1 /* 2 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 3 * Routines for control of YMF724/740/744/754 chips 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 */ 20 21 #include <linux/delay.h> 22 #include <linux/firmware.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/pci.h> 26 #include <linux/sched.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/mutex.h> 30 31 #include <sound/core.h> 32 #include <sound/control.h> 33 #include <sound/info.h> 34 #include <sound/tlv.h> 35 #include <sound/ymfpci.h> 36 #include <sound/asoundef.h> 37 #include <sound/mpu401.h> 38 39 #include <asm/io.h> 40 #include <asm/byteorder.h> 41 42 /* 43 * common I/O routines 44 */ 45 46 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip); 47 48 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset) 49 { 50 return readb(chip->reg_area_virt + offset); 51 } 52 53 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val) 54 { 55 writeb(val, chip->reg_area_virt + offset); 56 } 57 58 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset) 59 { 60 return readw(chip->reg_area_virt + offset); 61 } 62 63 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val) 64 { 65 writew(val, chip->reg_area_virt + offset); 66 } 67 68 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset) 69 { 70 return readl(chip->reg_area_virt + offset); 71 } 72 73 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val) 74 { 75 writel(val, chip->reg_area_virt + offset); 76 } 77 78 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary) 79 { 80 unsigned long end_time; 81 u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR; 82 83 end_time = jiffies + msecs_to_jiffies(750); 84 do { 85 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0) 86 return 0; 87 schedule_timeout_uninterruptible(1); 88 } while (time_before(jiffies, end_time)); 89 snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg)); 90 return -EBUSY; 91 } 92 93 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val) 94 { 95 struct snd_ymfpci *chip = ac97->private_data; 96 u32 cmd; 97 98 snd_ymfpci_codec_ready(chip, 0); 99 cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val; 100 snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd); 101 } 102 103 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg) 104 { 105 struct snd_ymfpci *chip = ac97->private_data; 106 107 if (snd_ymfpci_codec_ready(chip, 0)) 108 return ~0; 109 snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg); 110 if (snd_ymfpci_codec_ready(chip, 0)) 111 return ~0; 112 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) { 113 int i; 114 for (i = 0; i < 600; i++) 115 snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); 116 } 117 return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); 118 } 119 120 /* 121 * Misc routines 122 */ 123 124 static u32 snd_ymfpci_calc_delta(u32 rate) 125 { 126 switch (rate) { 127 case 8000: return 0x02aaab00; 128 case 11025: return 0x03accd00; 129 case 16000: return 0x05555500; 130 case 22050: return 0x07599a00; 131 case 32000: return 0x0aaaab00; 132 case 44100: return 0x0eb33300; 133 default: return ((rate << 16) / 375) << 5; 134 } 135 } 136 137 static u32 def_rate[8] = { 138 100, 2000, 8000, 11025, 16000, 22050, 32000, 48000 139 }; 140 141 static u32 snd_ymfpci_calc_lpfK(u32 rate) 142 { 143 u32 i; 144 static u32 val[8] = { 145 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000, 146 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000 147 }; 148 149 if (rate == 44100) 150 return 0x40000000; /* FIXME: What's the right value? */ 151 for (i = 0; i < 8; i++) 152 if (rate <= def_rate[i]) 153 return val[i]; 154 return val[0]; 155 } 156 157 static u32 snd_ymfpci_calc_lpfQ(u32 rate) 158 { 159 u32 i; 160 static u32 val[8] = { 161 0x35280000, 0x34A70000, 0x32020000, 0x31770000, 162 0x31390000, 0x31C90000, 0x33D00000, 0x40000000 163 }; 164 165 if (rate == 44100) 166 return 0x370A0000; 167 for (i = 0; i < 8; i++) 168 if (rate <= def_rate[i]) 169 return val[i]; 170 return val[0]; 171 } 172 173 /* 174 * Hardware start management 175 */ 176 177 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip) 178 { 179 unsigned long flags; 180 181 spin_lock_irqsave(&chip->reg_lock, flags); 182 if (chip->start_count++ > 0) 183 goto __end; 184 snd_ymfpci_writel(chip, YDSXGR_MODE, 185 snd_ymfpci_readl(chip, YDSXGR_MODE) | 3); 186 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; 187 __end: 188 spin_unlock_irqrestore(&chip->reg_lock, flags); 189 } 190 191 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip) 192 { 193 unsigned long flags; 194 long timeout = 1000; 195 196 spin_lock_irqsave(&chip->reg_lock, flags); 197 if (--chip->start_count > 0) 198 goto __end; 199 snd_ymfpci_writel(chip, YDSXGR_MODE, 200 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3); 201 while (timeout-- > 0) { 202 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0) 203 break; 204 } 205 if (atomic_read(&chip->interrupt_sleep_count)) { 206 atomic_set(&chip->interrupt_sleep_count, 0); 207 wake_up(&chip->interrupt_sleep); 208 } 209 __end: 210 spin_unlock_irqrestore(&chip->reg_lock, flags); 211 } 212 213 /* 214 * Playback voice management 215 */ 216 217 static int voice_alloc(struct snd_ymfpci *chip, 218 enum snd_ymfpci_voice_type type, int pair, 219 struct snd_ymfpci_voice **rvoice) 220 { 221 struct snd_ymfpci_voice *voice, *voice2; 222 int idx; 223 224 *rvoice = NULL; 225 for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) { 226 voice = &chip->voices[idx]; 227 voice2 = pair ? &chip->voices[idx+1] : NULL; 228 if (voice->use || (voice2 && voice2->use)) 229 continue; 230 voice->use = 1; 231 if (voice2) 232 voice2->use = 1; 233 switch (type) { 234 case YMFPCI_PCM: 235 voice->pcm = 1; 236 if (voice2) 237 voice2->pcm = 1; 238 break; 239 case YMFPCI_SYNTH: 240 voice->synth = 1; 241 break; 242 case YMFPCI_MIDI: 243 voice->midi = 1; 244 break; 245 } 246 snd_ymfpci_hw_start(chip); 247 if (voice2) 248 snd_ymfpci_hw_start(chip); 249 *rvoice = voice; 250 return 0; 251 } 252 return -ENOMEM; 253 } 254 255 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip, 256 enum snd_ymfpci_voice_type type, int pair, 257 struct snd_ymfpci_voice **rvoice) 258 { 259 unsigned long flags; 260 int result; 261 262 if (snd_BUG_ON(!rvoice)) 263 return -EINVAL; 264 if (snd_BUG_ON(pair && type != YMFPCI_PCM)) 265 return -EINVAL; 266 267 spin_lock_irqsave(&chip->voice_lock, flags); 268 for (;;) { 269 result = voice_alloc(chip, type, pair, rvoice); 270 if (result == 0 || type != YMFPCI_PCM) 271 break; 272 /* TODO: synth/midi voice deallocation */ 273 break; 274 } 275 spin_unlock_irqrestore(&chip->voice_lock, flags); 276 return result; 277 } 278 279 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice) 280 { 281 unsigned long flags; 282 283 if (snd_BUG_ON(!pvoice)) 284 return -EINVAL; 285 snd_ymfpci_hw_stop(chip); 286 spin_lock_irqsave(&chip->voice_lock, flags); 287 if (pvoice->number == chip->src441_used) { 288 chip->src441_used = -1; 289 pvoice->ypcm->use_441_slot = 0; 290 } 291 pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0; 292 pvoice->ypcm = NULL; 293 pvoice->interrupt = NULL; 294 spin_unlock_irqrestore(&chip->voice_lock, flags); 295 return 0; 296 } 297 298 /* 299 * PCM part 300 */ 301 302 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice) 303 { 304 struct snd_ymfpci_pcm *ypcm; 305 u32 pos, delta; 306 307 if ((ypcm = voice->ypcm) == NULL) 308 return; 309 if (ypcm->substream == NULL) 310 return; 311 spin_lock(&chip->reg_lock); 312 if (ypcm->running) { 313 pos = le32_to_cpu(voice->bank[chip->active_bank].start); 314 if (pos < ypcm->last_pos) 315 delta = pos + (ypcm->buffer_size - ypcm->last_pos); 316 else 317 delta = pos - ypcm->last_pos; 318 ypcm->period_pos += delta; 319 ypcm->last_pos = pos; 320 if (ypcm->period_pos >= ypcm->period_size) { 321 /* 322 printk(KERN_DEBUG 323 "done - active_bank = 0x%x, start = 0x%x\n", 324 chip->active_bank, 325 voice->bank[chip->active_bank].start); 326 */ 327 ypcm->period_pos %= ypcm->period_size; 328 spin_unlock(&chip->reg_lock); 329 snd_pcm_period_elapsed(ypcm->substream); 330 spin_lock(&chip->reg_lock); 331 } 332 333 if (unlikely(ypcm->update_pcm_vol)) { 334 unsigned int subs = ypcm->substream->number; 335 unsigned int next_bank = 1 - chip->active_bank; 336 struct snd_ymfpci_playback_bank *bank; 337 u32 volume; 338 339 bank = &voice->bank[next_bank]; 340 volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15); 341 bank->left_gain_end = volume; 342 if (ypcm->output_rear) 343 bank->eff2_gain_end = volume; 344 if (ypcm->voices[1]) 345 bank = &ypcm->voices[1]->bank[next_bank]; 346 volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15); 347 bank->right_gain_end = volume; 348 if (ypcm->output_rear) 349 bank->eff3_gain_end = volume; 350 ypcm->update_pcm_vol--; 351 } 352 } 353 spin_unlock(&chip->reg_lock); 354 } 355 356 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream) 357 { 358 struct snd_pcm_runtime *runtime = substream->runtime; 359 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 360 struct snd_ymfpci *chip = ypcm->chip; 361 u32 pos, delta; 362 363 spin_lock(&chip->reg_lock); 364 if (ypcm->running) { 365 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; 366 if (pos < ypcm->last_pos) 367 delta = pos + (ypcm->buffer_size - ypcm->last_pos); 368 else 369 delta = pos - ypcm->last_pos; 370 ypcm->period_pos += delta; 371 ypcm->last_pos = pos; 372 if (ypcm->period_pos >= ypcm->period_size) { 373 ypcm->period_pos %= ypcm->period_size; 374 /* 375 printk(KERN_DEBUG 