1 /* 2 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 3 * Routines for control of YMF724/740/744/754 chips 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 */ 20 21 #include <linux/delay.h> 22 #include <linux/firmware.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/pci.h> 26 #include <linux/sched.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 30 #include <sound/core.h> 31 #include <sound/control.h> 32 #include <sound/info.h> 33 #include <sound/tlv.h> 34 #include <sound/ymfpci.h> 35 #include <sound/asoundef.h> 36 #include <sound/mpu401.h> 37 38 #include <asm/io.h> 39 #include <asm/byteorder.h> 40 41 /* 42 * common I/O routines 43 */ 44 45 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip); 46 47 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset) 48 { 49 return readb(chip->reg_area_virt + offset); 50 } 51 52 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val) 53 { 54 writeb(val, chip->reg_area_virt + offset); 55 } 56 57 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset) 58 { 59 return readw(chip->reg_area_virt + offset); 60 } 61 62 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val) 63 { 64 writew(val, chip->reg_area_virt + offset); 65 } 66 67 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset) 68 { 69 return readl(chip->reg_area_virt + offset); 70 } 71 72 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val) 73 { 74 writel(val, chip->reg_area_virt + offset); 75 } 76 77 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary) 78 { 79 unsigned long end_time; 80 u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR; 81 82 end_time = jiffies + msecs_to_jiffies(750); 83 do { 84 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0) 85 return 0; 86 schedule_timeout_uninterruptible(1); 87 } while (time_before(jiffies, end_time)); 88 snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg)); 89 return -EBUSY; 90 } 91 92 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val) 93 { 94 struct snd_ymfpci *chip = ac97->private_data; 95 u32 cmd; 96 97 snd_ymfpci_codec_ready(chip, 0); 98 cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val; 99 snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd); 100 } 101 102 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg) 103 { 104 struct snd_ymfpci *chip = ac97->private_data; 105 106 if (snd_ymfpci_codec_ready(chip, 0)) 107 return ~0; 108 snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg); 109 if (snd_ymfpci_codec_ready(chip, 0)) 110 return ~0; 111 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) { 112 int i; 113 for (i = 0; i < 600; i++) 114 snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); 115 } 116 return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); 117 } 118 119 /* 120 * Misc routines 121 */ 122 123 static u32 snd_ymfpci_calc_delta(u32 rate) 124 { 125 switch (rate) { 126 case 8000: return 0x02aaab00; 127 case 11025: return 0x03accd00; 128 case 16000: return 0x05555500; 129 case 22050: return 0x07599a00; 130 case 32000: return 0x0aaaab00; 131 case 44100: return 0x0eb33300; 132 default: return ((rate << 16) / 375) << 5; 133 } 134 } 135 136 static u32 def_rate[8] = { 137 100, 2000, 8000, 11025, 16000, 22050, 32000, 48000 138 }; 139 140 static u32 snd_ymfpci_calc_lpfK(u32 rate) 141 { 142 u32 i; 143 static u32 val[8] = { 144 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000, 145 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000 146 }; 147 148 if (rate == 44100) 149 return 0x40000000; /* FIXME: What's the right value? */ 150 for (i = 0; i < 8; i++) 151 if (rate <= def_rate[i]) 152 return val[i]; 153 return val[0]; 154 } 155 156 static u32 snd_ymfpci_calc_lpfQ(u32 rate) 157 { 158 u32 i; 159 static u32 val[8] = { 160 0x35280000, 0x34A70000, 0x32020000, 0x31770000, 161 0x31390000, 0x31C90000, 0x33D00000, 0x40000000 162 }; 163 164 if (rate == 44100) 165 return 0x370A0000; 166 for (i = 0; i < 8; i++) 167 if (rate <= def_rate[i]) 168 return val[i]; 169 return val[0]; 170 } 171 172 /* 173 * Hardware start management 174 */ 175 176 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip) 177 { 178 unsigned long flags; 179 180 spin_lock_irqsave(&chip->reg_lock, flags); 181 if (chip->start_count++ > 0) 182 goto __end; 183 snd_ymfpci_writel(chip, YDSXGR_MODE, 184 snd_ymfpci_readl(chip, YDSXGR_MODE) | 3); 185 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; 186 __end: 187 spin_unlock_irqrestore(&chip->reg_lock, flags); 188 } 189 190 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip) 191 { 192 unsigned long flags; 193 long timeout = 1000; 194 195 spin_lock_irqsave(&chip->reg_lock, flags); 196 if (--chip->start_count > 0) 197 goto __end; 198 snd_ymfpci_writel(chip, YDSXGR_MODE, 199 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3); 200 while (timeout-- > 0) { 201 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0) 202 break; 203 } 204 if (atomic_read(&chip->interrupt_sleep_count)) { 205 atomic_set(&chip->interrupt_sleep_count, 0); 206 wake_up(&chip->interrupt_sleep); 207 } 208 __end: 209 spin_unlock_irqrestore(&chip->reg_lock, flags); 210 } 211 212 /* 213 * Playback voice management 214 */ 215 216 static int voice_alloc(struct snd_ymfpci *chip, 217 enum snd_ymfpci_voice_type type, int pair, 218 struct snd_ymfpci_voice **rvoice) 219 { 220 struct snd_ymfpci_voice *voice, *voice2; 221 int idx; 222 223 *rvoice = NULL; 224 for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) { 225 voice = &chip->voices[idx]; 226 voice2 = pair ? &chip->voices[idx+1] : NULL; 227 if (voice->use || (voice2 && voice2->use)) 228 continue; 229 voice->use = 1; 230 if (voice2) 231 voice2->use = 1; 232 switch (type) { 233 case YMFPCI_PCM: 234 voice->pcm = 1; 235 if (voice2) 236 voice2->pcm = 1; 237 break; 238 case YMFPCI_SYNTH: 239 voice->synth = 1; 240 break; 241 case YMFPCI_MIDI: 242 voice->midi = 1; 243 break; 244 } 245 snd_ymfpci_hw_start(chip); 246 if (voice2) 247 snd_ymfpci_hw_start(chip); 248 *rvoice = voice; 249 return 0; 250 } 251 return -ENOMEM; 252 } 253 254 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip, 255 enum snd_ymfpci_voice_type type, int pair, 256 struct snd_ymfpci_voice **rvoice) 257 { 258 unsigned long flags; 259 int result; 260 261 snd_assert(rvoice != NULL, return -EINVAL); 262 snd_assert(!pair || type == YMFPCI_PCM, return -EINVAL); 263 264 spin_lock_irqsave(&chip->voice_lock, flags); 265 for (;;) { 266 result = voice_alloc(chip, type, pair, rvoice); 267 if (result == 0 || type != YMFPCI_PCM) 268 break; 269 /* TODO: synth/midi voice deallocation */ 270 break; 271 } 272 spin_unlock_irqrestore(&chip->voice_lock, flags); 273 return result; 274 } 275 276 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice) 277 { 278 unsigned long flags; 279 280 snd_assert(pvoice != NULL, return -EINVAL); 281 snd_ymfpci_hw_stop(chip); 282 spin_lock_irqsave(&chip->voice_lock, flags); 283 if (pvoice->number == chip->src441_used) { 284 chip->src441_used = -1; 285 pvoice->ypcm->use_441_slot = 0; 286 } 287 pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0; 288 pvoice->ypcm = NULL; 289 pvoice->interrupt = NULL; 290 spin_unlock_irqrestore(&chip->voice_lock, flags); 291 return 0; 292 } 293 294 /* 295 * PCM part 296 */ 297 298 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice) 299 { 300 struct snd_ymfpci_pcm *ypcm; 301 u32 pos, delta; 302 303 if ((ypcm = voice->ypcm) == NULL) 304 return; 305 if (ypcm->substream == NULL) 306 return; 307 spin_lock(&chip->reg_lock); 308 if (ypcm->running) { 309 pos = le32_to_cpu(voice->bank[chip->active_bank].start); 310 if (pos < ypcm->last_pos) 311 delta = pos + (ypcm->buffer_size - ypcm->last_pos); 312 else 313 delta = pos - ypcm->last_pos; 314 ypcm->period_pos += delta; 315 ypcm->last_pos = pos; 316 if (ypcm->period_pos >= ypcm->period_size) { 317 // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start); 318 ypcm->period_pos %= ypcm->period_size; 319 spin_unlock(&chip->reg_lock); 320 snd_pcm_period_elapsed(ypcm->substream); 321 spin_lock(&chip->reg_lock); 322 } 323 324 if (unlikely(ypcm->update_pcm_vol)) { 325 unsigned int subs = ypcm->substream->number; 326 unsigned int next_bank = 1 - chip->active_bank; 327 struct snd_ymfpci_playback_bank *bank; 328 u32 volume; 329 330 bank = &voice->bank[next_bank]; 331 volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15); 332 bank->left_gain_end = volume; 333 if (ypcm->output_rear) 334 bank->eff2_gain_end = volume; 335 if (ypcm->voices[1]) 336 bank = &ypcm->voices[1]->bank[next_bank]; 337 volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15); 338 bank->right_gain_end = volume; 339 if (ypcm->output_rear) 340 bank->eff3_gain_end = volume; 341 ypcm->update_pcm_vol--; 342 } 343 } 344 spin_unlock(&chip->reg_lock); 345 } 346 347 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream) 348 { 349 struct snd_pcm_runtime *runtime = substream->runtime; 350 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 351 struct snd_ymfpci *chip = ypcm->chip; 352 u32 pos, delta; 353 354 spin_lock(&chip->reg_lock); 355 if (ypcm->running) { 356 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; 357 if (pos < ypcm->last_pos) 358 delta = pos + (ypcm->buffer_size - ypcm->last_pos); 359 else 360 delta = pos - ypcm->last_pos; 361 ypcm->period_pos += delta; 362 ypcm->last_pos = pos; 363 if (ypcm->period_pos >= ypcm->period_size) { 364 ypcm->period_pos %= ypcm->period_size; 365 // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start); 366 spin_unlock(&chip->reg_lock); 367 snd_pcm_period_elapsed(substream); 368 spin_lock(&chip->reg_lock); 369 } 370 } 371 spin_unlock(&chip->reg_lock); 372 } 373 374 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream, 