630 /*
1631  * GPIO
1632  */
1633 
1634 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1635 {
1636 	u16 reg, mode;
1637 	unsigned long flags;
1638 
1639 	spin_lock_irqsave(&chip->reg_lock, flags);
1640 	reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1641 	reg &= ~(1 << (pin + 8));
1642 	reg |= (1 << pin);
1643 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1644 	/* set the level mode for input line */
1645 	mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1646 	mode &= ~(3 << (pin * 2));
1647 	snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1648 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1649 	mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1650 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1651 	return (mode >> pin) & 1;
1652 }
1653 
1654 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1655 {
1656 	u16 reg;
1657 	unsigned long flags;
1658 
1659 	spin_lock_irqsave(&chip->reg_lock, flags);
1660 	reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1661 	reg &= ~(1 << pin);
1662 	reg &= ~(1 << (pin + 8));
1663 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1664 	snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1665 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1666 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1667 
1668 	return 0;
1669 }
1670 
1671 #define snd_ymfpci_gpio_sw_info		snd_ctl_boolean_mono_info
1672 
1673 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1674 {
1675 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1676 	int pin = (int)kcontrol->private_value;
1677 	ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1678 	return 0;
1679 }
1680 
1681 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1682 {
1683 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1684 	int pin = (int)kcontrol->private_value;
1685 
1686 	if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1687 		snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1688 		ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1689 		return 1;
1690 	}
1691 	return 0;
1692 }
1693 
1694 static const struct snd_kcontrol_new snd_ymfpci_rear_shared = {
1695 	.name = "Shared Rear/Line-In Switch",
1696 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1697 	.info = snd_ymfpci_gpio_sw_info,
1698 	.get = snd_ymfpci_gpio_sw_get,
1699 	.put = snd_ymfpci_gpio_sw_put,
1700 	.private_value = 2,
1701 };
1702 
1703 /*
1704  * PCM voice volume
1705  */
1706 
1707 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1708 				   struct snd_ctl_elem_info *uinfo)
1709 {
1710 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1711 	uinfo->count = 2;
1712 	uinfo->value.integer.min = 0;
1713 	uinfo->value.integer.max = 0x8000;
1714 	return 0;
1715 }
1716 
1717 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1718 				  struct snd_ctl_elem_value *ucontrol)
1719 {
1720 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1721 	unsigned int subs = kcontrol->id.subdevice;
1722 
1723 	ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1724 	ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1725 	return 0;
1726 }
1727 
1728 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1729 				  struct snd_ctl_elem_value *ucontrol)
1730 {
1731 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1732 	unsigned int subs = kcontrol->id.subdevice;
1733 	struct snd_pcm_substream *substream;
1734 	unsigned long flags;
1735 
1736 	if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1737 	    ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1738 		chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1739 		chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1740 		if (chip->pcm_mixer[subs].left > 0x8000)
1741 			chip->pcm_mixer[subs].left = 0x8000;
1742 		if (chip->pcm_mixer[subs].right > 0x8000)
1743 			chip->pcm_mixer[subs].right = 0x8000;
1744 
1745 		substream = (struct snd_pcm_substream *)kcontrol->private_value;
1746 		spin_lock_irqsave(&chip->voice_lock, flags);
1747 		if (substream->runtime && substream->runtime->private_data) {
1748 			struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1749 			if (!ypcm->use_441_slot)
1750 				ypcm->update_pcm_vol = 2;
1751 		}
1752 		spin_unlock_irqrestore(&chip->voice_lock, flags);
1753 		return 1;
1754 	}
1755 	return 0;
1756 }
1757 
1758 static const struct snd_kcontrol_new snd_ymfpci_pcm_volume = {