376 "done - active_bank = 0x%x, start = 0x%x\n", 377 chip->active_bank, 378 voice->bank[chip->active_bank].start); 379 */ 380 spin_unlock(&chip->reg_lock); 381 snd_pcm_period_elapsed(substream); 382 spin_lock(&chip->reg_lock); 383 } 384 } 385 spin_unlock(&chip->reg_lock); 386 } 387 388 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream, 389 int cmd) 390 { 391 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 392 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 393 struct snd_kcontrol *kctl = NULL; 394 int result = 0; 395 396 spin_lock(&chip->reg_lock); 397 if (ypcm->voices[0] == NULL) { 398 result = -EINVAL; 399 goto __unlock; 400 } 401 switch (cmd) { 402 case SNDRV_PCM_TRIGGER_START: 403 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 404 case SNDRV_PCM_TRIGGER_RESUME: 405 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr); 406 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) 407 chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr); 408 ypcm->running = 1; 409 break; 410 case SNDRV_PCM_TRIGGER_STOP: 411 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { 412 kctl = chip->pcm_mixer[substream->number].ctl; 413 kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 414 } 415 /* fall through */ 416 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 417 case SNDRV_PCM_TRIGGER_SUSPEND: 418 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0; 419 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) 420 chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0; 421 ypcm->running = 0; 422 break; 423 default: 424 result = -EINVAL; 425 break; 426 } 427 __unlock: 428 spin_unlock(&chip->reg_lock); 429 if (kctl) 430 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); 431 return result; 432 } 433 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream, 434 int cmd) 435 { 436 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 437 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 438 int result = 0; 439 u32 tmp; 440 441 spin_lock(&chip->reg_lock); 442 switch (cmd) { 443 case SNDRV_PCM_TRIGGER_START: 444 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 445 case SNDRV_PCM_TRIGGER_RESUME: 446 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number); 447 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); 448 ypcm->running = 1; 449 break; 450 case SNDRV_PCM_TRIGGER_STOP: 451 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 452 case SNDRV_PCM_TRIGGER_SUSPEND: 453 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number); 454 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); 455 ypcm->running = 0; 456 break; 457 default: 458 result = -EINVAL; 459 break; 460 } 461 spin_unlock(&chip->reg_lock); 462 return result; 463 } 464 465 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices) 466 { 467 int err; 468 469 if (ypcm->voices[1] != NULL && voices < 2) { 470 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]); 471 ypcm->voices[1] = NULL; 472 } 473 if (voices == 1 && ypcm->voices[0] != NULL) 474 return 0; /* already allocated */ 475 if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL) 476 return 0; /* already allocated */ 477 if (voices > 1) { 478 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) { 479 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]); 480 ypcm->voices[0] = NULL; 481 } 482 } 483 err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]); 484 if (err < 0) 485 return err; 486 ypcm->voices[0]->ypcm = ypcm; 487 ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt; 488 if (voices > 1) { 489 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1]; 490 ypcm->voices[1]->ypcm = ypcm; 491 } 492 return 0; 493 } 494 495 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx, 496 struct snd_pcm_runtime *runtime, 497 int has_pcm_volume) 498 { 499 struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx]; 500 u32 format; 501 u32 delta = snd_ymfpci_calc_delta(runtime->rate); 502 u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate); 503 u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate); 504 struct snd_ymfpci_playback_bank *bank; 505 unsigned int nbank; 506 u32 vol_left, vol_right; 507 u8 use_left, use_right; 508 unsigned long flags; 509 510 if (snd_BUG_ON(!voice)) 511 return; 512 if (runtime->channels == 1) { 513 use_left = 1; 514 use_right = 1; 515 } else { 516 use_left = (voiceidx & 1) == 0; 517 use_right = !use_left; 518 } 519 if (has_pcm_volume) { 520 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer 521 [ypcm->substream->number].left << 15); 522 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer 523 [ypcm->substream->number].right << 15); 524 } else { 525 vol_left = cpu_to_le32(0x40000000); 526 vol_right = cpu_to_le32(0x40000000); 527 } 528 spin_lock_irqsave(&ypcm->chip->voice_lock, flags); 529 format = runtime->channels == 2 ? 0x00010000 : 0; 530 if (snd_pcm_format_width(runtime->format) == 8) 531 format |= 0x80000000; 532 else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 && 533 runtime->rate == 44100 && runtime->channels == 2 && 534 voiceidx == 0 && (ypcm->chip->src441_used == -1 || 535 ypcm->chip->src441_used == voice->number)) { 536 ypcm->chip->src441_used = voice->number; 537 ypcm->use_441_slot = 1; 538 format |= 0x10000000; 539 } 540 if (ypcm->chip->src441_used == voice->number && 541 (format & 0x10000000) == 0) { 542 ypcm->chip->src441_used = -1; 543 ypcm->use_441_slot = 0; 544 } 545 if (runtime->channels == 2 && (voiceidx & 1) != 0) 546 format |= 1; 547 spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags); 548 for (nbank = 0; nbank < 2; nbank++) { 549 bank = &voice->bank[nbank]; 550 memset(bank, 0, sizeof(*bank)); 551 bank->format = cpu_to_le32(format); 552 bank->base = cpu_to_le32(runtime->dma_addr); 553 bank->loop_end = cpu_to_le32(ypcm->buffer_size); 554 bank->lpfQ = cpu_to_le32(lpfQ); 555 bank->delta = 556 bank->delta_end = cpu_to_le32(delta); 557 bank->lpfK = 558 bank->lpfK_end = cpu_to_le32(lpfK); 559 bank->eg_gain = 560 bank->eg_gain_end = cpu_to_le32(0x40000000); 561 562 if (ypcm->output_front) { 563 if (use_left) { 564 bank->left_gain = 565 bank->left_gain_end = vol_left; 566 } 567 if (use_right) { 568 bank->right_gain = 569 bank->right_gain_end = vol_right; 570 } 571 } 572 if (ypcm->output_rear) { 573 if (!ypcm->swap_rear) { 574 if (use_left) { 575 bank->eff2_gain = 576 bank->eff2_gain_end = vol_left; 577 } 578 if (use_right) { 579 bank->eff3_gain = 580 bank->eff3_gain_end = vol_right; 581 } 582 } else { 583 /* The SPDIF out channels seem to be swapped, so we have 584 * to swap them here, too. The rear analog out channels 585 * will be wrong, but otherwise AC3 would not work. 586 */ 587 if (use_left) { 588 bank->eff3_gain = 589 bank->eff3_gain_end = vol_left; 590 } 591 if (use_right) { 592 bank->eff2_gain = 593 bank->eff2_gain_end = vol_right; 594 } 595 } 596 } 597 } 598 } 599 600 static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip) 601 { 602 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 603 4096, &chip->ac3_tmp_base) < 0) 604 return -ENOMEM; 605 606 chip->bank_effect[3][0]->base = 607 chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr); 608 chip->bank_effect[3][0]->loop_end = 609 chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024); 610 chip->bank_effect[4][0]->base = 611 chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048); 612 chip->bank_effect[4][0]->loop_end = 613 chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024); 614 615 spin_lock_irq(&chip->reg_lock); 616 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 617 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3); 618 spin_unlock_irq(&chip->reg_lock); 619 return 0; 620 } 621 622 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip) 623 { 624 spin_lock_irq(&chip->reg_lock); 625 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 626 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3)); 627 spin_unlock_irq(&chip->reg_lock); 628 // snd_ymfpci_irq_wait(chip); 629 if (chip->ac3_tmp_base.area) { 630 snd_dma_free_pages(&chip->ac3_tmp_base); 631 chip->ac3_tmp_base.area = NULL; 632 } 633 return 0; 634 } 635 636 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream, 637 struct snd_pcm_hw_params *hw_params) 638 { 639 struct snd_pcm_runtime *runtime = substream->runtime; 640 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 641 int err; 642 643 if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0) 644 return err; 645 if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0) 646 return err; 647 return 0; 648 } 649 650 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream) 651 { 652 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 653 struct snd_pcm_runtime *runtime = substream->runtime; 654 struct snd_ymfpci_pcm *ypcm; 655 656 if (runtime->private_data == NULL) 657 return 0; 658 ypcm = runtime->private_data; 659 660 /* wait, until the PCI operations are not finished */ 661 snd_ymfpci_irq_wait(chip); 662 snd_pcm_lib_free_pages(substream); 663 if (ypcm->voices[1]) { 664 snd_ymfpci_voice_free(chip, ypcm->voices[1]); 665 ypcm->voices[1] = NULL; 666 } 667 if (ypcm->voices[0]) { 668 snd_ymfpci_voice_free(chip, ypcm->voices[0]); 669 ypcm->voices[0] = NULL; 670 } 671 return 0; 672 } 673 674 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream) 675 { 676 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 677 struct snd_pcm_runtime *runtime = substream->runtime; 678 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 679 struct snd_kcontrol *kctl; 