375 int cmd) 376 { 377 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 378 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 379 struct snd_kcontrol *kctl = NULL; 380 int result = 0; 381 382 spin_lock(&chip->reg_lock); 383 if (ypcm->voices[0] == NULL) { 384 result = -EINVAL; 385 goto __unlock; 386 } 387 switch (cmd) { 388 case SNDRV_PCM_TRIGGER_START: 389 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 390 case SNDRV_PCM_TRIGGER_RESUME: 391 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr); 392 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) 393 chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr); 394 ypcm->running = 1; 395 break; 396 case SNDRV_PCM_TRIGGER_STOP: 397 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { 398 kctl = chip->pcm_mixer[substream->number].ctl; 399 kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 400 } 401 /* fall through */ 402 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 403 case SNDRV_PCM_TRIGGER_SUSPEND: 404 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0; 405 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) 406 chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0; 407 ypcm->running = 0; 408 break; 409 default: 410 result = -EINVAL; 411 break; 412 } 413 __unlock: 414 spin_unlock(&chip->reg_lock); 415 if (kctl) 416 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); 417 return result; 418 } 419 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream, 420 int cmd) 421 { 422 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 423 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 424 int result = 0; 425 u32 tmp; 426 427 spin_lock(&chip->reg_lock); 428 switch (cmd) { 429 case SNDRV_PCM_TRIGGER_START: 430 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 431 case SNDRV_PCM_TRIGGER_RESUME: 432 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number); 433 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); 434 ypcm->running = 1; 435 break; 436 case SNDRV_PCM_TRIGGER_STOP: 437 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 438 case SNDRV_PCM_TRIGGER_SUSPEND: 439 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number); 440 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); 441 ypcm->running = 0; 442 break; 443 default: 444 result = -EINVAL; 445 break; 446 } 447 spin_unlock(&chip->reg_lock); 448 return result; 449 } 450 451 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices) 452 { 453 int err; 454 455 if (ypcm->voices[1] != NULL && voices < 2) { 456 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]); 457 ypcm->voices[1] = NULL; 458 } 459 if (voices == 1 && ypcm->voices[0] != NULL) 460 return 0; /* already allocated */ 461 if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL) 462 return 0; /* already allocated */ 463 if (voices > 1) { 464 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) { 465 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]); 466 ypcm->voices[0] = NULL; 467 } 468 } 469 err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]); 470 if (err < 0) 471 return err; 472 ypcm->voices[0]->ypcm = ypcm; 473 ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt; 474 if (voices > 1) { 475 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1]; 476 ypcm->voices[1]->ypcm = ypcm; 477 } 478 return 0; 479 } 480 481 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx, 482 struct snd_pcm_runtime *runtime, 483 int has_pcm_volume) 484 { 485 struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx]; 486 u32 format; 487 u32 delta = snd_ymfpci_calc_delta(runtime->rate); 488 u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate); 489 u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate); 490 struct snd_ymfpci_playback_bank *bank; 491 unsigned int nbank; 492 u32 vol_left, vol_right; 493 u8 use_left, use_right; 494 unsigned long flags; 495 496 snd_assert(voice != NULL, return); 497 if (runtime->channels == 1) { 498 use_left = 1; 499 use_right = 1; 500 } else { 501 use_left = (voiceidx & 1) == 0; 502 use_right = !use_left; 503 } 504 if (has_pcm_volume) { 505 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer 506 [ypcm->substream->number].left << 15); 507 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer 508 [ypcm->substream->number].right << 15); 509 } else { 510 vol_left = cpu_to_le32(0x40000000); 511 vol_right = cpu_to_le32(0x40000000); 512 } 513 spin_lock_irqsave(&ypcm->chip->voice_lock, flags); 514 format = runtime->channels == 2 ? 0x00010000 : 0; 515 if (snd_pcm_format_width(runtime->format) == 8) 516 format |= 0x80000000; 517 else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 && 518 runtime->rate == 44100 && runtime->channels == 2 && 519 voiceidx == 0 && (ypcm->chip->src441_used == -1 || 520 ypcm->chip->src441_used == voice->number)) { 521 ypcm->chip->src441_used = voice->number; 522 ypcm->use_441_slot = 1; 523 format |= 0x10000000; 524 } 525 if (ypcm->chip->src441_used == voice->number && 526 (format & 0x10000000) == 0) { 527 ypcm->chip->src441_used = -1; 528 ypcm->use_441_slot = 0; 529 } 530 if (runtime->channels == 2 && (voiceidx & 1) != 0) 531 format |= 1; 532 spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags); 533 for (nbank = 0; nbank < 2; nbank++) { 534 bank = &voice->bank[nbank]; 535 memset(bank, 0, sizeof(*bank)); 536 bank->format = cpu_to_le32(format); 537 bank->base = cpu_to_le32(runtime->dma_addr); 538 bank->loop_end = cpu_to_le32(ypcm->buffer_size); 539 bank->lpfQ = cpu_to_le32(lpfQ); 540 bank->delta = 541 bank->delta_end = cpu_to_le32(delta); 542 bank->lpfK = 543 bank->lpfK_end = cpu_to_le32(lpfK); 544 bank->eg_gain = 545 bank->eg_gain_end = cpu_to_le32(0x40000000); 546 547 if (ypcm->output_front) { 548 if (use_left) { 549 bank->left_gain = 550 bank->left_gain_end = vol_left; 551 } 552 if (use_right) { 553 bank->right_gain = 554 bank->right_gain_end = vol_right; 555 } 556 } 557 if (ypcm->output_rear) { 558 if (!ypcm->swap_rear) { 559 if (use_left) { 560 bank->eff2_gain = 561 bank->eff2_gain_end = vol_left; 562 } 563 if (use_right) { 564 bank->eff3_gain = 565 bank->eff3_gain_end = vol_right; 566 } 567 } else { 568 /* The SPDIF out channels seem to be swapped, so we have 569 * to swap them here, too. The rear analog out channels 570 * will be wrong, but otherwise AC3 would not work. 571 */ 572 if (use_left) { 573 bank->eff3_gain = 574 bank->eff3_gain_end = vol_left; 575 } 576 if (use_right) { 577 bank->eff2_gain = 578 bank->eff2_gain_end = vol_right; 579 } 580 } 581 } 582 } 583 } 584 585 static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip) 586 { 587 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 588 4096, &chip->ac3_tmp_base) < 0) 589 return -ENOMEM; 590 591 chip->bank_effect[3][0]->base = 592 chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr); 593 chip->bank_effect[3][0]->loop_end = 594 chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024); 595 chip->bank_effect[4][0]->base = 596 chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048); 597 chip->bank_effect[4][0]->loop_end = 598 chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024); 599 600 spin_lock_irq(&chip->reg_lock); 601 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 602 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3); 603 spin_unlock_irq(&chip->reg_lock); 604 return 0; 605 } 606 607 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip) 608 { 609 spin_lock_irq(&chip->reg_lock); 610 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 611 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3)); 612 spin_unlock_irq(&chip->reg_lock); 613 // snd_ymfpci_irq_wait(chip); 614 if (chip->ac3_tmp_base.area) { 615 snd_dma_free_pages(&chip->ac3_tmp_base); 616 chip->ac3_tmp_base.area = NULL; 617 } 618 return 0; 619 } 620 621 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream, 622 struct snd_pcm_hw_params *hw_params) 623 { 624 struct snd_pcm_runtime *runtime = substream->runtime; 625 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 626 int err; 627 628 if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0) 629 return err; 630 if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0) 631 return err; 632 return 0; 633 } 634 635 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream) 636 { 637 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 638 struct snd_pcm_runtime *runtime = substream->runtime; 639 struct snd_ymfpci_pcm *ypcm; 640 641 if (runtime->private_data == NULL) 642 return 0; 643 ypcm = runtime->private_data; 644 645 /* wait, until the PCI operations are not finished */ 646 snd_ymfpci_irq_wait(chip); 647 snd_pcm_lib_free_pages(substream); 648 if (ypcm->voices[1]) { 649 snd_ymfpci_voice_free(chip, ypcm->voices[1]); 650 ypcm->voices[1] = NULL; 651 } 652 if (ypcm->voices[0]) { 653 snd_ymfpci_voice_free(chip, ypcm->voices[0]); 654 ypcm->voices[0] = NULL; 655 } 656 return 0; 657 } 658 659 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream) 660 { 661 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 662 struct snd_pcm_runtime *runtime = substream->runtime; 663 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 664 struct snd_kcontrol *kctl; 665 unsigned int nvoice; 666 667 ypcm->period_size = runtime->period_size; 668 ypcm->buffer_size = runtime->buffer_size; 669 ypcm->period_pos = 0; 670 ypcm->last_pos = 0; 671 for (nvoice = 0; nvoice < runtime->channels; nvoice++) 672 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime, 673 substream->pcm == chip->pcm); 674 675 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { 676 kctl = chip->pcm_mixer[substream->number].ctl; 677 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 678 