1759 	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1760 	.name = "PCM Playback Volume",
1761 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1762 		SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1763 	.info = snd_ymfpci_pcm_vol_info,
1764 	.get = snd_ymfpci_pcm_vol_get,
1765 	.put = snd_ymfpci_pcm_vol_put,
1766 };
1767 
1768 
1769 /*
1770  *  Mixer routines
1771  */
1772 
1773 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1774 {
1775 	struct snd_ymfpci *chip = bus->private_data;
1776 	chip->ac97_bus = NULL;
1777 }
1778 
1779 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1780 {
1781 	struct snd_ymfpci *chip = ac97->private_data;
1782 	chip->ac97 = NULL;
1783 }
1784 
1785 int snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1786 {
1787 	struct snd_ac97_template ac97;
1788 	struct snd_kcontrol *kctl;
1789 	struct snd_pcm_substream *substream;
1790 	unsigned int idx;
1791 	int err;
1792 	static const struct snd_ac97_bus_ops ops = {
1793 		.write = snd_ymfpci_codec_write,
1794 		.read = snd_ymfpci_codec_read,
1795 	};
1796 
1797 	err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus);
1798 	if (err < 0)
1799 		return err;
1800 	chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1801 	chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1802 
1803 	memset(&ac97, 0, sizeof(ac97));
1804 	ac97.private_data = chip;
1805 	ac97.private_free = snd_ymfpci_mixer_free_ac97;
1806 	err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97);
1807 	if (err < 0)
1808 		return err;
1809 
1810 	/* to be sure */
1811 	snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1812 			     AC97_EA_VRA|AC97_EA_VRM, 0);
1813 
1814 	for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1815 		err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip));
1816 		if (err < 0)
1817 			return err;
1818 	}
1819 	if (chip->ac97->ext_id & AC97_EI_SDAC) {
1820 		kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip);
1821 		err = snd_ctl_add(chip->card, kctl);
1822 		if (err < 0)
1823 			return err;
1824 	}
1825 
1826 	/* add S/PDIF control */
1827 	if (snd_BUG_ON(!chip->pcm_spdif))
1828 		return -ENXIO;
1829 	kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip);
1830 	err = snd_ctl_add(chip->card, kctl);
1831 	if (err < 0)
1832 		return err;
1833 	kctl->id.device = chip->pcm_spdif->device;
1834 	kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip);
1835 	err = snd_ctl_add(chip->card, kctl);
1836 	if (err < 0)
1837 		return err;
1838 	kctl->id.device = chip->pcm_spdif->device;
1839 	kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip);
1840 	err = snd_ctl_add(chip->card, kctl);
1841 	if (err < 0)
1842 		return err;
1843 	kctl->id.device = chip->pcm_spdif->device;
1844 	chip->spdif_pcm_ctl = kctl;
1845 
1846 	/* direct recording source */
1847 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754) {
1848 		kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip);
1849 		err = snd_ctl_add(chip->card, kctl);
1850 		if (err < 0)
1851 			return err;
1852 	}
1853 
1854 	/*
1855 	 * shared rear/line-in
1856 	 */
1857 	if (rear_switch) {
1858 		err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip));
1859 		if (err < 0)
1860 			return err;
1861 	}
1862 
1863 	/* per-voice volume */
1864 	substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1865 	for (idx = 0; idx < 32; ++idx) {
1866 		kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1867 		if (!kctl)
1868 			return -ENOMEM;
1869 		kctl->id.device = chip->pcm->device;
1870 		kctl->id.subdevice = idx;
1871 		kctl->private_value = (unsigned long)substream;
1872 		err = snd_ctl_add(chip->card, kctl);
1873 		if (err < 0)
1874 			return err;
1875 		chip->pcm_mixer[idx].left = 0x8000;
1876 		chip->pcm_mixer[idx].right = 0x8000;
1877 		chip->pcm_mixer[idx].ctl = kctl;
1878 		substream = substream->next;
1879 	}
1880 
1881 	return 0;
1882 }
1883 
1884 
1885 /*
1886  * timer
1887  */
1888 
1889 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1890 {
1891 	struct snd_ymfpci *chip;
1892 	unsigned long flags;
1893 	unsigned int count;
1894 
1895 	chip = snd_timer_chip(timer);
1896 	spin_lock_irqsave(&chip->reg_lock, flags);
1897 	if (timer->sticks > 1) {
1898 		chip->timer_ticks = timer->sticks;
1899 		count = timer->sticks - 1;
1900 	} else {
1901 		/*
1902 		 * Divisor 1 is not allowed; fake it by using divisor 2 and
1903 		 * counting two ticks for each interrupt.