680 unsigned int nvoice; 681 682 ypcm->period_size = runtime->period_size; 683 ypcm->buffer_size = runtime->buffer_size; 684 ypcm->period_pos = 0; 685 ypcm->last_pos = 0; 686 for (nvoice = 0; nvoice < runtime->channels; nvoice++) 687 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime, 688 substream->pcm == chip->pcm); 689 690 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { 691 kctl = chip->pcm_mixer[substream->number].ctl; 692 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 693 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); 694 } 695 return 0; 696 } 697 698 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream, 699 struct snd_pcm_hw_params *hw_params) 700 { 701 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 702 } 703 704 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream) 705 { 706 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 707 708 /* wait, until the PCI operations are not finished */ 709 snd_ymfpci_irq_wait(chip); 710 return snd_pcm_lib_free_pages(substream); 711 } 712 713 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream) 714 { 715 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 716 struct snd_pcm_runtime *runtime = substream->runtime; 717 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 718 struct snd_ymfpci_capture_bank * bank; 719 int nbank; 720 u32 rate, format; 721 722 ypcm->period_size = runtime->period_size; 723 ypcm->buffer_size = runtime->buffer_size; 724 ypcm->period_pos = 0; 725 ypcm->last_pos = 0; 726 ypcm->shift = 0; 727 rate = ((48000 * 4096) / runtime->rate) - 1; 728 format = 0; 729 if (runtime->channels == 2) { 730 format |= 2; 731 ypcm->shift++; 732 } 733 if (snd_pcm_format_width(runtime->format) == 8) 734 format |= 1; 735 else 736 ypcm->shift++; 737 switch (ypcm->capture_bank_number) { 738 case 0: 739 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format); 740 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate); 741 break; 742 case 1: 743 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format); 744 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate); 745 break; 746 } 747 for (nbank = 0; nbank < 2; nbank++) { 748 bank = chip->bank_capture[ypcm->capture_bank_number][nbank]; 749 bank->base = cpu_to_le32(runtime->dma_addr); 750 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift); 751 bank->start = 0; 752 bank->num_of_loops = 0; 753 } 754 return 0; 755 } 756 757 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream) 758 { 759 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 760 struct snd_pcm_runtime *runtime = substream->runtime; 761 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 762 struct snd_ymfpci_voice *voice = ypcm->voices[0]; 763 764 if (!(ypcm->running && voice)) 765 return 0; 766 return le32_to_cpu(voice->bank[chip->active_bank].start); 767 } 768 769 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream) 770 { 771 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 772 struct snd_pcm_runtime *runtime = substream->runtime; 773 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 774 775 if (!ypcm->running) 776 return 0; 777 return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; 778 } 779 780 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip) 781 { 782 wait_queue_t wait; 783 int loops = 4; 784 785 while (loops-- > 0) { 786 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0) 787 continue; 788 init_waitqueue_entry(&wait, current); 789 add_wait_queue(&chip->interrupt_sleep, &wait); 790 atomic_inc(&chip->interrupt_sleep_count); 791 schedule_timeout_uninterruptible(msecs_to_jiffies(50)); 792 remove_wait_queue(&chip->interrupt_sleep, &wait); 793 } 794 } 795 796 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id) 797 { 798 struct snd_ymfpci *chip = dev_id; 799 u32 status, nvoice, mode; 800 struct snd_ymfpci_voice *voice; 801 802 status = snd_ymfpci_readl(chip, YDSXGR_STATUS); 803 if (status & 0x80000000) { 804 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; 805 spin_lock(&chip->voice_lock); 806 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) { 807 voice = &chip->voices[nvoice]; 808 if (voice->interrupt) 809 voice->interrupt(chip, voice); 810 } 811 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) { 812 if (chip->capture_substream[nvoice]) 813 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]); 814 } 815 #if 0 816 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) { 817 if (chip->effect_substream[nvoice]) 818 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]); 819 } 820 #endif 821 spin_unlock(&chip->voice_lock); 822 spin_lock(&chip->reg_lock); 823 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000); 824 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2; 825 snd_ymfpci_writel(chip, YDSXGR_MODE, mode); 826 spin_unlock(&chip->reg_lock); 827 828 if (atomic_read(&chip->interrupt_sleep_count)) { 829 atomic_set(&chip->interrupt_sleep_count, 0); 830 wake_up(&chip->interrupt_sleep); 831 } 832 } 833 834 status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG); 835 if (status & 1) { 836 if (chip->timer) 837 snd_timer_interrupt(chip->timer, chip->timer_ticks); 838 } 839 snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status); 840 841 if (chip->rawmidi) 842 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data); 843 return IRQ_HANDLED; 844 } 845 846 static struct snd_pcm_hardware snd_ymfpci_playback = 847 { 848 .info = (SNDRV_PCM_INFO_MMAP | 849 SNDRV_PCM_INFO_MMAP_VALID | 850 SNDRV_PCM_INFO_INTERLEAVED | 851 SNDRV_PCM_INFO_BLOCK_TRANSFER | 852 SNDRV_PCM_INFO_PAUSE | 853 SNDRV_PCM_INFO_RESUME), 854 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 855 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 856 .rate_min = 8000, 857 .rate_max = 48000, 858 .channels_min = 1, 859 .channels_max = 2, 860 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ 861 .period_bytes_min = 64, 862 .period_bytes_max = 256 * 1024, /* FIXME: enough? */ 863 .periods_min = 3, 864 .periods_max = 1024, 865 .fifo_size = 0, 866 }; 867 868 static struct snd_pcm_hardware snd_ymfpci_capture = 869 { 870 .info = (SNDRV_PCM_INFO_MMAP | 871 SNDRV_PCM_INFO_MMAP_VALID | 872 SNDRV_PCM_INFO_INTERLEAVED | 873 SNDRV_PCM_INFO_BLOCK_TRANSFER | 874 SNDRV_PCM_INFO_PAUSE | 875 SNDRV_PCM_INFO_RESUME), 876 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 877 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 878 .rate_min = 8000, 879 .rate_max = 48000, 880 .channels_min = 1, 881 .channels_max = 2, 882 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ 883 .period_bytes_min = 64, 884 .period_bytes_max = 256 * 1024, /* FIXME: enough? */ 885 .periods_min = 3, 886 .periods_max = 1024, 887 .fifo_size = 0, 888 }; 889 890 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime) 891 { 892 kfree(runtime->private_data); 893 } 894 895 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream) 896 { 897 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 898 struct snd_pcm_runtime *runtime = substream->runtime; 899 struct snd_ymfpci_pcm *ypcm; 900 901 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); 902 if (ypcm == NULL) 903 return -ENOMEM; 904 ypcm->chip = chip; 905 ypcm->type = PLAYBACK_VOICE; 906 ypcm->substream = substream; 907 runtime->hw = snd_ymfpci_playback; 908 runtime->private_data = ypcm; 909 runtime->private_free = snd_ymfpci_pcm_free_substream; 910 /* FIXME? True value is 256/48 = 5.33333 ms */ 911 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX); 912 return 0; 913 } 914 915 /* call with spinlock held */ 916 static void ymfpci_open_extension(struct snd_ymfpci *chip) 917 { 918 if (! chip->rear_opened) { 919 if (! chip->spdif_opened) /* set AC3 */ 920 snd_ymfpci_writel(chip, YDSXGR_MODE, 921 snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30)); 922 /* enable second codec (4CHEN) */ 923 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, 924 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010); 925 } 926 } 927 928 /* call with spinlock held */ 929 static void ymfpci_close_extension(struct snd_ymfpci *chip) 930 { 931 if (! chip->rear_opened) { 932 if (! chip->spdif_opened) 933 snd_ymfpci_writel(chip, YDSXGR_MODE, 934 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30)); 935 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, 936 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010); 937 } 938 } 939 940 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream) 941 { 942 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 943 struct snd_pcm_runtime *runtime = substream->runtime; 944 struct snd_ymfpci_pcm *ypcm; 945 int err; 946 947 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 948 return err; 949 ypcm = runtime->private_data; 950 ypcm->output_front = 1; 951 ypcm->output_rear = chip->mode_dup4ch ? 