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); 679 } 680 return 0; 681 } 682 683 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream, 684 struct snd_pcm_hw_params *hw_params) 685 { 686 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 687 } 688 689 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream) 690 { 691 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 692 693 /* wait, until the PCI operations are not finished */ 694 snd_ymfpci_irq_wait(chip); 695 return snd_pcm_lib_free_pages(substream); 696 } 697 698 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream) 699 { 700 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 701 struct snd_pcm_runtime *runtime = substream->runtime; 702 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 703 struct snd_ymfpci_capture_bank * bank; 704 int nbank; 705 u32 rate, format; 706 707 ypcm->period_size = runtime->period_size; 708 ypcm->buffer_size = runtime->buffer_size; 709 ypcm->period_pos = 0; 710 ypcm->last_pos = 0; 711 ypcm->shift = 0; 712 rate = ((48000 * 4096) / runtime->rate) - 1; 713 format = 0; 714 if (runtime->channels == 2) { 715 format |= 2; 716 ypcm->shift++; 717 } 718 if (snd_pcm_format_width(runtime->format) == 8) 719 format |= 1; 720 else 721 ypcm->shift++; 722 switch (ypcm->capture_bank_number) { 723 case 0: 724 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format); 725 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate); 726 break; 727 case 1: 728 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format); 729 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate); 730 break; 731 } 732 for (nbank = 0; nbank < 2; nbank++) { 733 bank = chip->bank_capture[ypcm->capture_bank_number][nbank]; 734 bank->base = cpu_to_le32(runtime->dma_addr); 735 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift); 736 bank->start = 0; 737 bank->num_of_loops = 0; 738 } 739 return 0; 740 } 741 742 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream) 743 { 744 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 745 struct snd_pcm_runtime *runtime = substream->runtime; 746 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 747 struct snd_ymfpci_voice *voice = ypcm->voices[0]; 748 749 if (!(ypcm->running && voice)) 750 return 0; 751 return le32_to_cpu(voice->bank[chip->active_bank].start); 752 } 753 754 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream) 755 { 756 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 757 struct snd_pcm_runtime *runtime = substream->runtime; 758 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 759 760 if (!ypcm->running) 761 return 0; 762 return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; 763 } 764 765 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip) 766 { 767 wait_queue_t wait; 768 int loops = 4; 769 770 while (loops-- > 0) { 771 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0) 772 continue; 773 init_waitqueue_entry(&wait, current); 774 add_wait_queue(&chip->interrupt_sleep, &wait); 775 atomic_inc(&chip->interrupt_sleep_count); 776 schedule_timeout_uninterruptible(msecs_to_jiffies(50)); 777 remove_wait_queue(&chip->interrupt_sleep, &wait); 778 } 779 } 780 781 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id) 782 { 783 struct snd_ymfpci *chip = dev_id; 784 u32 status, nvoice, mode; 785 struct snd_ymfpci_voice *voice; 786 787 status = snd_ymfpci_readl(chip, YDSXGR_STATUS); 788 if (status & 0x80000000) { 789 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; 790 spin_lock(&chip->voice_lock); 791 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) { 792 voice = &chip->voices[nvoice]; 793 if (voice->interrupt) 794 voice->interrupt(chip, voice); 795 } 796 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) { 797 if (chip->capture_substream[nvoice]) 798 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]); 799 } 800 #if 0 801 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) { 802 if (chip->effect_substream[nvoice]) 803 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]); 804 } 805 #endif 806 spin_unlock(&chip->voice_lock); 807 spin_lock(&chip->reg_lock); 808 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000); 809 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2; 810 snd_ymfpci_writel(chip, YDSXGR_MODE, mode); 811 spin_unlock(&chip->reg_lock); 812 813 if (atomic_read(&chip->interrupt_sleep_count)) { 814 atomic_set(&chip->interrupt_sleep_count, 0); 815 wake_up(&chip->interrupt_sleep); 816 } 817 } 818 819 status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG); 820 if (status & 1) { 821 if (chip->timer) 822 snd_timer_interrupt(chip->timer, chip->timer->sticks); 823 } 824 snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status); 825 826 if (chip->rawmidi) 827 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data); 828 return IRQ_HANDLED; 829 } 830 831 static struct snd_pcm_hardware snd_ymfpci_playback = 832 { 833 .info = (SNDRV_PCM_INFO_MMAP | 834 SNDRV_PCM_INFO_MMAP_VALID | 835 SNDRV_PCM_INFO_INTERLEAVED | 836 SNDRV_PCM_INFO_BLOCK_TRANSFER | 837 SNDRV_PCM_INFO_PAUSE | 838 SNDRV_PCM_INFO_RESUME), 839 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 840 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 841 .rate_min = 8000, 842 .rate_max = 48000, 843 .channels_min = 1, 844 .channels_max = 2, 845 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ 846 .period_bytes_min = 64, 847 .period_bytes_max = 256 * 1024, /* FIXME: enough? */ 848 .periods_min = 3, 849 .periods_max = 1024, 850 .fifo_size = 0, 851 }; 852 853 static struct snd_pcm_hardware snd_ymfpci_capture = 854 { 855 .info = (SNDRV_PCM_INFO_MMAP | 856 SNDRV_PCM_INFO_MMAP_VALID | 857 SNDRV_PCM_INFO_INTERLEAVED | 858 SNDRV_PCM_INFO_BLOCK_TRANSFER | 859 SNDRV_PCM_INFO_PAUSE | 860 SNDRV_PCM_INFO_RESUME), 861 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 862 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 863 .rate_min = 8000, 864 .rate_max = 48000, 865 .channels_min = 1, 866 .channels_max = 2, 867 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ 868 .period_bytes_min = 64, 869 .period_bytes_max = 256 * 1024, /* FIXME: enough? */ 870 .periods_min = 3, 871 .periods_max = 1024, 872 .fifo_size = 0, 873 }; 874 875 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime) 876 { 877 kfree(runtime->private_data); 878 } 879 880 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream) 881 { 882 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 883 struct snd_pcm_runtime *runtime = substream->runtime; 884 struct snd_ymfpci_pcm *ypcm; 885 886 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); 887 if (ypcm == NULL) 888 return -ENOMEM; 889 ypcm->chip = chip; 890 ypcm->type = PLAYBACK_VOICE; 891 ypcm->substream = substream; 892 runtime->hw = snd_ymfpci_playback; 893 runtime->private_data = ypcm; 894 runtime->private_free = snd_ymfpci_pcm_free_substream; 895 /* FIXME? True value is 256/48 = 5.33333 ms */ 896 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX); 897 return 0; 898 } 899 900 /* call with spinlock held */ 901 static void ymfpci_open_extension(struct snd_ymfpci *chip) 902 { 903 if (! chip->rear_opened) { 904 if (! chip->spdif_opened) /* set AC3 */ 905 snd_ymfpci_writel(chip, YDSXGR_MODE, 906 snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30)); 907 /* enable second codec (4CHEN) */ 908 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, 909 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010); 910 } 911 } 912 913 /* call with spinlock held */ 914 static void ymfpci_close_extension(struct snd_ymfpci *chip) 915 { 916 if (! chip->rear_opened) { 917 if (! chip->spdif_opened) 918 snd_ymfpci_writel(chip, YDSXGR_MODE, 919 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30)); 920 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, 921 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010); 922 } 923 } 924 925 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream) 926 { 927 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 928 struct snd_pcm_runtime *runtime = substream->runtime; 929 struct snd_ymfpci_pcm *ypcm; 930 int err; 931 932 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 933 return err; 934 ypcm = runtime->private_data; 935 ypcm->output_front = 1; 936 ypcm->output_rear = chip->mode_dup4ch ? 