1904 		 */
1905 		chip->timer_ticks = 2;
1906 		count = 2 - 1;
1907 	}
1908 	snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1909 	snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1910 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1911 	return 0;
1912 }
1913 
1914 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1915 {
1916 	struct snd_ymfpci *chip;
1917 	unsigned long flags;
1918 
1919 	chip = snd_timer_chip(timer);
1920 	spin_lock_irqsave(&chip->reg_lock, flags);
1921 	snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1922 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1923 	return 0;
1924 }
1925 
1926 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1927 					       unsigned long *num, unsigned long *den)
1928 {
1929 	*num = 1;
1930 	*den = 96000;
1931 	return 0;
1932 }
1933 
1934 static const struct snd_timer_hardware snd_ymfpci_timer_hw = {
1935 	.flags = SNDRV_TIMER_HW_AUTO,
1936 	.resolution = 10417, /* 1 / 96 kHz = 10.41666...us */
1937 	.ticks = 0x10000,
1938 	.start = snd_ymfpci_timer_start,
1939 	.stop = snd_ymfpci_timer_stop,
1940 	.precise_resolution = snd_ymfpci_timer_precise_resolution,
1941 };
1942 
1943 int snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1944 {
1945 	struct snd_timer *timer = NULL;
1946 	struct snd_timer_id tid;
1947 	int err;
1948 
1949 	tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1950 	tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1951 	tid.card = chip->card->number;
1952 	tid.device = device;
1953 	tid.subdevice = 0;
1954 	err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer);
1955 	if (err >= 0) {
1956 		strcpy(timer->name, "YMFPCI timer");
1957 		timer->private_data = chip;
1958 		timer->hw = snd_ymfpci_timer_hw;
1959 	}
1960 	chip->timer = timer;
1961 	return err;
1962 }
1963 
1964 
1965 /*
1966  *  proc interface
1967  */
1968 
1969 static void snd_ymfpci_proc_read(struct snd_info_entry *entry,
1970 				 struct snd_info_buffer *buffer)
1971 {
1972 	struct snd_ymfpci *chip = entry->private_data;
1973 	int i;
1974 
1975 	snd_iprintf(buffer, "YMFPCI\n\n");
1976 	for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1977 		snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1978 }
1979 
1980 static int snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1981 {
1982 	return snd_card_ro_proc_new(card, "ymfpci", chip, snd_ymfpci_proc_read);
1983 }
1984 
1985 /*
1986  *  initialization routines
1987  */
1988 
1989 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1990 {
1991 	u8 cmd;
1992 
1993 	pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
1994 #if 0 // force to reset
1995 	if (cmd & 0x03) {
1996 #endif
1997 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1998 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
1999 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
2000 		pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
2001 		pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
2002 #if 0
2003 	}
2004 #endif
2005 }
2006 
2007 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
2008 {
2009 	snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
2010 }
2011 
2012 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
2013 {
2014 	u32 val;
2015 	int timeout = 1000;
2016 
2017 	val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
2018 	if (val)
2019 		snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
2020 	while (timeout-- > 0) {
2021 		val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
2022 		if ((val & 0x00000002) == 0)
2023 			break;
2024 	}
2025 }
2026 
2027 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2028 {
2029 	int err, is_1e;
2030 	const char *name;
2031 
2032 	err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
2033 			       &chip->pci->dev);
2034 	if (err >= 0) {
2035 		if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) {
2036 			dev_err(chip->card->dev,
2037 				"DSP microcode has wrong size\n");
2038 			err = -EINVAL;
2039 		}
2040 	}
2041 	if (err < 0)
2042 		return err;
2043 	is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2044 		chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2045 		chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2046 		chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2047 	name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