1 : 0; 952 ypcm->swap_rear = 0; 953 spin_lock_irq(&chip->reg_lock); 954 if (ypcm->output_rear) { 955 ymfpci_open_extension(chip); 956 chip->rear_opened++; 957 } 958 spin_unlock_irq(&chip->reg_lock); 959 return 0; 960 } 961 962 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream) 963 { 964 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 965 struct snd_pcm_runtime *runtime = substream->runtime; 966 struct snd_ymfpci_pcm *ypcm; 967 int err; 968 969 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 970 return err; 971 ypcm = runtime->private_data; 972 ypcm->output_front = 0; 973 ypcm->output_rear = 1; 974 ypcm->swap_rear = 1; 975 spin_lock_irq(&chip->reg_lock); 976 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 977 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2); 978 ymfpci_open_extension(chip); 979 chip->spdif_pcm_bits = chip->spdif_bits; 980 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); 981 chip->spdif_opened++; 982 spin_unlock_irq(&chip->reg_lock); 983 984 chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 985 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | 986 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); 987 return 0; 988 } 989 990 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream) 991 { 992 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 993 struct snd_pcm_runtime *runtime = substream->runtime; 994 struct snd_ymfpci_pcm *ypcm; 995 int err; 996 997 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 998 return err; 999 ypcm = runtime->private_data; 1000 ypcm->output_front = 0; 1001 ypcm->output_rear = 1; 1002 ypcm->swap_rear = 0; 1003 spin_lock_irq(&chip->reg_lock); 1004 ymfpci_open_extension(chip); 1005 chip->rear_opened++; 1006 spin_unlock_irq(&chip->reg_lock); 1007 return 0; 1008 } 1009 1010 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream, 1011 u32 capture_bank_number) 1012 { 1013 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1014 struct snd_pcm_runtime *runtime = substream->runtime; 1015 struct snd_ymfpci_pcm *ypcm; 1016 1017 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); 1018 if (ypcm == NULL) 1019 return -ENOMEM; 1020 ypcm->chip = chip; 1021 ypcm->type = capture_bank_number + CAPTURE_REC; 1022 ypcm->substream = substream; 1023 ypcm->capture_bank_number = capture_bank_number; 1024 chip->capture_substream[capture_bank_number] = substream; 1025 runtime->hw = snd_ymfpci_capture; 1026 /* FIXME? True value is 256/48 = 5.33333 ms */ 1027 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX); 1028 runtime->private_data = ypcm; 1029 runtime->private_free = snd_ymfpci_pcm_free_substream; 1030 snd_ymfpci_hw_start(chip); 1031 return 0; 1032 } 1033 1034 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream) 1035 { 1036 return snd_ymfpci_capture_open(substream, 0); 1037 } 1038 1039 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream) 1040 { 1041 return snd_ymfpci_capture_open(substream, 1); 1042 } 1043 1044 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream) 1045 { 1046 return 0; 1047 } 1048 1049 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream) 1050 { 1051 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1052 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 1053 1054 spin_lock_irq(&chip->reg_lock); 1055 if (ypcm->output_rear && chip->rear_opened > 0) { 1056 chip->rear_opened--; 1057 ymfpci_close_extension(chip); 1058 } 1059 spin_unlock_irq(&chip->reg_lock); 1060 return snd_ymfpci_playback_close_1(substream); 1061 } 1062 1063 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream) 1064 { 1065 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1066 1067 spin_lock_irq(&chip->reg_lock); 1068 chip->spdif_opened = 0; 1069 ymfpci_close_extension(chip); 1070 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 1071 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2); 1072 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 1073 spin_unlock_irq(&chip->reg_lock); 1074 chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1075 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | 1076 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); 1077 return snd_ymfpci_playback_close_1(substream); 1078 } 1079 1080 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream) 1081 { 1082 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1083 1084 spin_lock_irq(&chip->reg_lock); 1085 if (chip->rear_opened > 0) { 1086 chip->rear_opened--; 1087 ymfpci_close_extension(chip); 1088 } 1089 spin_unlock_irq(&chip->reg_lock); 1090 return snd_ymfpci_playback_close_1(substream); 1091 } 1092 1093 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream) 1094 { 1095 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1096 struct snd_pcm_runtime *runtime = substream->runtime; 1097 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 1098 1099 if (ypcm != NULL) { 1100 chip->capture_substream[ypcm->capture_bank_number] = NULL; 1101 snd_ymfpci_hw_stop(chip); 1102 } 1103 return 0; 1104 } 1105 1106 static struct snd_pcm_ops snd_ymfpci_playback_ops = { 1107 .open = snd_ymfpci_playback_open, 1108 .close = snd_ymfpci_playback_close, 1109 .ioctl = snd_pcm_lib_ioctl, 1110 .hw_params = snd_ymfpci_playback_hw_params, 1111 .hw_free = snd_ymfpci_playback_hw_free, 1112 .prepare = snd_ymfpci_playback_prepare, 1113 .trigger = snd_ymfpci_playback_trigger, 1114 .pointer = snd_ymfpci_playback_pointer, 1115 }; 1116 1117 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = { 1118 .open = snd_ymfpci_capture_rec_open, 1119 .close = snd_ymfpci_capture_close, 1120 .ioctl = snd_pcm_lib_ioctl, 1121 .hw_params = snd_ymfpci_capture_hw_params, 1122 .hw_free = snd_ymfpci_capture_hw_free, 1123 .prepare = snd_ymfpci_capture_prepare, 1124 .trigger = snd_ymfpci_capture_trigger, 1125 .pointer = snd_ymfpci_capture_pointer, 1126 }; 1127 1128 int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1129 { 1130 struct snd_pcm *pcm; 1131 int err; 1132 1133 if (rpcm) 1134 *rpcm = NULL; 1135 if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0) 1136 return err; 1137 pcm->private_data = chip; 1138 1139 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops); 1140 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops); 1141 1142 /* global setup */ 1143 pcm->info_flags = 0; 1144 strcpy(pcm->name, "YMFPCI"); 1145 chip->pcm = pcm; 1146 1147 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1148 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1149 1150 if (rpcm) 1151 *rpcm = pcm; 1152 return 0; 1153 } 1154 1155 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = { 1156 .open = snd_ymfpci_capture_ac97_open, 1157 .close = snd_ymfpci_capture_close, 1158 .ioctl = snd_pcm_lib_ioctl, 1159 .hw_params = snd_ymfpci_capture_hw_params, 1160 .hw_free = snd_ymfpci_capture_hw_free, 1161 .prepare = snd_ymfpci_capture_prepare, 1162 .trigger = snd_ymfpci_capture_trigger, 1163 .pointer = snd_ymfpci_capture_pointer, 1164 }; 1165 1166 int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1167 { 1168 struct snd_pcm *pcm; 1169 int err; 1170 1171 if (rpcm) 1172 *rpcm = NULL; 1173 if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0) 1174 return err; 1175 pcm->private_data = chip; 1176 1177 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops); 1178 1179 /* global setup */ 1180 pcm->info_flags = 0; 1181 sprintf(pcm->name, "YMFPCI - %s", 1182 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97"); 1183 chip->pcm2 = pcm; 1184 1185 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1186 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1187 1188 if (rpcm) 1189 *rpcm = pcm; 1190 return 0; 1191 } 1192 1193 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = { 1194 .open = snd_ymfpci_playback_spdif_open, 1195 .close = snd_ymfpci_playback_spdif_close, 1196 .ioctl = snd_pcm_lib_ioctl, 1197 .hw_params = snd_ymfpci_playback_hw_params, 1198 .hw_free = snd_ymfpci_playback_hw_free, 1199 .prepare = snd_ymfpci_playback_prepare, 1200 .trigger = snd_ymfpci_playback_trigger, 1201 .pointer = snd_ymfpci_playback_pointer, 1202 }; 1203 1204 int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1205 { 1206 struct snd_pcm *pcm; 1207 int err; 1208 1209 if (rpcm) 1210 *rpcm = NULL; 1211 if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0) 1212 return err; 1213 pcm->private_data = chip; 1214 1215 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops); 1216 1217 /* global setup */ 1218 pcm->info_flags = 0; 1219 strcpy(pcm->name, "YMFPCI - IEC958"); 1220 chip->pcm_spdif = pcm; 1221 1222 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1223 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1224 1225 if (rpcm) 1226 *rpcm = pcm; 1227 return 0; 1228 } 1229 1230 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = { 1231 .open = snd_ymfpci_playback_4ch_open, 1232 .close = snd_ymfpci_playback_4ch_close, 1233 .ioctl = snd_pcm_lib_ioctl, 1234 .hw_params = snd_ymfpci_playback_hw_params, 1235 .hw_free = snd_ymfpci_playback_hw_free, 1236 .prepare = snd_ymfpci_playback_prepare, 1237 .trigger = snd_ymfpci_playback_trigger, 1238 .pointer = snd_ymfpci_playback_pointer, 1239 }; 1240 1241 int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1242 { 1243 struct snd_pcm *pcm; 1244 int err; 1245 1246 if (rpcm) 1247 *rpcm = NULL; 1248 if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0) 1249 return err; 1250 pcm->private_data = chip; 1251 1252 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops); 1253 1254 /* global setup */ 1255 pcm->info_flags = 0; 1256 strcpy(pcm->name, "YMFPCI - Rear PCM"); 1257 chip->pcm_4ch = pcm; 1258 1259 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1260 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1261 1262 if (rpcm) 1263 *rpcm = pcm; 1264 return 0; 1265 } 1266 1267 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1268 { 1269 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1270 uinfo->count = 1; 1271 return 0; 1272 } 1273 1274 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol, 1275 struct snd_ctl_elem_value *ucontrol) 1276 { 1277 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1278 1279 spin_lock_irq(&chip->reg_lock); 1280 ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff; 1281 ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff; 1282 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; 1283 spin_unlock_irq(&chip->reg_lock); 1284 return 0; 1285 } 1286 1287 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol, 1288 struct snd_ctl_elem_value *ucontrol) 1289 { 1290 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1291 unsigned int val; 1292 int change; 1293 1294 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | 1295 (ucontrol->value.iec958.status[1] << 8); 1296 spin_lock_irq(&chip->reg_lock); 1297 change = chip->spdif_bits != val; 1298 chip->spdif_bits = val; 1299 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL) 1300 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 1301 spin_unlock_irq(&chip->reg_lock); 1302 return change; 1303 } 1304 1305 static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata = 1306 { 1307 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1308 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1309 .info = snd_ymfpci_spdif_default_info, 1310 .get = snd_ymfpci_spdif_default_get, 1311 .put = snd_ymfpci_spdif_default_put 1312 }; 1313 1314 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1315 { 1316 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1317 uinfo->count = 1; 1318 return 0; 1319 } 1320 1321 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1322 struct snd_ctl_elem_value *ucontrol) 1323 { 1324 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1325 1326 spin_lock_irq(&chip->reg_lock); 1327 ucontrol->value.iec958.status[0] = 0x3e; 1328 ucontrol->value.iec958.status[1] = 0xff; 1329 spin_unlock_irq(&chip->reg_lock); 1330 return 0; 1331 } 1332 1333 static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata = 1334 { 1335 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1336 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1337 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1338 .info = snd_ymfpci_spdif_mask_info, 1339 .get = snd_ymfpci_spdif_mask_get, 1340 }; 1341 1342 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1343 { 1344 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1345 uinfo->count = 1; 1346 return 0; 1347 } 1348 1349 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1350 struct snd_ctl_elem_value *ucontrol) 1351 { 1352 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1353 1354 spin_lock_irq(&chip->reg_lock); 1355 ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff; 1356 ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff; 1357 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; 1358 spin_unlock_irq(&chip->reg_lock); 1359 return 0; 1360 } 1361 1362 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1363 struct snd_ctl_elem_value *ucontrol) 1364 { 1365 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1366 unsigned int val; 1367 int change; 1368 1369 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | 1370 (ucontrol->value.iec958.status[1] << 8); 1371 spin_lock_irq(&chip->reg_lock); 1372 change = chip->spdif_pcm_bits != val; 1373 chip->spdif_pcm_bits = val; 1374 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2)) 1375 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); 1376 spin_unlock_irq(&chip->reg_lock); 1377 return change; 1378 } 1379 1380 static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata = 1381 { 1382 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1383 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1384 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1385 .info = snd_ymfpci_spdif_stream_info, 1386 .get = snd_ymfpci_spdif_stream_get, 1387 .put = snd_ymfpci_spdif_stream_put 1388 }; 1389 1390 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info) 1391 { 1392 static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"}; 1393 1394 return snd_ctl_enum_info(info, 1, 3, texts); 1395 } 1396 1397 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) 1398 { 1399 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1400 u16 reg; 1401 1402 spin_lock_irq(&chip->reg_lock); 1403 reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 1404 spin_unlock_irq(&chip->reg_lock); 1405 if (!(reg & 0x100)) 1406 value->value.enumerated.item[0] = 0; 1407 else 1408 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0); 1409 return 0; 1410 } 1411 1412 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) 1413 { 1414 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1415 u16 reg, old_reg; 1416 1417 spin_lock_irq(&chip->reg_lock); 1418 old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 1419 if (value->value.enumerated.item[0] == 0) 1420 reg = old_reg & ~0x100; 1421 else 1422 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9); 1423 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg); 1424 spin_unlock_irq(&chip->reg_lock); 1425 return reg != old_reg; 1426 } 1427 1428 static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = { 1429 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 1430 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1431 .name = "Direct Recording Source", 1432 .info = snd_ymfpci_drec_source_info, 1433 .get = snd_ymfpci_drec_source_get, 1434 .put = snd_ymfpci_drec_source_put 1435 }; 1436 1437 /* 1438 * Mixer controls 1439 */ 1440 1441 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \ 1442 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 1443 .info = snd_ymfpci_info_single, \ 1444 .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \ 1445 .private_value = ((reg) | ((shift) << 16)) } 1446 1447 #define snd_ymfpci_info_single snd_ctl_boolean_mono_info 1448 1449 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol, 1450 struct snd_ctl_elem_value *ucontrol) 1451 { 1452 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1453 int reg = kcontrol->private_value & 0xffff; 1454 unsigned int shift = (kcontrol->private_value >> 16) & 0xff; 1455 unsigned int mask = 1; 1456 1457 switch (reg) { 1458 case YDSXGR_SPDIFOUTCTRL: break; 1459 case YDSXGR_SPDIFINCTRL: break; 1460 default: return -EINVAL; 1461 } 1462 ucontrol->value.integer.value[0] = 1463 (snd_ymfpci_readl(chip, reg) >> shift) & mask; 1464 return 0; 1465 } 1466 1467 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol, 1468 struct snd_ctl_elem_value *ucontrol) 1469 { 1470 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1471 int reg = kcontrol->private_value & 0xffff; 1472 unsigned int shift = (kcontrol->private_value >> 16) & 0xff; 1473 unsigned int mask = 1; 1474 int change; 1475 unsigned int val, oval; 1476 1477 switch (reg) { 1478 case YDSXGR_SPDIFOUTCTRL: break; 1479 case YDSXGR_SPDIFINCTRL: break; 1480 default: return -EINVAL; 1481 } 1482 val = (ucontrol->value.integer.value[0] & mask); 1483 val <<= shift; 1484 spin_lock_irq(&chip->reg_lock); 1485 oval = snd_ymfpci_readl(chip, reg); 1486 val = (oval & ~(mask << shift)) | val; 1487 change = val != oval; 1488 snd_ymfpci_writel(chip, reg, val); 1489 spin_unlock_irq(&chip->reg_lock); 1490 return change; 1491 } 1492 1493 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0); 1494 1495 #define YMFPCI_DOUBLE(xname, xindex, reg) \ 1496 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 1497 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ 1498 .info = snd_ymfpci_info_double, \ 1499 .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \ 1500 .private_value = reg, \ 1501 .tlv = { .p = db_scale_native } } 1502 1503 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1504 { 1505 unsigned int reg = kcontrol->private_value; 1506 1507 if (reg < 0x80 || reg >= 0xc0) 1508 return -EINVAL; 1509 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1510 uinfo->count = 2; 1511 uinfo->value.integer.min = 0; 1512 uinfo->value.integer.max = 16383; 1513 return 0; 1514 } 1515 1516 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1517 { 1518 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1519 unsigned int reg = kcontrol->private_value; 1520 unsigned int shift_left = 0, shift_right = 16, mask = 16383; 1521 unsigned int val; 1522 1523 if (reg < 0x80 || reg >= 0xc0) 1524 return -EINVAL; 1525 spin_lock_irq(&chip->reg_lock); 1526 val = snd_ymfpci_readl(chip, reg); 1527 spin_unlock_irq(&chip->reg_lock); 1528 ucontrol->value.integer.value[0] = (val >> shift_left) & mask; 1529 ucontrol->value.integer.value[1] = (val >> shift_right) & mask; 1530 return 0; 1531 } 1532 1533 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1534 { 1535 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1536 unsigned int reg = kcontrol->private_value; 1537 unsigned int shift_left = 0, shift_right = 16, mask = 16383; 1538 int change; 1539 unsigned int val1, val2, oval; 1540 1541 if (reg < 0x80 || reg >= 0xc0) 1542 return -EINVAL; 1543 val1 = ucontrol->value.integer.value[0] & mask; 1544 val2 = ucontrol->value.integer.value[1] & mask; 1545 val1 <<= shift_left; 1546 val2 <<= shift_right; 1547 spin_lock_irq(&chip->reg_lock); 1548 oval = snd_ymfpci_readl(chip, reg); 1549 val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2; 1550 change = val1 != oval; 1551 snd_ymfpci_writel(chip, reg, val1); 1552 spin_unlock_irq(&chip->reg_lock); 1553 return change; 1554 } 1555 1556 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol, 1557 struct snd_ctl_elem_value *ucontrol) 1558 { 1559 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1560 unsigned int reg = YDSXGR_NATIVEDACOUTVOL; 1561 unsigned int reg2 = YDSXGR_BUF441OUTVOL; 1562 int change; 1563 unsigned int value, oval; 1564 1565 value = ucontrol->value.integer.value[0] & 0x3fff; 