1 : 0; 937 ypcm->swap_rear = 0; 938 spin_lock_irq(&chip->reg_lock); 939 if (ypcm->output_rear) { 940 ymfpci_open_extension(chip); 941 chip->rear_opened++; 942 } 943 spin_unlock_irq(&chip->reg_lock); 944 return 0; 945 } 946 947 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream) 948 { 949 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 950 struct snd_pcm_runtime *runtime = substream->runtime; 951 struct snd_ymfpci_pcm *ypcm; 952 int err; 953 954 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 955 return err; 956 ypcm = runtime->private_data; 957 ypcm->output_front = 0; 958 ypcm->output_rear = 1; 959 ypcm->swap_rear = 1; 960 spin_lock_irq(&chip->reg_lock); 961 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 962 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2); 963 ymfpci_open_extension(chip); 964 chip->spdif_pcm_bits = chip->spdif_bits; 965 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); 966 chip->spdif_opened++; 967 spin_unlock_irq(&chip->reg_lock); 968 969 chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 970 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | 971 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); 972 return 0; 973 } 974 975 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream) 976 { 977 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 978 struct snd_pcm_runtime *runtime = substream->runtime; 979 struct snd_ymfpci_pcm *ypcm; 980 int err; 981 982 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 983 return err; 984 ypcm = runtime->private_data; 985 ypcm->output_front = 0; 986 ypcm->output_rear = 1; 987 ypcm->swap_rear = 0; 988 spin_lock_irq(&chip->reg_lock); 989 ymfpci_open_extension(chip); 990 chip->rear_opened++; 991 spin_unlock_irq(&chip->reg_lock); 992 return 0; 993 } 994 995 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream, 996 u32 capture_bank_number) 997 { 998 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 999 struct snd_pcm_runtime *runtime = substream->runtime; 1000 struct snd_ymfpci_pcm *ypcm; 1001 1002 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); 1003 if (ypcm == NULL) 1004 return -ENOMEM; 1005 ypcm->chip = chip; 1006 ypcm->type = capture_bank_number + CAPTURE_REC; 1007 ypcm->substream = substream; 1008 ypcm->capture_bank_number = capture_bank_number; 1009 chip->capture_substream[capture_bank_number] = substream; 1010 runtime->hw = snd_ymfpci_capture; 1011 /* FIXME? True value is 256/48 = 5.33333 ms */ 1012 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX); 1013 runtime->private_data = ypcm; 1014 runtime->private_free = snd_ymfpci_pcm_free_substream; 1015 snd_ymfpci_hw_start(chip); 1016 return 0; 1017 } 1018 1019 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream) 1020 { 1021 return snd_ymfpci_capture_open(substream, 0); 1022 } 1023 1024 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream) 1025 { 1026 return snd_ymfpci_capture_open(substream, 1); 1027 } 1028 1029 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream) 1030 { 1031 return 0; 1032 } 1033 1034 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream) 1035 { 1036 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1037 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 1038 1039 spin_lock_irq(&chip->reg_lock); 1040 if (ypcm->output_rear && chip->rear_opened > 0) { 1041 chip->rear_opened--; 1042 ymfpci_close_extension(chip); 1043 } 1044 spin_unlock_irq(&chip->reg_lock); 1045 return snd_ymfpci_playback_close_1(substream); 1046 } 1047 1048 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream) 1049 { 1050 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1051 1052 spin_lock_irq(&chip->reg_lock); 1053 chip->spdif_opened = 0; 1054 ymfpci_close_extension(chip); 1055 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 1056 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2); 1057 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 1058 spin_unlock_irq(&chip->reg_lock); 1059 chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1060 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | 1061 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); 1062 return snd_ymfpci_playback_close_1(substream); 1063 } 1064 1065 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream) 1066 { 1067 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1068 1069 spin_lock_irq(&chip->reg_lock); 1070 if (chip->rear_opened > 0) { 1071 chip->rear_opened--; 1072 ymfpci_close_extension(chip); 1073 } 1074 spin_unlock_irq(&chip->reg_lock); 1075 return snd_ymfpci_playback_close_1(substream); 1076 } 1077 1078 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream) 1079 { 1080 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1081 struct snd_pcm_runtime *runtime = substream->runtime; 1082 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 1083 1084 if (ypcm != NULL) { 1085 chip->capture_substream[ypcm->capture_bank_number] = NULL; 1086 snd_ymfpci_hw_stop(chip); 1087 } 1088 return 0; 1089 } 1090 1091 static struct snd_pcm_ops snd_ymfpci_playback_ops = { 1092 .open = snd_ymfpci_playback_open, 1093 .close = snd_ymfpci_playback_close, 1094 .ioctl = snd_pcm_lib_ioctl, 1095 .hw_params = snd_ymfpci_playback_hw_params, 1096 .hw_free = snd_ymfpci_playback_hw_free, 1097 .prepare = snd_ymfpci_playback_prepare, 1098 .trigger = snd_ymfpci_playback_trigger, 1099 .pointer = snd_ymfpci_playback_pointer, 1100 }; 1101 1102 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = { 1103 .open = snd_ymfpci_capture_rec_open, 1104 .close = snd_ymfpci_capture_close, 1105 .ioctl = snd_pcm_lib_ioctl, 1106 .hw_params = snd_ymfpci_capture_hw_params, 1107 .hw_free = snd_ymfpci_capture_hw_free, 1108 .prepare = snd_ymfpci_capture_prepare, 1109 .trigger = snd_ymfpci_capture_trigger, 1110 .pointer = snd_ymfpci_capture_pointer, 1111 }; 1112 1113 int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1114 { 1115 struct snd_pcm *pcm; 1116 int err; 1117 1118 if (rpcm) 1119 *rpcm = NULL; 1120 if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0) 1121 return err; 1122 pcm->private_data = chip; 1123 1124 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops); 1125 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops); 1126 1127 /* global setup */ 1128 pcm->info_flags = 0; 1129 strcpy(pcm->name, "YMFPCI"); 1130 chip->pcm = pcm; 1131 1132 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1133 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1134 1135 if (rpcm) 1136 *rpcm = pcm; 1137 return 0; 1138 } 1139 1140 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = { 1141 .open = snd_ymfpci_capture_ac97_open, 1142 .close = snd_ymfpci_capture_close, 1143 .ioctl = snd_pcm_lib_ioctl, 1144 .hw_params = snd_ymfpci_capture_hw_params, 1145 .hw_free = snd_ymfpci_capture_hw_free, 1146 .prepare = snd_ymfpci_capture_prepare, 1147 .trigger = snd_ymfpci_capture_trigger, 1148 .pointer = snd_ymfpci_capture_pointer, 1149 }; 1150 1151 int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1152 { 1153 struct snd_pcm *pcm; 1154 int err; 1155 1156 if (rpcm) 1157 *rpcm = NULL; 1158 if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0) 1159 return err; 1160 pcm->private_data = chip; 1161 1162 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops); 1163 1164 /* global setup */ 1165 pcm->info_flags = 0; 1166 sprintf(pcm->name, "YMFPCI - %s", 1167 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97"); 1168 chip->pcm2 = pcm; 1169 1170 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1171 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1172 1173 if (rpcm) 1174 *rpcm = pcm; 1175 return 0; 1176 } 1177 1178 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = { 1179 .open = snd_ymfpci_playback_spdif_open, 1180 .close = snd_ymfpci_playback_spdif_close, 1181 .ioctl = snd_pcm_lib_ioctl, 1182 .hw_params = snd_ymfpci_playback_hw_params, 1183 .hw_free = snd_ymfpci_playback_hw_free, 1184 .prepare = snd_ymfpci_playback_prepare, 1185 .trigger = snd_ymfpci_playback_trigger, 1186 .pointer = snd_ymfpci_playback_pointer, 1187 }; 1188 1189 int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1190 { 1191 struct snd_pcm *pcm; 1192 int err; 1193 1194 if (rpcm) 1195 *rpcm = NULL; 1196 if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0) 1197 return err; 1198 pcm->private_data = chip; 1199 1200 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops); 1201 1202 /* global setup */ 1203 pcm->info_flags = 0; 1204 strcpy(pcm->name, "YMFPCI - IEC958"); 1205 chip->pcm_spdif = pcm; 1206 1207 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1208 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1209 1210 if (rpcm) 1211 *rpcm = pcm; 1212 return 0; 1213 } 1214 1215 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = { 1216 .open = snd_ymfpci_playback_4ch_open, 1217 .close = snd_ymfpci_playback_4ch_close, 1218 .ioctl = snd_pcm_lib_ioctl, 1219 .hw_params = snd_ymfpci_playback_hw_params, 1220 .hw_free = snd_ymfpci_playback_hw_free, 1221 .prepare = snd_ymfpci_playback_prepare, 1222 .trigger = snd_ymfpci_playback_trigger, 1223 .pointer = snd_ymfpci_playback_pointer, 1224 }; 1225 1226 int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1227 { 1228 struct snd_pcm *pcm; 1229 int err; 1230 1231 if (rpcm) 1232 *rpcm = NULL; 1233 if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0) 1234 return err; 1235 pcm->private_data = chip; 1236 1237 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops); 1238 1239 /* global setup */ 1240 pcm->info_flags = 0; 1241 strcpy(pcm->name, "YMFPCI - Rear PCM"); 1242 chip->pcm_4ch = pcm; 1243 1244 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1245 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1246 1247 if (rpcm) 1248 *rpcm = pcm; 1249 return 0; 1250 } 1251 1252 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1253 { 1254 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1255 uinfo->count = 1; 1256 return 0; 1257 } 1258 1259 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol, 1260 struct snd_ctl_elem_value *ucontrol) 1261 { 1262 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1263 1264 spin_lock_irq(&chip->reg_lock); 1265 ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff; 1266 ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff; 1267 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; 1268 spin_unlock_irq(&chip->reg_lock); 1269 return 0; 1270 } 1271 1272 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol, 1273 struct snd_ctl_elem_value *ucontrol) 1274 { 1275 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1276 unsigned int val; 1277 int change; 1278 1279 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | 1280 (ucontrol->value.iec958.status[1] << 8); 1281 spin_lock_irq(&chip->reg_lock); 1282 change = chip->spdif_bits != val; 1283 chip->spdif_bits = val; 1284 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL) 1285 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 1286 spin_unlock_irq(&chip->reg_lock); 1287 return change; 1288 } 1289 1290 static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata = 1291 { 1292 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1293 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1294 .info = snd_ymfpci_spdif_default_info, 1295 .get = snd_ymfpci_spdif_default_get, 1296 .put = snd_ymfpci_spdif_default_put 1297 }; 1298 1299 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1300 { 1301 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1302 uinfo->count = 1; 1303 return 0; 1304 } 1305 1306 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1307 struct snd_ctl_elem_value *ucontrol) 1308 { 1309 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1310 1311 spin_lock_irq(&chip->reg_lock); 1312 ucontrol->value.iec958.status[0] = 0x3e; 1313 ucontrol->value.iec958.status[1] = 0xff; 1314 spin_unlock_irq(&chip->reg_lock); 1315 return 0; 1316 } 1317 1318 static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata = 1319 { 1320 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1321 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1322 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1323 .info = snd_ymfpci_spdif_mask_info, 1324 .get = snd_ymfpci_spdif_mask_get, 1325 }; 1326 1327 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1328 { 1329 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1330 uinfo->count = 1; 1331 return 0; 1332 } 1333 1334 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1335 struct snd_ctl_elem_value *ucontrol) 1336 { 1337 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1338 1339 spin_lock_irq(&chip->reg_lock); 1340 ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff; 1341 ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff; 1342 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; 1343 spin_unlock_irq(&chip->reg_lock); 1344 return 0; 1345 } 1346 1347 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1348 struct snd_ctl_elem_value *ucontrol) 1349 { 1350 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1351 unsigned int val; 1352 int change; 1353 1354 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | 1355 (ucontrol->value.iec958.status[1] << 8); 1356 spin_lock_irq(&chip->reg_lock); 1357 change = chip->spdif_pcm_bits != val; 1358 chip->spdif_pcm_bits = val; 1359 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2)) 1360 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); 1361 spin_unlock_irq(&chip->reg_lock); 1362 return change; 1363 } 1364 1365 static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata = 1366 { 1367 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1368 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1369 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1370 .info = snd_ymfpci_spdif_stream_info, 1371 .get = snd_ymfpci_spdif_stream_get, 1372 .put = snd_ymfpci_spdif_stream_put 1373 }; 1374 1375 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info) 1376 { 1377 static char *texts[3] = {"AC'97", "IEC958", "ZV Port"}; 1378 1379 info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 1380 info->count = 1; 1381 info->value.enumerated.items = 3; 1382 if (info->value.enumerated.item > 2) 1383 info->value.enumerated.item = 2; 1384 strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]); 1385 return 0; 1386 } 1387 1388 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) 1389 { 1390 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1391 u16 reg; 1392 1393 spin_lock_irq(&chip->reg_lock); 1394 reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 1395 spin_unlock_irq(&chip->reg_lock); 1396 if (!(reg & 0x100)) 1397 value->value.enumerated.item[0] = 0; 1398 else 1399 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0); 1400 return 0; 1401 } 1402 1403 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) 1404 { 1405 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1406 u16 reg, old_reg; 1407 1408 spin_lock_irq(&chip->reg_lock); 1409 old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 1410 if (value->value.enumerated.item[0] == 0) 1411 reg = old_reg & ~0x100; 1412 else 1413 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9); 1414 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg); 1415 spin_unlock_irq(&chip->reg_lock); 1416 return reg != old_reg; 1417 } 1418 1419 static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = { 1420 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 1421 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1422 .name = "Direct Recording Source", 1423 .info = snd_ymfpci_drec_source_info, 1424 .get = snd_ymfpci_drec_source_get, 1425 .put = snd_ymfpci_drec_source_put 1426 }; 1427 1428 /* 1429 * Mixer controls 1430 */ 1431 1432 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \ 1433 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 1434 .info = snd_ymfpci_info_single, \ 1435 .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \ 1436 .private_value = ((reg) | ((shift) << 16)) } 1437 1438 #define snd_ymfpci_info_single snd_ctl_boolean_mono_info 1439 1440 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol, 1441 struct snd_ctl_elem_value *ucontrol) 1442 { 1443 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1444 int reg = kcontrol->private_value & 0xffff; 1445 unsigned int shift = (kcontrol->private_value >> 16) & 0xff; 1446 unsigned int mask = 1; 1447 1448 switch (reg) { 1449 case YDSXGR_SPDIFOUTCTRL: break; 1450 case YDSXGR_SPDIFINCTRL: break; 1451 default: return -EINVAL; 1452 } 1453 ucontrol->value.integer.value[0] = 1454 (snd_ymfpci_readl(chip, reg) >> shift) & mask; 1455 return 0; 1456 } 1457 1458 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol, 1459 struct snd_ctl_elem_value *ucontrol) 1460 { 1461 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1462 int reg = kcontrol->private_value & 0xffff; 1463 unsigned int shift = (kcontrol->private_value >> 16) & 0xff; 1464 unsigned int mask = 1; 1465 int change; 1466 unsigned int val, oval; 1467 1468 switch (reg) { 1469 case YDSXGR_SPDIFOUTCTRL: break; 1470 case YDSXGR_SPDIFINCTRL: break; 1471 default: return -EINVAL; 1472 } 1473 val = (ucontrol->value.integer.value[0] & mask); 1474 val <<= shift; 1475 spin_lock_irq(&chip->reg_lock); 1476 oval = snd_ymfpci_readl(chip, reg); 1477 val = (oval & ~(mask << shift)) | val; 1478 change = val != oval; 1479 snd_ymfpci_writel(chip, reg, val); 1480 spin_unlock_irq(&chip->reg_lock); 1481 return change; 1482 } 1483 1484 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0); 1485 1486 #define YMFPCI_DOUBLE(xname, xindex, reg) \ 1487 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 1488 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ 1489 .info = snd_ymfpci_info_double, \ 1490 .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \ 1491 .private_value = reg, \ 1492 .tlv = { .p = db_scale_native } } 1493 1494 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1495 { 1496 unsigned int reg = kcontrol->private_value; 1497 1498 if (reg < 0x80 || reg >= 0xc0) 1499 return -EINVAL; 1500 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1501 uinfo->count = 2; 1502 uinfo->value.integer.min = 0; 1503 uinfo->value.integer.max = 16383; 1504 return 0; 1505 } 1506 1507 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1508 { 1509 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1510 unsigned int reg = kcontrol->private_value; 1511 unsigned int shift_left = 0, shift_right = 16, mask = 16383; 1512 unsigned int val; 1513 1514 if (reg < 0x80 || reg >= 0xc0) 1515 return -EINVAL; 1516 spin_lock_irq(&chip->reg_lock); 1517 val = snd_ymfpci_readl(chip, reg); 1518 spin_unlock_irq(&chip->reg_lock); 1519 ucontrol->value.integer.value[0] = (val >> shift_left) & mask; 1520 ucontrol->value.integer.value[1] = (val >> shift_right) & mask; 1521 return 0; 1522 } 1523 1524 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1525 { 1526 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1527 unsigned int reg = kcontrol->private_value; 1528 unsigned int shift_left = 0, shift_right = 16, mask = 16383; 1529 int change; 1530 unsigned int val1, val2, oval; 1531 1532 if (reg < 0x80 || reg >= 0xc0) 1533 return -EINVAL; 1534 val1 = ucontrol->value.integer.value[0] & mask; 1535 val2 = ucontrol->value.integer.value[1] & mask; 1536 val1 <<= shift_left; 1537 val2 <<= shift_right; 1538 spin_lock_irq(&chip->reg_lock); 1539 oval = snd_ymfpci_readl(chip, reg); 1540 val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2; 1541 change = val1 != oval; 1542 snd_ymfpci_writel(chip, reg, val1); 1543 spin_unlock_irq(&chip->reg_lock); 1544 return change; 1545 } 1546 1547 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol, 1548 struct snd_ctl_elem_value *ucontrol) 1549 { 1550 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1551 unsigned int reg = YDSXGR_NATIVEDACOUTVOL; 1552 unsigned int reg2 = YDSXGR_BUF441OUTVOL; 1553 int change; 1554 unsigned int value, oval; 1555 1556 value = ucontrol->value.integer.value[0] & 0x3fff; 1557 value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16; 1558 spin_lock_irq(&chip->reg_lock); 1559 oval = snd_ymfpci_readl(chip, reg); 1560 change = value != oval; 1561 snd_ymfpci_writel(chip, reg, value); 1562 snd_ymfpci_writel(chip, reg2, value); 1563 spin_unlock_irq(&chip->reg_lock); 1564 return change; 1565 } 1566 1567 /* 1568 * 4ch duplication 1569 */ 1570 #define snd_ymfpci_info_dup4ch snd_ctl_boolean_mono_info 1571 1572 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1573 { 1574 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1575 ucontrol->value.integer.value[0] = chip->mode_dup4ch; 1576 return 0; 1577 } 1578 1579 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1580 { 1581 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1582 