2048 	err = request_firmware(&chip->controller_microcode, name,
2049 			       &chip->pci->dev);
2050 	if (err >= 0) {
2051 		if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) {
2052 			dev_err(chip->card->dev,
2053 				"controller microcode has wrong size\n");
2054 			err = -EINVAL;
2055 		}
2056 	}
2057 	if (err < 0)
2058 		return err;
2059 	return 0;
2060 }
2061 
2062 MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
2063 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
2064 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
2065 
2066 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2067 {
2068 	int i;
2069 	u16 ctrl;
2070 	const __le32 *inst;
2071 
2072 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2073 	snd_ymfpci_disable_dsp(chip);
2074 	snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2075 	snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2076 	snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2077 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2078 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2079 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2080 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2081 	ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2082 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2083 
2084 	/* setup DSP instruction code */
2085 	inst = (const __le32 *)chip->dsp_microcode->data;
2086 	for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2087 		snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2),
2088 				  le32_to_cpu(inst[i]));
2089 
2090 	/* setup control instruction code */
2091 	inst = (const __le32 *)chip->controller_microcode->data;
2092 	for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2093 		snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2),
2094 				  le32_to_cpu(inst[i]));
2095 
2096 	snd_ymfpci_enable_dsp(chip);
2097 }
2098 
2099 static int snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2100 {
2101 	long size, playback_ctrl_size;
2102 	int voice, bank, reg;
2103 	u8 *ptr;
2104 	dma_addr_t ptr_addr;
2105 
2106 	playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2107 	chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2108 	chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2109 	chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2110 	chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2111 
2112 	size = ALIGN(playback_ctrl_size, 0x100) +
2113 	       ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2114 	       ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2115 	       ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2116 	       chip->work_size;
2117 	/* work_ptr must be aligned to 256 bytes, but it's already
2118 	   covered with the kernel page allocation mechanism */
2119 	chip->work_ptr = snd_devm_alloc_pages(&chip->pci->dev,
2120 					      SNDRV_DMA_TYPE_DEV, size);
2121 	if (!chip->work_ptr)
2122 		return -ENOMEM;
2123 	ptr = chip->work_ptr->area;
2124 	ptr_addr = chip->work_ptr->addr;
2125 	memset(ptr, 0, size);	/* for sure */
2126 
2127 	chip->bank_base_playback = ptr;
2128 	chip->bank_base_playback_addr = ptr_addr;
2129 	chip->ctrl_playback = (__le32 *)ptr;
2130 	chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2131 	ptr += ALIGN(playback_ctrl_size, 0x100);
2132 	ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2133 	for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2134 		chip->voices[voice].number = voice;
2135 		chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2136 		chip->voices[voice].bank_addr = ptr_addr;
2137 		for (bank = 0; bank < 2; bank++) {
2138 			chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2139 			ptr += chip->bank_size_playback;
2140 			ptr_addr += chip->bank_size_playback;
2141 		}
2142 	}
2143 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2144 	ptr_addr = ALIGN(ptr_addr, 0x100);
2145 	chip->bank_base_capture = ptr;
2146 	chip->bank_base_capture_addr = ptr_addr;
2147 	for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2148 		for (bank = 0; bank < 2; bank++) {