1566 value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16; 1567 spin_lock_irq(&chip->reg_lock); 1568 oval = snd_ymfpci_readl(chip, reg); 1569 change = value != oval; 1570 snd_ymfpci_writel(chip, reg, value); 1571 snd_ymfpci_writel(chip, reg2, value); 1572 spin_unlock_irq(&chip->reg_lock); 1573 return change; 1574 } 1575 1576 /* 1577 * 4ch duplication 1578 */ 1579 #define snd_ymfpci_info_dup4ch snd_ctl_boolean_mono_info 1580 1581 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1582 { 1583 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1584 ucontrol->value.integer.value[0] = chip->mode_dup4ch; 1585 return 0; 1586 } 1587 1588 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1589 { 1590 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1591 int change; 1592 change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch); 1593 if (change) 1594 chip->mode_dup4ch = !!ucontrol->value.integer.value[0]; 1595 return change; 1596 } 1597 1598 1599 static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = { 1600 { 1601 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1602 .name = "Wave Playback Volume", 1603 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 1604 SNDRV_CTL_ELEM_ACCESS_TLV_READ, 1605 .info = snd_ymfpci_info_double, 1606 .get = snd_ymfpci_get_double, 1607 .put = snd_ymfpci_put_nativedacvol, 1608 .private_value = YDSXGR_NATIVEDACOUTVOL, 1609 .tlv = { .p = db_scale_native }, 1610 }, 1611 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL), 1612 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL), 1613 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL), 1614 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL), 1615 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL), 1616 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL), 1617 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL), 1618 YMFPCI_DOUBLE("FM Legacy Volume", 0, YDSXGR_LEGACYOUTVOL), 1619 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL), 1620 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL), 1621 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL), 1622 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL), 1623 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0), 1624 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0), 1625 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4), 1626 { 1627 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1628 .name = "4ch Duplication", 1629 .info = snd_ymfpci_info_dup4ch, 1630 .get = snd_ymfpci_get_dup4ch, 1631 .put = snd_ymfpci_put_dup4ch, 1632 }, 1633 }; 1634 1635 1636 /* 1637 * GPIO 1638 */ 1639 1640 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin) 1641 { 1642 u16 reg, mode; 1643 unsigned long flags; 1644 1645 spin_lock_irqsave(&chip->reg_lock, flags); 1646 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); 1647 reg &= ~(1 << (pin + 8)); 1648 reg |= (1 << pin); 1649 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); 1650 /* set the level mode for input line */ 1651 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG); 1652 mode &= ~(3 << (pin * 2)); 1653 snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode); 1654 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); 1655 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS); 1656 spin_unlock_irqrestore(&chip->reg_lock, flags); 1657 return (mode >> pin) & 1; 1658 } 1659 1660 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable) 1661 { 1662 u16 reg; 1663 unsigned long flags; 1664 1665 spin_lock_irqsave(&chip->reg_lock, flags); 1666 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); 1667 reg &= ~(1 << pin); 1668 reg &= ~(1 << (pin + 8)); 1669 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); 1670 snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin); 1671 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); 1672 spin_unlock_irqrestore(&chip->reg_lock, flags); 1673 1674 return 0; 1675 } 1676 1677 #define snd_ymfpci_gpio_sw_info snd_ctl_boolean_mono_info 1678 1679 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1680 { 1681 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1682 int pin = (int)kcontrol->private_value; 1683 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); 1684 return 0; 1685 } 1686 1687 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1688 { 1689 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1690 int pin = (int)kcontrol->private_value; 1691 1692 if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) { 1693 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]); 1694 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); 1695 return 1; 1696 } 1697 return 0; 1698 } 1699 1700 static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = { 1701 .name = "Shared Rear/Line-In Switch", 1702 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1703 .info = snd_ymfpci_gpio_sw_info, 1704 .get = snd_ymfpci_gpio_sw_get, 1705 .put = snd_ymfpci_gpio_sw_put, 1706 .private_value = 2, 1707 }; 1708 1709 /* 1710 * PCM voice volume 1711 */ 1712 1713 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol, 1714 struct snd_ctl_elem_info *uinfo) 1715 { 1716 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1717 uinfo->count = 2; 1718 uinfo->value.integer.min = 0; 1719 uinfo->value.integer.max = 0x8000; 1720 return 0; 1721 } 1722 1723 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol, 1724 struct snd_ctl_elem_value *ucontrol) 1725 { 1726 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1727 unsigned int subs = kcontrol->id.subdevice; 1728 1729 ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left; 1730 ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right; 1731 return 0; 1732 } 1733 1734 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol, 1735 struct snd_ctl_elem_value *ucontrol) 1736 { 1737 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1738 unsigned int subs = kcontrol->id.subdevice; 1739 struct snd_pcm_substream *substream; 1740 unsigned long flags; 1741 1742 if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left || 1743 ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) { 1744 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0]; 1745 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1]; 1746 if (chip->pcm_mixer[subs].left > 0x8000) 1747 chip->pcm_mixer[subs].left = 0x8000; 1748 if (chip->pcm_mixer[subs].right > 0x8000) 1749 chip->pcm_mixer[subs].right = 0x8000; 1750 1751 substream = (struct snd_pcm_substream *)kcontrol->private_value; 1752 spin_lock_irqsave(&chip->voice_lock, flags); 1753 if (substream->runtime && substream->runtime->private_data) { 1754 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 1755 if (!ypcm->use_441_slot) 1756 ypcm->update_pcm_vol = 2; 1757 } 1758 spin_unlock_irqrestore(&chip->voice_lock, flags); 1759 return 1; 1760 } 1761 return 0; 1762 } 1763 1764 static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = { 1765 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1766 .name = "PCM Playback Volume", 1767 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 1768 SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1769 .info = snd_ymfpci_pcm_vol_info, 1770 .get = snd_ymfpci_pcm_vol_get, 1771 .put = snd_ymfpci_pcm_vol_put, 1772 }; 1773 1774 1775 /* 1776 * Mixer routines 1777 */ 1778 1779 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus) 1780 { 1781 struct snd_ymfpci *chip = bus->private_data; 1782 chip->ac97_bus = NULL; 1783 } 1784 1785 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97) 1786 { 1787 struct snd_ymfpci *chip = ac97->private_data; 1788 chip->ac97 = NULL; 1789 } 1790 1791 int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch) 1792 { 1793 struct snd_ac97_template ac97; 1794 struct snd_kcontrol *kctl; 1795 struct snd_pcm_substream *substream; 1796 unsigned int idx; 1797 int err; 1798 static struct snd_ac97_bus_ops ops = { 1799 .write = snd_ymfpci_codec_write, 1800 .read = snd_ymfpci_codec_read, 1801 }; 1802 1803 if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0) 1804 return err; 1805 chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus; 1806 chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */ 1807 1808 memset(&ac97, 0, sizeof(ac97)); 1809 ac97.private_data = chip; 1810 ac97.private_free = snd_ymfpci_mixer_free_ac97; 1811 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0) 1812 return err; 1813 1814 /* to be sure */ 1815 snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS, 1816 AC97_EA_VRA|AC97_EA_VRM, 0); 1817 1818 for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) { 1819 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0) 1820 return err; 1821 } 1822 1823 /* add S/PDIF control */ 1824 if (snd_BUG_ON(!chip->pcm_spdif)) 1825 return -ENXIO; 1826 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0) 1827 return err; 1828 kctl->id.device = chip->pcm_spdif->device; 1829 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0) 1830 return err; 1831 kctl->id.device = chip->pcm_spdif->device; 1832 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0) 1833 return err; 1834 kctl->id.device = chip->pcm_spdif->device; 1835 chip->spdif_pcm_ctl = kctl; 1836 1837 /* direct recording source */ 1838 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 && 1839 (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0) 1840 return err; 1841 1842 /* 1843 * shared rear/line-in 1844 */ 1845 if (rear_switch) { 1846 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0) 1847 return err; 1848 } 1849 1850 /* per-voice volume */ 1851 substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; 1852 for (idx = 0; idx < 32; ++idx) { 1853 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip); 1854 if (!kctl) 1855 return -ENOMEM; 1856 kctl->id.device = chip->pcm->device; 1857 kctl->id.subdevice = idx; 1858 kctl->private_value = (unsigned long)substream; 1859 if ((err = snd_ctl_add(chip->card, kctl)) < 0) 1860 return err; 1861 chip->pcm_mixer[idx].left = 0x8000; 1862 chip->pcm_mixer[idx].right = 0x8000; 1863 chip->pcm_mixer[idx].ctl = kctl; 1864 substream = substream->next; 1865 } 1866 1867 return 0; 1868 } 1869 1870 1871 /* 1872 * timer 1873 */ 1874 1875 static int snd_ymfpci_timer_start(struct snd_timer *timer) 1876 { 1877 struct snd_ymfpci *chip; 1878 unsigned long flags; 1879 unsigned int count; 1880 1881 chip = snd_timer_chip(timer); 1882 spin_lock_irqsave(&chip->reg_lock, flags); 1883 if (timer->sticks > 1) { 1884 chip->timer_ticks = timer->sticks; 1885 count = timer->sticks - 1; 1886 } else { 1887 /* 1888 * Divisor 1 is not allowed; fake it by using divisor 2 and 1889 * counting two ticks for each interrupt. 