int change; 1583 change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch); 1584 if (change) 1585 chip->mode_dup4ch = !!ucontrol->value.integer.value[0]; 1586 return change; 1587 } 1588 1589 1590 static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = { 1591 { 1592 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1593 .name = "Wave Playback Volume", 1594 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 1595 SNDRV_CTL_ELEM_ACCESS_TLV_READ, 1596 .info = snd_ymfpci_info_double, 1597 .get = snd_ymfpci_get_double, 1598 .put = snd_ymfpci_put_nativedacvol, 1599 .private_value = YDSXGR_NATIVEDACOUTVOL, 1600 .tlv = { .p = db_scale_native }, 1601 }, 1602 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL), 1603 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL), 1604 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL), 1605 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL), 1606 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL), 1607 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL), 1608 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL), 1609 YMFPCI_DOUBLE("FM Legacy Volume", 0, YDSXGR_LEGACYOUTVOL), 1610 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL), 1611 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL), 1612 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL), 1613 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL), 1614 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0), 1615 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0), 1616 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4), 1617 { 1618 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1619 .name = "4ch Duplication", 1620 .info = snd_ymfpci_info_dup4ch, 1621 .get = snd_ymfpci_get_dup4ch, 1622 .put = snd_ymfpci_put_dup4ch, 1623 }, 1624 }; 1625 1626 1627 /* 1628 * GPIO 1629 */ 1630 1631 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin) 1632 { 1633 u16 reg, mode; 1634 unsigned long flags; 1635 1636 spin_lock_irqsave(&chip->reg_lock, flags); 1637 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); 1638 reg &= ~(1 << (pin + 8)); 1639 reg |= (1 << pin); 1640 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); 1641 /* set the level mode for input line */ 1642 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG); 1643 mode &= ~(3 << (pin * 2)); 1644 snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode); 1645 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); 1646 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS); 1647 spin_unlock_irqrestore(&chip->reg_lock, flags); 1648 return (mode >> pin) & 1; 1649 } 1650 1651 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable) 1652 { 1653 u16 reg; 1654 unsigned long flags; 1655 1656 spin_lock_irqsave(&chip->reg_lock, flags); 1657 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); 1658 reg &= ~(1 << pin); 1659 reg &= ~(1 << (pin + 8)); 1660 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); 1661 snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin); 1662 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); 1663 spin_unlock_irqrestore(&chip->reg_lock, flags); 1664 1665 return 0; 1666 } 1667 1668 #define snd_ymfpci_gpio_sw_info snd_ctl_boolean_mono_info 1669 1670 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1671 { 1672 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1673 int pin = (int)kcontrol->private_value; 1674 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); 1675 return 0; 1676 } 1677 1678 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1679 { 1680 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1681 int pin = (int)kcontrol->private_value; 1682 1683 if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) { 1684 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]); 1685 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); 1686 return 1; 1687 } 1688 return 0; 1689 } 1690 1691 static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = { 1692 .name = "Shared Rear/Line-In Switch", 1693 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1694 .info = snd_ymfpci_gpio_sw_info, 1695 .get = snd_ymfpci_gpio_sw_get, 1696 .put = snd_ymfpci_gpio_sw_put, 1697 .private_value = 2, 1698 }; 1699 1700 /* 1701 * PCM voice volume 1702 */ 1703 1704 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol, 1705 struct snd_ctl_elem_info *uinfo) 1706 { 1707 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1708 uinfo->count = 2; 1709 uinfo->value.integer.min = 0; 1710 uinfo->value.integer.max = 0x8000; 1711 return 0; 1712 } 1713 1714 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol, 1715 struct snd_ctl_elem_value *ucontrol) 1716 { 1717 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1718 unsigned int subs = kcontrol->id.subdevice; 1719 1720 ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left; 1721 ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right; 1722 return 0; 1723 } 1724 1725 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol, 1726 struct snd_ctl_elem_value *ucontrol) 1727 { 1728 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1729 unsigned int subs = kcontrol->id.subdevice; 1730 struct snd_pcm_substream *substream; 1731 unsigned long flags; 1732 1733 if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left || 1734 ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) { 1735 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0]; 1736 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1]; 1737 if (chip->pcm_mixer[subs].left > 0x8000) 1738 chip->pcm_mixer[subs].left = 0x8000; 1739 if (chip->pcm_mixer[subs].right > 0x8000) 1740 chip->pcm_mixer[subs].right = 0x8000; 1741 1742 substream = (struct snd_pcm_substream *)kcontrol->private_value; 1743 spin_lock_irqsave(&chip->voice_lock, flags); 1744 if (substream->runtime && substream->runtime->private_data) { 1745 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 1746 if (!ypcm->use_441_slot) 1747 ypcm->update_pcm_vol = 2; 1748 } 1749 spin_unlock_irqrestore(&chip->voice_lock, flags); 1750 return 1; 1751 } 1752 return 0; 1753 } 1754 1755 static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = { 1756 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1757 .name = "PCM Playback Volume", 1758 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 1759 SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1760 .info = snd_ymfpci_pcm_vol_info, 1761 .get = snd_ymfpci_pcm_vol_get, 1762 .put = snd_ymfpci_pcm_vol_put, 1763 }; 1764 1765 1766 /* 1767 * Mixer routines 1768 */ 1769 1770 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus) 1771 { 1772 struct snd_ymfpci *chip = bus->private_data; 1773 chip->ac97_bus = NULL; 1774 } 1775 1776 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97) 1777 { 1778 struct snd_ymfpci *chip = ac97->private_data; 1779 chip->ac97 = NULL; 1780 } 1781 1782 int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch) 1783 { 1784 struct snd_ac97_template ac97; 1785 struct snd_kcontrol *kctl; 1786 struct snd_pcm_substream *substream; 1787 unsigned int idx; 1788 int err; 1789 static struct snd_ac97_bus_ops ops = { 1790 .write = snd_ymfpci_codec_write, 1791 .read = snd_ymfpci_codec_read, 1792 }; 1793 1794 if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0) 1795 return err; 1796 chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus; 1797 chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */ 1798 1799 memset(&ac97, 0, sizeof(ac97)); 1800 ac97.private_data = chip; 1801 ac97.private_free = snd_ymfpci_mixer_free_ac97; 1802 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0) 1803 return err; 1804 1805 /* to be sure */ 1806 snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS, 1807 AC97_EA_VRA|AC97_EA_VRM, 0); 1808 1809 for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) { 1810 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0) 1811 return err; 1812 } 1813 1814 /* add S/PDIF control */ 1815 snd_assert(chip->pcm_spdif != NULL, return -EIO); 1816 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0) 1817 return err; 1818 kctl->id.device = chip->pcm_spdif->device; 1819 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0) 1820 return err; 1821 kctl->id.device = chip->pcm_spdif->device; 1822 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0) 1823 return err; 1824 kctl->id.device = chip->pcm_spdif->device; 1825 chip->spdif_pcm_ctl = kctl; 1826 1827 /* direct recording source */ 1828 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 && 1829 (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0) 1830 return err; 1831 1832 /* 1833 * shared rear/line-in 1834 */ 1835 if (rear_switch) { 1836 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0) 1837 return err; 1838 } 1839 1840 /* per-voice volume */ 1841 substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; 1842 for (idx = 0; idx < 32; ++idx) { 1843 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip); 1844 if (!kctl) 1845 return -ENOMEM; 1846 kctl->id.device = chip->pcm->device; 1847 kctl->id.subdevice = idx; 1848 kctl->private_value = (unsigned long)substream; 1849 if ((err = snd_ctl_add(chip->card, kctl)) < 0) 1850 return err; 1851 chip->pcm_mixer[idx].left = 0x8000; 1852 chip->pcm_mixer[idx].right = 0x8000; 1853 chip->pcm_mixer[idx].ctl = kctl; 1854 substream = substream->next; 1855 } 1856 1857 return 0; 1858 } 1859 1860 1861 /* 1862 * timer 1863 */ 1864 1865 static int snd_ymfpci_timer_start(struct snd_timer *timer) 1866 { 1867 struct snd_ymfpci *chip; 1868 unsigned long flags; 1869 unsigned int count; 1870 1871 chip = snd_timer_chip(timer); 1872 count = (timer->sticks << 1) - 1; 1873 