2149 			chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2150 			ptr += chip->bank_size_capture;
2151 			ptr_addr += chip->bank_size_capture;
2152 		}
2153 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2154 	ptr_addr = ALIGN(ptr_addr, 0x100);
2155 	chip->bank_base_effect = ptr;
2156 	chip->bank_base_effect_addr = ptr_addr;
2157 	for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2158 		for (bank = 0; bank < 2; bank++) {
2159 			chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2160 			ptr += chip->bank_size_effect;
2161 			ptr_addr += chip->bank_size_effect;
2162 		}
2163 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2164 	ptr_addr = ALIGN(ptr_addr, 0x100);
2165 	chip->work_base = ptr;
2166 	chip->work_base_addr = ptr_addr;
2167 
2168 	snd_BUG_ON(ptr + chip->work_size !=
2169 		   chip->work_ptr->area + chip->work_ptr->bytes);
2170 
2171 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2172 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2173 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2174 	snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2175 	snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2176 
2177 	/* S/PDIF output initialization */
2178 	chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2179 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2180 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2181 
2182 	/* S/PDIF input initialization */
2183 	snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2184 
2185 	/* digital mixer setup */
2186 	for (reg = 0x80; reg < 0xc0; reg += 4)
2187 		snd_ymfpci_writel(chip, reg, 0);
2188 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2189 	snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff);
2190 	snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2191 	snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2192 	snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2193 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2194 	snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2195 	snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2196 
2197 	return 0;
2198 }
2199 
2200 static void snd_ymfpci_free(struct snd_card *card)
2201 {
2202 	struct snd_ymfpci *chip = card->private_data;
2203 	u16 ctrl;
2204 
2205 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2206 	snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2207 	snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2208 	snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2209 	snd_ymfpci_disable_dsp(chip);
2210 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2211 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2212 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2213 	snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2214 	snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2215 	ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2216 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2217 
2218 	snd_ymfpci_ac3_done(chip);
2219 
2220 	snd_ymfpci_free_gameport(chip);
2221 
2222 	pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2223 
2224 	release_firmware(chip->dsp_microcode);
2225 	release_firmware(chip->controller_microcode);
2226 }
2227 
2228 #ifdef CONFIG_PM_SLEEP
2229 static const int saved_regs_index[] = {
2230 	/* spdif */
2231 	YDSXGR_SPDIFOUTCTRL,
2232 	YDSXGR_SPDIFOUTSTATUS,
2233 	YDSXGR_SPDIFINCTRL,
2234 	/* volumes */
2235 	YDSXGR_PRIADCLOOPVOL,
2236 	YDSXGR_NATIVEDACINVOL,
2237 	YDSXGR_NATIVEDACOUTVOL,
2238 	YDSXGR_BUF441OUTVOL,
2239 	YDSXGR_NATIVEADCINVOL,
2240 	YDSXGR_SPDIFLOOPVOL,
2241 	YDSXGR_SPDIFOUTVOL,
2242 	YDSXGR_ZVOUTVOL,
2243 	YDSXGR_LEGACYOUTVOL,
2244 	/* address bases */
2245 	YDSXGR_PLAYCTRLBASE,
2246 	YDSXGR_RECCTRLBASE,
2247 	YDSXGR_EFFCTRLBASE,
2248 	YDSXGR_WORKBASE,
2249 	/* capture set up */
2250 	YDSXGR_MAPOFREC,
2251 	YDSXGR_RECFORMAT,
2252 	YDSXGR_RECSLOTSR,
2253 	YDSXGR_ADCFORMAT,
2254 	YDSXGR_ADCSLOTSR,
2255 };
2256 #define YDSXGR_NUM_SAVED_REGS	ARRAY_SIZE(saved_regs_index)
2257 
2258 static int snd_ymfpci_suspend(struct device *dev)
2259 {
2260 	struct snd_card *card = dev_get_drvdata(dev);
2261 	struct snd_ymfpci *chip = card->private_data;
2262 	unsigned int i;
2263 