1890 */ 1891 chip->timer_ticks = 2; 1892 count = 2 - 1; 1893 } 1894 snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count); 1895 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03); 1896 spin_unlock_irqrestore(&chip->reg_lock, flags); 1897 return 0; 1898 } 1899 1900 static int snd_ymfpci_timer_stop(struct snd_timer *timer) 1901 { 1902 struct snd_ymfpci *chip; 1903 unsigned long flags; 1904 1905 chip = snd_timer_chip(timer); 1906 spin_lock_irqsave(&chip->reg_lock, flags); 1907 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00); 1908 spin_unlock_irqrestore(&chip->reg_lock, flags); 1909 return 0; 1910 } 1911 1912 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer, 1913 unsigned long *num, unsigned long *den) 1914 { 1915 *num = 1; 1916 *den = 96000; 1917 return 0; 1918 } 1919 1920 static struct snd_timer_hardware snd_ymfpci_timer_hw = { 1921 .flags = SNDRV_TIMER_HW_AUTO, 1922 .resolution = 10417, /* 1 / 96 kHz = 10.41666...us */ 1923 .ticks = 0x10000, 1924 .start = snd_ymfpci_timer_start, 1925 .stop = snd_ymfpci_timer_stop, 1926 .precise_resolution = snd_ymfpci_timer_precise_resolution, 1927 }; 1928 1929 int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device) 1930 { 1931 struct snd_timer *timer = NULL; 1932 struct snd_timer_id tid; 1933 int err; 1934 1935 tid.dev_class = SNDRV_TIMER_CLASS_CARD; 1936 tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE; 1937 tid.card = chip->card->number; 1938 tid.device = device; 1939 tid.subdevice = 0; 1940 if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) { 1941 strcpy(timer->name, "YMFPCI timer"); 1942 timer->private_data = chip; 1943 timer->hw = snd_ymfpci_timer_hw; 1944 } 1945 chip->timer = timer; 1946 return err; 1947 } 1948 1949 1950 /* 1951 * proc interface 1952 */ 1953 1954 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 1955 struct snd_info_buffer *buffer) 1956 { 1957 struct snd_ymfpci *chip = entry->private_data; 1958 int i; 1959 1960 snd_iprintf(buffer, "YMFPCI\n\n"); 1961 for (i = 0; i <= YDSXGR_WORKBASE; i += 4) 1962 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i)); 1963 } 1964 1965 static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip) 1966 { 1967 struct snd_info_entry *entry; 1968 1969 if (! snd_card_proc_new(card, "ymfpci", &entry)) 1970 snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read); 1971 return 0; 1972 } 1973 1974 /* 1975 * initialization routines 1976 */ 1977 1978 static void snd_ymfpci_aclink_reset(struct pci_dev * pci) 1979 { 1980 u8 cmd; 1981 1982 pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd); 1983 #if 0 // force to reset 1984 if (cmd & 0x03) { 1985 #endif 1986 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); 1987 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03); 1988 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); 1989 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0); 1990 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0); 1991 #if 0 1992 } 1993 #endif 1994 } 1995 1996 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip) 1997 { 1998 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001); 1999 } 2000 2001 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip) 2002 { 2003 u32 val; 2004 int timeout = 1000; 2005 2006 val = snd_ymfpci_readl(chip, YDSXGR_CONFIG); 2007 if (val) 2008 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000); 2009 while (timeout-- > 0) { 2010 val = snd_ymfpci_readl(chip, YDSXGR_STATUS); 2011 if ((val & 0x00000002) == 0) 2012 break; 2013 } 2014 } 2015 2016 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip) 2017 { 2018 int err, is_1e; 2019 const char *name; 2020 2021 err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw", 2022 &chip->pci->dev); 2023 if (err >= 0) { 2024 if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) { 2025 snd_printk(KERN_ERR "DSP microcode has wrong size\n"); 2026 err = -EINVAL; 2027 } 2028 } 2029 if (err < 0) 2030 return err; 2031 is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F || 2032 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C || 2033 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 || 2034 chip->device_id == PCI_DEVICE_ID_YAMAHA_754; 2035 name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw"; 2036 err = request_firmware(&chip->controller_microcode, name, 2037 &chip->pci->dev); 2038 if (err >= 0) { 2039 if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) { 2040 snd_printk(KERN_ERR "controller microcode" 2041 " has wrong size\n"); 2042 err = -EINVAL; 2043 } 2044 } 2045 if (err < 0) 2046 return err; 2047 return 0; 2048 } 2049 2050 MODULE_FIRMWARE("yamaha/ds1_dsp.fw"); 2051 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw"); 2052 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw"); 2053 2054 static void snd_ymfpci_download_image(struct snd_ymfpci *chip) 2055 { 2056 int i; 2057 u16 ctrl; 2058 const __le32 *inst; 2059 2060 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000); 2061 snd_ymfpci_disable_dsp(chip); 2062 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000); 2063 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000); 2064 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000); 2065 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000); 2066 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000); 2067 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000); 2068 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000); 2069 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 2070 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); 2071 2072 /* setup DSP instruction code */ 2073 inst = (const __le32 *)chip->dsp_microcode->data; 2074 for (i = 0; i < YDSXG_DSPLENGTH / 4; i++) 2075 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), 2076 le32_to_cpu(inst[i])); 2077 2078 /* setup control instruction code */ 2079 inst = (const __le32 *)chip->controller_microcode->data; 2080 for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++) 2081 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), 2082 le32_to_cpu(inst[i])); 2083 2084 snd_ymfpci_enable_dsp(chip); 2085 } 2086 2087 static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip) 2088 { 2089 long size, playback_ctrl_size; 2090 int voice, bank, reg; 2091 u8 *ptr; 2092 dma_addr_t ptr_addr; 2093 2094 playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES; 2095 chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2; 2096 chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2; 2097 chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2; 2098 chip->work_size = YDSXG_DEFAULT_WORK_SIZE; 2099 2100 size = ALIGN(playback_ctrl_size, 0x100) + 2101 ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) + 2102 ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) + 2103 ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) + 2104 chip->work_size; 2105 /* work_ptr must be aligned to 256 bytes, but it's already 2106 covered with the kernel page allocation mechanism */ 2107 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 2108 size, &chip->work_ptr) < 0) 2109 return -ENOMEM; 2110 ptr = chip->work_ptr.area; 2111 ptr_addr = chip->work_ptr.addr; 2112 memset(ptr, 0, size); /* for sure */ 2113 2114 chip->bank_base_playback = ptr; 2115 chip->bank_base_playback_addr = ptr_addr; 2116 chip->ctrl_playback = (u32 *)ptr; 2117 chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES); 2118 ptr += ALIGN(playback_ctrl_size, 0x100); 2119 ptr_addr += ALIGN(playback_ctrl_size, 0x100); 2120 for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) { 2121 chip->voices[voice].number = voice; 2122 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr; 2123 chip->voices[voice].bank_addr = ptr_addr; 2124 for (bank = 0; bank < 2; bank++) { 2125 chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr; 2126 ptr += chip->bank_size_playback; 2127 ptr_addr += chip->bank_size_playback; 2128 } 2129 } 2130 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2131 ptr_addr = ALIGN(ptr_addr, 0x100); 2132 chip->bank_base_capture = ptr; 2133 chip->bank_base_capture_addr = ptr_addr; 2134 for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++) 2135 for (bank = 0; bank < 2; bank++) { 2136 chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr; 2137 ptr += chip->bank_size_capture; 2138 ptr_addr += chip->bank_size_capture; 2139 } 2140 