spin_lock_irqsave(&chip->reg_lock, flags); 1874 snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count); 1875 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03); 1876 spin_unlock_irqrestore(&chip->reg_lock, flags); 1877 return 0; 1878 } 1879 1880 static int snd_ymfpci_timer_stop(struct snd_timer *timer) 1881 { 1882 struct snd_ymfpci *chip; 1883 unsigned long flags; 1884 1885 chip = snd_timer_chip(timer); 1886 spin_lock_irqsave(&chip->reg_lock, flags); 1887 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00); 1888 spin_unlock_irqrestore(&chip->reg_lock, flags); 1889 return 0; 1890 } 1891 1892 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer, 1893 unsigned long *num, unsigned long *den) 1894 { 1895 *num = 1; 1896 *den = 48000; 1897 return 0; 1898 } 1899 1900 static struct snd_timer_hardware snd_ymfpci_timer_hw = { 1901 .flags = SNDRV_TIMER_HW_AUTO, 1902 .resolution = 20833, /* 1/fs = 20.8333...us */ 1903 .ticks = 0x8000, 1904 .start = snd_ymfpci_timer_start, 1905 .stop = snd_ymfpci_timer_stop, 1906 .precise_resolution = snd_ymfpci_timer_precise_resolution, 1907 }; 1908 1909 int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device) 1910 { 1911 struct snd_timer *timer = NULL; 1912 struct snd_timer_id tid; 1913 int err; 1914 1915 tid.dev_class = SNDRV_TIMER_CLASS_CARD; 1916 tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE; 1917 tid.card = chip->card->number; 1918 tid.device = device; 1919 tid.subdevice = 0; 1920 if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) { 1921 strcpy(timer->name, "YMFPCI timer"); 1922 timer->private_data = chip; 1923 timer->hw = snd_ymfpci_timer_hw; 1924 } 1925 chip->timer = timer; 1926 return err; 1927 } 1928 1929 1930 /* 1931 * proc interface 1932 */ 1933 1934 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 1935 struct snd_info_buffer *buffer) 1936 { 1937 struct snd_ymfpci *chip = entry->private_data; 1938 int i; 1939 1940 snd_iprintf(buffer, "YMFPCI\n\n"); 1941 for (i = 0; i <= YDSXGR_WORKBASE; i += 4) 1942 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i)); 1943 } 1944 1945 static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip) 1946 { 1947 struct snd_info_entry *entry; 1948 1949 if (! snd_card_proc_new(card, "ymfpci", &entry)) 1950 snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read); 1951 return 0; 1952 } 1953 1954 /* 1955 * initialization routines 1956 */ 1957 1958 static void snd_ymfpci_aclink_reset(struct pci_dev * pci) 1959 { 1960 u8 cmd; 1961 1962 pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd); 1963 #if 0 // force to reset 1964 if (cmd & 0x03) { 1965 #endif 1966 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); 1967 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03); 1968 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); 1969 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0); 1970 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0); 1971 #if 0 1972 } 1973 #endif 1974 } 1975 1976 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip) 1977 { 1978 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001); 1979 } 1980 1981 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip) 1982 { 1983 u32 val; 1984 int timeout = 1000; 1985 1986 val = snd_ymfpci_readl(chip, YDSXGR_CONFIG); 1987 if (val) 1988 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000); 1989 while (timeout-- > 0) { 1990 val = snd_ymfpci_readl(chip, YDSXGR_STATUS); 1991 if ((val & 0x00000002) == 0) 1992 break; 1993 } 1994 } 1995 1996 #ifdef CONFIG_SND_YMFPCI_FIRMWARE_IN_KERNEL 1997 1998 #include "ymfpci_image.h" 1999 2000 static struct firmware snd_ymfpci_dsp_microcode = { 2001 .size = YDSXG_DSPLENGTH, 2002 .data = (u8 *)DspInst, 2003 }; 2004 static struct firmware snd_ymfpci_controller_microcode = { 2005 .size = YDSXG_CTRLLENGTH, 2006 .data = (u8 *)CntrlInst, 2007 }; 2008 static struct firmware snd_ymfpci_controller_1e_microcode = { 2009 .size = YDSXG_CTRLLENGTH, 2010 .data = (u8 *)CntrlInst1E, 2011 }; 2012 #endif 2013 2014 #ifdef CONFIG_SND_YMFPCI_FIRMWARE_IN_KERNEL 2015 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip) 2016 { 2017 chip->dsp_microcode = &snd_ymfpci_dsp_microcode; 2018 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_724F || 2019 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C || 2020 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 || 2021 chip->device_id == PCI_DEVICE_ID_YAMAHA_754) 2022 chip->controller_microcode = 2023 &snd_ymfpci_controller_1e_microcode; 2024 else 2025 chip->controller_microcode = 2026 &snd_ymfpci_controller_microcode; 2027 return 0; 2028 } 2029 2030 #else /* use fw_loader */ 2031 2032 #ifdef __LITTLE_ENDIAN 2033 static inline void snd_ymfpci_convert_from_le(const struct firmware *fw) { } 2034 #else 2035 static void snd_ymfpci_convert_from_le(const struct firmware *fw) 2036 { 2037 int i; 2038 u32 *data = (u32 *)fw->data; 2039 2040 for (i = 0; i < fw->size / 4; ++i) 2041 le32_to_cpus(&data[i]); 2042 } 2043 #endif 2044 2045 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip) 2046 { 2047 int err, is_1e; 2048 const char *name; 2049 2050 err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw", 2051 &chip->pci->dev); 2052 if (err >= 0) { 2053 if (chip->dsp_microcode->size == YDSXG_DSPLENGTH) 2054 snd_ymfpci_convert_from_le(chip->dsp_microcode); 2055 else { 2056 snd_printk(KERN_ERR "DSP microcode has wrong size\n"); 2057 err = -EINVAL; 2058 } 2059 } 2060 if (err < 0) 2061 return err; 2062 is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F || 2063 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C || 2064 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 || 2065 chip->device_id == PCI_DEVICE_ID_YAMAHA_754; 2066 name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw"; 2067 err = request_firmware(&chip->controller_microcode, name, 2068 &chip->pci->dev); 2069 if (err >= 0) { 2070 if (chip->controller_microcode->size == YDSXG_CTRLLENGTH) 2071 snd_ymfpci_convert_from_le(chip->controller_microcode); 2072 else { 2073 snd_printk(KERN_ERR "controller microcode" 2074 " has wrong size\n"); 2075 err = -EINVAL; 2076 } 2077 } 2078 if (err < 0) 2079 return err; 2080 return 0; 2081 } 2082 2083 MODULE_FIRMWARE("yamaha/ds1_dsp.fw"); 2084 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw"); 2085 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw"); 2086 2087 #endif 2088 2089 static void snd_ymfpci_download_image(struct snd_ymfpci *chip) 2090 { 2091 int i; 2092 u16 ctrl; 2093 u32 *inst; 2094 2095 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000); 2096 snd_ymfpci_disable_dsp(chip); 2097 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000); 2098 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000); 2099 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000); 2100 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000); 2101 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000); 2102 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000); 2103 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000); 2104 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 2105 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); 2106 2107 /* setup DSP instruction code */ 2108 inst = (u32 *)chip->dsp_microcode->data; 2109 for (i = 0; i < YDSXG_DSPLENGTH / 4; i++) 2110 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), inst[i]); 2111 2112 /* setup control instruction code */ 2113 inst = (u32 *)chip->controller_microcode->data; 2114 for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++) 2115 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), inst[i]); 2116 2117 snd_ymfpci_enable_dsp(chip); 2118 } 2119 2120 static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip) 2121 { 2122 long size, playback_ctrl_size; 2123 int voice, bank, reg; 2124 u8 *ptr; 2125 dma_addr_t ptr_addr; 2126 2127 playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES; 2128 chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2; 2129 chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2; 2130 chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2; 2131 chip->work_size = YDSXG_DEFAULT_WORK_SIZE; 2132 2133 size = ALIGN(playback_ctrl_size, 0x100) + 2134 ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) + 2135 ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) + 2136 ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) + 2137 chip->work_size; 2138 /* work_ptr must be aligned to 256 bytes, but it's already 2139 covered with the kernel page allocation mechanism */ 2140 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 2141 size, &chip->work_ptr) < 0) 2142 return -ENOMEM; 2143 ptr = chip->work_ptr.area; 2144 ptr_addr = chip->work_ptr.addr; 2145 memset(ptr, 0, size); /* for sure */ 2146 2147 chip->bank_base_playback = ptr; 2148 chip->bank_base_playback_addr = ptr_addr; 2149 chip->ctrl_playback = (u32 *)ptr; 2150 chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES); 2151 ptr += ALIGN(playback_ctrl_size, 0x100); 2152 ptr_addr += ALIGN(playback_ctrl_size, 0x100); 2153 for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) { 2154 chip->voices[voice].number = voice; 2155 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr; 2156 chip->voices[voice].bank_addr = ptr_addr; 2157 for (bank = 0; bank < 2; bank++) { 2158 chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr; 2159 ptr += chip->bank_size_playback; 2160 ptr_addr += chip->bank_size_playback; 2161 } 2162 } 2163 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2164 ptr_addr = ALIGN(ptr_addr, 0x100); 2165 chip->bank_base_capture = ptr; 2166 chip->bank_base_capture_addr = ptr_addr; 2167 for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++) 