2264 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2265 	snd_ac97_suspend(chip->ac97);
2266 	for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2267 		chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2268 	chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2269 	pci_read_config_word(chip->pci, PCIR_DSXG_LEGACY,
2270 			     &chip->saved_dsxg_legacy);
2271 	pci_read_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2272 			     &chip->saved_dsxg_elegacy);
2273 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2274 	snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2275 	snd_ymfpci_disable_dsp(chip);
2276 	return 0;
2277 }
2278 
2279 static int snd_ymfpci_resume(struct device *dev)
2280 {
2281 	struct pci_dev *pci = to_pci_dev(dev);
2282 	struct snd_card *card = dev_get_drvdata(dev);
2283 	struct snd_ymfpci *chip = card->private_data;
2284 	unsigned int i;
2285 
2286 	snd_ymfpci_aclink_reset(pci);
2287 	snd_ymfpci_codec_ready(chip, 0);
2288 	snd_ymfpci_download_image(chip);
2289 	udelay(100);
2290 
2291 	for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2292 		snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2293 
2294 	snd_ac97_resume(chip->ac97);
2295 
2296 	pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY,
2297 			      chip->saved_dsxg_legacy);
2298 	pci_write_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2299 			      chip->saved_dsxg_elegacy);
2300 
2301 	/* start hw again */
2302 	if (chip->start_count > 0) {
2303 		spin_lock_irq(&chip->reg_lock);
2304 		snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2305 		chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2306 		spin_unlock_irq(&chip->reg_lock);
2307 	}
2308 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2309 	return 0;
2310 }
2311 
2312 SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume);
2313 #endif /* CONFIG_PM_SLEEP */
2314 
2315 int snd_ymfpci_create(struct snd_card *card,
2316 		      struct pci_dev *pci,
2317 		      unsigned short old_legacy_ctrl)
2318 {
2319 	struct snd_ymfpci *chip = card->private_data;
2320 	int err;
2321 
2322 	/* enable PCI device */
2323 	err = pcim_enable_device(pci);
2324 	if (err < 0)
2325 		return err;
2326 
2327 	chip->old_legacy_ctrl = old_legacy_ctrl;
2328 	spin_lock_init(&chip->reg_lock);
2329 	spin_lock_init(&chip->voice_lock);
2330 	init_waitqueue_head(&chip->interrupt_sleep);
2331 	atomic_set(&chip->interrupt_sleep_count, 0);
2332 	chip->card = card;
2333 	chip->pci = pci;
2334 	chip->irq = -1;
2335 	chip->device_id = pci->device;
2336 	chip->rev = pci->revision;
2337 
2338 	err = pci_request_regions(pci, "YMFPCI");
2339 	if (err < 0)
2340 		return err;
2341 
2342 	chip->reg_area_phys = pci_resource_start(pci, 0);
2343 	chip->reg_area_virt = devm_ioremap(&pci->dev, chip->reg_area_phys, 0x8000);
2344 	if (!chip->reg_area_virt) {
2345 		dev_err(chip->card->dev,
2346 			"unable to grab memory region 0x%lx-0x%lx\n",
2347 			chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2348 		return -EBUSY;
2349 	}
2350 	pci_set_master(pci);
2351 	chip->src441_used = -1;
2352 
2353 	if (devm_request_irq(&pci->dev, pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2354 			KBUILD_MODNAME, chip)) {
2355 		dev_err(chip->card->dev, "unable to grab IRQ %d\n", pci->irq);
2356 		return -EBUSY;
2357 	}
2358 	chip->irq = pci->irq;
2359 	card->sync_irq = chip->irq;
2360 	card->private_free = snd_ymfpci_free;
2361 
2362 	snd_ymfpci_aclink_reset(pci);
2363 	if (snd_ymfpci_codec_ready(chip, 0) < 0)
2364 		return -EIO;
2365 
2366 	err = snd_ymfpci_request_firmware(chip);
2367 	if (err < 0) {
2368 		dev_err(chip->card->dev, "firmware request failed: %d\n", err);
2369 		return err;
2370 	}
2371 	snd_ymfpci_download_image(chip);
2372 
2373 	udelay(100); /* seems we need a delay after downloading image.. */
2374 
2375 	if (snd_ymfpci_memalloc(chip) < 0)
2376 		return -EIO;
2377 
2378 	err = snd_ymfpci_ac3_init(chip);
2379 	if (err < 0)
2380 		return err;
2381 
2382 #ifdef CONFIG_PM_SLEEP
2383 	chip->saved_regs = devm_kmalloc_array(&pci->dev, YDSXGR_NUM_SAVED_REGS,
2384 					      sizeof(u32), GFP_KERNEL);
2385 	if (!chip->saved_regs)
2386 		return -ENOMEM;
2387 #endif
2388 
2389 	snd_ymfpci_proc_init(card, chip);
2390 
2391 	return 0;
2392 }
2393