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2141 ptr_addr = ALIGN(ptr_addr, 0x100); 2142 chip->bank_base_effect = ptr; 2143 chip->bank_base_effect_addr = ptr_addr; 2144 for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++) 2145 for (bank = 0; bank < 2; bank++) { 2146 chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr; 2147 ptr += chip->bank_size_effect; 2148 ptr_addr += chip->bank_size_effect; 2149 } 2150 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2151 ptr_addr = ALIGN(ptr_addr, 0x100); 2152 chip->work_base = ptr; 2153 chip->work_base_addr = ptr_addr; 2154 2155 snd_BUG_ON(ptr + chip->work_size != 2156 chip->work_ptr.area + chip->work_ptr.bytes); 2157 2158 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr); 2159 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr); 2160 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr); 2161 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr); 2162 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2); 2163 2164 /* S/PDIF output initialization */ 2165 chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff; 2166 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0); 2167 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 2168 2169 /* S/PDIF input initialization */ 2170 snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0); 2171 2172 /* digital mixer setup */ 2173 for (reg = 0x80; reg < 0xc0; reg += 4) 2174 snd_ymfpci_writel(chip, reg, 0); 2175 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff); 2176 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff); 2177 snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff); 2178 snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff); 2179 snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff); 2180 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff); 2181 snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff); 2182 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff); 2183 2184 return 0; 2185 } 2186 2187 static int snd_ymfpci_free(struct snd_ymfpci *chip) 2188 { 2189 u16 ctrl; 2190 2191 if (snd_BUG_ON(!chip)) 2192 return -EINVAL; 2193 2194 if (chip->res_reg_area) { /* don't touch busy hardware */ 2195 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); 2196 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); 2197 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0); 2198 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0); 2199 snd_ymfpci_disable_dsp(chip); 2200 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0); 2201 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0); 2202 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0); 2203 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0); 2204 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0); 2205 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 2206 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); 2207 } 2208 2209 snd_ymfpci_ac3_done(chip); 2210 2211 /* Set PCI device to D3 state */ 2212 #if 0 2213 /* FIXME: temporarily disabled, otherwise we cannot fire up 2214 * the chip again unless reboot. ACPI bug? 2215 */ 2216 pci_set_power_state(chip->pci, 3); 2217 #endif 2218 2219 #ifdef CONFIG_PM 2220 vfree(chip->saved_regs); 2221 #endif 2222 if (chip->irq >= 0) 2223 free_irq(chip->irq, chip); 2224 release_and_free_resource(chip->mpu_res); 2225 release_and_free_resource(chip->fm_res); 2226 snd_ymfpci_free_gameport(chip); 2227 if (chip->reg_area_virt) 2228 iounmap(chip->reg_area_virt); 2229 if (chip->work_ptr.area) 2230 snd_dma_free_pages(&chip->work_ptr); 2231 2232 release_and_free_resource(chip->res_reg_area); 2233 2234 pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl); 2235 2236 pci_disable_device(chip->pci); 2237 release_firmware(chip->dsp_microcode); 2238 release_firmware(chip->controller_microcode); 2239 kfree(chip); 2240 return 0; 2241 } 2242 2243 static int snd_ymfpci_dev_free(struct snd_device *device) 2244 { 2245 struct snd_ymfpci *chip = device->device_data; 2246 return snd_ymfpci_free(chip); 2247 } 2248 2249 #ifdef CONFIG_PM 2250 static int saved_regs_index[] = { 2251 /* spdif */ 2252 YDSXGR_SPDIFOUTCTRL, 2253 YDSXGR_SPDIFOUTSTATUS, 2254 YDSXGR_SPDIFINCTRL, 2255 /* volumes */ 2256 YDSXGR_PRIADCLOOPVOL, 2257 YDSXGR_NATIVEDACINVOL, 2258 YDSXGR_NATIVEDACOUTVOL, 2259 YDSXGR_BUF441OUTVOL, 2260 YDSXGR_NATIVEADCINVOL, 2261 YDSXGR_SPDIFLOOPVOL, 2262 YDSXGR_SPDIFOUTVOL, 2263 YDSXGR_ZVOUTVOL, 2264 YDSXGR_LEGACYOUTVOL, 2265 /* address bases */ 2266 YDSXGR_PLAYCTRLBASE, 2267 YDSXGR_RECCTRLBASE, 2268 YDSXGR_EFFCTRLBASE, 2269 YDSXGR_WORKBASE, 2270 /* capture set up */ 2271 YDSXGR_MAPOFREC, 2272 YDSXGR_RECFORMAT, 2273 YDSXGR_RECSLOTSR, 2274 YDSXGR_ADCFORMAT, 2275 YDSXGR_ADCSLOTSR, 2276 }; 2277 #define YDSXGR_NUM_SAVED_REGS ARRAY_SIZE(saved_regs_index) 2278 2279 int snd_ymfpci_suspend(struct pci_dev *pci, pm_message_t state) 2280 { 2281 struct snd_card *card = pci_get_drvdata(pci); 2282 struct snd_ymfpci *chip = card->private_data; 2283 unsigned int i; 2284 2285 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 2286 snd_pcm_suspend_all(chip->pcm); 2287 snd_pcm_suspend_all(chip->pcm2); 2288 snd_pcm_suspend_all(chip->pcm_spdif); 2289 snd_pcm_suspend_all(chip->pcm_4ch); 2290 snd_ac97_suspend(chip->ac97); 2291 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) 2292 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]); 2293 chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE); 2294 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); 2295 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); 2296 snd_ymfpci_disable_dsp(chip); 2297 pci_disable_device(pci); 2298 pci_save_state(pci); 2299 pci_set_power_state(pci, pci_choose_state(pci, state)); 2300 return 0; 2301 } 2302 2303 int snd_ymfpci_resume(struct pci_dev *pci) 2304 { 2305 struct snd_card *card = pci_get_drvdata(pci); 2306 struct snd_ymfpci *chip = card->private_data; 2307 unsigned int i; 2308 2309 pci_set_power_state(pci, PCI_D0); 2310 pci_restore_state(pci); 2311 if (pci_enable_device(pci) < 0) { 2312 printk(KERN_ERR "ymfpci: pci_enable_device failed, " 2313 "disabling device\n"); 2314 snd_card_disconnect(card); 2315 return -EIO; 2316 } 2317 pci_set_master(pci); 2318 snd_ymfpci_aclink_reset(pci); 2319 snd_ymfpci_codec_ready(chip, 0); 2320 snd_ymfpci_download_image(chip); 2321 udelay(100); 2322 2323 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) 2324 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]); 2325 2326 snd_ac97_resume(chip->ac97); 2327 2328 /* start hw again */ 2329 if (chip->start_count > 0) { 2330 spin_lock_irq(&chip->reg_lock); 2331 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode); 2332 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT); 2333 spin_unlock_irq(&chip->reg_lock); 2334 } 2335 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 2336 return 0; 2337 } 2338 #endif /* CONFIG_PM */ 2339 2340 int __devinit snd_ymfpci_create(struct snd_card *card, 2341 struct pci_dev * pci, 2342 unsigned short old_legacy_ctrl, 2343 struct snd_ymfpci ** rchip) 2344 { 2345 struct snd_ymfpci *chip; 2346 int err; 2347 static struct snd_device_ops ops = { 2348 .dev_free = snd_ymfpci_dev_free, 2349 }; 2350 2351 *rchip = NULL; 2352 2353 /* enable PCI device */ 2354 if ((err = pci_enable_device(pci)) < 0) 2355 return err; 2356 2357 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 2358 if (chip == NULL) { 2359 pci_disable_device(pci); 2360 return -ENOMEM; 2361 } 2362 chip->old_legacy_ctrl = old_legacy_ctrl; 2363 spin_lock_init(&chip->reg_lock); 2364 spin_lock_init(&chip->voice_lock); 2365 init_waitqueue_head(&chip->interrupt_sleep); 2366 atomic_set(&chip->interrupt_sleep_count, 0); 2367 chip->card = card; 2368 chip->pci = pci; 2369 chip->irq = -1; 2370 chip->device_id = pci->device; 2371 chip->rev = pci->revision; 2372 chip->reg_area_phys = pci_resource_start(pci, 0); 2373 chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000); 2374 pci_set_master(pci); 2375 chip->src441_used = -1; 2376 2377 if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) { 2378 snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1); 2379 snd_ymfpci_free(chip); 2380 return -EBUSY; 2381 } 2382 if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED, 2383 "YMFPCI", chip)) { 2384 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq); 2385 snd_ymfpci_free(chip); 2386 return -EBUSY; 2387 } 2388 chip->irq = pci->irq; 2389 2390 snd_ymfpci_aclink_reset(pci); 2391 if (snd_ymfpci_codec_ready(chip, 0) < 0) { 2392 snd_ymfpci_free(chip); 2393 return -EIO; 2394 } 2395 2396 err = snd_ymfpci_request_firmware(chip); 2397 if (err < 0) { 2398 snd_printk(KERN_ERR "firmware request failed: %d\n", err); 2399 snd_ymfpci_free(chip); 2400 return err; 2401 } 2402 snd_ymfpci_download_image(chip); 2403 2404 udelay(100); /* seems we need a delay after downloading image.. */ 2405 2406 if (snd_ymfpci_memalloc(chip) < 0) { 2407 snd_ymfpci_free(chip); 2408 return -EIO; 2409 } 2410 2411 if ((err = snd_ymfpci_ac3_init(chip)) < 0) { 2412 snd_ymfpci_free(chip); 2413 return err; 2414 } 2415 2416 #ifdef CONFIG_PM 2417 chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32)); 2418 if (chip->saved_regs == NULL) { 2419 snd_ymfpci_free(chip); 2420 return -ENOMEM; 2421 } 2422 #endif 2423 2424 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) { 2425 snd_ymfpci_free(chip); 2426 return err; 2427 } 2428 2429 snd_ymfpci_proc_init(card, chip); 2430 2431 snd_card_set_dev(card, &pci->dev); 2432 2433 *rchip = chip; 2434 return 0; 2435 } 2436