2168 for (bank = 0; bank < 2; bank++) { 2169 chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr; 2170 ptr += chip->bank_size_capture; 2171 ptr_addr += chip->bank_size_capture; 2172 } 2173 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2174 ptr_addr = ALIGN(ptr_addr, 0x100); 2175 chip->bank_base_effect = ptr; 2176 chip->bank_base_effect_addr = ptr_addr; 2177 for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++) 2178 for (bank = 0; bank < 2; bank++) { 2179 chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr; 2180 ptr += chip->bank_size_effect; 2181 ptr_addr += chip->bank_size_effect; 2182 } 2183 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2184 ptr_addr = ALIGN(ptr_addr, 0x100); 2185 chip->work_base = ptr; 2186 chip->work_base_addr = ptr_addr; 2187 2188 snd_assert(ptr + chip->work_size == chip->work_ptr.area + chip->work_ptr.bytes, ); 2189 2190 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr); 2191 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr); 2192 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr); 2193 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr); 2194 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2); 2195 2196 /* S/PDIF output initialization */ 2197 chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff; 2198 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0); 2199 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 2200 2201 /* S/PDIF input initialization */ 2202 snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0); 2203 2204 /* digital mixer setup */ 2205 for (reg = 0x80; reg < 0xc0; reg += 4) 2206 snd_ymfpci_writel(chip, reg, 0); 2207 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff); 2208 snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff); 2209 snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff); 2210 snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff); 2211 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff); 2212 snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff); 2213 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff); 2214 2215 return 0; 2216 } 2217 2218 static int snd_ymfpci_free(struct snd_ymfpci *chip) 2219 { 2220 u16 ctrl; 2221 2222 snd_assert(chip != NULL, return -EINVAL); 2223 2224 if (chip->res_reg_area) { /* don't touch busy hardware */ 2225 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); 2226 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); 2227 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0); 2228 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0); 2229 snd_ymfpci_disable_dsp(chip); 2230 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0); 2231 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0); 2232 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0); 2233 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0); 2234 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0); 2235 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 2236 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); 2237 } 2238 2239 snd_ymfpci_ac3_done(chip); 2240 2241 /* Set PCI device to D3 state */ 2242 #if 0 2243 /* FIXME: temporarily disabled, otherwise we cannot fire up 2244 * the chip again unless reboot. ACPI bug? 2245 */ 2246 pci_set_power_state(chip->pci, 3); 2247 #endif 2248 2249 #ifdef CONFIG_PM 2250 vfree(chip->saved_regs); 2251 #endif 2252 release_and_free_resource(chip->mpu_res); 2253 release_and_free_resource(chip->fm_res); 2254 snd_ymfpci_free_gameport(chip); 2255 if (chip->reg_area_virt) 2256 iounmap(chip->reg_area_virt); 2257 if (chip->work_ptr.area) 2258 snd_dma_free_pages(&chip->work_ptr); 2259 2260 if (chip->irq >= 0) 2261 free_irq(chip->irq, chip); 2262 release_and_free_resource(chip->res_reg_area); 2263 2264 pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl); 2265 2266 pci_disable_device(chip->pci); 2267 #ifndef CONFIG_SND_YMFPCI_FIRMWARE_IN_KERNEL 2268 release_firmware(chip->dsp_microcode); 2269 release_firmware(chip->controller_microcode); 2270 #endif 2271 kfree(chip); 2272 return 0; 2273 } 2274 2275 static int snd_ymfpci_dev_free(struct snd_device *device) 2276 { 2277 struct snd_ymfpci *chip = device->device_data; 2278 return snd_ymfpci_free(chip); 2279 } 2280 2281 #ifdef CONFIG_PM 2282 static int saved_regs_index[] = { 2283 /* spdif */ 2284 YDSXGR_SPDIFOUTCTRL, 2285 YDSXGR_SPDIFOUTSTATUS, 2286 YDSXGR_SPDIFINCTRL, 2287 /* volumes */ 2288 YDSXGR_PRIADCLOOPVOL, 2289 YDSXGR_NATIVEDACINVOL, 2290 YDSXGR_NATIVEDACOUTVOL, 2291 YDSXGR_BUF441OUTVOL, 2292 YDSXGR_NATIVEADCINVOL, 2293 YDSXGR_SPDIFLOOPVOL, 2294 YDSXGR_SPDIFOUTVOL, 2295 YDSXGR_ZVOUTVOL, 2296 YDSXGR_LEGACYOUTVOL, 2297 /* address bases */ 2298 YDSXGR_PLAYCTRLBASE, 2299 YDSXGR_RECCTRLBASE, 2300 YDSXGR_EFFCTRLBASE, 2301 YDSXGR_WORKBASE, 2302 /* capture set up */ 2303 YDSXGR_MAPOFREC, 2304 YDSXGR_RECFORMAT, 2305 YDSXGR_RECSLOTSR, 2306 YDSXGR_ADCFORMAT, 2307 YDSXGR_ADCSLOTSR, 2308 }; 2309 #define YDSXGR_NUM_SAVED_REGS ARRAY_SIZE(saved_regs_index) 2310 2311 int snd_ymfpci_suspend(struct pci_dev *pci, pm_message_t state) 2312 { 2313 struct snd_card *card = pci_get_drvdata(pci); 2314 struct snd_ymfpci *chip = card->private_data; 2315 unsigned int i; 2316 2317 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 2318 snd_pcm_suspend_all(chip->pcm); 2319 snd_pcm_suspend_all(chip->pcm2); 2320 snd_pcm_suspend_all(chip->pcm_spdif); 2321 snd_pcm_suspend_all(chip->pcm_4ch); 2322 snd_ac97_suspend(chip->ac97); 2323 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) 2324 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]); 2325 chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE); 2326 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); 2327 snd_ymfpci_disable_dsp(chip); 2328 pci_disable_device(pci); 2329 pci_save_state(pci); 2330 pci_set_power_state(pci, pci_choose_state(pci, state)); 2331 return 0; 2332 } 2333 2334 int snd_ymfpci_resume(struct pci_dev *pci) 2335 { 2336 struct snd_card *card = pci_get_drvdata(pci); 2337 struct snd_ymfpci *chip = card->private_data; 2338 unsigned int i; 2339 2340 pci_set_power_state(pci, PCI_D0); 2341 pci_restore_state(pci); 2342 if (pci_enable_device(pci) < 0) { 2343 printk(KERN_ERR "ymfpci: pci_enable_device failed, " 2344 "disabling device\n"); 2345 snd_card_disconnect(card); 2346 return -EIO; 2347 } 2348 pci_set_master(pci); 2349 snd_ymfpci_aclink_reset(pci); 2350 snd_ymfpci_codec_ready(chip, 0); 2351 snd_ymfpci_download_image(chip); 2352 udelay(100); 2353 2354 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) 2355 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]); 2356 2357 snd_ac97_resume(chip->ac97); 2358 2359 /* start hw again */ 2360 if (chip->start_count > 0) { 2361 spin_lock_irq(&chip->reg_lock); 2362 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode); 2363 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT); 2364 spin_unlock_irq(&chip->reg_lock); 2365 } 2366 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 2367 return 0; 2368 } 2369 #endif /* CONFIG_PM */ 2370 2371 int __devinit snd_ymfpci_create(struct snd_card *card, 2372 struct pci_dev * pci, 2373 unsigned short old_legacy_ctrl, 2374 struct snd_ymfpci ** rchip) 2375 { 2376 struct snd_ymfpci *chip; 2377 int err; 2378 static struct snd_device_ops ops = { 2379 .dev_free = snd_ymfpci_dev_free, 2380 }; 2381 2382 *rchip = NULL; 2383 2384 /* enable PCI device */ 2385 if ((err = pci_enable_device(pci)) < 0) 2386 return err; 2387 2388 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 2389 if (chip == NULL) { 2390 pci_disable_device(pci); 2391 return -ENOMEM; 2392 } 2393 chip->old_legacy_ctrl = old_legacy_ctrl; 2394 spin_lock_init(&chip->reg_lock); 2395 spin_lock_init(&chip->voice_lock); 2396 init_waitqueue_head(&chip->interrupt_sleep); 2397 atomic_set(&chip->interrupt_sleep_count, 0); 2398 chip->card = card; 2399 chip->pci = pci; 2400 chip->irq = -1; 2401 chip->device_id = pci->device; 2402 chip->rev = pci->revision; 2403 chip->reg_area_phys = pci_resource_start(pci, 0); 2404 chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000); 2405 pci_set_master(pci); 2406 chip->src441_used = -1; 2407 2408 if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) { 2409 snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1); 2410 snd_ymfpci_free(chip); 2411 return -EBUSY; 2412 } 2413 if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED, 2414 "YMFPCI", chip)) { 2415 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq); 2416 snd_ymfpci_free(chip); 2417 return -EBUSY; 2418 } 2419 chip->irq = pci->irq; 2420 2421 snd_ymfpci_aclink_reset(pci); 2422 if (snd_ymfpci_codec_ready(chip, 0) < 0) { 2423 snd_ymfpci_free(chip); 2424 return -EIO; 2425 } 2426 2427 err = snd_ymfpci_request_firmware(chip); 2428 if (err < 0) { 2429 snd_printk(KERN_ERR "firmware request failed: %d\n", err); 2430 snd_ymfpci_free(chip); 2431 return err; 2432 } 2433 snd_ymfpci_download_image(chip); 2434 2435 udelay(100); /* seems we need a delay after downloading image.. */ 2436 2437 if (snd_ymfpci_memalloc(chip) < 0) { 2438 snd_ymfpci_free(chip); 2439 return -EIO; 2440 } 2441 2442 if ((err = snd_ymfpci_ac3_init(chip)) < 0) { 2443 snd_ymfpci_free(chip); 2444 return err; 2445 } 2446 2447 #ifdef CONFIG_PM 2448 chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32)); 2449 if (chip->saved_regs == NULL) { 2450 snd_ymfpci_free(chip); 2451 return -ENOMEM; 2452 } 2453 #endif 2454 2455 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) { 2456 snd_ymfpci_free(chip); 2457 return err; 2458 } 2459 2460 snd_ymfpci_proc_init(card, chip); 2461 2462 snd_card_set_dev(card, &pci->dev); 2463 2464 *rchip = chip; 2465 return 0; 2466 } 2467